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Abstract

The conditional sampling model, introduced by Canonne, Ron and Servedio (SODA 2014,
SIAM J. Comput. 2015) and independently by Chakraborty, Fischer, Goldhirsh and Matsliah
(ITCS 2013, SIAM J. Comput. 2016), is a common framework for a number of studies concern-
ing strengthened models of distribution testing. A core task in these investigations is that of
estimating the mass of individual elements. The above mentioned works, and the improvement
of Kumar, Meel and Pote (AISTATS 2025), provided polylogarithmic algorithms for this task.

In this work we shatter the polylogarithmic barrier, and provide an estimator for the mass
of individual elements that uses only O(log logN) + O(poly(1/ε)) conditional samples. We
complement this result with an Ω(log logN) lower bound.

We then show that our mass estimator provides an improvement (and in some cases a
unifying framework) for a number of related tasks, such as testing by learning of any label-
invariant property, and distance estimation between two (unknown) distributions. In light of
some known lower bounds for common restricted models, our results imply that the full power
of the conditional model is indeed required for the doubly-logarithmic upper bound.

Finally, we exponentially improve the previous lower bound on testing by learning of label-
invariant properties from double-logarithmic to Ω(logN) conditional samples, whereas our test-
ing by learning algorithm provides an upper bound of O(poly(1/ε) · logN log logN).
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1 Introduction

The property testing framework [GGR98, RS96] deals with approximate decision making in situ-
ations where the input data cannot be read in its entirety. Instead, the algorithm is only allowed
to read a very small fraction of the data and deduce some global property based on the observed
information.

A well-investigated area of property testing focuses on examining the properties of distributions.
In this context, the algorithm can access independent samples from a discrete distribution over
{1, . . . , N}, and must determine whether to accept or reject the input based on these samples.
Specifically, the algorithm receives a parameter ε > 0 and is required to accept any input that meets
the property to be tested (with high probability), while rejecting any input that is ε-far (in terms of
total variation) from any distribution that fulfills the property (again, with high probability). This
model was explicitly defined in [BFR+00, BFF+01, GR11] and has garnered considerable attention
over the past few decades.

Somewhat unsurprisingly, a typical sample complexity for distribution testing algorithms is Õ(N δ)
for some constant δ < 1. Even for testing whether a distribution is uniform, one of the most basic and
simple distribution properties, a tight bound of Θ(

√
N/ε2) is known [Pan08, GR11]. When studying

distributions supported over extremely large domains, this sample complexity effectively makes
testing intractable. To circumvent this problem, several competing approaches were considered.

The first approach involves restricting the class of input distributions (e.g., restricting the input
distribution to be monotone [RS09] or a product distribution [CDKS17, DDK19]). The second
approach considers a model equipped with a more relaxed distance metric (usually coupled with
an even weaker query model), such as the Huge Object Model [GR23, CFG+23, AF24, AFL24b,
CFG+24], which uses the earth-mover distance metric (as defined in those works). The third
approach, which is the main focus of this work, investigates stronger query models.

One of the earliest models suggested to tackle the scaling problem is the conditional sampling
model. This model was introduced independently by Chakraborty, Fischer, Goldhirsh, and Mat-
sliah [CFGM16], and Canonne, Ron, and Servedio [CRS15]. The conditional model allows more
general queries: namely, the algorithm may specify an arbitrary subset of the domain and request
a sample from the distribution conditioned on it belonging to the subset. In many cases, the condi-
tional sampling model circumvents sample-complexity lower bounds. Since its introduction, there
has been significant study into the complexity of testing a number of properties of distributions under
conditional samples, in both adaptive and non-adaptive settings [Can20, FJO+15, ACK18, BCG19,
BC18, KT19, FLV19]. Beyond distribution testing, this model of conditional sampling has found
applications in sublinear algorithms [GTZ17], group testing [ACK15], and crowdsourcing [GTZ18].

In this work we concentrate on a core task that is useful to many investigations of distribution testing.
Consider a task that, given x ∈ {1, . . . , N}, attempts to provide a multiplicative approximation of
the probability of drawing x according to the input distribution µ, denoted by µ(x). It was first
described as the evaluation oracle in [RS09]. If we are able to do it efficiently for all but a small
probability set of the possible elements, then we can solve other tasks. Algorithms that simulate
the multiplicative estimation task appear in [CRS15] and in [CFGM16]. Both works independently
define an implementation with poly(log(N), 1/ε) sample-complexity of the evaluation oracle and
use it to show their results (equivalence testing in [CRS15], a universal tester for label-invariant
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properties in [CFGM16]). Our main contribution is a radically improved algorithm for this task,
that uses only log(log(N)) many samples, with a polynomial dependency on ε and an additional
approximation parameter that we de-couple from ε and specify later.

As an example application, consider the task of distance estimation in the conditional sampling
model. In this task the algorithm receives (conditional) sampling access to two unknown distribu-
tions µ and τ supported over {1, . . . , N}, and is required to estimate their total-variation distance
within an additive error parameter. In the standard sampling model, tight bounds of Θ(N/ logN)
are known even for estimating the distance from uniformity [VV11, VV10a, VV10b].

When considering the conditional sampling model, one can do much better. In [CRS15, MKP25],
an algorithm using O(poly(logN)/poly(ε)) conditional samples was established. Later, [FJO+15]
improved the complexity in the easier task of equivalence testing, which is distinguishing between
zero distance and a distance greater than the approximation parameter, to Õ(log logN/ε5), and
[CCK24] obtained a corresponding lower bound of Ω̃(log logN).

In this paper we apply our improved distribution approximator to drastically improve the upper
bound for estimating the distance between two unknown distributions using conditional samples
to O(log logN/ε2 + 1/ε7) · poly log(ε−1). Based on our core approximator, we also improve the
polynomial ε-factors of [FJO+15] and eliminate the polynomial triple-logarithmic N -factors. We
also use this enahnced estimation module to approximate the histogram of an unknown distribution,
being optimal up to poly-double-logarithmic N -factors and polynomial ε-factors, and use it to obtain
a universal tester for every label-invariant property at this cost.

To complement the picture, we show that there exists a label-invariant property that requires
Ω(logN/ε) samples to test, which implies that the above-mentioned universal tester is optimal up
to polynomial double logarithmic N -factors and polynomial ε-factors. We also show that the core
approximation task in itself is nearly optimal in its number of samples.

1.1 Summary of our results

Table of results The following table summarizes our results, except for the two lower bounds
marked by “(∗)” which are due to [CCK24]. The following paragraphs provide more details. In
the estimation task of µ(x), a correct output (with high probability) is guaranteed for every x in
some set G ⊆ Ω satisfying µ(G) > 1− c. This task has two sample-complexity upper bounds: the
first holds for every x in the domain of µ (even if it does not belong to G), and the second is the
expected sample complexity when x is unconditionally drawn from µ.

Task Lower Bound Upper Bound

Estimate (1± ε)µ(x) Ω(log logN)
all x O(log logN) + Õ( 1

ε2c
+ 1

ε5
)

x ∼ µ O(log logN) +O( 1
ε4
) · polylog(c−1, ε−1)

µ = τ vs. dTV(µ, τ) > ε (∗) Ω̃(log logN) O
(
log logN

ε + 1
ε5

)
· polylog ε−1

Estimate dTV(µ, τ)± ε (∗) Ω̃(log logN) O
(
log logN

ε2
+ 1

ε7

)
· polylog ε−1

Learn histogram of µ Ω(logN/ε)

Õ(1/ε7) · logN log logNLabel-invariant
universal tester

Ω(logN/ε)
(worst property)
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Single-element mass estimation This is our core contribution. We use a new approach to
show a tight upper bound for estimating the mass of a given element within (1 ± ε)-factor in
the fully conditional (adaptive) model, where the mass of the set of eligible elements is at least
1 − c for a second approximation parameter c (all prior works implicitly set c = O(ε), which is
sufficient for most applications). The old approaches (for example descending the tree of dyadic
intervals as in [CFGM16]) all have poly-logarithmic factors, which are unavoidable since they are
also implementable in more restricted conditional models (such as interval conditioning [CRS15] and
subcube conditioning [BC18]) in which equivalence testing is known to be poly-logarithmic hard.

Theorem 1.1 (Informal statement of Theorem 4.1). Let µ be a distribution over Ω = {1, . . . , N}
that is accessible through the fully conditional oracle, and let ε, c > 0 be the given approximation
parameters. There exists a set G ⊆ Ω of mass µ(G) > 1 − c such that for every x ∈ G, we can
algorithmically estimate µ(x) within (1 ± ε)-factor with probability 2/3. The sample complexity is
bounded by O(log logN) + Õ

(
1
ε2c

+ 1
ε5

)
. If x is drawn from µ, then the expected sample complexity

is only O(log logN) +O
(

1
ε4

)
· poly(log c−1, log ε−1).

The “O(log logN)” part comes from a binary search performed over a range of size O(logN). By a
reduction from a binary search problem back to an estimation task, we also show that this part of
the bound is tight (even if we only need to estimate a “typical” element from its support).

Theorem 1.2 (Informal statement of Theorem 10.22). There exists ε > 0, so that every algorithm,
that can with probability at least 2/3 estimate the probability mass of an element drawn (uncon-
ditionally) from µ within (1 ± ε)-multiplicative factor, must draw at least Ω(log logN) conditional
samples in expectation.

We leverage Theorem 1.1 to obtain the following upper-bound results.

Equivalence ε-testing We improve the state-of-the-art upper bound of [FJO+15] that uses
Õ(log logN/ε5) for ε-testing equivalence of two distributions over {1, . . . , N} in the fully condi-
tional sampling model. We provide two asymptotical speedups: first, the 1/ε5-factor becomes
additive rather than multiplicative, whereas log logN is only multiplied by 1/ε. This is an ε4-
speedup over the previous best for N that is large enough with respect to ε. Second, we remove the
poly-triple-logarithmic factors over N , leaving a clean O(log logN) dependency on the domain size.

Theorem 1.3 (Almost-tight upper bound for equivalence testing). Let µ, τ be two distributions
over Ω = {1, . . . , N} and ε > 0. There exists an algorithm for distinguishing between the case where
µ = τ and the case where dTV(µ, τ) > ε, using O((log logN/ε + 1/ε5) · poly(log ε−1)) conditional
samples.

Distance estimation between two distributions We show an almost-tight upper bound for
estimating the total variation distance between two distributions over {1, . . . , N} in the fully condi-
tional model. The surprising aspect of this result is the almost-tight gap between the lower bound of
the equivalence testing problem and the upper bound of the (harder) distance estimation problem.
Having only a small gap depending on the domain size between testing and estimation tasks is
relatively uncommon, and in various models there exist examples for polynomial gaps (for example,
uniformity in the sampling model [Pan08, VV10a, VV11]), and even examples for constant-cost tests
with non-constant cost corresponding estimation tasks (for example, [FF06] in the string model,
later improved in [BEFLR20]).
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Theorem 1.4 (Almost-tight upper bound for distance estimation). Let µ, τ be two distributions
over Ω = {1, . . . , N} and ε > 0. There exists an algorithm for estimating dTV(µ, τ) within ε-additive
error using O((log logN/ε2 + 1/ε7) · poly(log ε−1)) conditional samples.

Since the distance estimation task cannot be easier than equivalence testing, whose lower bound
is Ω̃(log logN) [CCK24], this upper bound for distance estimation is optimal, up to poly-triple-
logarithmic factors of N and polynomial ε-factors.

Learning the histogram of µ We show an upper bound for learning the histogram of a given
distribution µ up to a threshold parameter ε using a quasi-logarithmic in N number of conditional
samples. Since histogram learning directly implies testing of any label-invariant property without
additional samples, this improves over [CFGM16], whose label-invariant tester only guarantees a
polylogarithmic upper bound. A nearly-matching lower bound for this task follows from specially
constructed label-invariant properties (see below).

Theorem 1.5 (Informal statement of Theorem 9.21). There exists an algorithm that approximates
the histogram of an input distribution µ with accuracy ε, using Õ(1/ε7) · logN log logN conditional
samples.

Theorem 1.6 (Informal statement of Corollary 10.52). For every sufficiently small ε > 0, every
algorithm that approximates the histogram of its input distribution with accuracy ε must draw at
least Ω(logN/ε) conditional samples.

Almost tight label-invariant testing The histogram learning algorithm immediately implies
a corresponding test for any label-invariant property: one can just perform the histogram approx-
imation up to a distance of ε/2, and then accept if and only if this histogram corresponds to a
distribution that is ε/2-close to satisfying the property. We complement this with an existence
proof of label-invariant properties with a nearly matching lower bound on the number of required
samples, an exponential improvement over the Ω̃(log logN) bound recently shown in [CCK24].

Theorem 1.7 (Informal statement of Corollary 9.22). There exists a universal tester for ε-testing
every label-invariant property using Õ(1/ε7) · logN log logN conditional samples.

Theorem 1.8 (Informal statement of Theorem 10.51). For every sufficiently small ε > 0, there
exists a label-invariant property P such that every ε-testing algorithm for P draws at least Ω(logN/ε)
conditional samples.

1.2 Related work

Closely related to the distance estimation problem is the problem of equivalence testing, which asks
to determine whether two unknown distributions are equal or far from each other. In the stan-
dard sampling model, the sample complexity of the problem was pinned down to Θ(N2/3/ε4/3 +√
N/ε2) [BFR+00, Val08, CDVV14]. In the conditional sampling model, Canonne Ron and Serve-

dio [CRS15] designed a testing algorithm with query complexity Õ(log5N/ε4). This was later im-
proved to Õ(log logN/ε5) by [FJO+15], and complemented with an almost matching lower bound
of Ω̃(log logN) [CCK24]. That lower bound can be used for a relatively easy derivation of a
Ω̃(log logN) lower bound on the (c, ε)-estimation task for small enough ε > 0 and c > 0, but
we directly prove a clean Ω(log logN) bound.
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One interesting special case of the distance estimation problem is the case where one of the distribu-
tions is explicitly given to the algorithm. In this setting, [CRS15] showed that one can estimate the
distance to the known distribution using Õ(log5N/ε5) conditional queries, which was later improved
by [Nar20] to Õ(1/ε4). In contrast, in the standard sampling model, estimating the distance to the
uniform distribution requires at least Ω(N/ logN) samples [VV11, VV10a, VV10b].

A special type of conditional access which gained popularity in recent years is the subcube con-
ditioning model [BC18, CRS15]. In this model, the distributions are given over a product set
{0, 1}n, and the algorithm can query subcube subsets, which are sets of the form

∏n
i=1Di where

Di ⊆ {0, 1} for every 1 ≤ i ≤ n (note that here N = 2n). In this model, uniformity can be tested
using Θ̃(

√
n/ε2) = Θ̃

(√
logN/ε2

)
samples [CCK+21], and the best-known test for equivalence is

Õ(n/ε2) [AFL24a], with a lower bound of Ω(n3/4/ε+
√
n/ε2) [CDKS17]. Other properties studied

under the subcube conditional model include monotonicity [CCR+25], and having a probability
density function supported on a low-dimensional subspace [CJLW21].

A related line of work aims to circumvent the polynomial dependency in the domain’s size by
considering restricted classes of input distributions. Some of the cases studied are those where the
distribution is known to be monotone [RS09, CCR+25], a low-degree Bayesian Network [CDKS17,
DP17, ABDK18], a Markov Random Field [DDK19, GLP18, BBC+20], or having a “histogram by
intervals” structure [DKP19]. Considering a distribution having a histogram structure, a learning
algorithm was given in [FLV19] under several sampling models (for such distributions there is little
difference between learning the histogram and learning the entire distribution).

2 Overview

2.1 Technical overview

The core result

Given a distribution µ over Ω = {1, . . . , N}, an element x ∈ Ω and two estimation parameters
ε, c ∈ (0, 1), our task is to estimate µ(x) within a (1± ε)-factor or to indicate that it is among the
smallest elements, whose cumulative mass is at most c. Note that if µ(x) = Ω(c) then it can easily
be estimated directly using unconditional sampling, and therefore, this overview focuses on the case
where µ(x) = O(c) (with an appropriate hidden constant factor).

At top level, our algorithm looks for a reference set R whose probability mass (as an event) is both
comparable to µ(x) (that is, Prµ [x|R ∪ {x}] lies in a reasonable range, between two constants) and
estimable with high accuracy. This way we can arithmetically estimate µ(x) using estimations of
Prµ [x|R ∪ {x}] and µ(R). For estimating Prµ [x|R ∪ {x}], it should be possible to efficiently draw
samples from R ∪ {x}. This can be directly done under the conditional model if we know R in
its entirety, but as we describe below there are ways around this problem when we do not have
complete access to R.

Our construction refers to two sets: the target set Vx, which is a set that includes all elements
with mass smaller than µ(x) and no element whose mass is significantly higher than µ(x), and the
filter set Aα, which is the result of independently choosing every z ∈ Ω with probability α. The
intersection Vx ∩ Aα is a good reference set whenever the order of α is about the quotient of µ(x)
and µ(Vx). The algorithm spends most of its effort on finding a good α. In fact, if a good α is
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already given, then the rest of the algorithm can complete its estimation of µ(x) using a number of
samples that does not depend on N at all.

The target set Vx, whose mass is Ω(c) (for x whose cumulative mass is at least c and for which
µ(x) = O(c)), is estimable directly by virtue of having a high mass. Since it does not contain
elements much heavier than x, we can use a large deviation inequality to deduce that the mass of
Vx ∩Aα is highly concentrated around αµ(Vx).

However, Vx cannot be found explicitly. We can only construct a “membership-oracle” by comparing
the weight of potential elements to the weight of x using pair conditionals. In particular, Vx is
probabilistic, but for any element y with strict demands (either lighter than x or much heavier
than x) there is a very small probability to misclassify the membership of y. For medium-weight
elements, which are only slightly heavier than x, our analysis embraces the probabilistic nature of
belonging to Vx.

Another problematic consequence of the oracle-membership implicit-construction of Vx (and thereby
of R = Vx ∩ Aα) is the inability to use it as a condition, since we can only restrict to explicit sets.
Instead, we restrict to Aα (whose construction uses internal randomness and no samples from µ),
and use rejection-sampling to simulate the restriction to Vx ∩ Aα. Since Vx has a globally high
weight but contains no elements whose mass is too high, the relative weight of Vx ∩Aα as a subset
of Aα is usually high as well. This allows a lazy construction of Vx, where we only query candidate
elements drawn from Aα for belonging to Vx, instead of drawing Vx in its entirety in advance.

To find an α of the correct magnitude, we first observe that it suffices to consider powers of 1
2 that

lie between 1 and 1
O(N) . This observation reduces the search range to O(logN) possible choices.

To reduce the needed work to O(log logN), we show a monotone estimable function of α that can
characterize the range of good αs based on their respective values of this function. This allows
a binary search, but since the estimation of the function is probabilistic, we construct a binary
search scheme that allows the comparator to be wrong with small fixed probability. Our binary
search scheme removes the triple-logarithmic penalty required by the straight-forward approach of
amplifying the success probability of the comparator to the point that even a single error is unlikely
to occur during the binary search.

The result of the binary search is a Θ(1)-approximation of the ideal choice of α. Referring to R
constructed using such an α, a simple arithmetical function of µ(R)/µ(R ∪ {x}) (which can be
approximated by inspecting a sequence of samples from R ∪ {x}) gives us the missing factor that
allows us to calculate the approximation of µ(x). Our procedure uses the roughly-estimated α
to estimate this expectation within 1 ± O(ε)-factor, which we then use to obtain a (1 ± ε)-factor
estimation of µ(x).

The applications

We present three applications of our core estimator. All of them are the result of plugging our
estimator (each time with different parameters and under different circumstances) into an algorithm
that achieves the corresponding task when it has some access to the actual values of the distribution
function µ.

For the task of histogram learning, knowing the exact value of µ(x) for each x that was received as an
unconditional sample would have allowed us to just approximate the weight of each “bucket” Bi that
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contains all x of weight between (1 − ε)i−1 and (1 − ε)i (ignoring buckets with i > O(ε−1 logN)).
From the bucket weights one can then write down a distribution that is an approximation of a
permutation of µ, providing the histogram of µ. Receiving only approximate values can cause some
“bucket shift” to (say) i± 2, but the resulting error is not significant.

Estimating the distance between two distributions, for which element mass estimations are provided,
is generally achievable by (unconditionally) drawing elements from the distributions, and for each
drawn element examining the ratio of its masses according to the two distributions. To implement
this in the conditional sampling model, we plug in our estimator. Since we need to use it also for
elements which were not drawn from the distribution to be queried, this increases the dependency on
ε to one that follows from the “all x” bound. However, when we only want to solve the equivalence
testing task, we show that we can still use the “x ∼ µ” bound as long as both distributions are
identical to the same µ, which allows us to automatically reject if the algorithm happens to require
more samples than that bound. For both tasks, the lower bound is that of [CCK24].

The lower bounds

The tight lower bound for the estimation task is essentially an ad-hoc reduction from the task
of finding an unknown value k, whose range of possible values has size O(logN), through binary
search. Such a value can be “encoded” by a uniform distribution over a subset of {1, . . . , N} whose
size is (1 ± o(1))2−k · N , and then retrieved by successfully approximating the mass of any of the
support elements. Since the bottleneck of the upper bound algorithm is a binary search task as
well, this implies that a binary search task (in an appropriate range) is indeed a crucial component
of the estimation task.

The demonstration that the full conditional model is essential for a doubly logarithmic algorithm
follows from using the framework of some of our applications “in the other direction”: a doubly
logarithmic solution to the estimation task in a weak model would have implied a solution to a
testing task that contradicts a known lower bound.

A label-invariant property with a logarithmic in N lower bound is constructed by encoding max-
imally hard to test linear codes as histograms, and proving that a test for such a code can be
converted to a classical string property test in this case.

2.2 Organization of the paper

Section 3 describes the sampling model and the notation scheme that we use throughout this
paper. Within it, Subsection 3.2 defines the quantities and constructed sets used for our algorithm.
Appendix A provides a concise table for these, for the reader’s convenience.

Sections 4 through 8 contain the proof of our core result. Appendix B provides a simplified chart
of the calling structure and dependencies between the various procedures defined in these sections.

Section 4 provides the top layer of the algorithm, which is the procedure Estimate-element.

Section 5 provides the implementation of the target test scheme (Target-test in Subsection 5.1), along
with a few algorithmic tools to assess the target sets, and specifically tools related to the quantity
βx,α = µ(R)/µ(R∪{x}): a “cheaper” Target-test-gross in Subsection 5.1, a virtualization of the target
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set (Initialize-new-Vx, Vx-Query) in Subsection 5.2, Estimate-E[βx,α] in Subsection 5.3, and Estimate-
βx,α in Subsection 5.4 (for a virtual single instance of Vx). The estimator here, while satisfying
the optimal asymptotic guarantees, has an unrealistic numerical constant factor. In Appendix C
we show how to reduce this by adjusting the target test, at the cost of a small asymptotic penalty
which carries over to the estimator.

The following sections provide the three main components of the Estimate-element procedure:
Reference-estimation in Section 6, Find-good-α in Section 7 and Estimate-scaled-result (an esti-
mator for E

[
βx,α

1−βx,α

]
) in Section 8. The estimator for E

[
βx,α

1−βx,α

]
, whose precise definition is

EAα,Vx

[
βx,α(Aα,Vx)

1−βx,α(Aα,Vx)

]
, uses the procedures for draws of Vx and estimations of βx,α (for a provided

Aα) of Section 5.

We provide the uncertain-comparator binary search used in Find-good-α, which is a probabilistic
variant of binary search that can use a comparator which is allowed to be wrong with a small fixed
probability, in Subsection 7.3.

In Section 9 we provide applications of our core result in the fully conditional model: in Subsection
9.2 we provide an almost-tight histogram learning algorithm, and as a corollary a universal ε-testing
algorithm for label-invariant properties. In Subsection 9.3 we provide an almost tight ε-estimation
for total-variation distance, and in Subsection 9.4 we provide an improved ε-test for equivalence.
These applications use a trio of general-purpose application lemmas, Lemmas 9.10, 9.23 and 9.24.
In Appendix D we provide another lemma of this type, for which we hope to be useful in future
applications.

In Section 10 we provide lower bounds for the tasks discussed in this paper. In Subsection 10.1 we
prove the tight lower bound on the µ(x) estimation task (as a function of N). Then, in Subsection
10.2 we provide quick lower bounds for this task under more restricted conditional models, mostly
derived from known lower bounds on equivalence testing in conjunction with interim algorithms
from Section 9. In Subsection 10.3 we construct a specific label-invariant property, for which we
prove an almost-tight testing lower bound.

The most technical (and mechanical) proofs across the paper are deferred to Appendix E (bounds
relevant to E[βx,α] and E[βx,α/(1− βx,α)]) and Appendix F (miscellaneous ad-hoc proofs).

3 Preliminaries

3.1 Distribution access oracles and tasks

In this work we consider algorithms that access an input indirectly through oracles. In particular,
the complexity of our algorithms is measured in terms of the number of calls to the provided oracle.
In all oracles, the output distribution is determined by the distribution µ and the arguments of the
call, and is completely independent of past calls and any other algorithmic behavior.

The following is the weakest oracle, the one allowed in the traditional distribution testing model.

Definition 3.1 (Sampling oracle). Let µ be an input distribution over a set Ω. The sampling oracle
for µ has no additional input, and outputs an element x ∈ Ω that distributes like µ.

The following oracle corresponds to the algorithms that we analyze in this paper.
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Definition 3.2 (Conditional sampling oracle). Let µ be an input distribution over a set Ω. The
conditional sampling oracle for µ gets a set A ⊆ Ω as input, and outputs an element x ∈ A that
distributes like µ when conditioned on x belonging to A.

The above definition still leaves open the question as to what happens when a sample conditioned on
A is requested for a probability zero set A (two common variants are the oracle returning a special
error symbol [CRS15] or the oracle returning a value uniformly drawn from A [CFGM16]). Our
estimation algorithm is designed to never ask for such a sample, and hence works for all variants of
this model.

We next define some notions of distances and approximations.

Definition 3.3 (Total variation distance). Let µ and τ be two distributions over Ω. Their total
variation distance is defined as

dTV(µ, τ)
def
=

1

2

∑
x∈Ω
|µ(x)− τ(x)| =

∑
x∈Ω:µ(x)>τ(x)

(µ(x)− τ(x)) = max
E⊆Ω

(µ(E)− τ(E))

Definition 3.4 (ε-test). Let R be a metric space and let P be a closed set, which we call a property.
For an input element x ∈ R and a parameter ε > 0, the goal of an ε-test for P is to distinguish
between the case where x ∈ P and the case where d(x, y) > ε for every y ∈ P.

The following notion is a major building block in our algorithms.

Definition 3.5 (Saturation-aware estimator). Let f : [0, 1]→ [0, 1] be a non-decreasing monotone
function. An algorithm is an (ε; pℓ, pm)-f -saturation-aware estimator of an unknown probability p
if the following hold:

• If f(p) ≤ pℓ, then with probability at least 2/3 the output is a special value low.

• If pℓ < f(p) < pm, then with probability at least 2/3 the output is either the special value
low or in the range (1± ε)p.

• If f(p) ≥ pm, then with probability at least 2/3 the output is in the range (1± ε)p.

We use “(ε; pℓ, pm)-saturation-aware estimator” to denote the case where f is the identity function.

Usually, a test can distinguish between the first and the third cases, and an estimator can guarantee
the third part. The saturation-aware estimator also requires correctness in the “middle” case.

Recall that our main goal is to estimate the probability mass of individual elements. The exact mass
cannot be provided since it can be any value in the continuous range [0, 1]. Moreover, the effort
needed to estimate the mass of an extremely rare element is unbounded. Hence, every estimation
algorithm must allow a small mass of elements whose probabilities cannot be approximated at all,
and in this paper these are characterized by the notion of the cumulative distribution function.

Definition 3.6 (Cumulative distribution function). Let µ be a distribution over Ω. The cumulative
distribution function of µ is the function CDFµ : Ω → [0, 1] defined as CDFµ(x) = Pry∼µ[µ(y) ≤
µ(x)].

Definition 3.7 (The (ε, c)-estimation task). Let ε > 0 and c > 0 be our parameters. For a
distribution µ over a finite domain Ω, let A be an algorithm that gets x ∈ Ω and outputs some p̂.
The goal is an (ε; 0, c)-CDFµ-saturation-aware estimation of µ(x).
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Our main result is an algorithm that solves the estimation task, whose dependency on N is doubly-
logarithmic for fixed ε and c. Note that in particular the set G = {x ∈ Ω : CDFµ(x) ≥ c} has mass
strictly larger than 1− c. We next describe a major application of our estimator.

Definition 3.8 (Histogram divergence DH(·; ·)). Let µ and τ be two distributions over Ω, and let
S(Ω) denote the set of all permutations over Ω. The histogram divergence of µ and τ is defined as:

DH (µ; τ) = min{ε ≥ 0 : min
π∈S(Ω)

Pr
x∼µ

[µ(x) /∈ (1± ε)τ(π(x))] ≤ ε}

The following lemma, which we prove in Appendix F, states that distributions with low histogram
divergence are close up to a permutation of the labels.

Lemma 3.9. For every two distributions µ, τ over Ω there exists a permutation π over Ω for which
dTV(µ, πτ) ≤ 2DH(µ; τ).

Definition 3.10 (The ε-histogram learning task). Let µ be a distribution over Ω. The ε-histogram
learning task requires finding a distribution τ for which DH(µ; τ) ≤ ε.

3.2 Paper-specific notations

To describe our estimation algorithm we need various ad-hoc notations. Most of them involve
x ∈ Ω, c ∈ (0, 1) and ε ∈ (0, 1), and some additionally involve 0 < α ≤ 1. We usually use short-form
notations ignoring c and ε, but never ignore x and α. See Appendix A for a concise table that
summarizes these notations.

Given x ∈ Ω for which we would like to assess µ(x), our proofs rely heavily on a categorization of
Ω \ {x} by masses.

Definition 3.11 (The three scale-sets with respect to x). Let x ∈ Ω. We divide the rest of the
domain Ω according to their probability masses as compared to µ(x) as follows:

• The x-light set is Lx = {y ∈ Ω \ {x} : µ(y) ≤ µ(x)}.

• The x-medium set is Mx = {y ∈ Ω : µ(x) < µ(y) < 1.2µ(x)}.

• The x-heavy set is Hx = {y ∈ Ω : µ(y) ≥ 1.2µ(x)}.

Distinguishing between Lx-elements and Hx-elements cannot be certain since it uses random sam-
ples. We require the probability to be very small. The affect of the target error on our algorithm’s
complexity is logarithmic.

Definition 3.12 (ηc,ε, the target error). The target error is ηc,ε = min
{

1
4cε,

1
109

, ε5

1020(ln ε−1)5

}
.

We define the constraints of the categorization algorithm based on the target error.

Definition 3.13 (An (x, c, ε)-target test). An algorithm T is an (x, c, ε)-target-test if:

• The probability to accept y ∈ Ω \ {x} only depends on x and y (and µ), and in particular is
independent of past executions.

• For every y ∈ Lx, the probability to accept y is greater than 1− ηc,ε.

• For every y ∈ Hx, the acceptance probability is less than ηc,ε.
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Definition 3.14 (An (x, c, ε)-target-test scheme). A mapping from every triplet (x, c, ε) to an
(x, c, ε)-target-test Tx,c,ε is called an (x, c, ε)-target-test scheme.

The target-test scheme is a crucial part in our proof, and can be implemented algorithmically.

Lemma 3.15 (Informal statement of Lemma 5.3). Procedure Target-test (Algorithm 3 in Section
5), with parameters (µ, c, ε;x, y), is an (x, c, ε)-target-test scheme.

We prove this lemma in Section 5, right after the implementation of Target-test. Based on this
lemma, we have a canonical target-test for every triplet (x, c, ε), and can omit the recurring param-
eter of “the specific (x, c, ε)-test we refer to”, encapsulating it as a function.

Definition 3.16 (fx,c,ε, Target function). The target function fx,c,ε : Ω \ {x} is the probability of
the (canonical) (x, c, ε)-target-test to accept y.

The “ideal reference set” is defined similarly to the output of the target test, only here we do not
allow any error with respect to the “important” sets Lx and Hx.

Definition 3.17 (Vx,c,ε, the target set). Let x ∈ Ω. The target set Vx,c,ε ⊆ Ω \ {x} is a random set
that contains Lx, is disjoint from Hx, and contains every element y ∈Mx with probability fx,c,ε(y),
independently.

We define two masses based on the expected mass of the target set corresponding to x, with or
without x itself. Both masses play a role.

Definition 3.18 (sx,c,ε, the scale mass). The scale mass with respect to x is denoted by sx,c,ε =
E[µ(Vx,c,ε)] = µ(Lx)+

∑
y∈Mx

µ(y)fx,c,ε(y). The expectation is over the choice of Vx,c,ε as a random
set.

Definition 3.19 (wx,c,ε, the weight of x). The weight of x is denoted by wx = µ(x) + sx,c,ε.

As mentioned in the technical overview, we also define a filter set that is randomly constructed
according to a parameter α. Since the filter set only depends on the internal coin-tosses of the
algorithm, we can fully characterize it and use it for drawing conditional samples. Our reference set
is the intersection of the target set and the filter set.

Definition 3.20 (Aα, the α-filter set). Let 0 < α ≤ 1. The α-filter set, Aα, is a random set where
every element in Ω belongs to Aα with probability α, independently.

Definition 3.21 (Vx,c,ε,α, the α-filtered target set). The α-filtered target set is denoted by Vx,c,ε,α =
Vx,c,ε ∩Aα.

The next definition, γx,c,ε, describes the “best” value of α with respect to x, c and ε, which our
algorithm looks for. The rest of the algorithm works by first finding a suitable α = Θ(γx,c,ε)

Definition 3.22 (γx,c,ε, the goal magnitude). The goal magnitude of the filtering parameter α is
denoted by γx,c,ε = µ(x)/E[µ(Vx,c,ε)].

For a good α, the distribution of the following probability is concentrated around a value bounded
away from both 0 and 1.

Definition 3.23 (βx,c,ε,α, the filtered density). Let x ∈ Ω and 0 < α ≤ 1. The filtered density of
x, with respect to the choices of Vx,c,ε and Aα, is βx,c,ε,α = Prµ[¬x|Vx,c,ε,α ∪ {x}] = µ(Vx,c,ε,α)

µ(x)+µ(Vx,c,ε,α)
.
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The algorithm first finds a good α by performing a binary search, where for values too close to 0
or 1 the expectation of βx,c,ε,α are in the “too low” and “too high” ranges respectively. A good α
allows us to complete our assessment of µ(x) using βx,c,ε,α.

Observation 3.24. For every 0 < α ≤ 1, µ(x) = αE[µ(Vx,c,ε)]/E
[

βx,c,ε,α

1−βx,c,ε,α

]
.

Proof. For every fixed x,

E

[
βx,c,ε,α

1− βx,c,ε,α

]
= E

 µ(Vx,c,ε,α)
µ(x)+µ(Vx,c,ε,α)

1− µ(Vx,c,ε,α)
µ(x)+µ(Vx,c,ε,α)

 = E

[
µ(Vx,c,ε,α)

µ(x)

]
=

E [µ(Vx,c,ε,α)]

µ(x)
=

αE [µ(Vx,c,ε)]

µ(x)

3.3 Technical lemmas

Definition 3.25 (Binomial distribution, Bin(n, p)). The distribution of the sum of n independent
trials with success probability p is denoted by Bin(n, p). Explicitly, PrBin(n,p)[k] =

(
n
k

)
pk(1− p)n−k.

Lemma 3.26 (Additive Chernoff bound). Let X ∼ Bin(n, p). For every t > 0, Pr[X−E[X] > t] ≤
e−2t2/n and Pr[X − E[X] < −t] ≤ e−2t2/n.

Lemma 3.27 (Multiplicative Chernoff bound). Let X ∼ Bin(n, p). For every 0 < r ≤ 1, Pr[X >

(1 + r) E[X]] ≤ e−
1
3
r2 E[X] and Pr[X < (1− r) E[X]] ≤ e−

1
3
r2 E[X].

Definition 3.28 (Geometric distribution, Geo(p)). The distribution of the number of independent
trials, each with success probability p, until the first success (including the successful trial itself) is
denoted by Geo(p). Explicitly, PrGeo(p)[k] = (1− p)k−1p.

Lemma 3.29 (Well-known). Let X be a random variable that is geometrically distributed with
parameter p. Then E[X] = p−1, Var[X] = 1−p

p2
, and E[eλX ] = peλ

1−(1−p)eλ
for λ < − ln(1− p).

Observation 3.30 (Folklore). Let Aα ⊆ Ω be a random set such that, given α, every element
y ∈ Ω belongs to Aα with probability py,α, where py,α is non-decreasing monotone with respect to
α (but possibly not the same for different choices of y). Let f : 2Ω → R be a non-decreasing
monotone function (that is, U ⊆ V → f(U) ≤ f(V )). In this setting, the mapping α → E[f(Aα)]
is non-decreasing monotone as well.

Observation 3.31 (Generic). Let f : 2Ω → [a, b] be a bounded function. Assume that Aα ⊆ Ω is
drawn such that every element y ∈ U is drawn with probability py,α, which is continuous with respect
to a parameter α (but possibly not the same for different choices of y). The mapping α→ E[f(Aα)]
is continuous.

Proof. Let α1 < α2. Then:

|E[f(Aα2)]− E[f(Aα1)]| ≤
(
max
U

f(U)−min
U

f(U)

)∑
y∈Ω
|py,α2 − py,α1 | ≤ (b− a) ·

∑
y∈Ω
|py,α2 − py,α1 |

This expression tends to zero for α2 → α1 since all py,αs are continuous and a and b are fixed.
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Observation 3.32 (Median amplification). Let X be a random variable, and [a, b] be a range such
that Pr [X ∈ [a, b]] ≥ 2/3. We use “median-of-M ” to denote the process of drawing M independent
samples of X and taking their median value. Then:

(a) Median-of-9 amplifies the probability of obtaining a value in [a, b] to 5/6.

(b) Median-of-13 amplifies it to 8/9.

(c) Median-of-47 amplifies it to 99/100.

(d) Median-of-
⌈
30 ln c−1

⌉
amplifies it to 1− 1

2c for c < 1/3.

(e) Median-of-
⌈
30 ln c−1

⌉
amplifies it to 1− 1

24c for c < 1/150.

We prove Observation 3.32 in Appendix F.

Lemma 3.33. Let r > 0. For every distribution µ, Ex∼µ

[
1

wx+r

]
≤ Ex∼µ

[
1

CDFµ(x)+r

]
= O(log r−1).

Proof. By definition, wx ≥ CDFµ(x) for every x ∈ Ω.

E

[
1

wx + r

]
≤ E

[
1

CDFµ(x) + r

]
≤

∑
x∈Ω

µ(x) · 1

max{CDFµ(x), r}

≤ Pr[CDFµ(x) ≤ r] · 1
r
+

⌊log2 r−1⌋∑
t=0

Pr[CDFµ(x) ≤ 2−t] · 2t

≤ r · 1
r
+

⌊log2 r−1⌋∑
t=0

2−t · 2t

= 1 +

⌊log2 r−1⌋∑
t=0

1 = O(log r−1)

Due to the length of some expressions in our proofs, we use here the contribution notation introduced
in [AFL24b]:

Definition 3.34 (Contribution of X over B). Let X be a random variable and B be an event. We
denote the contribution of X over B by Ct[X|B] =

∑
x∈B Pr[x] ·X(x) = Pr[B] E[X|B].

We quickly summarize some equalities of the contribution notation:

• Ct[αX + βY |B] = αCt[X|B] + β Ct[Y |B].

• If B1 ∩B2 = ∅ then Ct[X|B1 ∪B2] = Ct[X|B1] + Ct[X|B2].

• If Pr[X = Y |B] = 1 then E[X]− E[Y ] = Ct[X − Y |¬B].
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4 Our algorithm

Our upper-bound statements assume that ε and c are “sufficiently small”. More concretely, ε < 1
10

and c < 1
16 . The acronym “SP” appearing in some of the algorithms refers to “Success Probability”.

We state the main theorem of this paper, which refers to the correctness of the procedure Estimate-
element.

Theorem 4.1. For every individual x ∈ Ω, Algorithm 1 solves the (ε, c)-estimation task with
expected sample complexity O(log logN)+O

(
log 1

εc ·
(

1
ε2(wx+c)

+ log5 ε−1

ε4(wx+ε/ log ε−1)

))
(the expectation

is over the random choices of the algorithm), where N = |Ω| is the size of the domain of µ.

Corollary 4.2. The expected complexity of Algorithm 1 is O(log logN)+O
(
log 1

εc ·
(

1
ε2c

+ log6 ε−1

ε5

))
for the worst-case choice of x ∈ Ω.

Proof. The worst case is trivially wx = 0.

Corollary 4.3. The expected complexity of Algorithm 1, where x is the result of an unconditional
sample from µ, is O(log logN) +O

(
log 1

εc ·
(
log c−1

ε2
+ log6 ε−1

ε4

))
.

Proof. By Lemma 3.33, the expected value of 1
wx+c is bounded by O(log c−1) and the expected value

of 1
wx+ε/ log ε−1 is O(log ε−1).

The algorithmic demonstration of Theorem 4.1 (Algorithm 1 below) relies on three core subroutines,
whose interface is stated in the following lemmas.

The first lemma, proved in Section 6, provides an estimation of the expected mass of the target set.
Additionally, for the edge-case of elements with very high mass, it estimates this mass directly.

Lemma 4.4 (Reference-estimation). For every x ∈ Ω, Algorithm 10 is a joint estimator of (µ(x), sx)
which is:

• An
(
ε; max

{
1

400c,
1

400sx
}
,max

{
c, 14sx

})
-saturation-aware estimator for µ(x).

• A
(
1
3ε; max

{
1

400c,
1

400µ(x)
}
,max

{
c, 14µ(x)

})
-saturation-aware estimator for sx.

Its expected cost is O
(
log 1

εc ·
1

ε2(wx+c)

)
samples.

The second lemma, proved in Section 7, provides us with a parameter α that would be usable for
comparing µ(x) with the mass of the filtered target set Vx,α.

Lemma 4.5 (Find-good-α). Assume that µ(x) ≤ 1
4sx. The output of Algorithm 12 is a random

variable α for which, with probability 2/3, γx ≤ α ≤ 41γx, at the cost of O(log logN) samples at
worst case.

The third lemma, proved in Section 8, produces the relative estimation of the ratio of µ(x) to the
expected mass of the filtered target set, provided we have started with a suitable α (essentially a
very rough approximation of the ratio between µ(x) and the scale mass).
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Lemma 4.6 (Estimate-scaled-result). Let 0 < α ≤ 1 be an explicitly given input, and assume that
γx ≤ α ≤ 50γx. The output of Algorithm 14 is a random variable whose value, with probability 2/3,
is (1± ε/2)αsx/µ(x), at the expected cost of O

(
log 1

εc ·
log5 ε−1

ε4(wx+ε/log ε−1)

)
samples.

At this point we provide Algorithm 1, and prove its correctness, which implies Theorem 4.1.

Algorithm 1: Procedure Estimate-element(µ, c, ε;x)
Input: x.
Output: p̂ ∈ {low} ∪ (1± ε)µ(x).

1. Let M ← 13. For median amplification (Observation 3.32(b)).
2. For i from 1 to M :

(a) Let (p̂i, ŝi)← Reference-estimation(µ, c, ε;x).
3. Set p̂← median(p̂1, . . . , p̂M ) and ŝ← median(ŝ1, . . . , ŝM ). SP: 8

9
4. If p̂ = low and ŝ ̸= low:

(a) For i from 1 to M :
i. Let αi ← Find-good-α(µ, c, ε;x).

(b) Let α← median(α1, . . . , αM ). SP: 8
9

(c) For For i from 1 to M :
i. Let b̂i ← Estimate-scaled-result(µ, c, ε;x).

(d) Let b̂← median(b̂1, . . . , b̂M ). SP: 8
9

(e) Set p̂← αŝ/b̂.
5. Return p̂. Total success probability: 2

3

Proof of Theorem 4.1. For the definition of the (ε, c)-estimation task with the required saturation-
awareness bounds p1 and p2, let p1 = minx({c} ∪ {µ(x) : wx≥c}), and p2 = maxx

{
µ(x) : wx≤ 1

300c
}

with a fallback of p2 = 1
2p1 if this set is empty. Also, let G = {x : wx ≥ c} ⊇ {CDFµ(x) ≥ c} be

the set of “good” xs.

For a given x, Algorithm 1 draws O
(
log logN + log 1

εc ·
(

1
ε2(wx+c)

+ log5 ε−1

ε4(wx+ε/log ε−1)

))
samples in

expectation:

• O(1) calls to Reference-estimation (Lemma 4.4) at the expected cost of O
(
log 1

εc ·
1

ε2(wx+c)

)
.

• O(1) calls to Find-good-α (Lemma 4.5) at the cost of O(log logN).

• O(1) calls to Estimate-scaled-result (Lemma 4.6), at total cost of O

(
log 1

εc ·
log5 ε−1

ε4
(
wx+

ε
log ε−1

)
)

in expectation.

Correctness (main case): assume that we obtain p̂, ŝ where at least one of them is not low, and
each of them which is not low is a (1±ε/3)-factor estimation of its goal (µ(x) or sx). This happens
with probability at least 8/9 if x ∈ G (wx ≥ c).

If p̂ is not low, then we just return it as a correct estimation. This happens with probability 8/9
if µ(x) ≥ max{c, 14sx}.
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If p̂ is low, then we have ŝ = (1 ± ε/3)sx. This happens with probability at least 8/9 if sx ≥
max{c, 14µ(x)}, which is a superset of the constraint (x ∈ G) ∧ (µ(x) < 1

4sx). In this case, α is
correct with probability 8/9 and b̂ is correct with probability 8/9 as well. Overall, with probability
2/3, we have ŝ = (1 ± ε/3)sx and b̂ = (1 ± ε/2)αsx/µ(x), which means that Step 4e sets p̂ =
(1± ε/3)(1± ε/2)µ(x) = (1± ε)µ(x) as desired.

Correctness (reject case): assume that we obtain p̂, ŝ which are both low. This happens with
probability at least 8/9 if wx ≤ 1

100c. In this case, we return low, which is a correct output for
x /∈ G.

Correctness (middle case): the saturation-awareness of Lemma 4.4 guarantees that, with probability
8/9, we obtain a pair (p̂, ŝ) that correctly matches the main case or the reject case.

Avoiding probability zero sets In Section 6 we explain how Reference-estimation(µ, c, ε;x) in
itself takes samples only from sets that include an element that was already sampled (uncondi-
tionally) from µ, thus ensuring that they have positive probability. We also explain there why,
in the case where µ(x) = 0, Reference-estimation(µ, c, ε;x) always answers (low, low), causing
Estimate-element(µ, c, ε;x) to skip the next steps and immediately return low. The other proce-
dures used by Estimate-element(µ, c, ε;x) only take samples from sets that include x itself, and hence
if they are invoked they only take samples from positive probability sets.

5 Target test assessment

5.1 The target test

We formulate the algorithm whose (randomized) output is used as part of the definition of the target
function fx. Procedure Target-test uses O(log 1

εc) pair conditional samples to distinguish between
µ(y) ≤ µ(x) and µ(y) ≥ 1.2µ(x) with probability at least 1− ηc,ε.

First, we provide Target-test-explicit (Algorithm 2) as a common logic for the actual target test, and a
cheaper approximation of the target test that is used for finding a good α. For this implementation
we use a hard-coded tuning parameter κ = 10−9/45. In Appendix C we provide an alternative
implementation of the target test with reasonable constant factors (removing the dependency on κ)
but with an additional asymptotic penalty, which carries over to the estimator.

We use the common logic to define the target test and the approximate target test.

We provide some essential bounds of the explicit test.

Lemma 5.1. In Algorithm 2, Pr
[
Target-test-explicit(µ, η;x, y) = accept

∣∣∣t /∈ µ(y)
µ(x)+µ(y) ± κ

]
is at

least 1− η if µ(y)
µ(x)+µ(y) ≤ t− κ and at most η if µ(y)

µ(x)+µ(y) ≥ t+ κ.

Proof. If t ≥ µ(y)
µ(x)+µ(y) + κ, then by Chernoff bound,

Pr[Y ≥ tℓ|t] ≤ Pr

[
Bin

(
ℓ,

µ(y)

µ(x) + µ(y)

)
≥
(

µ(y)

µ(x) + µ(y)
+ κ

)
ℓ

]
≤ e−2κ2ℓ ≤ e− ln η−1

= η
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Algorithm 2: Procedure Target-test-explicit(µ, η;x, y)
Input: y ∈ Ω.
Output: accept or reject.

1. If y = x: Technical guarantee
(a) reject

2. Let κ = 10−9/45.
3. Let ℓ←

⌈
ln η−1/2κ2

⌉
.

4. Draw t ∼ [12 + κ, 6
11 − κ] uniformly.

5. Draw z1, . . . , zℓ independent samples from µ conditioned on {x, y}.
6. Let Y = |{i : zi = y}|.
7. If Y < t · ℓ:

(a) accept.
8. Else:

(a) reject.

Algorithm 3: Procedure Target-test(µ, c, ε;x, y)
Input: y ∈ Ω.
Output: accept or reject.

1. Call Target-test-explicit(µ, ηc,ε;x, y) and return its answer.

Algorithm 4: Procedure Target-test-gross(µ;x, y)
Input: y ∈ Ω.
Output: accept or reject.

1. Call Target-test-explicit(µ, 10−9;x, y) and return its answer.

If t ≤ µ(y)
µ(x)+µ(y) − κ, then by Chernoff bound,

Pr[Y < tℓ|t] ≤ Pr

[
Bin

(
ℓ,

µ(y)

µ(x) + µ(y)

)
<

(
µ(y)

µ(x) + µ(y)
− κ

)
ℓ

]
≤ e−2κ2ℓ ≤ e− ln η−1

= η

Lemma 5.2. In the setting of Algorithm 2, Pr
[
t ∈ µ(y)

µ(x)+µ(y) ± κ
]
≤ 10−9.

Proof. t is uniformly drawn in [12 +κ, 6
11−κ]. Hence, the probability that the segment t±κ contains

a given number p is at most 2κ
6/11−1/2−2κ ≤ 10−9.

These bounds allow us to prove the following two lemmas.

Lemma 5.3 (Target-test). Procedure Target-test uses O(log 1
εc) conditional samples, accepts with

probability at least 1− ηc,ε if y ∈ Lx and rejects with probability at least 1− ηc,ε if y ∈ Hx.

Proof. For y ∈ Lx: µ(y) ≤ µ(x) and hence t ≥ 1
2 + κ ≥ µ(y)

µ(x)+µ(y) + κ with probability 1. By
Lemma 5.1, Target-test(µ;x, y) accepts with probability at least 1 − ηc,ε. That is, the difference
from Pr[y ∈ Vx] = 1 is bounded by ηc,ε.
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For y ∈ Hx: µ(y) ≥ 1.2µ(x) and hence t ≤ 6
11−κ ≤

µ(y)
µ(x)+µ(y)−κ with probability 1. By Lemma 5.1,

Target-test(µ;x, y) accepts with probability at most ηc,ε. That is, the difference from Pr[y ∈ Vx] = 0
is bounded by ηc,ε.

Lemma 5.4 (Target-test-gross). |Pr [y ∈ Vx]− Pr [Target-test-gross(µ;x, y) = accept]| ≤ 10−8 for
every x, y ∈ Ω.

Proof. We consider every y individually.

For y ∈ Lx: then Pr[y ∈ Vx] = 1 and Target-test-gross accepts (x, y) with probability at least
1− 10−9. The difference is bounded by 10−9.

For y ∈ Hx: then Pr[y ∈ Vx] = 0 and Target-test-gross accepts (x, y) with probability at most 10−9.
The difference is bounded by 10−9.

For y ∈ Mx: then Pr[y ∈ Vx] is the probability of Target-test to accept (x, y). By Lemma 5.2,
the probability that t ∈ py ± κ is bounded by 10−9. In this case, our best bound for the variation
in behaviors is 1. Otherwise, t /∈ py ± κ, and hence the variation in behaviors is bounded by
max{ηε,c, 10−9} by Lemma 5.1.

Combined, for every x, y ∈ Ω, the difference between the accept probability of Target-test and
Target-test-gross is bounded by 10−9 +max{ηc,ε, 10−9} ≤ 10−9 + 10−9 ≤ 10−8.

5.2 Individual drawing of Vx

The goal of this subsection is to provide membership query access to a drawing of a set Vx through
the following interface:

• Initialize-new-Vx(c, ε;x, q) – draws a secret set V according to a distribution that is ηc,εq-close
to the correct distribution of Vx, and returns an object that supports up to q queries.

• Vx-Query(obj , y) – reports whether y ∈ V or not, where V is the set being held by the object
obj . If the initialization parameter of the object is q, then only the first q calls are guaranteed
to be meaningful. A query may affect the contents of obj .

• The overall sample complexity of the initialization followed by at most q queries is bounded
by O(log 1

εc) · q.

The implementation of the interface is straightforward: during initialization, we initialize an empty
list of “historical records”, which we denote by hist . In every query of an element we first look for
it in the list. If it exists there, then we report (again) the recorded result, and if it is missing, then
we run the Target-test procedure to determine whether it belongs to the set, and record the answer
in the list.

Algorithm 5: Procedure Initialize-new-Vx(c, ε;x, q)
1. Return (c, ε, x, hist), where hist is an empty list.

In the rest of this subsection we show that Algorithm 5 and Algorithm 6 implement their desired
interface guarantees.
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Algorithm 6: Procedure Vx-Query(obj , y)
Input: An object obj created by Initialize-new-Vx representing a subset of Ω, and y ∈ Ω.
Output: Whether or not y belongs to the set represented by the object.
Side effects: the hist component of obj may change.

1. Let c, ε, x, hist be the components of obj as a 4-tuple.
2. If y = x:

(a) Return reject. (x ∈ Vx never happens)
3. If hist contains (y, ans) for any ans: (y was queried before)

(a) Return ans.
4. Else: (new y)

(a) Let ans ← Target-test(c, ε;x, y).
(b) Add (y, ans) to hist .
(c) Return ans.

Lemma 5.5 below states that, from the caller’s perspective, drawing Vx while answering one query
at a time is logically equivalent to drawing it all at once.

Lemma 5.5 (The local-simulation lemma). Given pz ∈ [0, 1] for every z ∈ Ω, Consider the following
three methods of drawing a random set U ⊆ Ω.

1. Every z ∈ U is chosen to be in U with probability pz, independently of all other members of
U .

2. We start with an empty U . For up to q iterations, in the ith iteration we receive zi (which may
depend on the results of previous iterations), and then with probability pzi (independently of
all previous results) add zi to Ω. After this phase is over, every y ∈ Ω \ {z1, . . . , zq} is added
to U independently with probability py.

3. Same as Item 2, only here in the first phase we use p′zi instead of pzi , where |pzi − p′zi | ≤ δ (in
the second phase we still use the original py).

The distribution of the sets as drawn in the first item or the second item (both phases) are identical,
and are δq-close to the distribution of the set as drawn in the third item.

Proof. Methods 1 and 2 are identical since, regardless of the order of choices, every element z
belongs to U with probability pz independently of the others.

In every step 1 ≤ i ≤ q, if the first i − 1 steps in the first phase of Method 2 and Method 3 were
the same, then the probability of the ith step of Method 2 to deviate from the ith step of Method
3 is bounded by δ. By the union bound (and the second phase of both methods being the same),
the distributions of a set drawn by Method 2 and a set drawn by Method 3 are are δq-close to each
other.

Lemma 5.6 (Initialize-new-Vx, Vx-Query). The distribution of the output of a sequence starting
with a single call to Initialize-new-Vx (Algorithm 5), followed by q calls to Vx-Query (Algorithm 6)
over the produced object with the queries y1, . . . , yq ∈ Ω, is ηc,εq-close to the distribution of the
output of a sequence that draws V ∼ Vx,c,ε and determines whether yi belongs to V or not for every
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1 ≤ i ≤ q. This bound holds also for an adaptive choice of every yi based on the answers to the
queries y1, . . . , yi−1. The call to Initialize-new-Vx has no sample cost, and each call to Vx-Query costs
O(log 1

εc) conditional samples.

Proof. Observe that Algorithm 5 and Algorithm 6 together implement Method 3 of Lemma 5.5
for drawing Vx with error parameter δ = ηc,ε. Hence, its behavior is ηc,ε-close to an object that
is initialized with an explicit drawing of Vx as a whole and then answers all membership queries
(whether y ∈ Vx for some y) with the same deviation probability as Method 3.

5.3 Estimation of E[βx,α]

Recall that, given Aα and Vx, we define βx,α = Prµ [¬x|Vx,α ∪ {x}].

Algorithm 7 estimates E[βx,α] as the expected value of the following indicator: first we draw Aα,
and then we repeatedly draw y from µ conditioned on Aα ∪ {x}, until we hit an instance where
y = x or Algorithm Target-test accepts, or until we exceed a pre-defined iteration limit.

Algorithm 7: Procedure Estimate-E[βx,α] (µ, c, ε;x, α)
Output: b̂ ∈ E[βx,α]± 1

200 .
1. Let M ← 70000.
2. Set m← 0.
3. For i from 1 to M :

(a) Draw Aα according to its definition.
(b) Set bi ← 0.
(c) For 10000 iterations or until explicitly terminated:

i. Draw y from µ, conditioned on Aα ∪ {x}.
ii. If y = x:

A. Exit FOR loop.
iii. If Target-test-gross(µ;x, y) accepts:

A. Set bi ← 1.
B. Exit FOR loop.

4. Let b̂← 1
M

∑M
i=1 bi.

5. Return b̂.

Lemma 5.7 (Estimate-E[βx,α]). Given 0 < α ≤ 1, Algorithm 7 estimates E[βx,α] within 1
200 -additive

error with probability 2/3 using O(1) conditional samples.

Proof. The worst-case cost of the algorithm is O(1) calls to Target-test-gross, each costing O(1)
samples.

Consider the following hypothetical variants of Algorithm 7:

• Variant A. Algorithm 7 as written (the realizable variant).

• Variant B. A variant where instead of Target-test-gross(µ;x, y) we use a hypothetical (non-
realistic) procedure that accepts y with probability equal to Pr[y ∈ Vx].
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• Variant C. A variant where additionally to the hypothetical procedure used in Variant B, we
also remove the iteration limit of the loop in Step 3c, running it until it is explicitly terminated.

Let rA, rB and rC be the expected values of each of b1, . . . , bM (which are all distributed the same)
in each respective variant. By definition (and b̂ being the average of b1, . . . , bM and hence having
the same expectation), rA is also the expected output of Algorithm 7, and rC = E[βx,α].

By the triangle inequality, |b̂− E[βx,α]| = |b̂− rC | ≤ |b̂− rA|+ |rB − rA|+ |rC − rB|.

For every 1 ≤ i ≤ M , bi is an indicator and hence its variance is bounded by 1
4 . Since the bis are

independent, the variance of b̂ is bounded by 1
4M , and by Chebyshev’s inequality,

Pr

[∣∣∣b̂− rA

∣∣∣ > 1

300

]
= Pr

[∣∣∣b̂− E[b̂]
∣∣∣ > 1

300

]
≤

1
4M

(1/300)2
=

22500

70000
<

1

3

By the union bound over 10000 iterations of the loop in Step 3c of Variant A and the corresponding
one of Variant B, |rB − rA| ≤ 10000 |Pr[y ∈ Vx]− Pr[Target-test-gross(x, y) = accept]|.

We use Lemma 5.4 to obtain that |Pr[y ∈ Vx]− Pr[Target-test-gross(x, y) = accept]| is bounded by
1

108
. Hence, |rB − rA| ≤ 10000 · 1

108
< 1

5400 .

The behaviors of Variant B and Variant C with respect to the definitions differ only when 10000
iterations of Step 3c are exceeded, and always rB ≤ rC .

Let r be the probability to explicitly terminate the loop in an individual iteration. Observe that
r ≥ rC since we always terminate after writing bi ← 1 (which happens with probability rC), but
we can also terminate when y = x. The number of iterations in Variant C distributes geometrically
with parameter r, hence the total variation distance between a run of this loop in Variant B and
in Variant C is also bounded by Pr[Geo(r) > 10000]. Combined with 0 ≤ rB ≤ rC ≤ r, we obtain
|rC − rB| ≤ min{r,Pr[Geo(r) > 10000]}.

We use 1
675 as an approximate break-even parameter. If r ≥ 1

675 , then

|rB − rC | ≤ Pr [Geo(1/675) ≥ 10000] ≤ Pr [Geo(1/675) ≥ 14 · 675]

= Pr
[
e

1
675

Geo(1/675) ≥ e14
]

[Markov] ≤ e−14 E
[
e

1
675

Geo(1/675)
]

[Lemma 3.29] = e−14
1

675e
1/675

1−
(
1− 1

675

)
e1/675

≤ 1

675

Hence, |rC − rB| ≤ min
{

1
675 ,Pr [Geo(1/675) ≥ 10000]

}
= 1

675 .

Overall, with probability at least 2
3 ,
∣∣∣b̂− E[βx,α]

∣∣∣ ≤ 1
300 + 1

5400 + 1
675 = 1

200 .

5.4 Individual estimation of βx,α

The previous subsection provided a rough approximation of E[βx,α] where the expectation is taken
over random choices of Aα and Vx, but in Section 8 we define some function h and need to ap-
proximate E[h(βx,α)]. Hence, we also need to estimate βx,α for specific draws of Aα and Vx, where

21



the later is given through an output of a call to Initialize-new-Vx. In the following we show how to
estimate βx,α with respect to Aα and the set Vx that is virtually held by the Vx-object.

Algorithm 8: Procedure Estimate-βx,α(µ, c, ε;x, α, δ, Aα, obj )
Input: δ < 1

4 .
Input: obj represents a subset of Ω that is the output of Initialize-new-Vx.
Output: b̂ ∈ βx,α(Aα, Vx)± δ.
Complexity: At most 25 ln(6/δ)

δ3
conditioned samples and one Vx-Query(obj , ·) call per sample.

1. Let M ←
⌈
8/δ2

⌉
.

2. Set m← 0.
3. For M times:

(a) For ⌈3 ln(6/δ)/δ⌉ iterations or until explicitly terminated:
i. Draw y from µ, conditioned on Aα ∪ {x}.
ii. If y = x:

A. Exit FOR loop.
iii. If Vx-Query(obj , y) accepts:

A. Set m← m+ 1.
B. Exit FOR loop.

4. Let b̂← m/M .
5. Return b̂.

Lemma 5.8. E
[

µ(Aα∪{x})
µ((Vx∩Aα)∪{x})

]
≤ 20

wx
.

We prove Lemma 5.8 in Appendix E.

Lemma 5.9 (Estimate-βx,α). Let 0 < δ < 1
4 . Algorithm 8 outputs an estimation of βx,α(Aα, Vx)

within additive error ±δ with probability at least 2
3 . Its expected query complexity is bounded

by O
(
log 1

εc ·
1

δ2(wx+(δ/ log δ−1))

)
. Additionally, the number of Vx-Query(obj , ·)-calls is bounded by

25 ln(6/δ)
δ3

.

Proof. The algorithm makes at most one Vx-Query(obj , ·)-call per sample. The number of samples
is bounded by

⌈
8/δ2

⌉
·
⌈
3 ln(6/δ)/δ3

⌉
, which is at most 25 ln(6/δ)

δ3
for every δ < 1

4 . Recall that every
Vx-Query-call costs O(log 1

εc) samples.

Clearly, the worst case cost of Algorithm 8 is O(1/δ2) ·O(ln δ−1/δ) ·O
(
log 1

εc

)
= O

(
log 1

εc ·
log δ−1

δ3

)
.

By Lemma 5.8, the expected number of inner-loop iterations is bounded by O(1/wx) and the
expected complexity is bounded by O

(
log 1

εc ·
1

δ2wx

)
. Since the expected cost cannot exceed the

worst-case cost, we can reformulate the expected cost as O
(
log 1

εc ·
1

δ2(wx+δ/ log δ−1)

)
.

If the algorithm does not terminate the inner loop after ⌈3 ln(6/δ)/δ⌉ iterations, then the expected
gain in m in every inner iteration would be exactly E

[
µ((Vx∩Aα)∪{x})

µ(Aα∪{x})

]
for the given Aα and the set

being held by obj . The actual gain is less, since we must consider the possibility to terminate the
loop after ⌈3 ln(6/δ)/δ⌉. Let β̂ be the expectation of this gain.

22



If E
[
µ((Vx∩Aα)∪{x})

µ(Aα∪{x})

]
≤ 1

3δ, then the additive penalty is at most 1
3δ. Otherwise, the distance between

β̂ and βx,α is bounded by
(
1− 1

3δ
)⌈3 ln(6/δ)/δ⌉ ≤ (1− 1

3δ
)3 ln(6/δ)/δ ≤ e− ln(6/δ) = 1

6δ ≤
1
3δ as well.

Note that m is the sum of M independent indicators, hence its variance is bounded by M/4. Since
M ≥ 8/δ2, Chebyshev’s inequality implies that with probability at least 2

3 , m ∈ E[m]± 2
3δM , and

in this case, b̂ = E[b̂]± 2
3δ = βx,α(Aα, Vx)± δ.

6 The reference estimator

In this section we prove Lemma 4.4 and provide an algorithm that demonstrates it. Towards this
proof, we first provide a general saturation-aware estimator for the expectation of an indicator
variable.

6.1 Estimation of an unknown probability

We implement here a
(
δ; 1

12a, a
)
-saturation-aware estimator for p, where p is only accessible through

an oracle that draws an indicator random variable with expected value p. Algorithm 9 draws
independent samples of this indicator and then stops after seeing O(1/δ2) occurrences of 1 or until
reaching the limit of O(1/(δ2a)) samples.

Algorithm 9: Procedure SA-Est(a;A, δ)
Input: An oracle A for sampling a binary variable.
Output: p̂ ∈ {low} ∪ (1± δ) E[A].

1. Let M ←
⌈
48/δ2

⌉
.

2. Let L← ⌊6M/a⌋.
3. Set m← 0, ℓ← 0.
4. While m < M and ℓ < L:

(a) Set ℓ← ℓ+ 1.
(b) Draw b ∼ A. (b ∈ {0, 1}).
(c) Set m← m+ b.

5. If m = M : (Sufficiently many occurrences observed)
(a) Set p̂←M/ℓ.

6. Else: (Give-up limit reached)
(a) Set p̂← low.

7. Return p̂.

Lemma 6.1 (SA-Est). Assume that we have an oracle A that draws 1 with probability p and 0 with
probability 1 − p, where every call is independent of past calls. For every 0 < a < 1, Algorithm 9
with parameters (a;A, δ) is a (δ; a/12, a)-saturation-aware estimator for p = E[A], at the expected
cost of O

(
1

δ2(p+a)

)
oracle calls. Moreover, E[p̂−1|p̂ ̸= low] ≤ p−1, where p̂ is the output of the

estimator.

Proof. Let ℓ′ be the theoretical value of ℓ if we would not terminate the loop after L iterations but
let it continue until m = M . Observe that ℓ′ distributes the same as the sum of M independent

23



geometric variables with parameter p. Also, Pr[ℓ′ = ℓ|m = M ] = 1 (since we terminate the loop
due to m = M regardless of whether ℓ exceeds L or not) and Pr[ℓ ≤ ℓ′] = 1 (since ℓ = min{ℓ′, L}).

Observe that the events “m = M ” and “ℓ′ ≤ 6M/a” are equivalent: in the last iteration, we increased
m from M − 1 to M and also increased ℓ and ℓ′ together (regardless whether the result reached L
or not).

Using standard facts about geometric variables, E[ℓ′] = M/p and Var[ℓ′] ≤M/p2. Thus the expected
number of samples taken by the algorithm is O

(
1

δ2p

)
, and the introduction of the hard bound ℓ ≤ L

brings it down to the required O
(

1
δ2(p+a)

)
.

By Chebyshev’s inequality,

Pr
[
M/ℓ′ /∈ (1± δ)p

]
= Pr

[
ℓ′ /∈ 1

1± δ
M/p

]
≤ Pr

[
ℓ′ /∈

(
1± 1

2
δ

)
E[ℓ′]

]
≤ M/p2

(δ/2)2(M/p)2
=

4

δ2M
≤ 4

δ2(48/δ2)
< 1/6

We now go over the cases in the definition of a saturation-aware approximation.

Case I. p ≥ a: by Markov’s inequality, the probability to stop due to the give-up limit is bounded
by E[ℓ]/⌈6M/a⌉ ≤ (M/p)/(6M/p) = 1/6, and the overall probability to have the correct output is
at least 1− Pr[m = M ]− Pr[M/ℓ′ /∈ (1± δ)p] ≥ 1− 1/6− 1/6 = 2/3.

Case II. a/12 < p < a: the probability to return the wrong output is Pr[m = M∧M/ℓ′ /∈ (1±δ)p] ≤
Pr[M/ℓ′ /∈ (1± δ)p] < 1

6 < 1
3 .

Case III. p ≤ a/12: the “bad event” is m = M , which is equivalent to ℓ′ ≤ 6M/a. Hence, the
probability to return any real number instead of low is:

Pr[M = m] = Pr[ℓ′ ≤ 6M/a] = Pr[ℓ′ − E[ℓ′] ≤ 6M/a−M/p]

≤ Pr[ℓ′ − E[ℓ′] ≤M/(2p)−M/p]

= Pr[ℓ′ − E[ℓ′] ≤ −M/(2p)]

[Chebyshev] ≤ M/p2

(M/(2p))2
=

4

M
≤ 4

48/δ2
<

1

3

Hence we correctly return low with probability at least 2/3.

Lastly, observe that:

E
[
p̂−1
∣∣p̂ ̸= low

]
= E

[
ℓ′/M

∣∣m = M
]
=

1

M
E
[
ℓ′
∣∣ℓ′ ≤ 6M/a

]
≤ 1

M
E
[
ℓ′
]
= p−1

6.2 The reference estimation procedure

We first roughly estimate wx = µ(x) + sx, and based on the result, we estimate µ(x) and sx using
the magnitude of wx as a reference.

We recall Lemma 4.4 and then prove it.
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Algorithm 10: Procedure Reference-estimation(µ, c, ε;x)
Output: p̂, ŝ.

1. Let M ← 13. For median amplification (Observation 3.32(b)).
2. For i from 1 to M :

(a) Let ŵi ← SA-Est(a = c− ηc,ε;Oracle, δ = 1/3).
i. Oracle: draw y ∼ µ. Return 1 if y = x or Target-test(µ, c, ε;x, y) accepts.

3. Let ŵ ← median(ŵ1, . . . , ŵM ). SP: 8
9

4. If ŵ = low:
(a) Return (low, low).

5. For i from 1 to M :
(a) Let ŝi ← SA-Est(a = ŵ/9;Oracle, δ = ε/6).

i. Oracle: draw y ∼ µ. Return 1 if y ̸= x and Target-test(µ, c, ε;x, y) accepts.
(b) Let p̂i ← SA-Est(a = ŵ/9;Oracle, δ = ε).

i. Oracle: draw y ∼ µ. Return 1 if y = x.
6. Let p̂← median(p̂i). SP: 8

9
7. Let ŝ← median(ŝi). SP: 8

9
8. Return (p̂, ŝ). Total success probability: 2

3

Lemma 4.4 (Reference-estimation). For every x ∈ Ω, Algorithm 10 is a joint estimator of (µ(x), sx)
which is:

• An
(
ε; max

{
1

400c,
1

400sx
}
,max

{
c, 14sx

})
-saturation-aware estimator for µ(x).

• A
(
1
3ε; max

{
1

400c,
1

400µ(x)
}
,max

{
c, 14µ(x)

})
-saturation-aware estimator for sx.

Its expected cost is O
(
log 1

εc ·
1

ε2(wx+c)

)
samples.

Proof. The expected value of the oracle in step 2(a)i (in Algorithm 10) is:

µ(x) +
∑
y∈Ωx

µ(y)fx(y) = µ(x) +
∑
y∈Lx

µ(y)fx(y) +
∑
y∈Mx

µ(y)fx(y) +
∑
y∈Hx

µ(y)fx(y)

(∗) = µ(x) + (1± ηc,ε)µ(Lx) +
∑
y∈Mx

µ(y)f(y)± ηc,εµ(Hx)

= µ(x) + µ(Lx) +
∑
y∈Mx

µ(y)fx(y)± ηc,ε(µ(Lx) + µ(Hx)) = wx ± ηc,ε

(∗): since 1− ηc,ε ≤ f(y) ≤ 1 for every y ∈ Lx and 0 ≤ f(y) ≤ ηc,ε for every y ∈ Hx.

Also, by Lemma 6.1 (SA-Est), the sample complexity of this estimation is O
(

1
ε2(ŵ+(c−ηc,ε))

)
=

O
(

1
ε2(wx+c)

)
oracle calls, since (again by Lemma 6.1) E[ŵ−1|ŵ ̸= low] ≤

∑M
i=1 E[ŵ

−1
i |ŵi ̸= low] ≤

M
wx

= O
(

1
wx

)
.

If wx ≥ c, then the oracle’s expected value is in the range wx ± ηc,ε = wx ± 1
4cε = (1± ε/2)wx, and

hence with probability 8/9, ŵ = (1± 1/3)(1± ε/2)wx = (1± 1/2)wx.
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If sx ≥ max{c, 14µ(x)}, then c ≤ sx ≤ wx ≤ 5sx. Hence, with probability at least 8/9, ŵ =
(1 ± 1/2)wx ≤ 8sx. The expected value of the oracle in step 5(a)i is sx ± ηc,ε = sx ± 1

4εc =
(1 ± ε/4)sx ≥ (1 − 1/40)sx, which is more than ŵ/9 ≤ 8

9(sx − ηc,ε). In this case, the estimation
outputs an (1± ε/6)-estimation of sx ± ηc,ε with probability at least 2/3. This estimation is in the
range (1±ε/6)(1±ε/4)sx = (1±ε)sx. The cost of this estimation is bounded by E

[
ŵ−1

∣∣ŵ ̸= low
]
=

O
(

1
wx

)
= O

(
1

wx+c

)
oracle calls.

If sx ≤ 1
400 max{c, µ(x)}, then either ŵ is low (and then we use ŝ = low as well), or ŵ ≥ 1

2wx =
1
2 · (sx + µ(x)) ≥ 1

2 · 401sx > 108sx. In this case, for a = ŵ/9, we have sx < 1
108wx = 1

12a and hence
the estimation outputs low for sx with probability 2/3.

If 1
400 max{c, µ(x)} ≤ sx ≤ max{c, 14µ(x)}, then with probability at least 8/9, either ŵ is low (and

then we correctly return ŝ = low) or the saturation-aware estimation of sx returns, with probability
at least 2/3, either low or an answer in the range (1± ε/6)sx. As seen before, the latter is in the
range (1± ε)sx.

The analysis for µ(x) and p̂ is analogous (and even a bit stricter, since the indicator for µ(x) is
exact and does not have the ±ηc,ε additive penalty).

Avoiding probability zero sets Note that all calls made by Reference-estimation(µ, c, ε;x) to
Target-test(µ, c, ε;x, y) involve an element y that was sampled (unconditionally) from µ. Since
Target-test(µ, c, ε;x, y) is based only on samples drawn from {x, y}, this means that no probability
zero sets are involved. Additionally, if µ(x) = 0 then y = x never happens, and the condition-
ing on {x, y} causes Target-test(µ, c, ε;x, y) to reject y with probability 1, forcing the output of
Reference-estimation(µ, c, ε;x) to be (low, low).

7 Finding α

We prove Lemma 4.5 in this section. We recall it here.

Lemma 4.5 (Find-good-α). Assume that µ(x) ≤ 1
4sx. The output of Algorithm 12 is a random

variable α for which, with probability 2/3, γx ≤ α ≤ 41γx, at the cost of O(log logN) samples at
worst case.

We look for α using a binary search, adapted to a probabilistic setting as defined below.

Definition 7.1 (Uncertain comparator). Let A be an oracle to a probabilistic function from
{1, . . . , N} to {“low”, “good”, “high”}. We say that A is an uncertain comparator if:

• Conviction: there exists a function f : {1, . . . , N} → {“low”, “good”, “high”} such that for
every 1 ≤ i ≤ N and every event E about past calls, Pr[A(i) = f(i)|E] ≥ 99/100.

• Monotonicity: the above function f is non-decreasing monotone with respect to the full order
“low” < “good” < “high”.

Definition 7.2 (Goal range of an uncertain comparator). Let A be an uncertain comparator over
{1, . . . , N}. The goal range of A is the set {1 ≤ i ≤ N : Pr[A(i) = “good”] ≥ 99/100} (due to
monotonicity, this is always a segment).
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Definition 7.3 (Appeasement of an uncertain comparator). An uncertain comparator A is ap-
peasable if its goal range is non-empty.

The interface of the binary search is stated in the following lemma:

Lemma 7.4 (Uncertain-binary-search). Assume that we have access to an appeasable uncertain com-
parator A. The output of Algorithm 13 is in the goal range of A with probability at least 2/3, at the
cost of O(logN) oracle calls.

We present Algorithm 13 and prove the above lemma in Subsection 7.3. Note that the 99/100 could
be substituted by any fixed constant strictly greater than 1/2. We use it rather than the more
standard 2/3 bound to eliminate the need for amplification in the implementation of Algorithm 13.

7.1 The uncertain-comparator for α

We provide here a procedure whose guarantees are weaker than those of an uncertain comparator,
in the sense that it allows for some “gray areas” where there is more than one correct answer (and
hence no probability guarantee). Later, in the proof of Lemma 5.3, we use it in a way that side-steps
the issue with the gray areas.

Lemma 7.5 (Weak-uncertain-comparator). There exist αx ∈ (2.3γx, 38γx) such that:

• If α ≤ 1 · γx, then the output of Algorithm 11 is “low” with probability at least 2/3.

• If 1
2αx ≤ α ≤ αx, then the output of Algorithm 11 is “good” with probability at least 2/3.

• If α ≥ 41γx, then the output of Algorithm 11 is “high” with probability at least 2/3.

Moreover, the number of samples drawn by Algorithm 11 is O(1).

We prove Lemma 7.5 in this subsection. We essentially show that, if α = Θ(1) · γx, then the
expectations E[βx,α] and E[βx,2α] lie inside a globally fixed range and are well-separated by an
additive stride. Hence, it suffices to estimate E[βx,α] within half of this stride to implement the
comparator for the binary search, possibly being wrong once at each side of the correct range. We
formally state this sketch in one observation and two lemmas.

Observation 7.6. E[βx,α] is non-decreasing monotone with respect to the choice of α.

Proof. We can apply Observation 3.30, since the expression that defines βx,α, which is based on
Vx,α, is non-decreasing monotone.

Lemma 7.7 (Effective bounds for E[βx,α]). There exists 2.3γx ≤ αx ≤ 38γx for which E[βx,αx ] =
0.91. Additionally, if α ≤ 2γx then E[βx,α] < 0.9 and if α ≥ 41γx then E[βx,α] > 0.92.

We prove Lemma 7.7 in Appendix E.

At this point we provide Algorithm 11 based on the sketch above, which implements the weak
uncertain comparator.

Proof of Lemma 7.5. Case I: if α ≤ γx, then by Lemma 7.7, E [βx,2α] ≤ E [βx,2γx ] < 0.9. In this
case, with probability at least 5/6, ĥ ≤ E [βx,α] +

1
200 < 0.905, and the algorithm outputs “low”.
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Algorithm 11: Procedure Weak-uncertain-comparator(µ, c, ε;x, α)
Inaccessible data: γx, αx (of Lemma 7.7).
Output: “low” if α ≤ 1γx, “good” if 1

2αx ≤ α ≤ αx, “high” if α ≥ 41γx.
1. Let M ← 9. For median amplification (Observation 3.32(a)).
2. For i from 1 to 9:

(a) Let ℓ̂i ← Estimate-E[βx,α](µ, c, ε;x, α).
(b) Let ĥi ← Estimate-E[βx,α](µ, c, ε;x,min{1, 2α}).

3. Let ℓ̂← median(ℓ̂1, . . . , ℓ̂m). SP: 5
6

4. Let ĥ← median(ĥ1, . . . , ĥm). SP: 5
6

5. If ĥ < 0.905:
(a) Return “low”. (Inferring that h < 0.91)

6. If ℓ̂ > 0.915:
(a) Return “high”. (Inferring that ℓ > 0.91)

7. Return “good”. (Inferring that ℓ ≤ 0.91 ≤ h)

Case II: if α ≥ 41γx, then by Lemma 7.7, E [βx,α] ≥ E [βx,41γx ] > 0.92. In this case, with probability
at least 5/6, ℓ̂ ≥ E [βx,α]− 1

200 > 0.915, and the algorithm outputs “high”.

Case III. if 1
2αx ≤ α ≤ αx, for αx guaranteed by Lemma 7.7, then with probability at least 5/6,

ℓ̂ ≤ E [βx,α]+
1

200 ≤ E [βx,αx ]+
1

200 = 0.915. Also, with probability at least 5/6, ĥ ≥ E [βx,2α]− 1
200 ≥

E [βx,αx ] − 1
200 = 0.905. By the union bound, with probability at least 2

3 , the algorithm outputs
“good”.

The cost of this procedure is the same as the cost of two estimations of E[βx,α] using Lemma 5.7,
which is O(1).

7.2 Proof of Lemma 4.5

At this point we provide Algorithm 12 and use it to prove Lemma 4.5.

Lemma 7.8. If µ(x) ≤ 1
4sx, then 1

2N ≤ γx ≤ 1.

Proof. Recall that γx = µ(x)
sx

, hence γx ≤ 1
4 < 1 immediately by µ(x) ≤ 1

4sx.

For the lower bound, observe that

sx = E[µ(Vx)] ≤ max
Lx⊆Vx⊆Ω\(Hx∪{x})

µ(Vx) ≤ max |Vx| ·max
y∈Vx

µ(y) ≤ (N − 1) · 1.2µ(x) ≤ 1.2Nµ(x)

Hence γx = µ(x)
sx
≥ 1

1.2N > 1
2N .

Proof of Lemma 4.5. At top level, Algorithm 12 looks for α = 2−i in the range {0, . . . , N ′}, where
N ′ ≥ log2(2N). By Lemma 7.8, 2−N ′ ≤ γx ≤ 1. By Lemma 7.7, αx ∈ (2.3γx, 41γx) ⊆ (1/N, 41) but
also αx ≤ 1, hence both αx and 1

2αx lie between the endpoints of our search range (2−N ′ and 1).

Since the guarantees of Weak-uncertain-comparator are weaker than the constraints of the uncertain
comparator that can be used in Uncertain-binary-search, we use an interleaving technique: instead of
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Algorithm 12: Procedure Find-good-α(µ, c, ε;x)
Output: α ∈ (1γx, 41γx).

1. Let M1 ← 47. For median amplification (Observation 3.32(c)).
2. Let M2 ← 9. For median amplification (Observation 3.32(a)).
3. Let N ′ ← 1 + ⌈log2N⌉.
4. For r from 0 to 5:

(a) Let I ′r = {1, . . . ,
⌊
1
6(N

′ − r)
⌋
+ 1}.

(b) Let Oracler(i′) be the procedure that takes the median of M1 independent calls to
Weak-uncertain-comparator(µ, c, ε;x, α = 2−(6(i′−1)+r)). Oracle SP: 99

100
(c) For j from 1 to M2:

i. Let i′r,j ← Uncertain-binary-search(|I ′r| ;Oracler(·)).
ii. Let ir,j ← 6(i′r,j − 1) + r. (For analysis only)

(d) Let i′r ← median(i′r,1, . . . , i
′
r,M1

). SP: 5
6

(e) Let ir ← 6(i′r − 1) + r (= median(ir,1, . . . , ir,M1))
(f) If Oracler(i′) = “good”:

i. Return α = 2−ir

5. Return 2−N ′ . A fallback output

searching the entire range, we partition it to six parts, so that in every part the indexes are arranged
in skips of width six. Thus, every two consecutive indexes in each part are far enough apart to allow
us to distinguish whether we are below or above the “good” indexes. Also, as together these parts
cover the entire range, at least one of the parts contains an index which our comparator explicitly
marks as “good”.

We apply the uncertain binary search to each part separately, adding an additional “goodness check”
to the index resulting from this search. We then greedily select the first index that was both selected
by the search and verified by the additional check.

Observe that, for satisfying the requirements of Uncertain-binary-search, we amplify the 2/3-success
probability of Weak-uncertain-comparator (for inputs where it is guaranteed) to 99/100 using median-
of-M1 (Observation 3.32(c)).

By Lemma 7.5, the comparator satisfies the requirements of Definition 7.1 (uncertain comparator)
when restricted to the union of the ranges α ≤ 1γx, α ≥ 41γx and 1

2αx ≤ α ≤ αx, with respect to an
unknown αx whose existence is guaranteed by Lemma 7.7. There exists some integer 0 ≤ rhit ≤ 5
for which the range (12αx, αx] intersects the set 2−(6N+rhit). Let αhit be the only element in this
intersection and let ihit = − log2 αhit. Note that the comparator is both valid (with respect to
Definition 7.1) in the rhitth range and appeasable (since the majority answer in ihit is “good”).

We define the following events:

• G: at the rhitth iteration, the algorithm successfully executes step 4(f)i when irhit = ihit.

• Br (0 ≤ r ≤ 5): at the rth iteration, the algorithm successfully, but wrongly, executes step
4(f)i when 2−ir /∈ (1γx, 41γx).

Clearly, if G happens and none of the Brs do, then the value of α at the return statement is in the
range (1γx, 41γx).
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The good event: consider the iteration in which r = rhit. Due to the interleave gaps, all choices
of α = 2−(6(i′−1)+r) for i′ ∈ Ir are outside the range (γx, 41γx) except for a single choice for which
6(i′ − 1) + r = ihit. Therefore, in the rhitth iteration, Weak-uncertain-comparator has the required
behavior guarantee for all elements, and in every individual inner-iteration we obtain irhit,j = ihit
with probability at least 2/3. The probability that irhit = ihit is at least 5/6 since we use the median-
of-M2 amplification (Observation 3.32(a)). With probability at least 99/100, the additional call to
the oracle returns “good”, and then we return αhit ∈ (1γx, 41γx). To conclude, Pr[G] ≥ 5

6 −
1

100 .

Bad events: consider some 0 ≤ r ≤ 5 for which 2−ir /∈ (1γx, 41γx). In this case, the oracle returns
either “low” or “high” with probability at least 99/100, hence Pr[Br] ≤ 1

100 .

By the union bound,

Pr [α ∈ (γx, 41γx)] ≥ Pr

[
G ∧

5∧
r=0

¬Br

]
≥ Pr[G]−

5∑
r=0

Pr[Bi] ≥
(
5

6
− 1

100

)
− 6 · 1

100
>

2

3

7.3 The uncertain-comparator binary search

In this subsection we prove the correctness of the uncertain-comparator binary search costing
O(log n) uncertain-comparator calls (Lemma 7.4). Note that a standard amplification of the uncer-
tain comparator allows binary search at the cost of an additional O(log log n) factor.

Recall Lemma 7.4:

Lemma 7.4 (Uncertain-binary-search). Assume that we have access to an appeasable uncertain com-
parator A. The output of Algorithm 13 is in the goal range of A with probability at least 2/3, at the
cost of O(logN) oracle calls.

The binary search algorithm executes a Markov chain over a range tree in a way that can be seen as
a random-walk over a line. To prove the correctness of our binary search variant, we recap common
definitions.

Definition 7.9 (Dyadic range tree). A dyadic range tree is a tree whose root holds the dyadic
interval {1, . . . , 2k}, in which every non-leaf node has two children, each holding half of the node’s
range.

Observation 7.10. In a dyadic range tree whose root range is {1, . . . , 2k}, all nodes of depth
0 ≤ k′ ≤ k (where the root’s depth is 0) hold dyadic ranges of length exactly 2k−k′ . In particular,
all leaves (which hold singletons) have the same depth, which is k.

Proof. Trivial for k′ = 0. By induction for 1 ≤ k′ ≤ k: an internal node in depth k′ − 1 holds
some dyadic range {2k−k′+1t + 1, . . . , 2k−k′+1t + 2k−k′+1}. Its left child holds the dyadic range
{2k−k′(2t) + 1, . . . , 2k−k′(2t) + 2k−k′} and its right child holds the dyadic range {2k−k′(2t + 1) +
1, . . . , 2k−k′(2t+ 1) + 2k−k′}.

A deterministic binary search can be represented as a walk over a dyadic range tree, where we start
with the widest considerable range and in every step we proceed to a narrower range until we reach
a leaf, whose singleton range represents the result of the search.
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In our setting the comparator is probabilistic, hence the search is a random walk. If we fully trust
our comparator and only go forward, as in the deterministic version, then the worst-case guarantee
for the success probability is (99/100)log2 n which is too low. Alternatively, we can amplify the
confidence of the uncertain comparator by considering the majority vote of O(log log n) independent
calls. This reduces the error probability to o(log n) in each step, and hence by the union bound,
the run of the algorithm is o(1)-close to the deterministic version. Though correct, this approach
brings an O(log log n)-penalty which we want to avoid.

Instead of these forward-only tree walks, we define a local logic that uses three uncertain comparisons
to choose the best edge to use in each step. This edge is possibly the parent edge, which allows us
to correct errors that may occur in this setting, as opposed to a deterministic binary search.

To formulate the random walk of Algorithm 13 as a search, we define a set of good leaves, cor-
responding to the the values for which the comparator outputs “good” with high probability. A
random walk of a predefined length is considered successful if we reach one of the good leaves at
the very last step. We insist that we only consider the last step: it does not suffice to pass through
a good leaf during the walk.

To prove our formulation, we consider the edge-distance of every node from the set of good leaves
(where a distance from a set is the minimum distance from a leaf in this set). Even though the
sequence of distances is not memoryless, its guarantees suffice to apply the following lemma.

Lemma 7.11 (Linear random walk). Consider the following random walk with parameter k: we
start with X1 = k. In every step, we choose Bi = 1 with probability at least 1− 3

100 , and otherwise
Bi = 0. We allow Pr[Bi = 1] to depend on the history (the choices of B1, . . . , Bi−1), but the lower
bound of 1− 3

100 holds for every condition on individual histories. After choosing Bi, if Bi = 1 then
Xi+1 = max{0, Xi − 1}, and if Bi = 0, then 0 ≤ Xi+1 ≤ Xi + 1 (but it must be an integer). In this
setting, if n ≥ 20k + 1, then Pr[Xn = 0] ≥ 2

3 .

Proof. For 1 ≤ i ≤ n, let Gi be the event “Xi = 0”. Also, for 1 ≤ i < j ≤ n, let Gi,j be the event
“
∑j−1

t=i Bt ≥ 1
2(j − i)”.

A key observation is that
∨n−1

i=1 Gi ∧
∧n−1

i=1 Gi,n implies Gn. If we assume the contrary, then there
exists 1 ≤ i ≤ n − 1 for which Gi ∧ Gi,n holds. Consider the maximal such i, and for every
i ≤ j ≤ n let Yj = Xi +

∑j−1
t=i (−1)Bt . From the assertions on X1, . . . , Xn and the maximality of

i, Yj ≥ Xj for every i + 1 ≤ j ≤ n, a contradiction since 0 < Xn ≤ Yn = Xi +
∑n−1

t=i (−1)Bt =
Xi + (n− i)− 2 |{i ≤ t ≤ n− 1 : Bj = 1}| ≤ Xi + (n− i)− 2 · 12(n− i) = Xi = 0.

It remains to show that Pr
[∨n−1

i=1 Gi ∧
∧n−1

i=1 Gi,n

]
≥ 2

3 . Consider the negation of each part:

Pr

[
¬

n−1∨
i=1

Gi

]
= Pr

[
n−1∧
i=1

¬Gi

]
≤ Pr [¬Gn−1] = Pr

[
Bin

(
n− 1,

3

100

)
≥ 1

2
(n− 1− k)

]
≤ e−2(( 1

2
− 3

100)(n−1)− 1
2
k)

2
/(n−1)

[n ≥ 20k + 1] ≤ e−2(( 1
2
− 3

100
− 1

40)(n−1))
2
/(n−1)

= e−0.39605(n−1) ≤ e−0.39605·20 <
1

1000
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Algorithm 13: Procedure Uncertain-binary-search(n;A)
Input: An uncertain comparator A : {1, . . . , n} → {“low”, “good”, “high”}.
Promise: A is appeasable.
Output: i for which ans(i) = “good”.
WLOG: n is a power of 2.

(The comparator deterministically returns “high” n+ 1 ≤ i ≤ 2⌈log2 n⌉)
1. Initialize stk ← ∅. (Empty backtrace stack)
2. Initialize L1 = 1, R1 = n. (Current node is the root)
3. For i from 2 to 20 log2 n+ 1: (An integer by assumption)

(a) If Li−1 = Ri−1: (Currently in a leaf)
i. Let ans ← A(Li−1).
ii. If ans = “good”:

A. Let (Li, Ri)← (Li−1, Ri−1) (Stay at leaf)
iii. Else:

A. Let (Li, Ri)← pop(stk) (Move to parent)
(b) Else: (Currently in an inner node)

i. Let Mi−1 ← 1
2 (Li−1 +Ri−1 − 1). (Always an integer)

ii. Let ansL ← A(Li−1).
iii. Let ansM ← A(Mi−1).
iv. Let ansR ← A(Ri−1).
v. If ansL ≤ ansM ≤ ansR and ansL ≤ “good” ≤ ansR: (Consistent answers)

A. push(stk, (Li−1, Ri−1)) (Record current node)
B. If ansM = “high”: (Middle is too high)

• Let (Li, Ri)← (Mi−1 + 1, Ri−1). (Move to right child)
C. Else:

• Let (Li, Ri)← (Li−1,Mi−1). (Move to left child)
vi. Else: (Inconsistent answers)

A. If (Li−1, Ri−1) = (1, n):
• Let (Li, Ri)← (Li−1, Ri−1). (Stay at root)

B. Else:
• Let (Li, Ri)← pop(stk). (Move to parent)

4. Return L20 log2 n+1.

For 1 ≤ i ≤ n− 9, we can use Chernoff bound to obtain that:

Pr[¬Gi,n] ≤ Pr

[
Bin

(
n− i,

3

100

)
≥ 1

2
(n− i)

]
≤ e−2( 1

2
− 3

100)
2
(n−i) = e−0.4418(n−i)

By the union bound,

Pr

[
n−9∨
i=1

¬Gi,n

]
≤

n−9∑
i=1

Pr [¬Gi,n] ≤
n−9∑
i=1

e−0.4418(n−i) ≤
∞∑
i=9

e−0.4418i =
e−0.4418·9

1− e−0.4418
<

1

19
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For n− 8 ≤ i ≤ n− 1 we use a collective bound:

Pr

[
n−1∨

i=n−8

¬Gi,n

]
≤ Pr

[
n−1∨

i=n−8

(Bi ̸= 1)

]
≤

n−1∑
i=n−8

Pr [Bi ̸= 1] ≤ 8 · 3

100
=

6

25

Combined,

Pr

[
¬

n−1∧
i=1

Gi,n

]
= Pr

[
n−1∨
i=1

¬Gi,n

]
≤ Pr

[
n−9∨
i=1

¬Gi,n

]
+ Pr

[
n−1∨

i=n−8

¬Gi,n

]
≤ 1

19
+

6

25
<

3

10

If n ≥ 20k + 1 then:

Pr[¬Gn] ≤ Pr

[
¬

(
n−1∨
i=1

Gi ∧
n−1∧
i=1

Gi,n

)]
≤ 1

1000
+

3

10
<

1

3

At this point we prove Lemma 7.4 (correctness of Algorithm 13 as a binary search).

Proof of Lemma 7.4. Let a and b be the endpoints of the goal range of A (which is promised to be
a non-empty segment). Without loss of generality we can assume that n is a power of 2. Otherwise,
we can extend the comparator to answer “high” with probability 1 for every n + 1 ≤ i ≤ 2⌈log2 n⌉.
We use a dyadic range tree with root range {1, . . . , n}. Recall that all leaves have the same depth,
log2 n, and let Lgood be the set of leaves inside the goal range (those for which the comparator
answers “good” with high probability).

Algorithm 13 defines a random walk on the dyadic range tree as follows: on a leaf {i}, we call the
comparator to test whether i is good or not. If it answers “good” then we stay on it, and otherwise
we move to its parent. On an internal node {L, . . . , R}, let M = (L + R − 1)/2. We use the
comparator to see whether the answers about L, M , R make sense with respect to the predicates
“the assessments related to L, M and R indeed form a monotone sequence, and also imply that the
range [L,R] is not disjoint from the goal range”. If the answers make sense, then we move to one of
the children based on the answer on M (left child if M is “low” or “good”, right child if it is “high”).
Otherwise we move to its parent, unless we are already at the root, in which case we stay in place.

Let Di be the edge-distance between the current node (which is not necessarily an ancestor of a
“good” leaf) and the closest good leaf. Observe that at any point:

• If we are in the root or in a “bad” leaf {i} (outside the goal range), then with probability at
least 97/100 we take the edge which moves us closer to the set of good leaves.

• If we are in an inner node that has a descendant “good” leaf, then with probability 97/100 we
take the edge to a child on the path to one of these leaves.

• If we are in an inner node that has only “bad” leaves in its subtree, then with probability
97/100 we take the parent edge, moving closer to the set of good leaves.

• If we are in an “good” leaf, then we stay there with probability 99/100 > 97/100.
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These observations describe a memoryless random-walk on the dyadic tree. If we only consider the
sequence D1, D2, . . . (which is not necessarily memoryless), then we satisfy the assertions of Lemma
7.11. Hence, with probability at least 2/3, the (20 log2 n+1)st step of the algorithm is a good leaf,
as desired.

8 Estimating µ(x) using α

In this section we prove Lemma 4.6. For this, we define a function h and show that E[h(βx,α)] is
a good approximation for αµ(x)

sx
. To estimate E[h(βx,α)], we have to draw individual values of βx,α

and estimate them.

Recall that βx,α = Prµ [¬x|Vx,α ∪ {x}]. In particular, it is fully determined by the choice of Aα

and Vx. Since βx,α

1−βx,α
=

µ(Vx,α)
µ(x) , we obtain that E

[
βx,α

1−βx,α

]
= αsx

µ(x) . Alternatively, we can use

µ(x) = α · sx/E
[

βx,α

1−βx,α

]
, where α is known and sx is already estimated within a (1± ε/3)-factor.

To estimate µ(x) within a (1 ± ε)-factor as desired, it suffices to estimate E
[

βx,α

1−βx,α

]
within a

(1± ε/2)-factor, since (1± ε/3)(1± ε/2) = 1± ε.

Since βx,α

1−βx,α
is only bounded by 1

µ(x) , which is too large to effectively approximate, we truncate it

at T = 8 ln ε−1 + 100 using the function h(β) = min
{
T, β

1−β

}
, and use a separate argument to

bound the difference that this truncation introduces to the expectation.

At this point we introduce Algorithm 14 and prove its correctness, thereby proving Lemma 4.6.

Algorithm 14: Procedure Estimate-scaled-result(µ, c, ε;x, α)
Output: b̂ ∈ (1± ε/2)αsx/µ(x).

1. Let T ← 8 ln ε−1 + 100.
2. Let M1 ←

⌈
9600/ε2

⌉
.

3. Let M2 ← ⌈30 lnM1⌉. For median amplification (Observation 3.32(e)).
4. Let δ ← ε

168 ln ε−1+2163
.

5. Let q ←
⌊
25M2 · ln(6/δ)δ3

⌋
.

6. For i from 1 to M1 :
(a) Draw A

(i)
α , according to its definition.

(b) V
(i)
x ← Initialize-new-Vx(c, ε;x, q).

(c) For j from 1 to M2:
i. Let β̂i,j ← Estimate-βx,α(µ, c, ε;x, α, δ, A

(i)
α , V

(i)
x ).

(d) Let β̂i ← median(β̂i,1, . . . , β̂i,M2). SP: 1− 1
24M1

(e) Define (without computing) βi ← β(A
(i)
α , V

(i)
x ). (For analysis only)

(f) Let b̂i ← min
{

β̂i

1−β̂i
, T
}

. = h(β̂i)

7. Let b̂← 1
M

∑M
i=1 b̂i.

8. Return b̂.

Before diving into the algorithmic logic we state a few arithmetic lemmas.
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Observation 8.1. ηc,εM1q < 1
12 .

Proof. We use the following bounds for ε < 1
10 < e−2:

M1 =
⌈
9600
ε2

⌉
≤ 9601

ε2

M2 = ⌈30 lnM1⌉ ≤ 30 ln 9601
ε2

+ 1 = 30 ln 9601e1/30

ε2
≤ 200 ln ε−1

δ = ε
168 ln ε−1+2163

≤ ε

2331 ln ε−1

ln(6/δ) ≤ ln 6 + ln 2331 + ln ln ε−1 + ln ε−1 ≤ 12 ln ε−1

Therefore:

ηc,εM1q ≤ ηc,ε ·M1 · 25M2
ln(6/δ)

δ3

=
1

12
· ηc,ε · 300M1M2

ln(6/δ)

δ3

≤ 1

12
· ηc,ε · 300

9601

ε2
· 200 ln ε−1 · 12 ln ε−1

ε3/(2331 ln ε−1)3

≤ 1

12
· ε5

1020(ln ε−1)5
· 9 · 1019 (ln ε

−1)5

ε5
<

1

12

Lemma 8.2. If γx ≤ α ≤ 50γx then E[h(βx,α)] ∈
(
1± 1

10ε
)
αsx/µ(x). In particular, E[h(βx,α)] ≥

9
10 for ε < 1.

We prove Lemma 8.2 in Appendix E.

Lemma 8.3. If γx ≤ α ≤ 50γx then Var [h(βx,α)] ≤ 100.

Proof. For every y ∈ Ω, let 1y∈Vx,α be an indicator for the event “y ∈ Vx,α”. Note that:

Var [µ(Vx,α)] =
∑

y∈Lx∪Mx

(µ(y))2Var
[
1y∈Vx,α

]
=

∑
y∈Lx∪Mx

(µ(y))2 Pr[y ∈ Vx,α](1− Pr[y ∈ Vx,α])

≤
(

max
y∈Lx∪Mx

µ(y)

)
·
∑

y∈Lx∪Mx

µ(y) Pr[y ∈ Vx,α] ≤ 1.2µ(x) · E[µ(Vx,α)]

Since βx,α

1−βx,a
=

µ(Vx,α)
µ(x) , we can now bound its variance.

Var

[
βx,α

1− βx,α

]
= Var

[
µ(Vx,α)

µ(x)

]
≤ 1.2µ(x) E[µ(Vx,α)]

(µ(x))2
=

1.2E[µ(Vx,α)]

µ(x)
=

1.2αsx
µ(x)

= 1.2α/γx ≤ 100

Observe that Var[h(βx,α)] ≤ Var[
βx,α

1−βx,α
], since h is 1-Lipschitz with respect to βx,α

1−βx,α
. Hence,

Var[h(βx,α)] ≤ 100.
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Lemma 8.4. For 0 < δ ≤ ε
21(T+3) and β̂ = β ± δ, h(β̂) = h(β)±max{2δ, 1

20εh(β)}.

We prove Lemma 8.4 in Appendix E.

Lemma 8.5 (Generic bound). Let r, r1, r2 > 0. Let X1, . . . , Xk be independent non-negative vari-
ables drawn from the same distribution, X̄ = 1

k

∑k
i=1Xi be their average value, and Y1, . . . , Yk be

another random sequence for which |Yi| ≤ max{r1 E[X̄], r2Xi} for every 1 ≤ i ≤ k. If r > r1 + r2

then Pr
[
1
k

∑k
i=1(Xi + Yi) ̸= (1± r) E[X]

]
≤ Pr

[
X̄ ̸= (1± r′) E[X̄]

]
for r′ = r−r1−r2

1+r2
.

Proof. In the following we show that if X̄ ∈ (1± r′) E[X̄] then 1
k

∑
(Xi + Yi) ∈ (1± r) E[X̄]. This

implies that the event “X̄ /∈ (1± r′) E[X̄]” contains the event “ 1
k

∑
(Xi + Yi) /∈ (1± r) E[X̄]”, which

implies that Pr
[
1
k

∑
(Xi + Yi) /∈ (1± r) E[X̄]

]
≤ Pr

[
X̄ /∈ (1± r′) E[X̄]

]
.

Let Ȳ = 1
k

∑k
i=1 Yi. By the triangle inequality and the assumptions of the lemma,

|Ȳ | ≤ 1

k

k∑
i=1

|Yi| ≤
1

k

k∑
i=1

max{r1 E[X̄], r2Xi} ≤
1

k

k∑
i=1

(r1 E[X̄] + r2Xi) = r1 E[X̄] + r2X̄

Assume that X̄ ∈ (1± r′) E[X̄]. Combined with the previous bound we can obtain that:

1

k

k∑
i=1

(Xi + Yi) = X̄ + Ȳ ∈ (1± r′) E[X̄]± r1 E[X̄]± r2X̄

⊆ (1± r′) E[X̄]± r1 E[X̄]± (1± r′)r2 E[X̄]

= (1± r′ ± r1 ± (1± r′)r2) E[X̄]

= (1± (r′ + r1 + (1 + r′)r2)) E[X̄]

= (1± ((1 + r2)r
′ + r1 + r2)) E[X̄]

= (1± r) E[X̄]

Lemma 8.6. Let X1, . . . , XM1 be a sequence of M1 independent variables whose distribution is the
same as h(βx,α). In this setting, Pr

[
1

M1

∑M1
i=1Xi ̸=

(
1± 1

4ε
)
E[h(βx,α)]

]
≤ 50

243 .

Proof. By Chebyshev’s bound,

Pr

[
1

M1

M1∑
i=1

Xi ̸=
(
1± 1

4
ε

)
E[h(βx,α)]

]
≤

1
M1

Var[h(βx,α)](
1
4εE[h(βx,α)]

)2
[Lemma 8.3] ≤ 100/M1

1
16ε

2 (E[h(βx,α)])
2

[Lemma 8.2] ≤ 1600

M1ε20.92
≤ 1600

(9600/ε2)ε2 · 0.81
=

1600

9600 · 0.81
=

50

243
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Lemma 8.7. The sequence (V
(1)
x , . . . , V

(M1)
x ) drawn by the algorithm is 1

12 -close to a sequence of
M1 independent drawings of Vx.

Proof. Clearly, the V
(i)
x s are fully independent. For every 1 ≤ i ≤ M1, the distribution of V (i)

x is
ηc,εq-close to the correct distribution of Vx. Hence, by a union bound, the distance between the two
sequences is bounded by ηc,εqM1. By Observation 8.1, the latter expression is bounded by 1

12 .

Recall Lemma 4.6 about the correctness of Algorithm 14.

Lemma 4.6 (Estimate-scaled-result). Let 0 < α ≤ 1 be an explicitly given input, and assume that
γx ≤ α ≤ 50γx. The output of Algorithm 14 is a random variable whose value, with probability 2/3,
is (1± ε/2)αsx/µ(x), at the expected cost of O

(
log 1

εc ·
log5 ε−1

ε4(wx+ε/log ε−1)

)
samples.

Proof of Lemma 4.6. During Step 6, for every i, in the ith iteration we draw A
(i)
α and V

(i)
x . These

correspond to some βi = βx,α(A
(i)
α , V

(i)
x ), which are not accessible to the algorithm, but are estimated

by β̂i. By Lemma 8.7, the sequence (V
(1)
x , . . . , V

(M1)
x ) is 1

12 -close to a sequence (U
(1)
x , . . . , U

(M1)
x ) of

M1 independent samples of Vx drawn according to its correct distribution.

For the analysis, we consider an optimal coupling of (V (1)
x , . . . , V

(M1)
x ) with the above hypothetical

sequence (U
(1)
x , . . . , U

(M1)
x ). The good event Geqv, whose probability is at least 11

12 , is defined as
the event that U (i) = V (i) for all 1 ≤ i ≤ M1. This leads to a coupling of Algorithm 14 with a
logically-equivalent algorithm that uses the U

(i)
x sets instead of the V

(i)
x sets, where the behaviors

of Algorithm 14 and the hypothetical algorithm are identical when conditioned on Geqv.

Recall that β̂i is the median of ⌈30 lnM1⌉ estimations of βi ± δ, each of which is successful with
probability at least 2/3 (under the assumption that Geqv happened). Since M1 > 150, β̂i = βi ± δ

with probability at least 1− 1
24M1

(Observation 3.32(e)). Let Gest be the good event
∧M1

i=1(β̂i = βi±δ).
Then by the union bound Pr [Gest|Geqv] ≥ 23

24 .

Assume that Geqv ∩ Gest happens. Let h(β̂i) = Xi + Yi, where Xi = h(βi) and Yi is the additive
error, which according to Lemma 8.4, is bounded by 2δ + 1

20εh(βi) = 2δ + 1
20εXi. Combined,

Pr

[
b̂ ̸=

(
1± 1

3
ε

)
E [h(βx,α)]

]
≤ Pr [¬Geqv] + Pr [¬Gest|Geqv] +

+Pr

[
b̂ ̸=

(
1± 1

3
ε

)
E [h(βx,α)]

∣∣∣∣Geqv ∧Gest

]
(∗) ≤ 1

12
+

1

24
+ Pr

[
1

M1

M1∑
i=1

(Xi + Yi) ̸=
(
1± 1

3
ε

)
E [h(βx,α)]

∣∣∣∣∣Gest

]

(∗∗) ≤ 1

8
+ Pr

[
1

M1

M1∑
i=1

Xi ̸=
(
1± 1

4
ε

)
E[h(βx,α)]

∣∣∣∣∣Gest

]

[Lemma 8.6] ≤ 1

8
+

50

243
≤ 1

3
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(∗): since Xi and Yi are independent of Geqv.
(∗∗): we use Lemma 8.5 with the parameters r = 1

3ε, r1 = 2δ ≤ 1
300ε, r2 = 1

20ε. This results with
r′ ≥ 1

4ε. An explicit bound: r′ = r−r1−r2
1+r1

≥ ε/3−ε/300−ε/20
1+ε/300 = (7/25)ε

1+ε/300 ≥
(7/25)ε
1+1/300 > 1

4ε.

Overall, with probability at least 2/3,

b̂ = (1± ε/3)E[h(βx,α)] =
Lemma 8.2

(1± ε/3)(1± ε/10)αsx/µ(x) = (1± ε/2)αsx/µ(x)

9 Applications

In this section we efficiently solve three tasks in the fully conditional model. In each of the tasks, we
first construct an algorithm (or adapt an existing one) for an interim model in which one can obtain
samples from the distribution along with informational queries about the distribution function itself,
where the latter are received with some restrictions on availability and accuracy. Then we plug in
our core estimator to provide these queries using conditional samples to complete each task. The
lemmas providing this mechanism are Lemmas 9.10, 9.23 and 9.24. Appendix D holds another
another such lemma which might be useful in the future.

9.1 Additional notations

The following definitions relate to the restrictions that are imposed on our interim querying model.

Definition 9.1 (ε-approximation function). Let µ be a distribution over Ω. A function f : Ω →
[0, 1] is an ε-approximation function with respect to µ if f(x) ∈ (1± ε)µ(x) for every x ∈ Ω.

Definition 9.2 (CDF c-truncation function). Let µ be a distribution over Ω. A function f : Ω→
[0, 1] is a CDF c-truncation function with respect to µ if:

• For every x ∈ Ω for which CDFµ(x) ≥ c, f(x) = µ(x).

• For every x ∈ Ω for which CDFµ(x) < c, f(x) ∈ {0, µ(x)}.

Definition 9.3 ((c, ε)-approximation function). Let µ be a distribution over Ω. A function f : Ω→
[0, 1] is a (c, ε)-approximation function with respect to µ if:

• f(x) ∈ (1± ε)µ(x) for every x ∈ Ω for which CDFµ(x) ≥ c.

• f(x) ∈ (1± ε)µ(x) ∪ {0} for every x ∈ Ω for which CDFµ(x) < c.

Observation 9.4. Let µ be a distribution over Ω. A (c, ε)-approximation function h can be seen
as a (1± ε)-multiplicative approximation of a c-truncated function f (that is, h(x) ∈ (1± ε)f(x) for
every x ∈ Ω).

The following oracle definition is a restricted variation of the “explicit sampler” model of [CFGM16].

Definition 9.5 (r-error (c, ε)-explicit sampling oracle). Let µ be an input distribution over a set Ω.
The r-error (c, ε)-explicit sampling oracle for µ has no additional input, and outputs a pair (x, p),
where x ∈ Ω distributes like µ and with probability at least 1− r:

• If CDFµ(x) ≥ c, then p is in the range (1± ε)µ(x).

• If CDFµ(x) < c, then p is in the range (1± ε)µ(x) ∪ {0}.
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The probability of error in the estimation of µ(x), as well as the distribution over the estimated
value, is independent of these probabilities for other elements. The oracle guarantees consistency,
which means that if some element y is drawn more than once, then all pairs of the form (y, ·) have
the same second entry.

Observation 9.6. An r-error (c, ε)-explicit sampling oracle can be seen as the following ensemble:

• A (c, ε)-approximation function gtruth : Ω→ [0, 1].

• An arbitrary error function gerr : Ω→ [0, 1].

• A random correctness vector u ∈ {0, 1}Ω whose entries are drawn independently, and for every
x ∈ Ω, Pr[ux = 1] ≥ 1− r.

• The estimation outcome of the drawn x ∼ µ is h(x) = gtruth(x) if ux = 1 and h(x) = gerr(x)
if ux = 0.

The function gtruth and gerr can be drawn from an arbitrary distribution over such functions.

The following oracle definition is a restricted variation of the “sample and query” model, first defined
in [RS09] as the evaluation oracle.

Definition 9.7 ((c, ε)-peek oracle). Let µ be an input distribution over a finite set Ω. The (c, ε)-peek
oracle for µ gets an element x ∈ Ω and returns:

• An arbitrary real number in the range (1± ε)µ(x), if CDFµ(x) ≥ c.

• An arbitrary real number in the range {0} ∪ (1± ε)µ(x), if CDFµ(x) < c.

This definition is stricter than the definition commonly used in other works, in that the set of
x ∈ Ω for which “0” is an allowable answer is fully determined by µ itself, rather than depending
on artifacts (and at times probabilistic events) of the algorithm that simulates it.

The oracle guarantees consistency, which means that if the algorithm makes more than one query
to an element x then it receives the same answer to all of them.

Observation 9.8. The (c, ε)-peek oracle for a distribution µ can be seen as the querying of an
arbitrarily (and possibly probabilistically) predefined (c, ε)-approximation function (Definition 9.3).

Observation 9.9 (Amplification of testing). Assume that we have a decision test whose answer is
correct with probability at least 5/8. Then the majority answer of 3 indpendent trials is correct with
probability at least 2/3 and the majority answer of 45 independent trials is correct with probability
at least 3/4.

We provide a proof for Observation 9.9 in Appendix F.

9.2 Learning of histograms

We first prove a generic lemma about a reduction from the (c, ε)-explicit sampling model to the
fully conditional model.

Lemma 9.10. Consider an algorithm A whose input is a distribution µ over Ω of size N and its
output is an element of a set R, and whose access to µ consists of making at most q calls to the
r-error (c, ε)-explicit sampling oracle.
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Assume that for every input µ there exists a set Rµ ⊆ R for which Pr [A(µ) ∈ Rµ] >
2
3 , where the

probability is over a draw of the outcome sequence resulting from the algorithm’s calls to a valid
r-error (c, ε)-explicit sampling oracle (along with the algorithm’s internal randomness).

In this setting, there exists an algorithm A′ in the fully conditional model whose sample complexity
is O(q ·(log logN+1/ε4) ·poly(log r−1, log c−1, log ε−1)), such that for every µ, Pr [A′(µ) ∈ Rµ] >

2
3 .

Proof. Without loss of generality, we assume that the algorithm draws exactly q samples x1, . . . , xq ∼
µ and receives p1, . . . , pq such that in expectation the fraction of errors is at most r.

We run A and simulate the outcome estimation of the explicit sampling oracle while keeping “history
records”. In the ith call to the explicit sampling oracle we:

• Draw xi ∼ µ, independent of past calls.

• Check whether xi = xj for some j ≤ i − 1. If such a j exists, then we re-use the estimation
for µ(xj).

• If xi /∈ {x1, . . . , xi−1}, then we use the median of
⌈
30 ln r−1

⌉
independent calls to Estimate-

element (Theorem 4.1) with parameters (c, ε).

Clearly, the sequence x1, . . . , xq is independently and identically distributed like µ. By Observation
3.32(d), the probability to wrongly estimate an individual µ(xi) (that is eligible for estimation) is
bounded by 1

2r, independently for every distinct xi. Hence, we fully simulate the r-error oracle
without any additional error.

By Corollary 4.3, the expected complexity of a single estimation of xi ∼ µ is O(log logN) +

poly(log ε−1) · O
(
log2 c−1

ε2
+ log c−1

ε4

)
. We repeat this

⌈
30 ln r−1

⌉
times for amplification for every

1 ≤ i ≤ q. Overall, the expected sample complexity is bounded by

O(q · (log logN + 1/ε4) · poly(log r−1, log c−1, log ε−1))

Most of this subsection is dedicated to an algorithm for ε-learning the histogram of µ at the cost
of O(log(N/ε)/ε3) explicit samples. It works using the bucketing technique of [BFF+01]: instead
of considering the distribution itself, we consider a “lower resolution picture” that results from
categorizing the possible values of µ(x) by powers of (1−O(ε)) that are close to them.

We start by stating a folklore lemma for learning a distribution over a small domain.

Lemma 9.11 (Folklore). Let µ be a distribution over {1, . . . , n} for n ≥ 16. Assume that we
construct a distribution µ′ over {1, . . . , n} as follows: we draw q independent samples from µ, for
every 1 ≤ i ≤ n let Xi be the random variable counting the number of occurrences of i in our
samples, and let µ′(i) = Xi/q. If q ≥ n/ε2, then with probability at least 8/9, dTV(µ, µ

′) ≤ ε and
µ′(i) ≤ 2max{ε2, µ(i)} for every 1 ≤ i ≤ n.

Proof. Let E ⊆ {1, . . . , n} be an arbitrary event. By the construction, µ′(E) = 1
q

∑
i∈E Xi. By

Chernoff bound,

Pr
[∣∣µ′(E)− µ(E)

∣∣ > ε
]
= Pr [Bin(q, µ(E)) ̸= µ(E)q ± εq] ≤ 2e−2ε2q ≤ 2e−2n < 2−n−5
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By the union bound, the probability to deviate even once is bounded by 2n · 2−n−5 ≤ 1
32 . Hence,

with probability at least 31/32, dTV(µ, µ
′) = supE |µ(E)− µ′(E)| ≤ ε.

Additionally, consider 1 ≤ i ≤ n and let pi = max{ε2, µ(i)}. By Chernoff bound,

Pr
[
µ′(i) > 2pi

]
≤ Pr [Bin(q, pi) > 2piq] ≤ e−

1
3
piq ≤ e−

1
3
ε2(n/ε2) = e−n/3

By the union bound, the probability that µ′(i) ≤ 2max{ε2, µ(i)} for any 1 ≤ i ≤ n is bounded by
n · e−n/3 ≤ 1

12.9 .

By the union bound, the probability of any “bad event” occurring is at most 1
32 + 1

12.9 ≤
1
9 .

Before we present the learning algorithm, we formally define the histogram buckets we wish to learn.

Definition 9.12 (Bucket function). Let ε > 0, t ≥ 2 + ln(N/ε2)/ε, and µ be a distribution over Ω
of size N . A function f : Ω→ {1, . . . , t;∞} is a bucket function if for every x ∈ Ω:

• If µ(x) > e−ε(t−2) and CDFµ(x) ≥ ε, then µ(x) ∈ e−ε(f(x)±2).

• Otherwise, f(x) =∞ or µ(x) ∈ e−ε(f(x)±2).

Lemma 9.13. Let h be an (ε, ε)-approximation function of µ. The function f(x)=⌈− lnh(x)/(2ε)⌉,
where values larger than t are mapped to ∞, is a 2ε-bucket function of µ.

Proof. For every x ∈ Ω for which µ(x) > e−2ε(t−2) and CDF(x) ≥ ε (noting that such a value is
never mapped to the ∞-bucket):

lnh(x)

2ε
− 1 ≤ −f(x) ≤ lnh(x)

2ε

e−2ε(f(x)+2) ≤ elnh(x)−4ε = e−4εh(x) ≤ µ(x) ≤ e2εh(x) = elnh(x)+2ε ≤ e−2ε(f(x)−2)

Definition 9.14 (Bucket distribution). Let ε > 0, t ≥ 2 + ln(N/ε2)/ε, µ be a distribution over Ω
and f : Ω → {1, . . . , t;∞} be an ε-bucket function. The bucket distribution of µ with respect to f
is the distribution µf over {1, . . . , t;∞} for which µf (i) = Prx∼µ[f(x) = i].

Definition 9.15 (Bucket-transform Tε,ε′). Let ε′ ≥ 2ε. The bucket transform from ε to ε′, Tε,ε′ :
N ∪ {∞} → N ∪ {∞}, maps ∞ to itself and every i ∈ N to

⌈
ε
ε′ i
⌉
.

Lemma 9.16. Let f be an ε-bucket function of a distribution µ with respect to some t ≥ 2 +
ln(N/ε2)/ε. For ε′ ≥ 2ε and t′ = 2 +

⌊
ε
ε′ (t− 2)

⌋
, the function g : Ω → {1, . . . , t′;∞} defined as

g(x) = Tε,ε′(f(x)) is an ε′-bucket function of µ with respect to t′.

Proof. For validity, observe that ln
(
(ε′/ε)2

)
/ε′ ≥ 1 and hence we can obtain:

t′ = 2 +
⌊ ε
ε′
(t− 2)

⌋
≥ 1 +

ε

ε′
· ln(N/ε2)

ε
= 1 +

ln(N/(ε′)2) + ln
(
(ε′/ε)2

)
ε′

≥ 2 +
ln(N/(ε′)2)

ε′

Also, observe that ε′(t′ − 2) ≤ ε′ · ε
ε′ (t− 2) = ε(t− 2) and that t′ ≥

⌈
ε
ε′ t
⌉
.
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Consider x for which f(x) ̸= ∞. By definition of f , f(x) ∈ ε−1 ln 1
µ(x) ± 2. By definition of g,

g(x) = ε
ε′ ·
(
ε−1 ln 1

µ(x) ± 2
)
± 1 = (ε′)−1 ln 1

µ(x) ±
(
2 ε
ε′ + 1

)
⊆ (ε′)−1 ln 1

µ(x) ± 2.

Consider x for which f(x) =∞ (and hence g(x) =∞ as well). If CDFµ(x) ≤ ε then CDFµ(x) ≤ ε′

as well. Otherwise, µ(x) ≤ e−ε(t−2). In this case, by the constraint of t′, µ(x) ≤ e−ε′(t′−2) as
well.

Lemma 9.17. Let ε > 0, N ≥ 1, t ≥ 2 + ln(N/ε2)/ε. Let µ, τ be two distributions over Ω of size
N and fµ, fτ : Ω→ {1, . . . , t;∞} be ε-bucket functions for µ and τ respectively. Let µfµ and τfτ the
bucket distributions corresponding to (µ, fµ) and (τ, fτ ) respectively. In this setting, DH(µ; τ) ≤ ε′

for ε′ = dTV(µfµ , τfτ ) + 5ε+ 16ε2.

Proof. For every i ∈ {1, . . . , t;∞}, let Bµ
i = {x ∈ Ω : fµ(x) = i} and Bτ

i = {x ∈ Ω : fτ (x) = i}.
Also, let (Lµ

i , R
µ
i ) (resp. (Lτ

i , R
τ
i )) be a partition of Bµ

i (resp. Bτ
i ) for which |Lµ

i | = min {|Bµ
i | , |Bτ

i |}
(resp. |Lτ

i | = min {|Bµ
i | , |Bτ

i |}). Let Lµ = Lµ
∞ ∪

⋃t
i=1 L

µ
i , and analogously define Rµ, Lτ , Rτ as the

corresponding unions.

Let π be a permutation over Ω such that for every i ∈ {1, . . . , t;∞}, π maps Lµ
i onto Lτ

i , and also
maps Rµ onto Rτ . Such a permutation exists since |Lµ

i | = |Lτ
i | for every i ∈ {1, . . . , t;∞} and

|Rµ| = N − |Lµ| = N − |Lτ | = |Rτ |.

Clearly, elements in Lµ \ Lµ
∞ are mapped to elements in the same bucket, hence µ(x)

τ(π(x)) ∈ e±4ε =

1± (4ε+ 16ε2) for such elements. The mass of the other elements is bounded by:

µ(Bµ
∞) +

t∑
i=1

µ(Rµ
i ) ≤ µ(Bµ

∞) +
t∑

i=1

e−ε(i−2)max {0, |Bµ
i | − |B

τ
i |}

For the first part: every element with µ(x) ≤ e−ε(t−2) has CDFµ(x) ≤ N · e−ε(ln(N/ε2)/ε) = ε2 < ε,
hence for Bµ

∞ it suffices to only consider elements with CDFµ(x) ≤ ε. Their mass is bounded by ε
due to the definition of CDFµ. For the second part:

t∑
i=1

e−ε(i−2)max {0, |Bµ
i | − |B

τ
i |} ≤

t∑
i=1

e−ε(i−2)max
{
0, eε(i+2)µ(Bµ

i )− eε(i−2)τ(Bτ
i )
}

=

t∑
i=1

max
{
0, e4εµ(Bµ

i )− τ(Bτ
i )
}

=
t∑

i=1

max
{
0, µ(Bµ

i )− τ(Bτ
i ) +

(
e4ε − 1

)
µ(Bµ

i )
}

≤
t∑

i=1

max {0, µ(Bµ
i )− τ(Bτ

i )}+
(
e4ε − 1

) t∑
i=1

τ(Bτ
i )

≤ dTV(µfµ , τfτ ) + (4ε+ 16ε2)

Overall, Prµ
[
µ(x) /∈ (1± (4ε+ 16ε2))τ(x)

]
≤ dTV(µfµ , τfτ ) + 5ε+ 16ε2.
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Lemma 9.18. Let N ≥ 1, ε > 0 and t ≥ 2 + ln(N/4ε2)/2ε. Let µ be a distribution over Ω and
let fµ be a 2ε-bucket function with respect to µ and t. Let ν be a distribution over {1, . . . , t;∞} for
which dTV(µfµ , ν) ≤ 6ε. In this setting, the following constraint problem is algorithmically solvable
given full access to t, ε, N and ν:

•
∑t

i=1Ni ≤ N .

•
∑t

i=1Nipi ≤ 1.

•
∑t

i=1 |Nipi − ν(i)| ≤ 12ε.

• For every 1 ≤ i ≤ t: Ni ≥ 0 is an integer.

• For every 1 ≤ i ≤ t: e−2ε(i+2) ≤ pi ≤ e−2ε(i−2).

Proof. Solvability: recall Definition 9.14, and observe that the following is a feasible solution: for
every 1 ≤ i ≤ t, Ni = |{x : fµ(x) = i}| and pi =

µfµ (i)

Ni
.

Computability: by simple arithmetic Ni ≤ (12ε+ ν(i))e2ε(i+2) for every 1 ≤ i ≤ t, hence the search
range for (N1, . . . , Nt) is finite and can be exhausted algorithmically. The algorithm considers every
assignment of (N1, . . . , Nt) within their bounds, solves the corresponding LP problem (a sum of t
absolute values can be converted to to 2t linear constraints) and tests the feasibility of the result
assignment.

Note that the time complexity relating to the above lemma is large. If we allow the algorithm to find
a solution relaxing the third condition to

∑t
i=1 |Nipi − ν(i)| ≤ 24ε for ν satisfying the assertions

of the lemma, then we can greatly reduce the time complexity, and this is still sufficient for the
histogram learning task. We do not prove this here.

Algorithm 15 solves the histogram learning task by drawing O(t/ε̂2) sample elements, and estimating
their mass to associate them with their buckets, possibly with a ±2-additive shift.

Lemma 9.19 (Learn-histogram-buckets). Algorithm 15 makes O(log(N/ε̂)/ε̂3) calls to the ε̂-error
(ε̂, ε̂)-explicit sampling oracle, and with probability at least 2/3 returns a distribution τB that is
6ε̂-close to a bucket distribution of the form µfµ for some 2ε̂-bucket function fµ of µ.

Proof. By Observation 9.6, we can see the ε̂-error (ε̂, ε̂)-explicit sampling oracle as a propagation
of the following:

• An (ε̂, ε̂)-approximation function gtruth of µ.

• An arbitrary error function gerr : Ω→ [0, 1].

• A correctness vector u ∈ {0, 1}Ω whose entries are drawn independently, where Pr[ux = 1] ≥
1− r for every x ∈ Ω.

• The estimation outcome of the oracle for x is h(x) = gtruth(x) if ux = 1 and h(x) = gerr(x) if
ux = 0.

This way, the analysis can use h(y) instead of p̂y for the samples, noting that h(y) is also defined
for non-sampled y ∈ Ω.
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Algorithm 15: Procedure Learn-histogram-buckets(ε̂;µ)
Oracle: The ε̂-error (ε̂, ε̂)-explicit sampling oracle, ε̂ < 1/27.
Output: A distribution that is 6ε̂-close to some 2ε̂-bucket distribution of µ.
Success probability: 2/3.

1. Let t←
⌈
ln(N/ε̂2)/2ε̂

⌉
+ 2.

2. Let q ←
⌈
(t+ 1)/ε̂2

⌉
.

3. Set X1, . . . , Xt;X∞ ← 0.
4. For q times:

(a) Explicitly draw y ∼ µ and obtain p̂y.
(b) Set f(y)←

⌈
− ln p̂y

2ε̂

⌉
.

(c) If f(y) = 0:
i. Set f(y)← 1.

(d) If f(y) > t:
i. Set f(y)←∞.

(e) Set Xf(y) ← Xf(y) + 1.
5. Let τB the distribution defined as τB(i) = Xi/q for every i ∈ {1, . . . , t;∞}.
6. Return τB.

Let f and f ′ be the functions that map every x ∈ Ω to its 2ε̂-bucket according to gtruth(x) and
h(x) respectively. More precisely, the bucket associated with the mass p (which can be obtained
from gtruth or from h) is ⌈− ln p/(2ε̂)⌉ (or ∞ if larger than t). By Lemma 9.13, f is indeed a bucket
function of µ.

Since µf and µf ′ are mappings of µ with respect to f and f ′, dTV(µf , µf ′) ≤
∑

x∈Ω:f(x)̸=f ′(x) µ(x).
For every x, the probability that gtruth(x) ̸= h(x) is bounded by ε̂, and hence Eu[dTV(µf , µf ′)] ≤ ε̂.
By Markov’s inequality, with probability at least 4/5 over the choice of the correctness vector u,
dTV(µf , µf ′) ≤ 5ε̂.

By Lemma 9.11, with probability at least 8/9, the distribution τB constructed by the algorithm is ε̂-
close to µf ′ . By the triangle inequality and the union bound, with probability at least 1−1/9−1/5 >
2/3, dTV(τB, µf ) ≤ dTV(τB, µf ) + dTV(µf ′ , µf ) ≤ ε̂+ 5ε̂ = 6ε̂.

The sample complexity is trivial.

The histogram learning algorithm works by converting the (approximated) distribution over buckets
back to a distribution over Ω.

Lemma 9.20. Let µ be a distribution over Ω = {1, . . . , N}. Algorithm 16 solves the ε-histogram
learning task at the cost of O(log(N/ε)/ε3) calls to the 1

300ε-explicit sampling oracle.

Proof. By Lemma 9.19, with probability 2/3, the call to Learn-histogram-buckets returns a distri-
bution τB that is 6ε̂-close to some 2ε̂-bucket distribution of µ. Let fµ be a 2ε̂-bucket function of
µ for which τB is 6ε̂-close to µfµ . Lemma 9.18 implies that the constraint problem defined by the
algorithm in Step 2 is solvable.

Observe that τB(∞) ≤ µfµ(∞) + 6ε̂ ≤ 4ε̂2

N ·N + 6ε̂ = 6ε̂+ 4ε̂2.
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Algorithm 16: Procedure Learn-histogram(ε;µ)
Oracle: The ε̂-error (ε̂, ε̂)-explicit sampling oracle for ε̂ = 1

300ε.
1. Let τB ← Learn-histogram-buckets(ε̂, µ).
2. Solve the following constraints problem: (Solvable by Lemma 9.18)

•
∑t

i=1Ni ≤ N .
•
∑t

i=1Nipi ≤ 1.
•
∑t

i=1 |Nipi − τB(i)| ≤ 12ε̂.
• For every 1 ≤ i ≤ t: Ni ≥ 0 is an integer.
• For every 1 ≤ i ≤ p: e−2ε̂(i+2) ≤ pi ≤ e−2ε̂(i−2).

3. Let s←
∑t

i=1Nipi.
4. Construct a function f ′ : Ω→ {1, . . . , t;∞} such that for every 1 ≤ i ≤ t there are

exactly Ni elements for which f(x) = i. The other elements are mapped to ∞.
5. Construct a distribution τ ′ over Ω where for every 1 ≤ i ≤ t there are exactly Ni

elements whose probability mass is exactly pi/s. The other N −
∑t

i=1Ni elements have
zero mass.

6. Return τ ′.

Observe that τ ′(∞) = 0, and note that s =
∑t

i=1Nipi ≥
∑t

i=1 τB(i)− 12ε̂ = (1− τB(∞))− 12ε̂ ≥
1− (18ε̂+ 4ε̂2). Also, s ≤ 1 by the constraints of the construction.

Since s = 1± (18ε̂+ 4ε̂2), s−1 = 1± 20ε̂ and hence:

t∑
i=1

|Nipi/s− τB(i)| =

t∑
i=1

|(1± 20ε̂)Nipi − τB(i)|

≤ 20ε̂
t∑

i=1

Nipi +
t∑

i=1

|Nipi − τB(i)|

≤ 20ε̂ · 1 + 12ε̂ = 32ε̂

Considering Definition 9.14 and Lemma 9.16 with respect to ε̂ and ε′ = 16 · 2ε̂, let:

• t′ = 2 + ⌊(t− 2)/16⌋.

• νB be the map of τB according to T2ε̂,32ε̂, that is, νB(j) =
∑

i:T2ε̂,32ε̂(i)=j τB(i).

• f ′ be the 32ε̂-bucket function of τ ′ with respect to t′, defined such that every element with
mass pi/s is mapped to the T2ε̂,32ε̂(i)th bucket.

• f ′
µ be the 32ε̂-bucket function of µ with respect to t′ that is constructed from fµ by Lemma

9.16.

Observe that νB is 6ε̂-close to µf ′
µ

since τB is 6ε̂-close to µfµ , and that µf ′
µ

is a 32ε̂-bucket distribution
of µ.

By the construction, τ ′f ′(∞) = 0 and τ ′f ′(i) = Nipi/s for 1 ≤ i ≤ t. We can use the bound for∑t
i=1 |Nipi/s− τB(i)| to obtain:
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dTV(τ
′
f ′ , νB) ≤ dTV(τ

′
f , τB)

=
1

2
τB(∞) +

1

2

t∑
i=1

|Nipi/s− τB(i)| ≤
1

2
· (6ε̂+ 4ε̂2) +

1

2
· 32ε̂ = 19ε̂+ 2ε̂2

By the triangle inequality, dTV(µf ′
µ
, τ ′f ′) ≤ dTV(µf ′

µ
, νB)+dTV(νB, τ

′
f ′) ≤ 6ε̂+(19ε̂+2ε̂2) ≤ 25ε̂+4ε̂2.

By Lemma 9.17, DH(µ; τ
′) ≤ ε′ for

ε′ = dTV(µf ′
µ
, τ ′f ′)+(5(32ε̂)+16(32ε̂)2) ≤ (25ε̂+4ε̂2)+(160ε̂+16384ε̂2) = 185ε̂+16388ε̂2 ≤ 300ε̂ = ε

At this point we recall Theorem 9.21 and prove it.

Theorem 9.21 (Learning histograms). We can use O
(
logN log logN

ε7
· poly(log ε−1)

)
conditional

samples to solve the ε-histogram learning.

Proof. This is an application of Lemma 9.10 over the O(log(N/ε)/ε3)-sample algorithm for learning
histograms stated in Lemma 9.20.

Since label-invariant properties are determined by histograms, we can obtain a universal tester for
label-invariant properties.

Corollary 9.22. There exists a universal tester for ε-testing every label-invariant property P using
O(logN/ε7 · poly(log ε−1)) conditional samples.

Proof. We learn a distribution τ for which DH(µ; τ) ≤ 1
4ε and accept if there exists any distribution

µ′ ∈ P for which DH(µ
′; τ) ≤ 1

4ε. By two applications of Lemma 3.9, if we have accepted due to
some τ then there are two permutations π and π′ such that dTV(µ, πτ) ≤ 1

2ε and dTV(µ
′, π′τ) ≤ 1

2ε.
By the triangle inequality (and invariance under permutations) we obtain dTV(µ, (π ◦ (π′)−1)µ′) ≤ ε
as required.

9.3 Total-variation distance estimation

We first prove a generic lemma about a reduction from the (c, ε)-peek model to the fully conditional
model for inputs consisting of multiple distributions. The analysis here has a penalty of O(1/ε) in
comparison to Lemma 9.10, since we no longer assume that a queried element x is drawn from the
distribution it is queried from, which requires the use of Corollary 4.2 (worst case cost) rather than
Corollary 4.3 (expected cost).

Lemma 9.23. Consider an algorithm A whose input is a k-tuple µ⃗ = (µ1, . . . , µk) of distributions
over Ω1, . . . ,Ωk (respectively), and its output is an element of a discrete set R. Assume that A draws
at most q samples and makes at most q calls to the (c, ε)-peek oracle. Let N = max {|Ω1| , . . . , |Ωk|}.

Assume that for every input µ⃗ there exists a set Rµ⃗ ⊆ R for which Pr
[
A(µ⃗) ∈ Rµ⃗

]
> 2

3 for every
possible valid outcome sequence of the (c, ε)-oracle (i.e., one that comes from an (ε, c)-approximation
function corresponding to the oracle).
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In this setting, there exists an algorithm A′ in the fully conditional model whose sample complex-
ity is O(q · (log logN + 1/ε2c + 1/ε5) · poly(log q, log c−1, log ε−1)), such that for every input µ⃗,
Pr
[
A′(µ⃗) ∈ Rµ⃗

]
> 5

8 .

Proof. We run A and simulate the outcome of the ε-peek oracle. In each call to the (c, ε)-peek
oracle with x ∈ Ωi and µi, we call Estimate-element with parameters (µi, c, ε) on xi (Theorem
4.1). We amplify the success probability to 1 − 1

24q using the median of ⌈30 ln(12q)⌉ such calls
(Observation 3.32(d)). Each time we estimate the probability mass of an element, we record it in a
“history”. If the same element is queried again later, we use the history record rather than calling
the Estimate-element procedure again. This guarantees the consistency of the oracle (required by
Definition 9.7).

The probability to have a wrong estimation is bounded by q · 1
24q = 1

24 . Hence, the probability
to correctly simulate the (c, ε)-peek oracle is at least 23/24. If the simulation is correct, then the
output of the simulated A belongs to Rµ⃗ with probability at least 2/3. Overall, the probability of
the simulation to output an element in Rµ⃗ is at least 2/3− 1/24 = 5/8.

By Corollary 4.2, the worst-case complexity of a single estimation of x is O(poly(log c−1, log ε−1)) ·
O(log logN + 1

ε2c
+ log6 ε−1

ε5
). We repeat this O(log q) times for amplification for q requests. Overall,

the expected sample complexity is at most O(q·(log logN+1/ε2c+1/ε5)·poly(log q, log c−1, log ε−1)).

Lemma 9.24. Consider a testing algorithm A for some property P with success probability 2/3
whose input is a k-tuple µ⃗ = (µ1, . . . , µk) of distributions over Ω1, . . . ,Ωk (respectively). Assume
that A draws at most q samples and makes at most q calls to the (c, ε)-peek oracle. Let N =
max {|Ω1| , . . . , |Ωk|}.

In this setting, there exists a testing algorithm A′ for P with success probability 2/3 in the fully condi-
tional model whose sample complexity is O(q ·(log logN+1/ε2c+1/ε5) ·poly(log q, log c−1, log ε−1)).

Proof. Let R = {accept,reject}. By Lemma 9.23, there exists a testing algorithm A′′ in the
conditional model with the guaranteed sample complexity and success probability at least 5/8. We
define A′ as a majority-of-3 amplification of A′′. The success probability of A′ is at least 2/3 by
Observation 9.9.

Most of this subsection is dedicated to an algorithm for estimating dTV(µ, τ) within ±ε-additive
error at the cost of O(1/ε2) samples and O(1/ε2) calls to the 1

6ε-peek oracle.

Lemma 9.25. For every pair of c-truncated functions fµ, fτ : Ω→ [0, 1] with respect to µ and τ ,

dTV(µ, τ) =
1

2

(
E

x∼µ

[
max

{
0, 1− fτ (x)

µ(x)

}]
+ E

x∼τ

[
max

{
0, 1− fµ(x)

τ(x)

}])
± 2c

We defer the proof of Lemma 9.25 to Appendix F.

Lemma 9.26 (Estimate-bounded-ratio). Let µ be a distribution over Ω and let f, g : Ω → [0, 1]
be two inaccessible functions. Assume that we have oracle access to functions f̂ , ĝ : Ω → [0, 1]
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Algorithm 17: Procedure Estimate-bounded-ratio(µ, ε, f, g; f̂ , ĝ)
Input: f and g, inaccessible to the algorithm.
Input: Oracle access to f̂(x) ∈ (1± ε)f(x) for every x.
Input: Oracle access to ĝ(x) ∈ (1± ε)g(x) for every x.
Output: Y = Ex∼µ

[
max

{
0, 1− f(x)

g(x)

}]
± 4ε.

Success probability: 5/6.
1. M ←

⌈
6/ε2

⌉
.

2. For i from 1 to M :
(a) xi ∼ µ.
(b) p̂i ← f̂(xi).
(c) q̂i ← ĝ(xi).
(d) Xi ← min

{
1, p̂iq̂i

}
.

3. Let X̄ = 1
M

∑M
i=1Xi.

4. Return Y = 1− X̄.

such that for every x ∈ Ω, f̂(x) ∈ (1 ± ε)f(x) and ĝ(x) ∈ (1 ± ε)g(x). Algorithm 17 estimates
Eµ

[
max

{
0, 1− f(x)

g(x)

}]
within ±4ε and success probability 5/6, at the cost of O(1/ε2) oracle calls.

Proof. It suffices to show that X̄ estimates Eµ

[
min

{
1, f(x)g(x)

}]
within ±4ε-error with probability at

least 5/6.

We explicitly bound the additive error in a single trial. If f(x)
g(x) ≥

1+ε
1−ε , then f̂(x)

ĝ(x) ≥ 1, and hence

min
{
1, f̂(x)ĝ(x)

}
= min

{
1, f(x)g(x)

}
= 1. If f(x)

g(x) ≤
1+ε
1−ε , then the error (1±ε

1±ε − 1)f(x)g(x) is bounded by ±3ε.

For q =
⌈
6/ε2

⌉
, let X1, . . . , Xq be independent samples of min

{
1, f̂(x)ĝ(x)

}
, each costing two oracle

calls. Let X̄ = 1
q

∑q
i=1Xi. Clearly, all Xis are bounded between 0 and 1, hence their variance

is bounded by 1 as well. An average over
⌈
6/ε2

⌉
trials has variance Var[X̄] ≤ 1

6ε
2, and hence by

Chebyshev inequality, the probability to deviate by more than ε is bounded by 1/6.

Overall, with probability at least 5/6,

X̄ = E
µ

[
min

{
1,

f̂(x)

ĝ(x)

}]
± ε =

(
E
µ

[
min

{
1,

f(x)

g(x)

}]
± 3ε

)
± ε = E

µ

[
min

{
1,

f(x)

g(x)

}]
± 4ε

Lemma 9.27. Let µ and τ be two distributions over Ω = {1, . . . , N}. Algorithm 18 estimates
dTV(µ, τ) within ±ε-additive error at the cost of O(1/ε2) samples and O(1/ε2) calls to the 1

6ε-peek
oracle.

Proof. By Observation 9.8, the ε̂-peek oracles (for µ and τ) can be seen as query oracles of (ε̂, ε̂)-
approximation functions hµ and hτ . By Observation 9.4, these hµ and hτ can be seen as (1 ± ε̂)-
approximations of ε̂-truncated functions fµ, fτ
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Algorithm 18: Procedure Estimate-dTV(ε;µ, τ)
Oracle: The (ε̂, ε̂)-peek oracles of µ and τ for ε̂ = 1

6ε.
1. Let fµ be a non-accessible, arbitrary ε̂-truncated function of µ, implicitly defined by the

output of the peek oracle.
2. Let fτ be a non-accessible, arbitrary ε̂-truncated function of τ , implicitly defined by the

output of the peek oracle.
3. Consider the following functions:

• f(x): fµ (not accessible).
• g(x): fτ (not accessible).
• f̂(x) is the oracle call to the (ε̂, ε̂)-peek oracle in µ.
• ĝ(x) is the oracle call to the (ε̂, ε̂)-peek oracle in τ .

4. Let Xµ ← Estimate-bounded-ratio(µ, ε̂, f, g; f̂ , ĝ).
5. Let Xτ ← Estimate-bounded-ratio(τ, ε̂, g, f ; ĝ, f̂).
6. Return 1

2X
µ + 1

2X
τ .

By Lemma 9.26, with probability at least 2/3 (a union bound over two 5/6-success events):

Xµ = E
µ

[
max

{
0,

fτ (x)

fµ(x)

}]
± 4ε̂

Xτ = E
τ

[
max

{
0,

fµ(x)

fτ (x)

}]
± 4ε̂

If this happens, then:

1

2
Xµ +

1

2
Xτ =

1

2
E[Xµ] +

1

2
E[Xτ ]± 4ε̂

[Lemma 9.25] = (dTV(µ, τ)± 2ε̂)± 4ε̂ = dTV(µ, τ)± 6ε̂ = dTV(µ, τ)± ε

We now recall Theorem 1.4 and prove it.

Theorem 1.4 (Almost-tight upper bound for distance estimation). Let µ, τ be two distributions
over Ω = {1, . . . , N} and ε > 0. There exists an algorithm for estimating dTV(µ, τ) within ε-additive
error using O((log logN/ε2 + 1/ε7) · poly(log ε−1)) conditional samples.

Proof. This is an application of Lemma 9.10 over the O(1/ε2)-sample algorithm for estimating
dTV(µ, τ)± ε stated in Lemma 9.27.

9.4 Non-tolerant testing of equivalence

In this subsection we present a non-tolerant ε-test for equivalence of two distributions µ and τ . Our
result reduces the polynomial degree of 1/ε in comparison to the trivial reduction from estimating
the distance between µ and τ within ±1

2ε-additive error.
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Algorithm 19: Procedure Equivalence-Test-core(ε;µ, τ)
Oracle: The ( 1

16ε,
1
16ε)-peek oracles for µ and τ .

1. For ⌈3/ε⌉ times:
(a) Draw x ∼ µ.
(b) Call the ( 1

16ε,
1
16ε)-peek oracle for µ, x to obtain p̂.

(c) Call the ( 1
16ε,

1
16ε)-peek oracle for τ , x to obtain q̂.

(d) If |q̂/p̂− 1| > ε/4:
i. Return reject.

2. Return accept.

Lemma 9.28 (Based on [RS09]). Let µ and τ be two distributions over Ω = {1, . . . , N}. Algorithm
19 distinguishes between τ = µ and dTV(τ, µ) > ε using O(1/ε) independent samples from µ and
O(1/ε) calls to the ( 1

16ε,
1
16ε)-peek oracle.

Proof. Let ε̂ = 1
16ε. By Observation 9.8, the (ε̂, ε̂)-peek oracles for µ and τ can be seen as query

oracles to (ε̂, ε̂)-approximation functions fµ and fτ (respectively).

If µ = τ and CDFµ(x) ≥ ε̂, then we expect that
∣∣∣ fτ (x)fµ(x)

− 1
∣∣∣ = ∣∣∣1±ε̂

1±ε̂ − 1
∣∣∣ ≤ 3ε̂ < 1

4ε.

If τ(x) < (1− ε/2)µ(x) and CDFµ(x) ≥ ε̂, then we expect that 1− fτ (x)
fµ(x)

≥ 1− 1±ε̂
1±ε̂ ·

(
1− 1

2ε
)
> 1

4ε.

If µ = τ , then in every iteration, the probability to draw x for which CDFµ(x) ≥ ε̂ is at least 1− ε̂.
By the union bound, the probability to reject is at most ⌈3/ε⌉ · ε̂ ≤ 4

ε ·
1
16ε =

1
4 .

For dTV(µ, τ) > ε, let A = {x : τ(x) < (1− ε/2)µ(x)}. By definition of the total variation distance,

dTV(τ, µ) =
∑

µ(x)>τ(x)

(µ(x)− τ(x)) =
∑

µ(x)>τ(x)

µ(x)

(
1− τ(x)

µ(x)

)

= E
x∼µ

[
max

{
0, 1− τ(x)

µ(x)

}]
≤ µ(A) · 1 + µ(¬A) · 1

2
ε ≤ µ(A) +

1

2
ε

Since dTV(τ, µ) > ε, we obtain that µ(A) > 1
2ε. The probability to draw an A-sample from µ

which has CDFµ(x) ≥ ε̂, and hence reject, is at least 1−
(
1− (12ε− ε̂)

)⌈3/ε⌉
= 1−

(
1− 7

16ε
)⌈3/ε⌉ ≥

1− e−21/16 > 2
3 .

Lemma 9.29. Let µ, τ be two distributions over Ω = {1, . . . , N}. There exists an algorithm for
distinguishing, with probability at least 5/8, between the case where µ = τ and the case where
dTV(µ, τ) > ε using:

• O((log logN/ε+ 1/ε6) · poly(log ε−1)) conditional samples at worst-case.

• O((log logN/ε+ 1/ε5) · poly(log ε−1)) conditional samples in expectation if µ = τ .

Proof. We simulate every peek call of Algorithm 19 using Estimate-element and amplify its confidence
by taking the median of O(log ε−1) independent calls. Lemma 9.23 implies the correctness and the
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worst-case complexity of this reduction. Since the success probability of the core algorithm is at
least 2/3 and the reduction error is at most 1/24, the success probability of the result algorithm is
at least 5/8.

Observe that if µ = τ then every call to Estimate-element (for answering a peek call) is performed
on a value x that was sampled from a distribution that is identical to the one for which it is queried.
This allows the use of Corollary 4.3 to obtain the expected-case complexity of the reduction when
µ = τ .

We recall Theorem 1.3 and prove it.

Theorem 1.3 (Almost-tight upper bound for equivalence testing). Let µ, τ be two distributions
over Ω = {1, . . . , N} and ε > 0. There exists an algorithm for distinguishing between the case where
µ = τ and the case where dTV(µ, τ) > ε, using O((log logN/ε + 1/ε5) · poly(log ε−1)) conditional
samples.

Proof. Let Q = O((log logN/ε + 1/ε5) · poly(log ε−1)) be the expected number of samples of the
algorithm that is guaranteed by Lemma 9.29 in the case where µ = τ (for any choice of µ). Consider
the following algorithm: we run 45 independent instances of the algorithm of Lemma 9.29 and
take the majority answer, with the exception that if we make our (540Q + 1)st sample, then we
immediately reject and terminate the run.

If µ = τ , then by Markov’s inequality, the probability to draw the (540Q + 1)st sample is smaller
than 1/12. Hence, with probability 11/12 the core algorithm runs successfully, and by Observation
9.9, it accepts with probability at least 3/4. By the union bound, we accept with probability at
least 2/3.

If dTV(µ, τ) > ε, then either we terminate after 540Q+ 1 queries and reject, or the core algorithm
runs successfully and rejects with probability at least 3/4. The probability to reject is at least
3/4 > 2/3.

10 Lower bounds

10.1 Tight lower bound for the (c, ε)-estimation task

In this subsection we show a tight lower bound of Ω(log logN) for estimating the probability mass
of individual elements using conditional samples. Since the demonstrating distributions are uniform
over their support, the expected case and the worst case are identical.

For some integer 1 ≤ k ≤ logN , we define Dk as the following distribution over inputs (in themselves
distributions over {1, . . . , N}): we draw a set K ⊆ {1, . . . , N} such that every element belongs to
K with probability 2−k independently, and then return the uniform distribution over K.

Lemma 10.1. Let 1 ≤ k ≤ logN − log logN − 8. With probability 1− o(1/N) over the drawing of
µ from Dk, every element in the support of µ has mass in the range

(
1± 1

9

)
· 2kN .

Proof. By Chernoff’s bound, Pr
[
|K| ∈

(
1± 1

10

)
2−kN

]
≥ 1 − 2e−

1
300

·2−kN = 1 − o(1/N). If this
happens, then every element in the support of µ has probability mass 1

|K| =
1

1±1/10 ·
2k

N =
(
1± 1

9

)
2k

N .
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Let kmin =
⌊
1
3 logN

⌋
and kmax =

⌈
2
3 logN

⌉
. We use kmin and kmax to define the “composed”

distribution over inputs: D draws k uniformly in the range {kmin, . . . , kmax} and then returns the
pair (k, µ) where µ is an input distribution drawn from Dk.

Observation 10.2. Let (k, µ) ∼ D. A conditional-sampling algorithm that draws x ∼ µ and
estimates µ(x) within 1± 1

9 -factor with probability at least p can correctly obtain k with probability
at least p− o(1) for sufficiently large N .

Proof. If N is sufficiently large, then kmax ≤ logN − log logN − 8. With probability 1− o(1/N) =

1 − o(1), the mass of individual elements in µ is in the range
(
1± 1

9

)
2k

N . Hence, with probability
1− p− o(1), the algorithm obtains an estimation p̂ ∈

(
1± 1

9

) (
1± 1

9

)
2k

N =
(
1± 1

4

)
2k

N .

In this case, the algorithm can retrieve k using k̂ = round(log(N/p̂)) since log(N/p̂) = log 2k +
log
(
1± 1

4

)
= k ± 0.42. Hence, the rounding of log(N/p̂) to the nearest integer results in k.

By Yao’s principle [Yao77], every probabilistic algorithm can be seen as a distribution over determin-
istic algorithms, and a lower bound against all deterministic algorithms using a single distribution
over inputs translates to a lower bound against all probabilistic algorithms. A deterministic query-
ing algorithm can be characterized as a decision tree, where every internal node (including the root)
holds a query, and every edge corresponds to a possible outcome.

Our interim models and additional notations

For our lower bound we investigate the relationship of three models. The first is not related to
distributions at all, and is just a model for the plain binary search task for a value k that is drawn
uniformly from the set I = {kmin, . . . , kmax}. The second model, a uniform “conditional” sampling
model, uses the responses to the comparison queries with k to provide additional simulated responses
to a conditional sampling oracle, although at this point no actual distribution is used.

The third model, a “leaking” conditional sampling model, draws a distribution µ over Ω = {1, . . . , N}
(whose size is 2Θ(|I|)) using Dk, and complements the comparison queries with actual conditional
samples. In particular, the expressiveness of algorithms under this last model is at least as strong
as the expressiveness of algorithms that only take conditional samples from µ. By Observation 10.2,
an estimation of an element drawn from µ with high probability reveals the value of k. To finalize,
we show that the behavior of an algorithm under the leaking model is very close to its behavior
under the uniform model (which is fully simulated from just the comparison queries), and hence a
working estimation algorithm provides an algorithm that with high probability solves the binary
search problem for k. This implies the lower bound of Ω(log |I|) = Ω(log logN).

Definition 10.3 (The n-range binary search model). For a parameter n and a fixed well-ordered
set I of size n, the input of the algorithm is some k ∈ I, which is inaccessible. In every step, the
algorithm chooses some s and queries the predicate “s ≤ k”. In the end, the algorithm chooses
k′ ∈ I. The algorithm succeeds if k′ = k.

The following observation is well known, and easy to prove by considering the possible number of
leaves of a bounded depth binary tree.

52



Observation 10.4. Every algorithm in the n-range binary search model whose success probability
is strictly greater than 1/2, over a uniformly random choice of k ∈ I, must make q > log n − 1
queries.

We define a common framework for the two conditional sampling models that we define shortly:
the uniform conditional model and the leaking conditional model.

Definition 10.5 (Common framework for conditional sampling models). For a parameter N , the
input of the algorithm is k ∈ {kmin, . . . , kmax}, which is inaccessible, and a distribution µ over
{1, . . . , N}. In every step, the algorithm chooses a non-empty subset B ⊆ {1, . . . , N} and receives
a pair (b, y) where b ∈ {“≤”, “>”} and y ∈ B ∪{“err”}. The behavior of (b, y) given k, µ, B and the
execution path so-far is determined by the specific model.

Note that the upper-bound algorithm for the estimation task in this paper interfaces with a model
that has no b component in the answers to its queries. The leaking model that we define below
provides conditional query access to a specific drawn distribution along with some additional infor-
mation given through the additional component. Also, the leaking model does not require a logical
guarantee that B has strictly positive probability mass in the input distribution µ (a guarantee that
our upper-bound algorithm satisfies). The option for an “err” answer for the y component is used
by the leaking model to also handle zero probability condition sets.

Every algorithm in the common framework defined above can be described as a decision tree whose
internal nodes (including the root) hold the condition set B and whose edges are labeled with the
possible outcomes (b, y).

Definition 10.6 (Characterization of a decision node). A decision node u of a decision tree A is
characterized by:

• ℓu (short form: ℓ), the node-distance of u from the root. (ℓ = 1 for the root).

• A sequence (bu,1, yu,1), . . . , (bu,ℓu−1, yu,ℓu−1) (short form: (b1, y1), . . . , (bℓ−1, yℓ−1)) describing
the path from the root to u.

• A non-empty condition set Bu (short form: B).

Definition 10.7 (Set of already-seen elements, Yold). Let u be a decision node characterized by
(ℓu, (bu,i, yu,i)1≤i≤ℓu−1, Bu). The set of already-seen elements is Yold(u)

def
= {yu,1, . . . , yu,ℓu−1} \

{“err”} (short form: Yold).

Definition 10.8 (Set of ruled-out elements, Yout). Let u be a decision node characterized by
(ℓu, (bu,i, yu,i)1≤i≤ℓu−1, Bu). The set of ruled-out elements is Yout(u)

def
=
⋃

1≤j≤ℓu−1:yu,j=“err” Buj

(short form: Yout).

The following defines the set of elements for which a node query can provide new information.

Definition 10.9 (Net condition set, net condition size). Let u be a decision node characterized by
(ℓu, (bu,i, yu,i)1≤i≤ℓu−1, Bu). The net condition set of u is B′

u
def
= B \ (Yold(u)∪ Yout(u)) (short form:

B′). The net condition size of u is su = |B′
u| (short form: s).

Based on the above notations we define the uniform conditional model and the leaking conditional
sampling model.
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Definition 10.10 (The uniform conditional model). This model is based on the framework for
conditional sampling models. Let u be a decision node characterized by (ℓ, (bi, yi)1≤i≤ℓ−1, B). The
behavior of (b, y), which is the outcome of the query to be made by u, is defined as follows:

• If su ≤ 2k, then the outcome of the query is (“≤”, y) for y uniformly drawn from Bu ∩ Yold(u)
if it is not empty, and otherwise it is (“≤”, “err”).

• If su > 2k, then the outcome of the query is (“>”, y) for y uniformly drawn from Bu \ Yout(u)
if it is not empty, and otherwise it is (“>”, “err”).

In the end, the algorithm chooses k′ ∈ {1, . . . , n}. The algorithm succeeds if k′ = k.

Note that this is essentially a simulation model, as it gives its query answers without taking any
samples from µ. The following lemma indeed connects it to the “pure binary search” model.

Lemma 10.11. Every q-query algorithm in the uniform conditional model is behaviorally identical
to a q-query probabilistic algorithm in the n-range binary search model, where n = kmax − kmin + 1.
Specifically, such an algorithm is equivalent to a distribution over (deterministic) binary decision
trees that only use queries on whether s ≤ k for some s (i.e., use only the b components of the
answers provided by the uniform conditional model).

Proof. Consider a decision tree in the common conditional framework, in which every edge is labeled
by a pair (b, y) for some b ∈ {“≤”, “>”} and y ∈ Bu. For every node u in the decision tree, consider
the possible distributions over its children under the uniform conditional model conditioned on the
value of b and on the algorithm reaching this node.

If b = “≤”, this means in particular that su ≤ 2k. If Bu ∩ Yold(u) = ∅ then the edge labeled by
(“≤”, “err”) is taken with probability 1, and otherwise the outgoing edge is chosen uniformly from
the set of edges whose labels are in the set {(“≤”, y) : y ∈ Bu ∩ Yold(u)}.

If b = “>”, this means in particular that su > 2k. If Bu \ Yout(u) = ∅ then the edge labeled by
(“>”, “err”) is taken with probability 1, and otherwise the outgoing edge is chosen uniformly from
the set of edges whose labels are in the set {(“>”, y) : y ∈ Bu \ Yout(u)}.

The common theme here is that the identity of u and the value of b by themselves determine a
set of outgoing edges, from which one is uniformly picked, without any dependency on the other
parameters of the input. This means that a run of this q-query decision tree can be alternatively
described by the following process:

• For every node u of the tree, one edge is picked uniformly from the set of the relevant outgoing
edges with b = “≤”, and one edge is picked uniformly from the set of the relevant outgoing
edges with b = “>”.

• Then, all edges in the tree that were not picked in the previous step are removed, after which
all nodes with no remaining path to the root are removed as well. In the remaining tree, the
edge labels are trimmed to include only the b component, which refers to a comparison of
some k′ = ⌈log s⌉ with k. The result of this process is a deterministic binary decision tree
that can be run under the binary search model.

• Finally, the resulting tree is run with respect to the input k.
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Definition 10.12 (The leaking conditional sampling model). This model is based on the framework
for conditional sampling models. Let u be a decision node characterized by (ℓ, (bi, yi)1≤i≤ℓ−1, B).
The behavior of (b, y), which is the outcome of the query to be made by u, is defined as follows:

• b is “≤” if su ≤ 2k and “>” if su > 2k.

• If µ(B) > 0 then y is drawn from µ when conditioned on y ∈ B, and otherwise y = “err”.

Clearly, the leaking conditional sampling model is not weaker than any reasonable variant of the
classic conditional sampling model, and hence it is suitable for lower bound statements. All such
models behave the same when µ(B) > 0, but the fallback behavior when µ(B) = 0 is explicitly
defined by every model. The return of an error message in the case where µ(B) = 0 provides the
most information among common fallback behaviors (uniform choice, minimum, etc.), which makes
it the best choice for lower bound statements.

In the following, A is a decision tree of height q corresponding to a deterministic algorithm in the
common framework of conditional sampling models. Our random variables are:

• u1, . . . , uq+1 – the nodes on the execution path.

• u – an alias for the leaf uq+1.

• (b1, y1), . . . , (bq, yq) – the outcomes of the queries. In other words, for every 1 ≤ i ≤ q, (bi, yi)
is the label on the edge from ui to ui+1. Note that y1, . . . , yq are generally random even that
the analyzed algorithm is deterministic.

• K – the support of the input distribution that is drawn according to Dk (following the random
choice of k). It plays a role only in the analysis of the leaking model.

In the following, we refer to the set Λ that refers to the combination of the choice of k, the support
K (relevant for the leaking model), and the outcome (the leaf reached) of a run of the given
deterministic algorithm. The two distributions that we analyze over Λ are U , the one resulting from
the uniform model, and L, the one resulting from the leaking model.

In particular, note the following well-known common bound.

Lemma 10.13. Let U and L be two distributions over Λ. If there exists an event E ⊆ Λ for which
L(x) > (1− ε)U(x) for every x ∈ E, then dTV(U ,L) ≤ ε+ PrU [¬E].

We also use some shorthand. In particular, a set of leaves (or more generally, nodes) of the analyzed
algorithm (given as a decision tree) is identified with the event of reaching a node from this set.
Also, the notation PrU [E|k] refers to the probability of an event E (usually given by a set of leaves)
when conditioned on the event of the specific k being drawn from the range {kmin, . . . , kmax}.

Analysis for the uniform model

Definition 10.14 (The set of improbable elements, Asmall). Let u be a decision node characterized
by (ℓ, (bi, yi)1≤i≤ℓ−1, B). Let u1, . . . , uℓ be its path from the root (where u1 is the root and uℓ = u).
The set of small elements with respect to u and some k is Asmall(u, k) =

⋃
1≤i≤ℓ:sui≤2k/logN B′

ui

(short form: Asmall).
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Definition 10.15 (The good events, Gk, G
(1)
k , G(2)k , G(3)k ). Let u be a leaf. Let u1, . . . , uq, uq+1 be

its path from the root (where u1 is the root and uq+1 = u). We define the following good events
about u:

• G(1)k : for every 1 ≤ i ≤ q, sui /∈
(

1
logN , 8 log3N

)
· 2k.

• G(2)k : for every 1 ≤ i ≤ q, yi /∈ Asmall(ui, k).

• G(3)k : for every 1 ≤ i ≤ q, if sui ≥ 2k · 8 log3N , then yi ∈ Bui \ Yold(ui).

• Gk: the intersection G(1)k ∧ G
(2)
k ∧ G

(3)
k .

Lemma 10.16. Let A be a decision tree representing a deterministic algorithm in the common
framework for conditional sampling algorithms that makes q ≤ log logN − 2 log log logN queries.
There exists a set G ⊆ {kmin, . . . , kmax} of size at least

(
1− 1

log log logN

)
n, for n = kmax− kmin+1,

such that for every k ∈ G, considering the (random) leaf u that the execution path reaches in the
uniform model, PrU

[
u ∈ G(1)k

∣∣∣k] ≥ 1− log log logN
15 log logN .

Proof. As observed in Lemma 10.11, a decision tree in the uniform model behaves as a distribution
over deterministic binary search trees, where every node u in such a tree corresponds to a comparison
of k with some su, receiving an answer b ∈ {“≤”, “>”}.

A binary decision tree of edge-height q ≤ log logN − 2 log log logN has exactly 2q − 1 < logN
(log logN)2

decision nodes. For every decision node ui, there are at most
⌈
log logN + log 8 log3N

⌉
≤ 5 log logN

“bad” choices of k for which sui ∈
(

1
logN , 8 log3N

)
· 2k. Considering the whole tree, there are at

most 5 logN
log logN such bad choices.

For every k, let pk be the probability to choose a binary tree that k is bad with respect to it. By
linearity of expectation,

∑kmax
k=kmin

pk is the expected number of ks that are bad with respect to the
drawn binary tree, which is bounded by 5 logN

log logN .

For a uniform drawing of k between kmin and kmax, Ek [pk] ≤ 5 logN/ log logN
n ≤ 15 logN/ log logN

logN =
1

15 log logN . The last transition is correct since n = kmax − kmin + 1 ≥ 1
3 logN .

By Markov’s inequality, there are at most n
log log logN choices of k for which pk ≥ log log logN

15 log logN .

Lemma 10.17. Let A be a decision tree representing a deterministic algorithm in the common
framework for conditional sampling algorithms that makes q ≤ log logN − 2 log log logN queries.
There exists a set G ⊆ {kmin, . . . , kmax} of size at least

(
1− 1

log log logN

)
n, for n = kmax− kmin+1,

such that for every k ∈ G, considering the (random) leaf u that the execution path reaches in the
uniform model, PrU [u ∈ Gk|k] ≥ 1− log log logN

10 log logN .

Proof. We use the set G provided by Lemma 10.16. For k ∈ G, with probability at least 1 −
log log logN
15 log logN , we reach a leaf u (on the q + 1st level) for which, for every 1 ≤ i ≤ q, sui /∈(

1
logN , 8 log3N

)
· 2k. Also, for every 1 ≤ i ≤ q, the probability that yi ∈ Asmall(ui, k) is bounded

by:
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• Zero if sui ≤ 2k/logN , by definition of the model.

• |Asmall(ui,k)|
|Bui∩Yold(i)|+sui

≤ q
8 log4 N

if sui ≥ 2k · 8 log3N .

Also, if sui ≥ 2k · 8 log3N , then the probability to obtain an already-seen yi is bounded by
|Bui∩Yold(i)|
|Bui∩Yold(i)|+sui

≤ q
q+2k·8 log3 N ≤

1
logN .

By a union bound, the probability of u to be good is at least 1 −
(
log log logN
15 log logN + q2

8 log4 N
+ q

logN

)
≥

1− log log logN
10 log logN for N large enough.

Analysis for the leaking model

Lemma 10.18. Let k be fixed and let u ∈ Gk be a leaf (node of depth q + 1) whose path from the
root is u1, . . . , uq, uq+1. For every 1 ≤ i ≤ q, Asmall(ui, k) is disjoint from Yold(u).

Proof. Let (b1, y1), . . . , (bq, yq) be the outcome sequence. By definition, Yold = {y1, . . . , yq}\{“err”}.

For i ≤ j, the definition of Gk eliminates the possibility that yi ∈ Asmall(uj , k).

For i > j, if yi ∈ Asmall(uj , k), then due to monotonicity, yi ∈ Asmall(ui, k) as well, a contradiction
to the definition of Gk.

Observation 10.19. For a given k and a leaf u ∈ Gk whose path from the root is u1, . . . , uq, uq+1,

Pr
U
[u|k] =

q∏
i=1


1 sui ≤ 2k/logN, Bui ∩ Yold = ∅
1

|Bui ∩ Yold|
sui ≤ 2k/logN, Bui ∩ Yold ̸= ∅

1

|Bui \ Yout|
sui ≥ 2k · 8 log3N

Proof. If sui ≤ 2k/logN , then by definition, yi is uniformly drawn from Bui ∩ Yold, unless this
intersection is empty, and in this case yi is “err” with probability 1.

If sui ≥ 2k · 8 log3N , then since Yout(ui) ⊆ Asmall(ui, k), |Bui \ Yout| ≥
(
1− 1

8 logN

)
|Bui | > 0.

Hence, by definition yi is uniformly drawn from Bui \ Yout ̸= ∅.

Lemma 10.20. For every k ∈ {kmin, . . . , kmax} and leaf u ∈ Gk (which is good with respect to k),
PrL [u|k] ≥

(
1− 3q

logN

)
PrU [u|k].

Proof. Let u1, . . . , uq, uq+1 be the path from the root u1 to uq+1 = u, and let (b1, y1), . . . , (bq, yq) be
the sequence of answers in this path. Let t be the number of indexes for which sui ≥ 2k · 8 log3N .
Recall that since u ∈ Gk, t is also the number of unique non-error values in y1, . . . , yq.

We define the following good events corresponding to an input distribution µ ∼ Dk (which is fully
determined by the set K):

• G1: {y1, . . . , yq} \ {“err”} ⊆ K.
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• G2: Asmall(uq, k) is disjoint from K (in the rest of this proof, non-indexed instances of Asmall

refer to this set).

• G3: for every 1 ≤ i ≤ q, if sui ≥ 2k · 8 log3N , then |Bui ∩K| ≤
(
1 + 1

logN

)
2−k |Bui \ Yout|.

By the chain rule,

Pr
L
[u|k] ≥ Pr

L
[u ∧G1 ∧G2 ∧G3|k] = Pr

L
[G1|k] · Pr

L
[G2 ∧G3|k,G1] · Pr

L
[u|k,G1, G2, G3]

Clearly, PrL[G1|k] = (2−k)t.

For bounding the probability for G2, we note that by Markov’s inequality, the probability that
Asmall is disjoint from K is at least 1− 2−k · |Asmall| ≥ 1− q

logN . This holds also when conditioned
on G1 since Asmall ∩ {y1, . . . , yq} = ∅ (Lemma 10.18).

For nodes with sui ≥ 2k · 8 log3N , since Yout(ui) ⊆ Asmall(ui, k), we obtain that |Bui \ Yout| ≥(
1− 1

8 logN

)
|Bui | (and by definition of Gk we cannot get yi = “err” for such nodes).

By Chernoff’s inequality and a union bound,

Pr
L
[¬G3|k,G1] ≤ q · Pr

[
Bin

(
|Bu| − (t+ |Asmall|) , 2−k

)
+ t >

(
1 +

1

logN

)
2−k |Bu \ Yout|

]
(∗) ≤ q · Pr

[
Bin

(
|Bu| , 2−k

)
+ t >

(
1 +

1

logN

)
2−k |Bu \ Yout|

]
(∗∗) ≤ q · Pr

[
Bin

(
|Bu| , 2−k

)
+ t >

(
1 +

3

4 logN

)
2−k |Bu|

]
(∗∗∗) ≤ q · Pr

[
Bin

(
|Bu| , 2−k

)
>

(
1 +

1

2 logN

)
2−k |Bu|

]
≤ q · e−

1
12 log2 N

·8 log3 N
<

q

logN

(∗): since the random variable Bin
(
|Bu| , 2−k

)
has “more opportunities” to be bigger than a given

bound Bin
(
|Bu| − (t+ |Asmall|), 2−k

)
.

(∗∗): since |Bu \ Yout| ≥
(
1− 1

8 logN

)
|Bu| and

(
1 + 1

logN

)(
1− 1

8 logN

)
≥
(
1 + 3

4 logN

)
for large

enough N .
(∗∗∗): since t ≤ log logN ≤ 1

8 logN ·2
−k |Bu| and

(
1 + 3

4 logN

)(
1− 1

3 logN

)
≥
(
1 + 1

2 logN

)
for large

enough N .

By the union bound, PrL [G2 ∧G3|k,G1] ≥ 1− 2q
logN .
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Finally,

Pr
L
[u|k,G1, G2, G3] =

q∏
i=1

Pr
L
[yi|k,G1, G2, G3]

≥
q∏

i=1



1 sui ≤ 2k/logN, Bui ∩ Yold = ∅
1

|Bui ∩ Yold|
sui ≤ 2k/logN, Bui ∩ Yold ̸= ∅

1(
1 + 1

logN

)
2−k |Bui \ Yout|

sui ≥ 2k · 8 log3N

[Observation 10.19] =
2kt(

1 + 1
logN

)t PrU [u|k] ≥ 2kt
(
1− t

logN

)
Pr
U
[u|k] ≥ 2kt

(
1− q

logN

)
Pr
U
[u|k]

Combined,

Pr
L
[u|k] ≥ 2−kt ·

(
1− 2q

logN

)
· 2kt

(
1− q

logN

)
Pr
U
[u|k] ≥

(
1− 3q

logN

)
Pr
U
[u|k]

Lemma 10.21. Consider a deterministic algorithm making q ≤ log logN − 2 log log logN queries
in the common framework for conditional sampling algorithms. For at least

(
1− 1

log log logN

)
n

choices of k, where n = kmax − kmin +1, the distance between the distributions over execution paths
of the algorithm, when executed on either the leaking model or on the uniform model, is bounded by

1
log logN when considering µ ∼ Dk.

Proof. By Lemma 10.17, PrU [Gk|k] ≥ 1− log log logN
10 log logN for

(
1− 1

log log logN

)
n choices of k. By Lemma

10.20, if u ∈ Gk, then PrL[u|k] ≥
(
1− 3q

logN

)
PrU [u|k]. Hence, by Lemma 10.13, the total variation

distance between the distribution of the respective runs is bounded by 3q
logN+ log log logN

10 log logN ≤
3 log logN

logN +
log log logN
10 log logN ≤

1
log logN for these choices of k.

We are now ready to prove our lower bound. Note that in particular it applies to algorithms solving
the (19 ,

1
9)-estimation task.

Theorem 10.22. Every conditional sampling algorithm that, with probability at least p for a fixed
p > 1

2 , can estimate an element drawn from µ within a factor of 1 ± 1
9 , must draw Ω(log logN)

conditional samples.

Proof. By Observation 10.2, such an algorithm can compute k with probability at least p − o(1)
when its input (k, µ) is drawn from D (that is, k is uniformly drawn from {kmin, . . . , kmax} and then
µ is drawn from Dk). By Lemma 10.21, unless q > log logN − 2 log log logN , the chosen k is with
probability 1−o(1) such that the same algorithm, when executed in the uniform conditional sampling
model, has its distribution over runs o(1)-close to the one produced by the leaking model. Hence
the algorithm can compute k with probability p − o(1) > 1

2 under the uniform conditional model
as well. By Lemma 10.11 and Observation 10.4, log logN − 2 log log logN queries do not suffice for
computing k in this model with success probability greater than 1

2 , and hence the algorithm must
make strictly more than log logN − 2 log log logN = Ω(log logN) queries.
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10.2 Lower bound estimation task under weaker models

Recall Theorem 1.3:

Theorem 1.3 (Almost-tight upper bound for equivalence testing). Let µ, τ be two distributions
over Ω = {1, . . . , N} and ε > 0. There exists an algorithm for distinguishing between the case where
µ = τ and the case where dTV(µ, τ) > ε, using O((log logN/ε + 1/ε5) · poly(log ε−1)) conditional
samples.

The proof of Theorem 1.3 assumes that the (c, ε)-peek oracle can be simulated using T conditional
samples in expectation where c = ε, and obtains the upper bound of T · Õ(1/ε) conditional samples
for an ε-test of equivalence.

We now review two well-investigated distribution testing models that are more restrictive than the
full one in which our estimator operates. For each of them we use a known lower bound on the
equivalence testing task along with the above observation to provide a corresponding lower bound
for the (c, ε)-estimation task.

Definition 10.23 (The subcube conditional oracle). A set A ⊆ {0, 1}n is a subcube if there exist
A1, . . . , An ⊆ {0, 1} for which A = A1 × · · · × An. The subcube conditional oracle is the restriction
of the conditional oracle to answer only subcube condition sets.

For product distributions, [CDKS17, Theorem 43] shows a lower bound of Ω̃(n) samples on (ε/2, ε)-
tolerant equivalence testing of product distributions over {0, 1}n (the size of the sample set is
N = 2n). [JHW18] improves the ε-dependency of the lower bound. As observed in [AFL24a],
subcube conditional sampling has no additional power over unconditional sampling when the input
distributions are guaranteed to be product distributions. This implies the following bound.

Corollary 10.24. Every algorithm that solves the (c, ε)-estimation task using subcube sampling
must make at least Ω̃(logN) subcube queries in expectation for every sufficiently small ε > 0 and
c > 0.

Definition 10.25 (The interval conditional oracle). A set A ⊆ {1, . . . , N} is an interval if there
exist 1 ≤ a ≤ b ≤ N for which A = {i : a ≤ i ≤ b}. The interval conditional oracle is the restriction
of the conditional oracle to answer only interval condition sets.

For interval conditions, [CRS15] show a lower bound of Ω̃(logN) interval queries for uniformity
testing, which is a special case of equivalence testing. This implies the following bound.

Corollary 10.26. Every algorithm that solves the (c, ε)-estimation task using interval conditions
must make at least Ω̃(logN) subcube queries in expectation for every sufficiently small ε > 0 and
c > 0.

Note that the polylogarithmic algorithm from [CFGM16] in particular applies to both the subcube
conditional model and the interval conditional model. The above corollaries in particular imply a
limit on the possibility for its improvement.

10.3 Lower bound for testing label-invariant properties

We show that there exist a label-invariant property that has an Ω(logN/ε) lower bound for ε-
testing using the conditional model for every sufficiently small ε > 0. We show that some k-bit
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string property is linearly hard to test in an ad-hoc testing model, and encode string instances
related to this property in the histogram of distributions over a domain of size N = 2Ω(εk).

Definition 10.27 (Notations).

• Let X be a set. We use 2X to denote the set of all subsets of X.

• Let I be a set of integers. For an integer k, we use k − I to denote the set {k − i : i ∈ I}.

• Let I be a set of integers. For an integer k, we use ¬kI to denote the set {1, . . . , k} \ I.

Definition 10.28 (q-uniform family). A family I ⊆ 2{1,...,k} is q-uniform if, for every subset
J ⊆ {1, . . . , k} of size q, the intersection of J with a uniformly drawn set I ∼ I is uniformly
distributed over 2J .

Definition 10.29 (k-paired set). A set I ⊆ {1, . . . , k} is k-paired if (k + 1)− I = ¬kI.

Definition 10.30 (paired q-uniform family). For an even k, a family I ⊆ 2{1,...,k} is paired q-
uniform if every I ∈ I is a k-paired set, and for every subset J ⊆ {1, . . . , k} of size q which is
disjoint from (k + 1) − J , the intersection of J with a uniformly drawn set I ∼ I is uniformly
distributed over 2J .

Observation 10.31. Let I ⊆ {1, . . . , k} be a q-uniform family. The family I ′ = {I ∪ ((2k + 1) −
(¬kI)) : I ∈ I} ⊆ 2{1,...,2k} is a paired q-uniform family.

Observation 10.32. For an even k, let I ⊆ 2{1,...,k} be a paired q-uniform family. For every
J ⊆ {1, . . . , k} of size less than q, I ′ ⊆ J for which PrI∼I [I ∩ J = I ′] > 0 and j for which
{j, k + 1− j} ∩ J = ∅, if we uniformly draw I ∼ I, then PrI∼I [j ∈ I|J ∩ I = I ′] = 1

2 .

Proof. Set J ′ = J \({1, . . . , k/2}∩((k+1)−J)). In words, J ′ is the result of taking J and removing
every j ≤ k/2 for which {j, k+1− j} ⊆ J . Note that for a random choice over family of paired sets,
the events I∩J = I ′ and I∩J ′ = I ′∩J ′ are identical. Also note that J ′∪{j} and (k+1)−(J ′∪{j})
are disjoint by the assertion on j. Hence,

Pr
I∼I

[j ∈ I|J ∩ I = I ′] = Pr
I∼I

[j ∈ I|J ′ ∩ I = J ′ ∩ I ′]

[Chain rule] =
PrI∼I [(j ∈ I) ∧ (J ′ ∩ I = J ′ ∩ I ′)]

PrI∼I [J ′ ∩ I = J ′ ∩ I ′]

=
PrI∼I [(J

′ ∪ {j}) ∩ (I ∪ {j}) = (J ′ ∩ I ′) ∪ {j}]
PrI∼I [J ′ ∩ I = J ′ ∩ I ′]

[Definition 10.30] =
2−|J ′∪{j}|

2−|J ′| =
1

2

Definition 10.33 (ε-pairwise far families). Two families I1, I2 ⊆ 2{1,...,k} are ε-pairwise far if for
every I1 ∈ I1 and I2 ∈ I2, |I1∆I2| > εk.

Lemma 10.34. Let I1, I2 ⊆ {1, . . . , k} be ε-far subsets. Let J1 = I1 ∪ ((2k + 1) − ¬kI1) and
J2 = I2 ∪ ((2k + 1)− ¬kI2). In this setting, J1 and J2 are ε-far as well.
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Proof.

|J1∆J2| = |(I1 ∪ ((2k + 1)− (¬kI1)))∆ (I2 ∪ ((2k + 1)− (¬kI2)))|
= |I1∆I2|︸ ︷︷ ︸

in {1, . . . , k}

+ |((2k + 1)− (¬kI1))∆((2k + 1)− (¬kI2))|︸ ︷︷ ︸
in {k + 1, . . . , 2k}

= |I1∆I2|+ |(¬kI1)∆(¬kI2)|
= 2 |I1∆I2| > 2 · εk = ε · (2k)

Definition 10.35 (Weighted sampling oracle). Let I ⊆ {1, . . . , k} be a subset. The weighted
sampling oracle for I gets a weight function w : {1, . . . , k} → [0, 1] as its input, and its output is an
index i ∈ {1, . . . , k} and a bit b ∈ {0, 1} distributed as follows:

• If
∑k

i=1w(i) > 0, then the probability to draw the index i is w(i)∑k
i=1 w(i)

. The oracle returns

(i, 1) if i ∈ I and (i, 0) if i /∈ I.

• If
∑k

i=1w(i) = 0, then the oracle indicates an error.

Lemma 10.36. Let I be a paired q-uniform family of subsets of {1, . . . , k}. A sequence of q weighted
sampling oracle calls with inputs w1, . . . , wq to a uniformly chosen I ∼ I results in a sequence of
pairs (j1, b1), . . . , (jq, bq) where the jis are indexes and the bis are bits. In this setting, for every
1 ≤ i ≤ q for which {ji, (k+1)−ji}∩{j1, . . . , ji−1} = ∅, the bit bi is uniformly distributed, even when
conditioned on the values of (b1, . . . , bi−1). Additionally, for every other i, the bit bi is a function of
j1, . . . , ji−1 and b1, . . . , bi−1 (which does not depend on I or I at all). This holds even if the input
wi can be chosen based on the result of the previous i− 1 calls.

Proof. Note that I is non-empty since any paired q-uniform family must consist of at least 2q sets.

Consider the ith call (1 ≤ i ≤ q) to the weighting sampling oracle. It uses internal randomness and
adaptivity to choose an index ji and query its belonging to the input set I. Let I ′ = {j1, . . . , ji−1}∩I
be the knowledge about past queried indexes. If ji, (k+1)− ji /∈ {j1, . . . , ji−1} then, due to I being
paired q-uniform and Observation 10.32, PrI∼I [ji ∈ I|I ∩ {j1, . . . , ji−1} = I ′] = 1

2 .

On the other hand, if ji = ji′ for some i′ < i then bi = bi′ deterministically, and if k + 1 − ji = ji′

for some i′ < i then bi = 1− bi′ deterministically, irrespective of I or I.

Lemma 10.37. Let k ≥ 2, q ≥ 2. Let I ⊆ 2{1,...,k} be a paired q-uniform family. If there exists
another paired q-uniform family I ′ ⊆ 2{1,...,k} which is ε-pairwise far from I, then every ε-testing
algorithm for distinguishing between I and being ε-far from I must make more than q calls to the
weighted sampling oracle.

Proof. Let U = 1
2 · (uni(I) × {1}) +

1
2 · (uni(I

′) × {0}) be the distribution that uniformly chooses
b ∈ {0, 1}, and then uniformly draws a set I from I if b = 1 and from I ′ if b = 0. If A is an ε-test for
the property I, then Pr(b,I)∼U [(A(I) = accept)↔ b] > 1

2 , since it should accept every I ∈ I with
probability strictly greater than 1

2 and reject every I ∈ I ′ with probability strictly greater than 1
2 .
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If A makes at most q calls to the weighted sampling oracle, then by Lemma 10.36, it receives
an identical distribution of outputs regardless of whether I is drawn from I or from I ′. This
implies that b and A(I) are independent, and thus Pr(b,I)∼U [(A(I) = accept)↔ b] = 1

2 . This is a
contradiction, and hence A must make more than q oracle calls.

Lemma 10.38 (Lemma 22 in [BEFLR20]). A set {v1 . . . , v3r} of random vectors in {0, 1}4r satisfies
with probability 1− o(1) the following two conditions: Span{v1, . . . , v3r} is a 1

30 -distance code, and
Span{vr+1, . . . , v3r} is a 1

10 -dual distance code.

Lemma 10.39 (Direct application of Lemma 10.38). For every sufficiently large r, there exist two
families J1 and J2 of subsets of {1, . . . , 4r}, each of them having size 22r, such that both of them are
q-uniform for q = ⌈2r/5⌉, which are 1

30 -pairwise far from each other. Additionally, the two families
contain no members with fewer than ⌈2r/15⌉ elements.

Lemma 10.40. For every sufficiently large r, there exist two families I1 and I2 of subsets of
{1, . . . , 8r}, each of them having size 22r, such that both of them are paired q-uniform for q = ⌈2r/5⌉,
which are 1

30 -pairwise far from each other. Additionally, the two families contain only members with
exactly 4r elements.

Proof. Let J1 and J2 be two q-uniform families of subsets of {1, . . . , 4r} that are 1
30 -pairwise far,

whose existence is guaranteed by Lemma 10.39.

Let I1 = {J ∪ ((8r + 1) − (¬4rJ)) : J ∈ J1} and I2 = {J ∪ ((8r + 1) − (¬4rJ)) : J ∈ J2}. By
Observation 10.31, I1 and I2 are paired q-uniform families. Note that they are 1

30 -far by Lemma
10.34.

Every I ∈ I1 ∪ I2 has size exactly 4r since there exists some J ∈ J1 ∪ J2 for which I = J ∪ ((8r +
1)− (¬4rJ)) and hence |I| = |J |+ |¬4rJ | = |J |+ (4r − |J |) = 4r.

We now define the distributions whose histograms can encode subsets of {1, . . . , 8r} as above, and
for which we can perform a reduction from the conditional testing model.

Definition 10.41 (Non-empty k-partition). A k-tuple S = (S1, . . . , Sk) is a non-empty k-partition
if the sets S1, . . . , Sk are non-empty and mutually disjoint.

If Ω =
⋃k

i=1 Si, then we say that S is a non-empty k-partition of Ω.

Definition 10.42 (Chunk distribution). Let S = (S1, . . . , Sk) be a non-empty k-partition. Let
I ⊆ {1, . . . , k} be a non-empty set of indexes. The chunk distribution µS,I over

⋃k
i=1 Si is defined

such that for every i ∈ I, µS,I(Si) =
1
|I| and the restriction of µS,I to Si is the uniform distribution

over Si. More precisely, for every i ∈ I and j ∈ Si, µS,I(j) = 1
|I|·|Si| , and µS,I(j) = 0 for every

j /∈
⋃

i∈I Si.

Definition 10.43 (Set of chunk distributions). Let S be a non-empty k-partition. Let I be a
family of non-empty subsets of {1, . . . , k}. The set of chunk distributions with respect to S and I
is the set HS,I = {µS,I : I ∈ I}, where µS,I is the chunk distribution corresponding to S and I.

Definition 10.44 (The histogram property PS,I). Let S be a non-empty k-partition of a subset
of a domain set Ω and I be a family of non-empty subsets of {1, . . . , k}. The histogram property
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with parameters S and I is the property PS,I of all distributions µ over Ω that are a permutation
of a distribution in HS,I .

Observation 10.45. PS,I is label-invariant.

Definition 10.46 (ρ-increasing partition). A non-empty k-partition S = (S1, . . . , Sk) is ρ-increasing
if for every 2 ≤ i ≤ k, |Si| ≥ ρ |Si−1|.

Lemma 10.47. Let S be a (1 + ε)-increasing non-empty k-partition and let I1, I2 ⊆ {1, . . . , k} be
two 1

30 -pairwise far subsets of size exactly 1
2k. In this setting, µS,I1 is 1

120ε-far from any permutation
of µS,I2.

Proof. Let S = (S1, . . . , Sk), Ω =
⋃k

i=1 Si, some j ∈ I1 \ I2, x ∈ Aj , y ∈
⋃

i∈I2 Si and j′ ̸= j for
which y ∈ Aj′ . Note that:

µS,I2(y) =
1

|I2|
∣∣Sj′

∣∣ = |Sj |∣∣Sj′
∣∣ · 1

|I1| |Sj |
=
|Sj |∣∣Sj′
∣∣ · µS,I1(x)

We have two cases with respect to the order of j′ and j.

j′ > j :
|Sj |∣∣Sj′
∣∣ ≤ (1 + ε)j−j′ ≤ (1 + ε)−1 ≤ 1− 1

2
ε, µS,I2(y) ≤

(
1− 1

2
ε

)
µS,I1(x)

j′ < j :
|Sj |∣∣Sj′
∣∣ ≥ (1 + ε)j−j′ ≥ (1 + ε)+1 ≥ 1 +

1

2
ε, µS,I2(y) ≥

(
1 +

1

2
ε

)
µS,I1(x)

In both cases, |µS,I1(x)− µS,I2(y)| ≥ 1
2εµS,I1(x). This bound holds for every x in the support of

µS,I1 and hence, for every permutation π over Ω,

dTV(µS,I1 , πµS,I2) =
1

2

k∑
i=1

∑
x∈Si

|µS,I1(x)− µS,I2(π(x))|

≥ 1

2

∑
i∈I1\I2

∑
x∈Si

|µS,I1(x)− µS,I2(π(x))|

≥ 1

2

∑
i∈I1\I2

∑
x∈Si

1

2
εµS,I1(x) =

1

4
ε
∑

i∈I1\I2

|Si| ·
1

|I1| |Si|
=

1

2k
ε · |I1 \ I2|

By a symmetric analysis we can obtain that dTV(µS,I2 , πµS,I1) ≥ 1
2kε · |I2 \ I1|.

Since dTV is invariant under both-sides permutation (dTV(πµ1, πµ2) = dTV(µ1, µ2)) we obtain that:

min
π

dTV(µS,I1 , πµS,I2) = min
π

dTV(µS,I2 , πµS,I1)

≥ 1

2k
εmax {|I1 \ I2| , |I2 \ I1|}

≥ 1

2k
ε · 1

2
|I1∆I2| >

1

4k
ε · 1

30
k =

1

120
ε
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Algorithm 20: Procedure Initialize-COND-simulator(k,S, I)
Input: I ⊆ {1, . . . , k}, accessible only through the weighted sampling oracle.

1. Let I ′ ← ∅ be the (initially empty) partial knowledge about elements in I.
2. Let J ′ ← ∅ be the (initially empty) partial knowledge about elements outside I.
3. Return (k,S, I, I ′, J ′).

Algorithm 21: Procedure Sample-COND-simulator(obj , C)
Input: An object obj created by Initialize-COND-simulator.
Input: A condition set C.
Side effects: The algorithm may alter the I ′, J ′ components of obj .
Output: A sample x ∼ µS,I conditioned on C, or x ∼ C uniformly if µS,I(C) = 0.

1. Let k,S, I, I ′, J ′ be the components of obj as a 5-tuple.
2. Let S1, . . . , Sk be the components of S as a k-tuple.
3. While not explicitly terminated:

(a) Let Ĉ ← {1 ≤ i ≤ k : (Si ∩ C ̸= ∅) ∧ (i /∈ J ′) ∧ ((k + 1)− i /∈ I ′)}.
(b) If Ĉ = ∅: µS,I(C) = 0

i. Draw x ∼ C uniformly.
ii. Return x.

(c) Else:
i. Let w be the weight function for which:

• If i ∈ Ĉ, then w(i) = |Si∩C|
|Si| .

• If i /∈ Ĉ, then w(i) = 0.
ii. Call the weight sampling oracle for I with w to obtain (i, b).
iii. If b = 1: (i ∈ I)

A. Add i to I ′.
B. Draw x ∼ Si ∩ C uniformly.
C. Return x.

iv. Else: (i /∈ I)
A. Add i to J ′.

Next, we show that the conditional oracle for chunk distributions can be simulated using the
weighted oracle (Algorithm 20 to initialize, 21 to simulate).

Lemma 10.48. For every I ⊆ {1, . . . , k} that is a member of a paired family, the distribution of
output of a sequence starting with a single call to Initialize-COND-simulator (Algorithm 20) with k,
S, I followed by q calls to Sample-COND-simulator (Algorithm 21) over the produced object with
the condition sets C1, . . . , Cq is identical to the distribution of output of a sequence that, for each
1 ≤ i ≤ q, draws xi from µS,I conditioned on Ci with the fallback of uniformly drawing xi from Ci

if µS,I(Ci) = 0. This bound holds also for an adaptive choice of each Ci based on x1, . . . , xi−1.

Proof. Observe that, if µS,I(C) > 0, then using the sets I ′ and J ′ only affects the query complexity,
and not the distribution of the output, since we ignore zeroes. Hence, Algorithm 21 is identical to
a rejection sampler of the distribution over {1, . . . , k} defined by w with respect to the event I.
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If µS,I(C) = 0, then in every iteration of the while loop in which Ĉ ̸= ∅, the call to the weighted
oracle results in an output of the form (i, 0) for some i ∈ Ĉ. Since the algorithm keeps history, every
such i is then excluded from further iterations, and hence after at most k steps the set Ĉ becomes
empty. When this happens, the algorithm exits the loop and uniformly draws x ∼ C.

Lemma 10.49. Let q ≥ 5 and I be a paired 4q-uniform family of subsets of {1, . . . , k}. If I is
drawn uniformly from I, then with probability at least 9

10 , the simulator uses at most 4q weighted
sampling oracle calls to simulate a sequence of q conditional samples from µS,I (according to the
scheme of Lemma 10.48).

Proof. Consider the ith sampling oracle call for 1 ≤ i ≤ 4q (inside the jth call of Algorithm 21 for
some 1 ≤ j ≤ q). The probability to terminate is at least 1

2 : if we query an already-queried index
(or its paired index) then we always terminate (because we take care to never query an index that
is already known to be zero), and if we query a new bit, then the probability that its value is 1 is
exactly 1

2 , even if conditioned on past queries, due to the 4q-uniformness and Observation 10.32.

The probability to make 4q oracle calls before the qth termination is bounded by (Chernoff):

Pr [Bin(4q, 1/2) < q] ≤ e−2(2q−q)2/(4q) = e−q/2 <
1

10

Lemma 10.50. Consider the sequence where N1 = 1 and for every i ≥ 2, Ni = ⌈(1 + 120ε)Ni−1⌉.
For every N ≥ 1, ε < 1

120 and k ≤ lnN/(240ε),
∑k

i=1Ni <
√
N log2 N

ε2
.

We prove Lemma 10.50 in Appendix F.

Theorem 10.51 (Lower bound for label-invariant testing). For every sufficiently small ε > 0 and
every sufficiently large N , there exists a label-invariant property of distributions over {1, . . . , N} for
which every ε-test must draw Ω(logN/ε) conditional samples.

Proof. If N ≤ 1/ε5, then we can use the trivial lower-bound Ω(1/ε2) = ω(logN/ε) of distinguishing
between the uniform distribution over {1, 2} and the distribution that draws 1 with probability
1
2 + 1

2ε and 2 with probability 1
2 −

1
2ε. In the following we assume that N > 1/ε5. For sufficiently

small ε, this implies that
√
N lnN/ε2 ≤ N .

Let Ω = {1, . . . , N}, q = 2
⌊
1
2 lnN/(4800 · ε)

⌋
, r = 5

2q, k
′ = 4r = 10q, k = 2k′ = 20q. If q = 0 then

the lower bound of one query is trivial. Hence, in the following we assume that N is sufficiently
large to have q ≥ 1.

Observe that k ≤ lnN/(240ε). Let S = (S1, . . . , Sk) be the following 1+120ε-increasing non-empty
k-partition: let N1 = 1 and Ni = ⌈(1 + 120ε)Ni−1⌉ for every 2 ≤ i ≤ k. The size of Si is Ni for
1 ≤ i ≤ k− 1 and at least Nk for i = k. Such a partition exists since Lemma 10.50 guarantees that∑k

i=1Ni ≤
√
N lnN
ε2

≤ N .

By Lemma 10.40, there exists two paired q-uniform (q = 2
5r) properties I1 and I2 of subsets of

{1, . . . , k} (k = 8r) that are 1
30 -pairwise far and that only consist of subsets of size 1

2k = k′.

By Lemma 10.37, every algorithm that distinguishes between I1 and I2 with success probability
greater than 1/2 must make at least q calls to the weighted sampling oracle.
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By Lemma 10.47, for every µ1 ∈ PS,I1 and µ2 ∈ PS,I2 , µ2 is 1
120ε-far from every relabeling of µ1.

Consider a 1
120ε-testing algorithm A for PS,I1 . In particular, A distinguishes between PS,I1 and

PS,I2 with success probability at least 2/3.

By Lemma 10.49, we can construct an algorithm A′ that distinguishes between I1 and I2 by
simulating the conditional sampling calls of A using weighted sampling. With probability at least
9/10, the number of weighted samples used by the simulation is at most four times the number of
conditional samples drawn by A. If we terminate the simulation after reaching this bound, it can
still distinguish between I1 and I2 with probability at least 2/3− 1/10 > 1/2.

Since I1 and I2 are indistinguishable using q or fewer weighted samples with any success probability
greater than 1/2, A must draw strictly more than q/4 = Ω(logN/ε) conditional samples.

Corollary 10.52. For every sufficiently small ε > 0 and every sufficiently large N , every algorithm
that solves that ε-histogram learning task must draw Ω(logN/ε) conditional samples.

Proof. This holds since we can ε-test any label-invariant property by ε/4-histogram learning the
input distribution (see Corollary 9.22).
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A Summary of paper notations

The following table summarizes the specific notation (mostly set in Subsection 3.2) that is used
throughout this paper.

Notation Name Short description Definition
Lx The x-light set Set of µ(y) ≤ µ(x) 3.11
Mx The x-medium set Set of µ(x) < µ(y) < 1.2µ(x) 3.11
Hx The x-heavy set Set of µ(y) ≥ 1.2µ(x) 3.11
ηc,ε The target error min

{
1
4cε,

1
109

, ε5

1020(ln ε−1)5

}
3.12

fx, fx,c,e The target function The acceptance probability of a canon-
ical procedure (Target-test) that distin-
guishes between Lx and Hx

3.16

Vx, Vx,c,ε The target set Contains all of Lx, a random subset of
Mx (using fx), and disjoint from Hx

3.17

sx, sx,c,ε The scale mass E[µ(Vx)] 3.18
wx, wx,c,ε The weight of x µ(x) + sx, 3.19

“the CDF of x and possibly a bit more”
α The filter density A parameter for the filter set 3.20
Aα The filter set Every element except x belongs to Aα

with probability α, iid
3.20

Vx,α, Vx,α,c,ε The filtered target set Vx ∩Aα 3.21
βx,α, βx,α,c,ε The filtered density Prµ [¬x|Vx,α ∪ {x}], 3.23

equals µ (Vx,α) /µ (Vx,α ∪ {x})
γx The goal magnitude µ(x)/sx, a good α is Θ(γx) 3.22
κ Used in Target-test-explicit Hard-coded to 10−9/45 Section 5
h(β) Truncated assessment

function
h(β) = min{β/(1− β), T}, Section 8
T = 8 ln ε−1 + 100

Ct[X|B] Contribution of X over B E[X|B] · Pr[B] 3.34
DH(µ; τ) Histogram divergence Minimum ε for which there exists a

permutation π over the domain such
that Pr [µ(x) /∈ (1± ε)τ(π(x))] ≤ ε

3.8

B Procedural dependency chart

The following diagram describes the calling dependencies of the various procedures defined in Sec-
tions 4 through 8. These are grouped by function. Procedures in gray are not called from any
procedure outside their group, but they may themselves call an outside procedure (following the
outgoing arrows) at the behest of the procedure that called them from their own group.
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(2) Target-test-explicit 

(4) Target-test-gross 

  
(3) Target-test 

(1) Estimate-element 

(5) Initialize-new-𝑉𝑥  

(6) 𝑉𝑥 -Query 

(7) Estimate-𝐸 𝛽𝑥,𝛼   

(8) Estimate-𝛽𝑥,𝛼  

(9) SA-Est  

(10) Reference-Est 
(14) Est-scaled-result 

Collection of related proc. Internally used proc. Caller Callee Legend: 

(11) Weak-uncertain-comparator 

(12) Find-good-𝛼 

(13) Uncertain-binary-search 

(ALG#) Proc-name 

C Reducing the extreme constants in the estimator at a cost

The target-test (Algorithm 2) presented in Section 5 requires impractical constant factors, which
carry over to the estimator. In this appendix we show that, at the cost of an additional O(log 1

εc)-
penalty applied to the log logN -factor of Estimate-element, we can significantly reduce them.

Most of the algorithmic parts require that, for every y ∈ Ω:

|Pr[y ∈ Vx]− Pr[Target-test(x, y) = accept]| ≤ ηc,ε

Apart from that, Procedure Estimate-E[βx,α] requires that, for every y ∈ Ω:

|Pr[y ∈ Vx]− Pr[Target-test-gross(x, y) = accept]| ≤ 1

108

We observe that, if Target-test-gross would be identical to Target-test, then it would still satisfy
the second constraint, since for y ∈ Lx ∪ Hx this follows from the first constraint (and from the
bound ηc,ε ≤ 108), and for y ∈ Mx, Pr[y ∈ Vx] and Pr[Target-test(x, y) = accept] are identical
by definition and hence their difference is zero. Hence, it suffices to implement Target-test more
efficiently and use it instead of Target-test-gross. Note that this is where the O(log 1

cε)-penalty comes
from: the binary search makes O(log logN) calls to Estimate-E[βx,α], and every such a call under this
scheme now uses Target-test, whose implementation requires O(log 1

cε) conditional samples rather
than O(1) conditional samples.
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At this point we present Target-test-lightweight, which is a cheaper implementation of Target-test
(but does not have a compatible “gross” version), and show that it satisfies the required constraints.

Algorithm 22: Procedure Target-test-lightweight(µ, c, ε;x, y)
Input: y ∈ Ω.
Output: accept or reject.

1. If y = x: Technical guarantee
(a) reject

2. Let ℓ←
⌈
968 ln η−1

c,ε

⌉
.

3. Draw z1, . . . , zℓ independent samples from µ conditioned on {x, y}.
4. Let Y = |{i : zi = y}|.
5. If Y < 23

44ℓ:
(a) accept.

6. Else:
(a) reject.

Lemma C.1 (Target-test-lightweight). Algorithm 22 uses O(log 1
εc) conditional samples, accepts

with probability at least 1−ηc,ε if the input belongs to Lx and rejects with probability at least 1−ηc,ε
if the input belongs to Hx.

Proof. Observe that Y ∼ Bin
(
ℓ, µ(y)

µ(x)+µ(y)

)
, for ℓ ≥ 968 ln(1/ηc,ε).

If y ∈ Lx, then µ(y) ≤ µ(x) and E[Y ] ≤ 1
2ℓ. The probability to reject is bounded by e−2( 23

44
− 1

2)
2
ℓ ≤

e−
1

968
ℓ ≤ e−

968
968

ln(1/ηc,ε) = ηc,ε.

If y ∈ Hx, then µ(y) ≥ 1.2µ(x) and E[Y ] ≥ 6
11ℓ. The probability to accept is bounded by

e−2( 23
44

− 6
11)

2
ℓ ≤ e−

1
968

ℓ ≤ e−
968
968

ln(1/ηc,ε) = ηc,ε.

Since ηc,ε is the minimum of three expressions that are all polynomial in c and ε, the complexity is
O
(
log η−1

c,ε

)
= O

(
log 1

εc

)
.

D Another generic application lemma

We provide here a variant of Lemmas 9.10, 9.23 and 9.24. While not used in the application examples
that we provided Section 9, we believe that it has potential for future similar applications.

Definition D.1 (ε-explicit sampling oracle). Let µ be an input distribution over a set Ω. The
ε-explicit sampling oracle for µ has no additional input, and outputs a pair (x, p), where x ∈ Ω
distributes like µ and with probability 1, p ∈ (1± ε)µ(x).

The oracle guarantees consistency, which means that if some element y is drawn more than once,
then all pairs of the form (y, ·) have the same second entry.

Note that the ε-explicit sampling oracle is a restricted case of the r-lying (c, ε)-explicit sampling
oracle (Definition 9.5) when using r = c = 0. In particular, following Observation 9.6, this oracle
can be thought of as the result of sampling and receiving the corresponding values of an arbitrary
(possibly probabilistic) ε-approximation function gtruth : Ω→ [0, 1] along with the samples.
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Lemma D.2. Consider an algorithm A whose input is a k-tuple µ⃗ = (µ1, . . . , µk) of distributions
over Ω1, . . . ,Ωk (respectively), and its output is an element of a discrete set R. Assume that A
makes at most q calls to the ε-explicit sampling oracle. Let N = max {|Ω1| , . . . , |Ωk|}.

Assume that for every input µ⃗ there exists a set Rµ⃗ ⊆ R for which Pr
[
A(µ⃗) ∈ Rµ⃗

]
> 2

3 whenever
the algorithm is supplied with ε-explicit sampling oracles for the input distributions.

In this setting, there exists an algorithm A′ in the fully conditional model whose sample complexity
is O(q log q log logN + q

ε4
poly(log q, log ε−1)), such that for every input µ⃗, Pr

[
A′(µ⃗) ∈ Rµ⃗

]
> 13

24 .

Proof. We run A and simulate the outcome of the ε-sampling oracle. In each call to the ε-
sampling oracle for µi, we unconditionally draw xi ∼ µi and call Estimate-element with parameters
(µi, 1/24q, ε) on xi (Theorem 4.1). We amplify the success probability to 1− 1

24q using the median
of ⌈30 ln(12q)⌉ such calls (Observation 3.32(d)). Each time we estimate the probability mass of an
element, we record it in a “history”. If the same element is sampled again later, we use the history
record rather than calling the Estimate-element procedure again. This guarantees the consistency
of the oracle (required by Definition D.1).

The probability to draw an element xi for which CDFµi(xi) < 1/24q is clearly bounded by 1/24q.
Therefore, by the union bound, the probability to draw such a rare element within q samples is
bounded by 1/24.

The probability to have a wrong estimation for any xi, assuming that CDFµi(xi) ≥ 1/24q for all
1 ≤ i ≤ q, is bounded by q · 1

24q = 1
24 . Hence, the probability to correctly simulate the ε-explicit

sampling oracle is at least 11/12. This is by the union bound over two bad events: a 1/24 bound
for the event of drawing a hard-to-estimate element, and another 1/24 bound for the event of an
incorrect estimation for an estimable element. If the simulation is correct, then the output of the
simulated A belongs to Rµ⃗ with probability at least 2/3. Overall, the probability of the simulation
to output an element in Rµ⃗ is at least 2/3− 1/12 = 7/12.

By Corollary 4.3 (using c = 1
24q ), the expected complexity of a single estimation of x is O(log logN)+

O
(
poly(log q,log ε−1)

ε4

)
. We repeat this O(log q) times for amplification of q oracle calls. Therefore,

the expected sample complexity is at most O(q log q log logN + q
ε4
poly(log q, log ε−1)).

By Markov’s inequality, with probability at least 23/24, the actual sample complexity is at most
24 times the expected complexity, which is asymptotically equivalent. Overall, with probability at
least 7/12−1/24 = 13/24, the algorithm terminates after O(q log q log logN+ q

ε4
poly(log q, log ε−1))

samples and outputs an element in Rµ⃗.

E Technical analysis of the filtered target set

E.1 Concentration inequalities for the filtered target set Vx,α

We prove here some Chernoff-like inequalities for the mass of Vx,α, derived (unsurprisingly) by first
proving a bound on the expectation of its Moment Generating Function.

Lemma E.1 (Moment Generating Function of µ(Vx,α)). For every r ≤ 1 (possibly negative) and

0 < α ≤ 1, E
[
e

r
1.2µ(x)

(Vx,α−E[µ(Vx,α)])
]
≤ e

5r2

8µ(x)
E[µ(Vx,α)].
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Proof. For every y ∈ Mx, let Xy be a random variable that gets µ(y) with probability fx(y)α and
0 otherwise, and let X =

∑
y∈Mx

Xy. Clearly, E[X] = α
∑

y∈Mx
fx(y)µ(y) = E[µ(Vx,α)]− µ(Lx).

Recall that ex ≤ 1 + x+ 3
4x

2 for every x ≤ 1, and let λ ≤ 1
1.2µ(x) (possibly negative).

E
[
eλ(Xy−E[Xy ])

]
= e−λαfx(y)µ(y) · (αfx(y)eλµ(y) + (1− αfx(y)))

= e−λαfx(y)µ(y) · (αfx(y)(eλµ(y) − 1) + 1)

[Since λµ(y) ≤ 1] ≤ e−λαfx(y)µ(y) ·
(
αfx(y)(1 + (λµ(y)) +

3

4
(λµ(y))2 − 1) + 1

)
= e−λαfx(y)µ(y) ·

(
αfx(y)((λµ(y)) +

3

4
(λµ(y))2) + 1

)

We use the well-known bound t+ 1 ≤ et to obtain:

E
[
eλ(Xy−E[Xy ])

]
≤ e−λαfx(y)µ(y) · eαfx(y)((λµ(y))+

3
4
(λµ(y))2)

= e
3
4
αfx(y)(λµ(y))2

= e
3
4
λ2µ(y)·(αfx(y)µ(y)) ≤ e

3
4
·1.2λ2·µ(x)·E[Xy ] = e

9
10

λ2·µ(x)·E[Xy ]

Since the Xys are independent, this implies that eλ(X−E[X]) ≤ e
9
10

λ2µ(x)·E[X]. We choose λ = r
1.2·µ(x)

to obtain the desired bound.

Lemma E.2. For every 0 ≤ δ ≤ 1, Pr[µ(Vx,α) ≥ (1 + δ) E[µ(Vx,α)]] ≤ e
− 1

4µ(x)
δ2 E[µ(Vx,α)].

Proof. We use Lemma E.1 using r = 3
4δ to obtain E

[
e

5δ
8µ(x)

(Vx,α−E[µ(Vx,α)])
]
≤ e

45δ2

128µ(x)
E[µ(Vx,α)].

We now use Chernoff-Markov bound:

Pr [µ(Vx,α) ≥ (1 + δ) E[µ(Vx,α)]] = Pr [µ(Vx,α)− E[µ(Vx,α)] ≥ δ E[µ(Vx,α)]]

= Pr

[
e

5δ
8µ(x)

(µ(Vx,α)−E[µ(Vx,α)]) ≥ e
5δ2

8µ(x)
E[µ(Vx,α)]

]
≤ e

− 5δ2

8µ(x)
E[µ(Vx,α)] E

[
e

5δ
8µ(x)

(µ(Vx,α)−µ(E[Vx,α)])
]

≤ e
− 5δ2

8µ(x)
E[µ(Vx,α)]e

45δ2

128µ(x)
E[µ(Vx,α)]

= e
− 35

128µ(x)
δ2 E[µ(Vx,α)] ≤ e

− δ2

4µ(x)
E[µ(Vx,α)]

Lemma E.3. For every 0 ≤ δ ≤ 1, Pr[µ(Vx,α) ≤ (1− δ) E[µ(Vx,α)]] ≤ e
− 1

4µ(x)
δ2 E[µ(Vx,α)].

Proof. We use Lemma E.1 using r = −3
4δ to obtain E

[
e
− 5δ

8µ(x)
(Vx,α−E[µ(Vx,α)])

]
≤ e

45δ2

128µ(x)
E[Xy ].
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We now use Chernoff-Markov bound:

Pr [µ(Vx,α) ≤ (1− δ) E[µ(Vx,α)]] = Pr [µ(Vx,α)− E[µ(Vx,α)] ≤ −δ E[µ(Vx,α)]]

= Pr

[
e
− 5δ

8µ(x)
(µ(Vx,α)−E[µ(Vx,α)]) ≥ e

5δ2

8µ(x)
E[µ(Vx,α)]

]
≤ e

− 5δ2

8µ(x)
E[µ(Vx,α)] E

[
e
− 5δ

8µ(x)
(µ(Vx,α)−µ(E[µ(Vx,α)])

]
≤ e

− 5δ2

8µ(x)
E[µ(Vx,α)]e

45δ2

128µ(x)
E[µ(Vx,α)]

= e
− 35

128µ(x)
δ2 E[µ(Vx,α)] ≤ e

− δ2

4µ(x)
E[µ(Vx,α)]

Lemma E.4. For every δ > 0, Pr[µ(Vx,α) ≥ (2 + δ) E[µ(Vx,α)]] ≤ e
− 1

2µ(x)
δE[µ(Vx,α)].

Proof. We use Lemma E.1 using r = 1 to obtain E
[
e

1
1.2µ(x)

(µ(Vx,α)−E[µ(Vx,α)])
]
≤ e

5
8µ(x)

E[µ(Vx,α)].

We now use Chernoff-Markov bound:

Pr [µ(Vx,α) ≥ (2 + δ) E[µ(Vx,α)]] = Pr [µ(Vx,α)− E[µ(Vx,α)] ≥ (1 + δ) E[µ(Vx,α)]]

= Pr
[
e

1
1.2µ(x)

(µ(Vx,α)−E[µ(Vx,α)]) ≥ e
1

1.2µ(x)
(1+δ) E[µ(Vx,α)]

]
≤ e

− 1
1.2µ(x)

(1+δ) E[µ(Vx,α)] E
[
e

1
1.2µ(x)

(µ(Vx,α)−E[µ(Vx,α)])
]

≤ e
− 1

1.2µ(x)
(1+δ) E[µ(Vx,α)]e

5
8µ(x)

E[µ(Vx,α)]

≤ e
− δ

1.2µ(x)
E[µ(Vx,α)] ≤ e

− δ
2µ(x)

E[µ(Vx,α)]

E.2 Expectation inequalities

Lemma E.5. For every 0 < α ≤ 1, E
[

1
µ(x)+µ(Vx,α)

]
≤ 1

µ(x) ·
(
e−

1
16

a + 1
1+ 1

2
a

)
, where a = α/γx.

Proof.

E

[
1

µ(x) + µ(Vx ∩Aα)

]
≤ Pr

[
µ(Vx,α) <

1

2
E[µ(Vx,α)]

]
· 1

µ(x)
+ Pr

[
µ(Vx,α) ≥

1

2
E[µ(Vx,α)]

]
· 1

µ(x) + 1
2 E[µ(Vx,α)]

(∗) ≤ e
− 1

16µ(x)
E[µ(Vx,α)] · 1

µ(x)
+ 1 · 1

µ(x) + 1
2 E[µ(Vx,α)]

(∗∗) =
e−

1
16

a

µ(x)
+

1

µ(x) + 1
2aµ(x)

=
1

µ(x)
·

(
e−

1
16

a +
1

1 + 1
2a

)

(∗): By Lemma E.3 (Chernoff Pr[µ(Vx,α) < (1− δ) E[µ(Vx,α)]] with δ = 1
2),

(∗∗): Since E[µ(Vx,α)] = aµ(x).

73



At this point we recall and prove Lemma 5.8.

Lemma 5.8. E
[

µ(Aα∪{x})
µ((Vx∩Aα)∪{x})

]
≤ 20

wx
.

Proof. Recall that wx = µ(x) + sx.

Case I: µ(x) ≥ 1
2wx:

E

[
µ(Aα ∪ {x})

µ ((Vx ∩Aα) ∪ {x})

]
≤ E

[
µ(Aα ∪ {x})

µ(x)

]
≤ E

[
1

µ(x)

]
=

1

µ(x)
≤ 2

wx

Case II: µ(x) < 1
2wx and hence sx ≥ 1

2wx. Let a = α/γx (hence E[µ(Vx,α)] = aµ(x)).

E

[
µ(Aα ∪ {x})

µ((Vx ∩Aα) ∪ {x})

]
= E

[
µ((Vx ∩Aα) ∪ {x}) + µ(Aα \ Vx)

µ((Vx ∩Aα) ∪ {x})

]
= 1 + E

[
µ(Aα \ Vx)

µ((Vx ∩Aα) ∪ {x})

]
= 1 +

∑
U

Pr[Vx = U ] E

[
µ(Aα \ U)

µ((U ∩Aα) ∪ {x})

]

Since U is hard-coded, the random set Aα \ U , which contains every element in Ω \ (U ∪ {x}) with
probability α independently, is independent of the random set Aα∩U , which contains every element
in U with probability α independently. Hence,

E

[
µ(Aα ∪ {x})

µ((Vx ∩Aα) ∪ {x})

]
= 1 +

∑
U

Pr[Vx = U ] E[µ(Aα \ U)] E

[
1

µ((U ∩Aα) ∪ {x})

]
≤ 1 +

∑
U

Pr[Vx = U ] · αE

[
1

µ((U ∩Aα) ∪ {x})

]
= 1 + αE

[
1

(µ(Vx) ∩Aα) ∪ {x})

]
= 1 + αE

[
1

µ(x) + µ(Vx,α)

]
We can use Lemma E.5 to obtain that:

E

[
µ(Aα ∪ {x})

µ((Vx ∩Aα) ∪ {x})

]
≤ 1 + α ·

e−
1
16

a + 1
1+ 1

2
a

µ(x)

[α = aµ(x)/sx] = 1 +
aµ(x)

sx
·
e−

1
16

a + 1
1+ 1

2
a

µ(x)

= 1 +
1

sx
· a

(
e−

1
16

a +
1

1 + 1
2a

)

(∗) ≤ 1 +
16e−1 + 2

sx
≤ 1 +

8

sx
≤ 9

sx
≤ 20

wx

(∗): since ae−a/16 = 16(a/16)e−(a/16) ≤ 16(supt≥0 te
−t) = 16e−1 and a

1+a/2 ≤ 2 for a > 0.
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Lemma E.6. For every 0 < α ≤ 1, E[βx,α] ≥
(
1− e−a/9

) (
1− 3

3+a

)
, where a = α/γx.

Proof.

E

[
µ(Vx,α)

µ(x) + µ(Vx,α)

]
≥ Pr

[
µ(Vx,α) ≥

(
1− 2

3

)
E[µ(Vx,α)]

]
·

(
1− 2

3

)
E[µ(Vx,α)]

µ(x) +
(
1− 2

3

)
E[µ(Vx,α)]

[Lemma E.2] ≥
(
1− e

− (2/3)2

4µ(x)
E[µ(Vx,α)]

)
·

1
3 E[µ(Vx,α)]

µ(x) + 1
3 E[µ(Vx,α)]

=
(
1− e

− 1
9µ(x)

·aµ(x)
)
·

1
3 · aµ(x)

µ(x) + 1
3aµ(x)

=
(
1− e−

1
9
a
)
· a

3 + a
=
(
1− e−

1
9
a
)
·
(
1− 3

3 + a

)

Lemma E.7. For every 0 < α ≤ 1, E[βx,α] ≤ 2
√
a2+a

1+a+
√
a2+a

, where a = α/γx.

Proof. Recall that E[µ(Vx,α)] = aµ(x). Let ka = 1 +
√
1 + a−1.

E[βx,α] = E

[
µ(Vx,α)

µ(x) + µ(Vx,α)

]
≤ Pr[µ(Vx,α) ≤ kaaµ(x)] ·

kaaµ(x)

µ(x) + kaaµ(x)
+ Pr[µ(Vx,α) > kaaµ(x)] · 1

= (1− Pr[µ(Vx,α) > kaaµ(x)]) ·
kaaµ(x)

µ(x) + kaaµ(x)
+ Pr[µ(Vx,α) > kaaµ(x)] · 1

=
aka

1 + aka
+ Pr[µ(Vx,α) > kaaµ(x)] ·

(
1− aka

1 + aka

)

By Markov’s inequality, Pr[µ(Vx,α) > kaaµ(x)] <
1
ka

, and hence:

E[βx,α] ≤
aka

1 + aka
+

1

ka
·
(
1− aka

1 + aka

)
=

1

1 + aka

(
aka +

1

ka

)
=

1

1 + a(1 +
√
1 + a−1)

(
a(1 +

√
1 + a−1) +

1

1 +
√
1 + a−1

)
=

1

1 + a(1 +
√
1 + a−1)

(
a(1 +

√
1 + a−1)− a

(
1−

√
1 + a−1

))
=

2
√
a2 + a

1 + a+
√
a2 + a
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Lemma E.8. The function α→ E[βα] is continuous in 0 < α < 1.

Proof. Implied from Observation 3.31 since βα is bounded between 0 and 1 with probability 1.

We prove now Lemma 7.7, which we recall here.

Lemma 7.7 (Effective bounds for E[βx,α]). There exists 2.3γx ≤ αx ≤ 38γx for which E[βx,αx ] =
0.91. Additionally, if α ≤ 2γx then E[βx,α] < 0.9 and if α ≥ 41γx then E[βx,α] > 0.92.

Proof. We apply Lemma E.6 and Lemma E.7 to obtain the following bounds:

• E[βx,2·γx ] ≤ 2
√
22+2

1+2+
√
22+2

< 0.9, and by Observation 7.6, E[βx,α] < 0.9 for all α ≤ 2γx as well.

• E[βx,41γx ] ≥
(
1− e−41/9

) (
1− 3

3+41

)
> 0.92, and by Observation 7.6, E[βx,α] > 0.92 for all

α ≥ 41γx as well.

Also, we use these lemmas to obtain:

• E[βx,2.3·γx ] ≤
2
√

(2.3)2+2.3

1+2.3+
√

(2.3)2+2.3
< 0.91.

• E[βx,38·γx ] ≥
(
1− e−38/9

) (
1− 3

3+38

)
> 0.91.

Since the mapping α → E[βx,α] is continuous (Lemma E.8), the Intermediate Value Theorem
guarantees the existence of 2.3γx < αx < 38γx for which E [βx,α] = 0.91.

E.3 Technical analysis of the assessment function h(βx,α)

In this appendix we prove the technical lemmas of Section 8. Recall that we use h(β)=min
{

β
1−β , T

}
for T = 8 ln ε−1 + 100.

Lemma E.9. Recall that T = 8 ln ε−1 + 100 and let a = α/γx. If 1 ≤ a ≤ 50 and ε < 1
10 , then

Ct [µ(Vx,α)|µ(Vx,α) > Tµ(x)] ≤ 1
10ε · aµ(x).

Proof. Let T̂ = 8 ln ε−1 + 2a ≤ 8 ln ε−1 + 100 = T .

Pr
[
µ(Vx,α) > 2tTµ(x)

]
≤ Pr

[
µ(Vx,α) > 2tT̂ µ(x)

]
= Pr

[
µ(Vx,α) > (2tT̂ /a) E[µ(Vx,α)]

]
= Pr

[
µ(Vx,α) > 2t

(
8

a
ln ε−1 + 2

)
E[µ(Vx,α)]

]
≤ Pr

[
µ(Vx,α) >

(
2 + 2t

(
8

a
ln ε−1

))
E[µ(Vx,α)]

]
[Lemma E.4 (Chernoff)] ≤ e

− 2t+3 ln ε−1/a
2·µ(x)

·E[µ(Vx,α)] = e
− 8·2t ln ε−1

2aµ(x)
·aµ(x)

= e−2t+2 ln ε−1
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We obtain that:

Ct [µ(Vx,α)|µ(Vx,α) > Tµ(x)] ≤ Ct
[
µ(Vx,α)

∣∣∣µ(Vx,α) > T̂µ(x)
]

≤
∞∑
t=0

Pr
[
2tT̂ µ(x) < µ (Vx ∩Aα) ≤ 2t+1T̂ µ(x)

]
· 2t+1T̂ µ(x)

≤ 2T̂ µ(x)
∞∑
t=0

2t Pr
[
µ (Vx ∩Aα) > 2tT̂ µ(x)

]
≤ 2T̂ µ(x)

∞∑
t=0

2t · e−2t+2 ln ε−1

≤ 2 · (8 ln ε−1 + 2a)µ(x)
∞∑
t=0

et ln 2−2t+2 ln ε−1

Since t ln 2− 2t+2 ln ε−1 ≤ −(t+ 4) ln ε−1 for every ε < e−1 and t ≥ 0, we obtain that:

Ct [µ(Vx,α)|µ(Vx,α) > Tµ(x)] ≤ (16 ln ε−1 + 4a)µ(x)
∞∑
t=0

e−(t+4) ln ε−1

= (16 ln ε−1 + 4a)µ(x) · ε4
∞∑
t=0

εt

[ε < 1/2] ≤ (16 ln ε−1 + 4a)µ(x) · 2ε4

=

(
32 ln ε−1

a
+ 8

)
ε3 · εaµ(x)

[a ≥ 1] ≤ (32 ln ε−1 + 8)ε3 · εaµ(x)

[ε < 1/10] <
1

10
εaµ(x)

Lemma 8.2. If γx ≤ α ≤ 50γx then E[h(βx,α)] ∈
(
1± 1

10ε
)
αsx/µ(x). In particular, E[h(βx,α)] ≥

9
10 for ε < 1.

Proof. Let βroot = 1− 1
T+1 be the break-even point in the definition of h(β) = min

{
β

1−β , T
}

. This
is the only non-differentiable point of h in (0, 1).

Let a = α/γx, so that E[Vx,α] = aµ(x) and E
[

βx,α

1−βx,α

]
= a.
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0 ≤ E

[
βx,α

1− βx,α

]
− E [h(βx,α)] ≤ Ct

[
βx,α

1− βx,α

∣∣∣∣ βx,α
1− βx,α

> T

]
= Ct

[
µ(Vx ∩Aα)

µ(x)

∣∣∣∣µ(Vx ∩Aα)

µ(x)
> T

]
=

1

µ(x)
Ct [µ(Vx ∩Aα)|µ(Vx ∩Aα) > Tµ(x)]

[Lemma E.9] ≤ 1

µ(x)
· 1
10

εaµ(x) =
1

10
εE

[
βx,α

1− βx,α

]

By Observation 3.24, E
[

βx,α

1−βx,α

]
= αsx/µ(x), hence E[h(βx,α)] =

(
1± 1

10ε
)
αsx/µ(x).

Lemma 8.4. For 0 < δ ≤ ε
21(T+3) and β̂ = β ± δ, h(β̂) = h(β)±max{2δ, 1

20εh(β)}.

Proof. For β < 3
T+1 , note that h′(β) ≤ 1

(1−β)2
≤ 2, hence h(β ± δ) = h(β)± 2δ for β < 2

T+1 .

Let g(β) = lnh(β). If 1
T+1 < β < 1 − 1

T+1 then g′(β) = h′(β)
h(β) = 1

β(1−β) ≤
(T+1)2

T ≤ T + 3. If
1− 1

T+1 < β < 1 then g′(β) = 0 since h is fixed there. That is, g is (T + 3)-Lipschitz in [ 1
T+1 , 1].

Hence, for every β1, β2 ∈ [ 1
T+1 , 1] for which |β1 − β2| ≤ δ, |g(β1)− g(β2)| ≤ (T + 3)δ ≤ 1

21ε. This
means that h(β±δ)

h(β) = e±
1
21

ε = 1± 1
20ε in this range.

Overall, |h(β ± δ)− h(β)| ≤ max
{
2δ, 1

20εh(β)
}
.

F Long technical proofs

This paper contains some elementary statements whose proofs were omitted, such as encapsulations
of long arithmetic calculations or simple inclusion-exclusions. To make it verifiable, we put here the
proofs of these statements.

Lemma 3.9. For every two distributions µ, τ over Ω there exists a permutation π over Ω for which
dTV(µ, πτ) ≤ 2DH(µ; τ).

Proof. Let ε = DH(µ; τ) and π be a permutation that realizes this divergence. Let H = {x : µ(x) >
(1 + ε)τ(π(x))} and M = {x : τ(x) < µ(x) ≤ (1 + ε)τ(π(x))}.

dTV(µ, πτ) =
∑

x:µ(x)>τ(π(x))

(µ(x)− τ(π(x)))

=
∑
x∈H

(µ(x)− τ(π(x))) +
∑
x∈M

(µ(x)− τ(π(x)))

≤
∑
x∈H

µ(x) +
∑
x∈M

ετ(π(x))

= µ(H) + ετ(M) ≤ ε+ ε · 1 = 2ε
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Observation 3.32 (Median amplification). Let X be a random variable, and [a, b] be a range such
that Pr [X ∈ [a, b]] ≥ 2/3. We use “median-of-M ” to denote the process of drawing M independent
samples of X and taking their median value. Then:

(a) Median-of-9 amplifies the probability of obtaining a value in [a, b] to 5/6.

(b) Median-of-13 amplifies it to 8/9.

(c) Median-of-47 amplifies it to 99/100.

(d) Median-of-
⌈
30 ln c−1

⌉
amplifies it to 1− 1

2c for c < 1/3.

(e) Median-of-
⌈
30 ln c−1

⌉
amplifies it to 1− 1

24c for c < 1/150.

Proof. Let Xi be the probability of the ith trial to be outside the desired range and X =
∑M

i=1Xi

be the number of trials outside this range. If X < 1
2k then the median is inside the desired range.

Hence, the probability that the median is wrong is bounded by Pr
[
Y ≥ 1

2k
]
, where Y ∼ Bin(k, 1/3).

For parts (a), (b) and (c), we explicitly bound the error probability:

Pr

[
Y ≥ 1

2
k

]
=

k∑
i=⌈k/2⌉

(
k

i

)(
1

3

)i(2

3

)k−i

=
1

3k

⌊k/2⌋∑
i=0

(
k

i

)
2i

For a separation parameter 1 ≤ t ≤ ⌊k/2⌋, we can bound the last expression using

1

3k

⌊k/2⌋∑
i=0

(
k

i

)
2i =

1

3k

 t−1∑
i=0

(
k

i

)
2i + 2t

(
k

t

)
+

⌊k/2⌋∑
i=t+1

(
k

i

)
2i


≤ 1

3k

 t−1∑
i=0

(
k

t− 1

)
2i + 2t

(
k

t

)
+

⌊k/2⌋∑
i=t+1

(
k

i

)
2i


≤ 1

3k

2t
(

k

t− 1

)
+ 2t

(
k

t

)
+

⌊k/2⌋∑
i=t+1

(
k

i

)
2i

 =
1

3k

2t
(
k + 1

t

)
+

⌊k/2⌋∑
i=t+1

(
k

i

)
2i


For part (a) we separate in t = 3:

1

39

4∑
i=0

(
9

i

)
2i ≤

23
(
10
3

)
+ 24

(
9
4

)
39

=
960 + 2016

19683
<

1

6

For part (b) we separate in t = 5:

1

313

6∑
i=0

(
13

i

)
2i ≤

25
(
14
5

)
+ 26

(
13
6

)
313

=
64064 + 109824

1594323
<

1

9

For part (c) we separate in t = 23:

1

347

23∑
i=0

(
47

i

)
2i ≤

223
(
48
23

)
347

≤ (8.3887 · 106) · (3.0958 · 1013)
2.6588 · 1022

<
1

100
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For part (d) and part (e) we use Chernoff bound:

Pr[error] ≤ Pr

[
Y ≥ 1

2
k

]
= Pr

[
Bin(k, 1/3) ≥ 1

3
k +

1

6
k

]
≤ e−2(k/6)2/k = e−k/18

In both parts, k =
⌈
30 ln c−1

⌉
≥ 30 ln c−1, hence Pr

[
Y ≥ 1

2k
]
≤ e−(30/18) ln c−1

= e−(2/3) ln c−1
c.

• Part (d): if c < 1/3 then e−(2/3) ln c−1
< 1

2 .

• Part (e): if c < 1/150 then e−(2/3) ln c−1
< 1

24 .

Observation 9.9 (Amplification of testing). Assume that we have a decision test whose answer is
correct with probability at least 5/8. Then the majority answer of 3 indpendent trials is correct with
probability at least 2/3 and the majority answer of 45 independent trials is correct with probability
at least 3/4.

Proof. For k = 3:

Pr

[
Bin

(
k,

5

8

)
≤ 1

2
k

]
≤ Pr

[
Bin

(
3,

5

8

)
≤ 1

]
= (3/8)3 + 3 · (5/8) · (3/8)2 = 162

512
<

1

3

For k ≥ 45:

Pr

[
Bin

(
k,

5

8

)
≤ 1

2
k

]
≤ e−2( 5

8
− 1

2)
2
k = e−

1
32

k ≤ e−45/32 <
1

4

Lemma 9.25. For every pair of c-truncated functions fµ, fτ : Ω→ [0, 1] with respect to µ and τ ,

dTV(µ, τ) =
1

2

(
E

x∼µ

[
max

{
0, 1− fτ (x)

µ(x)

}]
+ E

x∼τ

[
max

{
0, 1− fµ(x)

τ(x)

}])
± 2c

Proof. In this proof we use the contribution notation of Definition 3.34.

Let:

• Lµ = {x ∈ Ω : fµ(x) = 0}.

• Lτ = {x ∈ Ω : fτ (x) = 0}.

• Hµ = {x ∈ Ω : µ(x) > τ(x)} \ (Lµ ∪ Lτ ).

• Hτ = {x ∈ Ω : τ(x) > µ(x)} \ (Lµ ∪ Lτ ).

• M = {x ∈ Ω : τ(x) = µ(x)} \ (Lµ ∪ Lτ ).

Observe that:

E
x∼µ

[
max

{
0, 1− fτ (x)

µ(x)

}]
= Ct

x∼µ
[1|fτ (x) = 0] + Ct

x∼µ

[
max

{
0, 1− τ(x)

µ(x)

}∣∣∣∣fτ (x) ̸= 0

]
= Ct

x∼µ
[1|x ∈ Lτ ] + Ct

x∼µ

[
max

{
0, 1− τ(x)

µ(x)

}∣∣∣∣x /∈ Lτ

]
= µ(Lτ ) + Ct

x∼µ

[
max

{
0, 1− τ(x)

µ(x)

}∣∣∣∣x /∈ Lτ

]
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Analogously,

E
x∼τ

[
max

{
0, 1− fµ(x)

τ(x)

}]
= µ(Lµ) + Ct

x∼τ

[
max

{
0, 1− µ(x)

τ(x)

}∣∣∣∣x /∈ Lµ

]

By definition, dTV(µ, τ) =
1
2

∑
x∈Ω |µ(x)− τ(x)|. We use the partition Ω = Lµ∪Lτ ∪Hµ∪Hτ ∪M .

Set of elements that are negligible in at least one side:∑
x∈Lµ∪Lτ

|µ(x)− τ(x)| =
∑
x∈Lµ

|µ(x)− τ(x)|+
∑
x∈Lτ

|µ(x)− τ(x)| −
∑

x∈Lµ∩Lτ

|µ(x)− τ(x)|

= (τ(Lµ)± µ(Lµ)) + (µ(Lτ )± τ(Lτ ))± (µ(Lµ ∩ Lτ ) + τ(Lµ ∩ Lτ ))

= (τ(Lµ)± c) + (µ(Lτ )± c)± 2c

= µ(Lτ ) + τ(Lµ)± 4c

Observe that if B is a set then µ(B) = Ctx∼µ[1|x ∈ B]. Hence,∑
x∈Lµ∪Lτ

|µ(x)− τ(x)| = Ct
x∼µ

[1|x ∈ Lτ ] + Ct
x∼τ

[1|x ∈ Lµ]± 4c

[fτ (x) = 0 for x ∈ Lτ ] = Ct
x∼µ

[
max

{
0, 1− fτ (x)

µ(x)

}∣∣∣∣x ∈ Lτ

]
[fµ(x) = 0 for x ∈ Lµ] + Ct

x∼τ

[
max

{
0, 1− fτ (x)

µ(x)

}∣∣∣∣x ∈ Lµ

]
± 4c

Set of non-negligible elements in one side that are also heavier than in the other side:∑
x∈Hµ

|µ(x)− τ(x)| =
∑
x∈Hµ

(µ(x)− τ(x))

=
∑
x∈Hµ

(
µ(x)

(
1− τ(x)

µ(x)

))

= E
µ

[
1Hµ ·

(
1− τ(x)

µ(x)

)]
= Ct

µ

[
1Hµ ·

(
1− τ(x)

µ(x)

)∣∣∣∣x /∈ Lτ

]
(∗) = Ct

µ

[
max

{
0, 1− τ(x)

µ(x)

}∣∣∣∣x /∈ Lτ

]
(∗): holds since if x /∈ Lτ , Hµ then τ(x) ≥ µ(x) and the contribution is zero.

By an analogous analysis,∑
x∈Hτ

|µ(x)− τ(x)| = Ct
τ

[
max

{
0, 1− µ(x)

τ(x)

}∣∣∣∣x /∈ Lµ

]

For the equal-weights part M , clearly
∑

x∈M |µ(x)− τ(x)| = 0.
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We sum the partial bounds to obtain:

2dTV(µ, τ) = µ(Lτ ) + Ct
µ

[
max

{
0, 1− τ(x)

µ(x)

}∣∣∣∣x /∈ Lτ

]
+τ(Lµ) + Ct

τ

[
max

{
0, 1− µ(x)

τ(x)

}∣∣∣∣x /∈ Lµ

]
± 4c

= E
µ

[
max

{
0, 1− fτ (x)

µ(x)

}]
+ E

τ

[
max

{
0, 1− fµ(x)

τ(x)

}]
± 4c

Lemma 10.50. Consider the sequence where N1 = 1 and for every i ≥ 2, Ni = ⌈(1 + 120ε)Ni−1⌉.
For every N ≥ 1, ε < 1

120 and k ≤ lnN/(240ε),
∑k

i=1Ni <
√
N log2 N

ε2
.

Proof. Observe that:

k∑
i=1

Ni = N1 +
k−1∑
i=1

⌈(1 + 120ε)Ni⌉ ≤ N1 + (1 + 120ε)
k−1∑
i=1

Ni + (k − 1)

Let Mt =
∑t

i=1Nt. Then M1 = N1 and Mt ≤ (N1 + t− 1) + (1 + 120ε)Mt−1. By induction,

Mk ≤
k−1∑
i=1

(1 + 120ε)i−1(N1 + k − i) + (1 + 120ε)k−1M1

≤ (N1 + k)

k∑
i=1

(1 + 120ε)i−1

≤ (N1 + k)
(1 + 120ε)k

120ε
≤ (N1 + k)

e120εk

120ε

We use k ≤ lnN
240ε and N1 = 1 to obtain:

Mk ≤
(
1 +

lnN

240ε

)
elnN/2+1

120ε
=

e

ε2

(
1

120
ε+

lnN

28800

)√
N ≤

N≥2

√
N lnN

ε2
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