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Abstract

The Huge Object model is a distribution testing model in which we are given access to
independent samples from an unknown distribution over the set of strings {0, 1}n, but are only
allowed to query a few bits from the samples. We investigate the problem of testing whether a
distribution is supported on m elements in this model. It turns out that the behavior of this
property is surprisingly intricate, especially when also considering the question of adaptivity.

We prove lower and upper bounds for both adaptive and non-adaptive algorithms in the
one-sided and two-sided error regime. Our bounds are tight when m is fixed to a constant (and
the distance parameter ε is the only variable). For the general case, our bounds are at most
O(logm) apart. In particular, our results show a surprising O(log ε−1) gap between the number
of queries required for non-adaptive testing as compared to adaptive testing. For one sided
error testing, we also show that a O(logm) gap between the number of samples and the number
of queries is necessary. Our results utilize a wide variety of combinatorial and probabilistic
methods.
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1 Introduction

Property testing [RS96, GGR98] is a framework concerned with analyzing global properties of an
input while reading only a small part thereof, in the form of queries. Over the past few decades prop-
erty testing has become an active field of study in theoretical computer science (see e.g, [Gol17]).
The study of distribution property testing was first implicitly explored in [GR11], and explicitly
formulated in [BFF+01] and [BFR+00]. In the standard model of distribution testing, an algorithm
can access a sequence of independent sampled elements drawn from an unknown input distribution
µ, and it either accepts or rejects the input based on this sequence. An ε-testing algorithm for a
property of distributions is required to accept every input distribution that satisfies the property
with high probability (e.g., 2

3), and to reject with high probability (e.g., 2
3) every input distribution

whose variation distance from every distribution satisfying the property is greater than ε.

The standard model of distribution testing assumes that the elements drawn from the distribution
are fully accessible, which might be unreasonable if they are “huge”. The Huge Object model,
whose study was initiated in [GR23], treats the sampled elements as long strings that have to be
queried. In this model, for example, it is possible that the algorithm has two non-identical samples
without being able to distinguish them. This “two-phase” characteristic of the Huge Object model
(“sample then query”, rather than only taking samples or only querying a string) exhibits rich
behavior with respect to adaptive querying, as studied in detail in [AF23].

In the standard model of distribution testing, [VV11] and [VV17] show a tight bound of Θ(N/ logN)
samples for two-sided error ε-testing of having a support size bounded by m in the standard model,
where N is the domain size and m = O(N), for every fixed ε. The upper bound was improved in
[PH24] to Θ(m/ logm) for every fixed ε. A folklore upper bound of O(ε−1m) samples for one-sided
algorithms is implicitly shown in [AF23], and here we explain that it is tight (Proposition 4.6).
Based on these tight bounds, the bounded support property is considered to be fully understood in
the standard model for one-sided testing, and mostly understood in the two-sided case (for every
fixed m there is still a gap between Ω(ε−1) and O(ε−1 log ε−1) for two-sided testing).

One would expect that having bounded support, which is arguably the simplest of distribution
properties, would have simple and easily understood testing bounds also in the Huge Object model.
As in the standard model, it is the only label-invariant property that is testable using one-sided
error algorithms (Proposition 5.11). However, it turns out that the behaviour of this property under
the Huge Object model is surprisingly intricate. One unexpected feature that we show here is a gap
between the number of queries required for non-adaptively testing for this property as compared to
adaptive testing. Indeed there is no adaptivity in the standard distribution testing model, but one
would not expect the label-invariant (and even mapping-invariant as per the definition in [GR23])
property of having bounded support to exhibit such a gap.

1.1 Definition of the model

The Huge Object model differs from the standard sampling model in its distance measure and in
the way that the algorithm gathers information about the input distribution.
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Algorithmic model

A probabilistic algorithm A with q queries and s samples, whose input is a distribution P over
{0, 1}n accessible via the Huge Object model, is an algorithm that acts in the following manner:
at every stage, the algorithm may ask for a new sample v that is provided by drawing it according
to P , independently of all prior samples, or may ask to query a coordinate j ∈ {1, . . . , n} of an old
sample u (the algorithm may use internal coin tosses to make its decisions). When this query is
made, the algorithm is provided with uj ∈ {0, 1} as its answer. The algorithm has no access to the
sampled vectors apart from queries. At the end, after taking not more than a total of s samples
and making a total of not more than q queries, the algorithm provides its output.

We say that the algorithm is non-adaptive if it makes all its sampling and querying decisions in
advance, prior to receiving all query answers in bulk. Only the final output of a non-adaptive
algorithm may depend on the received answers. The formal definition of adaptivity appears in
Subsection 5.2.

Distances

Here we define some measures of distance. Note that we usually use d(·, ·) without mentioning the
measure that we use, if its context is unambiguous. For distributions over {0, 1}n, d(·, ·) usually
refers to the earth mover’s distance.

Definition 1.1 (String distance). Let u, v ∈ {0, 1}n be two strings. We define their distance as
the normalized Hamming distance,

dH(u, v) =
1

n
|{1 ≤ i ≤ n | ui ̸= vi}| = Pr

i∼{1,...,n}
[ui ̸= vi]

We define the distance of u ∈ {0, 1}n from a set A ⊆ {0, 1}n as dH(u,A) = minv∈A dH(u, v).

Definition 1.2 (Transfer distribution). Let P and Q be distributions over finite sets Ω1 and Ω2,
respectively. A distribution T over Ω1 × Ω2 is a transfer distribution from P to Q if for every
a ∈ Ω1, Pr(u,v)∼T [u = a] = P (a), and for every b ∈ Ω2, Pr(u,v)∼T [v = b] = Q(b). The set of transfer
distributions from P to Q is denoted by T (P,Q). Note that this is a compact set when considered
as a set of real-valued vectors.

Definition 1.3 (Variation distance). Let µ and ν be two distributions over a finite set Ω. Their
variation distance is defined as:

dvar(µ, ν) =
1

2

∑
u∈Ω
|µ(u)− ν(u)| = max

E⊆Ω

∣∣∣∣Prµ [E]− Pr
ν
[E]

∣∣∣∣ = min
T∈T (µ,ν)

Pr
(u,v)∼T

[u ̸= v]

Definition 1.4 (Earth mover’s distance). Let P and Q be two distributions over {0, 1}n. Their
earth mover’s distance is defined as:

dEMD(P,Q) = min
T∈T (P,Q)

E
(u,v)∼T

[dH(u, v)]

The above minimum exists since it is in particular the minimum of a continuous function over a
compact set.
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Testing model

Definition 1.5 (A property). A property P is a sequence P1,P2, . . . such that for every n ≥ 1, Pn
is a compact subset of the set of all distributions over {0, 1}n.

Definition 1.6 (Distance of a distribution from a property). Let P = (P1,P2, . . .) be a prop-
erty and P be a distribution over {0, 1}n for some n. The distance of P from P is defined as
dEMD(P,P) = minQ∈Pn{dEMD(P,Q)}.

Definition 1.7 (ε-test). Let P be a property of distributions over {0, 1}n. We say that a proba-
bilistic algorithm A is an ε-test for P if:

• For every P ∈ P, A accepts with probability higher than 2
3 .

• For every probability distribution P over {0, 1}n that is ε-far from P (satisfying d(P,P) > ε),
A rejects with probability higher than 2

3

Definition 1.8 (one-sided and two-sided ε-test). Consider the setting of the above definition. If
additionally for every input P ∈ P, A accepts P with probability 1 (rather than “higher than 2

3”),
then we say that A is a one-sided ε-test for P. Otherwise, we say that A has two-sided error.

1.2 Summary of our results

Table of results The following is a table summarizing the bounds presented here for ε-testing for
being supported by at most m elements, along with previously known ones provided for reference
(Section 4 contains a sketch on how to derive them). The hidden coefficients in the O(·) and the
Ω(·) notations are global numerical constants. The new results appear in purple.

Model One-sided Error Two-sided Error

Standard model Θ(ε−1m) Ω(ε−1m/ logm) [VV11]
(Sample complexity) Folklore, see [AF23] O( m

ε logm min{log ε−1, logm}) [PH24]

Huge Object Ω(ε−1m(log ε−1 + logm)) Ω(ε−1 log ε−1)
Non-adaptive O(ε−1m log ε−1 logm) O(ε−2m log ε−1) [PH24] + [GR23]

Huge Object Ω(ε−1m logm) Ω(ε−1m/ logm) [VV11]

Adaptive O(m logm
ε ·min{log ε−1, logm})

The overview in Section 3 provides an informal guide on deriving our results, whose proofs appear
in the sections following it.

The following are some conclusions to be drawn from the bounds given above. We use Sm to denote
the property of being supported by at most m elements (formally defined in Definition 5.4).

Adaptive vs. non-adaptive two-sided asymptotic gap The most surprising result is that
testing a distribution for being supported by at most two elements cannot be done using a number
of queries linear in ε−1, even with two-sided error. This result applies for every m ≥ 2, and the
exact bound is Ω(ε−1 log ε−1) (with the implicit coefficient being independent of m). To the best of
our knowledge, combined with the O(ε−1) adaptive upper bound of [AF23], “being supported by
at most two elements” is the first explicit example of a property that is closed under mapping (and
in particular is label-invariant) which has different asymptotic bounds for the number of queries
for adaptive algorithms and non-adaptive ones in the Huge Object model (see Theorem 6.1).
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A possible explanation for this is that being label-invariant in the Huge Object model is different
from being so in the standard model, because applying a permutation on the labels may change
their distinguishability, and in particular it may change the distance from the property.

In this paper we provide a thorough investigation of Sm utilizing a variety of methods. In particular,
we show several gaps such as the above mentioned one. However, the behaviour of the bounded
support property in the Huge Object model, especially when considering it as a problem with two
variables (namely the maximal support sized m and the distance parameter ε) is still not completely
understood. We do have tight bounds for the fixed constant m cases (where only ε is variable) for
all algorithm types, and bounds up to logarithmic factors for the more general cases.

One-sided bounds and a gap from the standard model We have tight bounds for ε-testing
of Sm for every fixed m (and variable ε) for both non-adaptive algorithms and adaptive ones.
These bounds are also tight for every fixed ε (and variable m). Additionally, our bounds show
a gap between the standard model (considering sample complexity) and the Huge Object model
(considering query complexity). Consider the bounded support property as a sequence of individual
properties, where for every m ≥ 2, the m-th property is Sm. We show that, if we only allow one-
sided error tests, there is an O(logm) gap between the standard model of distribution testing and
the Huge Object model. In the standard model, there exists a one-sided test for Sm at the cost
of O(ε−1m) samples. In the Huge Object model, there is a lower bound of Ω(ε−1m · logm) many
queries for every one-sided ε-test, even if it is adaptive. Note that the gap is between the number
of samples in the standard model and the number of queries in the Huge Object model, which is
the natural measure of complexity in this model.

New tools

A new algorithmic paradigm For the adaptive one-sided upper bound, we define a standalone
algorithmic primitive, the “fishing expedition” paradigm, that repeatedly executes a subroutine
until it reaches a predefined goal or when it finds out that it is no longer cost-effective (even if it
did not reach the goal). We believe that this primitive will also be useful in future endeavors.

A hybrid probabilistic-extremal analysis We define a concept of a “valid composition”.
Loosely speaking, it is an ordered subset of samples that become closer to each other as the sequence
progresses, but are still ε-far from each other. We use a hybrid probabilistic-extremal argument to
show that for an input distribution that is ε-far from m-support, with high probability, there exists
a valid composition with at least m+ 1-elements.

The hybrid probabilistic-extremal argument works as follows: we define some rank of valid composi-
tions. If for every individual valid composition with at most m elements, there is a high probability
that it is not maximal (according to the rank), then globally there is a high probability that none
of them is maximal. Hence, with high probability, the maximally-ranked valid composition within
our samples must have at least m+ 1 elements.

A new use for an old combinatorial result For the adaptive one-sided lower bound, we use
an old combinatorial result, that a biclique covering of the m-clique must have at least m log2m
vertices [Han64, KS67], to show that the every witness against m-support is at least m logm bits
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long, which makes it a lower bound to the number of queries. To apply a multiplicative factor of
ε−1, which is pretty easy for non-adaptive algorithms, we analyze the effectivity of a decision tree
that incrementally constructs a witness based on the queries.

1.3 Open problems

One-sided non-adaptive bounds We have an Ω(ε−1m(log ε−1 + logm)) lower bound for one-
sided ε-testing of Sm, as well as an O(ε−1m log ε−1 logm) upper bound for one-sided ε-testing of
Sm. We believe that the upper bound is tight, but we do not have the corresponding lower bound.
What is the true complexity of ε-testing Sm?

Non-trivial two-sided bounds Is there a lower bound of ω(m/ logm) queries for two-sided
testing of Sm (noting that [VV11] only gives Ω(m/ logm)), even for non-adaptive algorithms? We
believe that Ω(m) should be this lower bound, based on the logm-gap in the one-sided case (a Θ(m)
tight bound in the standard model, and a Θ(m logm) tight bound in the Huge Object model).

One-sided adaptive bounds Our results for one-sided adaptive ε-testing of Sm are tight with
respect to m, but have a logarithmic gap with respect to ε (more precisely, with respect to
min{ε−1,m}). Closing this gap is an open problem.

The tradeoffs between sample and query complexity Our bounds apply to the query
complexity of the tests. The lower bounds adapted from previous works on the traditional model
clearly apply for the sample complexity here, even if we allow a higher query complexity. As for
our new upper bounds, most of them have a polylogarithmic average queries per sample ratio. It
would be interesting to investigate whether the sample complexity can be reduced if we allow a
much higher (but still sub-linear in n) number of queries per sample.

2 Preliminaries

2.1 Algorithmic model

As observed by Yao [Yao77], every probabilistic algorithm can be seen as a distribution over a
set of deterministic algorithms. Hence we can analyze probabilistic query-making algorithms by
analyzing the deterministic algorithms they are supported on.

We observe that we can assume that all samples are drawn before the first query is made, since
they are fully independent: the distribution of every sample made does not depend at all on
any calculation or queries that occurred before it was taken, and so we can assume that it was
taken before any calculation was performed. Based on this observation we can represent our
algorithms using a {0, 1}-valued matrix (whose rows are sampled from the distribution), from
which the algorithms are allowed to query.

Definition 2.1 (Matrix representation of input access). Considering an algorithm with s samples
and q queries, we assume that the samples are all taken at the beginning of the algorithm and are
used to populate a matrix M ∈ {0, 1}s×n. Then, during the run of the algorithm, each of its queries
is represented as a pair (i, j) ∈ {1, . . . , s} × {1, . . . , n}, for which the answer is Mi,j .
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Definition 2.2 (Adaptive algorithm). Every deterministic algorithm in the Huge Object model
with q queries over s samples is equivalent to a pair (T,A), where T is a decision tree of height q
in which every internal node contains a query (i, j) (where 1 ≤ i ≤ s is the index of a sample and
1 ≤ j ≤ n is the index to query), and A is the set of accepting leaves.

Definition 2.3 (Non-adaptive algorithm). A deterministic algorithm (T,A) with q queries is non-
adaptive if, for every 0 ≤ i < q, all internal nodes at the i-th level consist of the exact same query.
Every non-adaptive algorithm can be represented as a pair (Q,A), where Q ⊆ {1, . . . , s}×{1, . . . , n}
is a set of queries and A ⊆ {Q 7→ {0, 1}} is the set of accepted answer vectors.

2.2 Technical components

Fishing expedition

We define an algorithmic primitive that allows us to repeat an execution of a probabilistic subroutine
until it is no longer effective. Consider for example a “coupon-collector” type process, but one in
which the number of distinct elements is not known to us. The goal is to collect a preset number
of elements, but we also want to stop early if we believe that there are no more elements to be
effectively collected.

Consider a (probabilistic) subroutine A that can either fail or succeed. We denote the outcome of
an execution of A by R. In this discussion the outcome includes both the explicit output of the
execution and its side effects, which may affect the probabilities for future executions of A. We
thus analyze a sequence of executions R1, . . . , RN , where R1 is performed over the initial state. We
define two behaviors of “coupon collection” that such an A must present.

Definition 2.4 (Fail stability). Let A be a subroutine that may succeed or fail. Specifically let
R1, . . . , RN be random variables that detail the outputs of the first N executions of A. We say
that A is fail stable with respect to a set G of outcomes indicating success, if for every 2 ≤ i ≤ N
and every result sequence (r1, . . . , ri−1) ∈ supp(R1, . . . , Ri−1) for which ri−1 /∈ G:

Pr [Ri ∈ G | R1 = r1, . . . , Ri−2 = ri−2, Ri−1 = ri−1] = Pr [Ri−1 ∈ G | R1 = r1, . . . , Ri−2 = ri−2]

In other words, a failure does not affect the probability of further executions to succeed.

Definition 2.5 (Diminishing returns). Let A and R1, . . . , RN be as in Definition 2.4. We say that
A has diminishing returns with respect to a set G of successful outcomes, if for every 2 ≤ i ≤ N
and every result sequence (r1, . . . , ri−1) ∈ supp(R1, . . . , Ri−1):

Pr [Ri ∈ G | R1 = r1, . . . , Ri−2 = ri−2, Ri−1 = ri−1] ≤ Pr [Ri−1 ∈ G | R1 = r1, . . . , Ri−2 = ri−2]

That is, if A has diminishing returns, then a success in a single execution never increases, but may
decrease, the probability of further executions to succeed.

Recall the coupon-collecting example. We expect it to have both fail stability and diminishing
returns (with respect to a common set G of outcomes indicating success). If we look for a coupon
and do not find it in a single try, nothing happens. Further tries will have the same probability to
succeed. On the other hand, if we collect a coupon, then in further tries, there are less uncollected
coupons left and it is slightly harder to find an additional one.
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The fishing expedition paradigm seeks to collect a goal of k coupons, but “gives up” if it believes
that the probability to find an additional coupon is less than some parameter p.

The desired algorithm has three parameters: a threshold p, a confidence q and a goal k ≥ 1. The
input is a subroutine A with diminishing returns and fail stability (with respect to some common
set G). Informally, the goal of the algorithm is to have k successful executions of A, but also to
terminate earlier if the probability of A to succeed becomes lower than p. Since the algorithm has
no actual access to the success probability of A, it should terminate early only if it is confident
enough that the success probability of further executions is too low for them to be effective.

Lemma 2.6. Consider a black box subroutine A with fail stability (Definition 2.4) and diminishing
returns (Definition 2.5) with respect to a common set G of outcomes indicating success.

For an algorithm that repeatedly executes A, we define the following random variables:

• N – the number of executions.

• R1, . . . , RN – their outcomes.

• X1, . . . , XN – indicators of success (that is, Xi = 1 if and only if Ri ∈ G).

• H =
∑N

i=1Xi – the number of successful executions.

• p̂ = Pr[XN+1 = 1|R1, . . . , RN ] – the success probability of a possible extra execution of A.

Considering the parameters p > 0 (threshold), q > 0 (confidence), and k ≥ 1 (goal), there exists an
algorithm that repeatedly executes A for which N ≤ p−1(4H + 5(log q−1 + log(log k + 1))) + 1 and
H ≤ k, such that with probability higher than 1− q, either H = k or p̂ ≤ p (or both).

Contradiction graph

We define here what it means to be a “counter-example” for having a bounded support size m.

Definition 2.7 (Contradiction graph). Let x1, . . . , xs ∈ {0, 1}n be a sequence of strings. Let
Q ⊆ {1 . . . , s} × {1, . . . , n} be a set of queries. We define the contradiction graph of (x1, . . . , xs;Q)
as G(V,E) with V = {1, . . . , s}, and for every 1 ≤ i1, i2 ≤ s:

{i1, i2} ∈ E ⇐⇒ ∃1 ≤ j ≤ n : (xi1)j ̸= (xi2)j ∧ ((i1, j), (i2, j) ∈ Q)

Note that the graph is undirected since the definition of the edges is commutative. It is also clearly
without self-loops.

Definition 2.8 (Witness against m-support). Let P be a distribution that is supported by a set
of more than m elements. We say that (x1, . . . , xs;Q) is a witness against m-support (of P ) if
x1, . . . , xs are all drawn from P , and their contradiction graph is not m-colorable.

We prove in Lemma 5.14 that calling the above a witness is indeed justified, in the sense that a
distribution P has m-support if and only if there is zero probability to draw a tuple x1, . . . , xs for
which one can provide a query set Q that makes it a witness.

Definition 2.9 (Explicit witness against m-support). Let P be a distribution that is supported by
a set of more than m elements. We say that (x1, . . . , xs, Q) is an explicit witness against m-support
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(of P ) if x1, . . . , xs are all drawn from P , and their contradiction graph contains a clique with m+1
vertices as a subgraph.

Note that an explicit witness is in particular a witness against m-support, but the converse does
not generally hold.

3 Overview of our proofs

Two-sided, non-adaptive lower-bound (Theorem 6.1)

We first describe our lower bound for S2, which holds the main ideas also for Sm. We begin
by analyzing a restricted form of non-adaptive algorithms, which we call rectangle algorithms. A
rectangle algorithm is characterized by the number of samples s and a set I of indices. Every
sample is queried at the indices of I, hence the query complexity is s · |I|. We say that |I| is the
“width” of the rectangle and that the number of samples is its “height”.

Consider the following O(ε−1)-query rectangle algorithm: for some hard-coded parameter β > 0,
it chooses a set I of O(β−1) indices, and then it takes O(βε−1) samples, and then queries every
sample on all indices of I.

Now consider the following form of inputs. For some α > 0 and two strings a and b for which
d(0, a), d(0, b), d(a, b) = Θ(α), let P be the following distribution. The string 0 is picked with
probability 1 − cα−1ε, the string a with probability c

2 · α
−1ε and the string b with probability

c
2 · α

−1ε, where c > 1 is some global constant.

Intuitively, the algorithm finds a witness against 2-support if there is a query common to a and
b, at an index j that is not always zero (we call such j a non-zero index ). That is, there are two
necessary conditions to reject: the algorithm must get both a and b as samples, and it must query
at an index j for which (a)j ̸= (b)j .

The expected number of non-zero samples that the algorithm gets is O(α−1β). If α is much
greater than β, then with high probability the algorithm only gets all-zero samples and cannot
even distinguish the input distribution from the deterministic all-zero one.

The expected number of non-zero indices that the algorithm chooses is O(αβ−1). If α is much
smaller than β, then with high probability all queries are made in “zero indices” and the algorithm
again cannot even distinguish the input distribution from the deterministic all-zero one. Thus, the
algorithm can reject the input with high probability only if α ≈ β.

Our construction of Dno chooses α = 2k where k is distributed uniformly over its relevant range,
to ensure that a rectangle algorithm (with a fixed β) “misses” α with high probability. Intuitively,
the idea is that a non-adaptive algorithm must accommodate a large portion of the possible values
of α, which would lead to an additional log ε−1 factor. Then, we show that given an input drawn
from Dno, if the algorithm did not distinguish two non-zero elements, then the distribution of runs
looks exactly the same as the distribution of runs of the same algorithm given an input drawn from
Dyes, which is supported over 0 and a single a.

To show that the above distributions defeat any non-adaptive algorithm (not just rectangle algo-
rithms), we analyze every index 1 ≤ j ≤ n according to the number of samples which are queried
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in that index. If few samples are queried, then this index has a high probability of not hitting two
non-zero samples, rendering it useless (we gain an important advantage by noting that actually
querying j from at least two non-zero samples is required for it to be useful). If many non-zero
samples are queried then this index may hit many samples, but only few indices can host many
queries, which gives us a high probability of all of them together not containing a non-zero index
among them.

To extend this result to m ≥ 2, for every t ≥ 2 we define a distribution Dt
no over inputs that are

supported by t+1 elements (one of them being the zero vector), and also ε-far from being supported
by m elements (for every m ≤ t/2 + 1). As before, we define Dyes as a distribution over inputs
supported by 2 elements, which is identical to D1

no (including the all-zero elements), and then we
proceed with the same argument as before.

One-sided, non-adaptive upper bound (Theorem 7.12)

Let us first consider a “reverse engineering” algorithm: for every ℓ = 20, 21, . . . , 2log ε
−1
, we query

Θ((ε−1/ℓ) · logm) indices that are common to at least ℓ ·m samples. Intuitively, according to the
analysis of the two-sided lower bound, the algorithm should have roughly Ω(m logm) indices that
distinguish pairs of elements, which suffice for a contradiction graph that contains an m+1-clique.

This intuition appears to be lacking when it comes to showing the correctness of this construction
for inputs that lack the special form of Dt

no. To be able to handle distance combinations (instead
of just one “α” as above), we use a concept of “valid compositions”. A valid composition is an
ordered combination of samples (x1, . . . , xk) and a sequence of non-decreasing scales (a2, . . . , ak),
for which the distances are bounded by d(xi, {x1, . . . , xi−1}) > 2−ai−1 (see Definitions 7.2, 7.3, 7.5).

Querying according to index sets whose random choice follows the prescribed distances distinguishes
all elements in a composition with high probability. Our goal is to show the existence of valid
compositions of m + 1 elements in order to ensure that we find an explicit witness, and thus
establish the upper bound. However, it is not clear that “long” valid compositions even exist.

We use an extremal probabilistic argument, and show that if the input is ε-far from having support
size m, then with high probability no ranked composition with at most m elements is maximal.
This implies that the maximally ranked composition (with respect to an order that we define)
cannot have less than m+ 1 elements, leading with high probability to finding an explicit witness
against m-support.

One-sided, adaptive upper bound (Theorem 9.8)

We adaptively construct a distinguishing sequence that resembles a valid composition, but at some
point we decide to “give up” and change phase to another way of querying that is more efficient
under some conditions. Luckily, the condition that makes us give up implies them.

For every distance scale, from Ω(1) to 1
m , we use the “fishing expedition” paradigm to extend our

sequence with as many elements as we can until we are certain enough that it is no longer effective
to look for them (or until we find a witness against m-support). Unfortunately, it is possible that
at some point the algorithm is certain enough that it is no longer effective to look for elements in
any of these scales. At this point, we observe that the contribution of elements with small distance
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scale to the distance of the input from Sm is still Ω(ε) (that is, we can safely ignore the “rare large-
distance elements”). To make use of this observation, the algorithm shifts to the second phase of
looking for elements with small distances in a more general way which does not necessarily follow
the “theme” of looking for valid compositions.

In the small distance scale phase we construct and maintain a “decision tree” data structure over
the existing elements, so that for every element that we need to compare to the existing elements,
we can rule out in advance, using only O(m) many queries, all but one of them. This allows us
to save queries, since the smaller distances require the querying of relatively many indices for a
comparison, which would have been very inefficient to perform for all existing elements.

One-sided lower-bounds (Theorem 6.6, Corollary 10.11)

We prove that an algorithm obtains a witness against m-support if and only if the contradiction
graph (Definition 2.7) is not m-colorable (Lemma 5.14). Hence we look for the lower bound on the
number of queries needed to construct a non-m-colorable contradiction graph.

We observe that, given a query set, every index j describes a biclique contradiction graph whose
classes are “all samples queried at j for which xj = 0” and “all samples queried at j for which
xj = 1”. The contradiction graph is the union of these bicliques. Then we extend our analysis in
two ways, one of which applies to non-adaptive algorithms (giving a log ε−1 factor) and the other
also applies to adaptive ones (giving a logm factor).

For non-adaptive algorithms, we extend the analysis of the two-sided bound to show that a one-
sided algorithm for Sm requires Ω(ε−1m log ε−1) many queries. The following shows the hardness
of “gathering a witness against Sm”, which allows for a more versatile argument as compared to
the indistinguishability argument that we use for the lower bound of Theorem 6.1.

We use Dt
no using t = 4m/3. For a non-adaptive algorithm that makes less than O(ε−1m log ε−1)

queries, the probability that it distinguishes two specific non-zero elements is 1
16 . Considering

the contradiction graph, excluding the vertex corresponding to the zero vector, we show that the
expected number of edges is at most 1

16

(
t
2

)
. By Markov’s inequality, with probability higher than

2
3 , there are less than

(
3t/4−1

2

)
=
(
m−1
2

)
edges, meaning that this subgraph is colorable using m− 1

colors. Combined with the vertex corresponding to the zero vector, the contradiction graph is
colorable by m colors, hence it cannot be a witness against being supported on only m-support.

For the other bounds we extend a result of [Han64, KS67], providing a lower bound on bi-clique
covers of cliques, to show that every biclique cover of a non-m-colorable graph requires at least
(m + 1) log2(m + 1) vertices (Lemma 10.4). To show another lower bound against non-adaptive
algorithms, we construct a distribution in which a single, “anchor” element is drawn with probability
1−Θ(ε). This way, for every non-adaptive algorithm that makes only o(ε−1m logm) many queries,
the expected number of queries applied to other elements is o(m logm). By Markov’s inequality,
with probability 2

3 , only o(m logm) queries are made in non-zero elements, and in this case, there
cannot be a witness against m− 1 other elements.

This construction cannot immediately be applied to adaptive algorithms, since they can use adap-
tivity to avoid wasting queries on the anchor element. To overcome this issue, we use two addi-
tional methods. The first one is using very short strings, that is, we focus on distributions over
{0, 1}O(logm) that are ε-far from having m elements in their support (later we prove that the bound
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also holds for arbitrarily large n using a simple repetition technique). The second method involves
using shared-secret code ensembles [BEFLR20] that guarantee, in an appropriate setting, that if
the algorithm makes less than O(logm) queries in an individual sample, then it gathers no infor-
mation at all. This way, for every individual sample, the algorithm either behaves similarly to a
non-adaptive algorithm or makes at least a fixed portion of the maximum number of queries. The
exact argument requires a careful analysis of the decision tree of the algorithm.

4 Quick bounds from previous results

We recall some known results for the standard model and use them to derive initial bounds on
testing Sm.

Observe that, without loss of generality, we can assume that every sample is queried at least once.
Using distributions over sets of of vectors that are mutually 0.499-far, lower bounds for the standard
model can be converted to the Huge Object model, implying in particular the following.

Proposition 4.1 (Proposition 2.8 in [GR23]). Every two-sided error ε-test for Sm makes at least
Ω(m/ logm) queries (for some fixed ε).

In the Huge Object model, different samples may be indistinguishable, hence standard-model al-
gorithms cannot be immediately converted to Huge Object model ones. However, we can use the
following reduction.

Lemma 4.2 (Theorem 2.2 in [GR23]). Suppose that P is testable with sample complexity s(n, ε)
in the standard model, and that P is closed under mapping (note that bounded support properties
are closed under mapping). Then for every ε > 0 there exists a non-adaptive ε-test for P in the
Huge Object model that uses 3 · s(m, ε) samples and O(ε−1 log(ε−1s(m, ε/2))) queries per sample.

Proposition 4.3 (combining [PH24] and [GR23]). There exists a two-sided ε-test for Sm whose
query complexity is O(ε−2m log ε−1).

Proof. In [PH24] there is a two-sided algorithm for m-support testing in the standard model of dis-
tribution testing whose sample complexity is O(ε−1min{log ε−1, logm}·m/ logm). Lemma 4.2 then
provides a non-adaptive ε-testing algorithm for m-support that uses O(ε−1max{logm, log ε−1})
queries per sample, which gives O(ε−2m log ε−1) queries in total.

Note that in the above we cannot use the older [VV17], or its improvement [WY19], because both
of them provide a number of samples that depends on the domain size (in our case the domain is
{0, 1}n) rather than the support parameter. Additionally, [WY19] asserts that ε is at least 1/m,
and we need a statement that holds for all values of m.

Proposition 4.3 implies that for every fixed ε and variable m, there exists an O(m) non-adaptive
two-sided error ε-test for Sm. In this context we also note the following known bounds.

Theorem 4.4 ([GR23], Corollary 2.3). For every ε > 0 and m ≥ 2, there exists a non-adaptive
one-sided ε-testing algorithm for Sm that takes O(ε−1m) samples and makes O(ε−2m log(m/ε))
queries.
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Theorem 4.5 ([AF23], Theorem 6.1). For every ε > 0 and m ≥ 2, there exists an adaptive
one-sided ε-testing algorithm for Sm that takes O(ε−1m) samples and makes O(ε−1m2) queries.

This immediately implies an upper bound of O(ε−1m) samples for ε-testing Sm in the standard
model of distribution testing. As can be expected, this is tight. The following proposition is
considered common knowledge, but as we are not aware of any reference proof, we put one here.

Proposition 4.6. Every one-sided ε-test for Sm takes at least Ω(ε−1m) samples in the standard
model.

Proof. For ε < 1
24 , let

µ :

{
1 with probability 1− 2ε

i with probability 1
mε, 2 ≤ i ≤ 2m+ 1

The variation distance of µ from Sm is greater than ε, since for every set of m elements, there are
additional m+ 1 elements in the support of µ whose combined probability is at least m+1

m ε.

Assume that we draw infinitely many independent samples x1, x2, . . .. Let B be the event for x1 = 1.
For every 1 ≤ k ≤ m + 1, let Tk be the index of the first k-th distinct element. Conditioned on
B, for every 2 ≤ k ≤ m+ 1, Tk − Tk−1 distributes as a geometric variable with success probability
(2− k−1

2m )ε ≥ ε, hence its expected value is at least ε−1, and its variance is at most 1−ε
ε2

. By linearity
of expectation,

E[Tm+1 − T1] ≥ Pr[B] E[Tm+1 − T1|B] = Pr[B]
m+1∑
k=2

E[Tk − Tk−1|B] ≥ mε−1

The differences Tk − Tk−1 are independent, even if conditioned on B, hence Var[Tm+1 − T1|B] =∑m+1
k=2 Var[Tk − Tk−1|B] ≤ (1−ε)m

ε2
.

For m ≥ 16,
√

Var[Tm+1 − T1|B] ≤ ε−1√m ≤ 1
4ε

−1m ≤ 1
4 E[Tm+1 − T1|B]. By Chebyshev’s

inequality (Pr[X < E[X]− λ
√
Var[X]] < λ−2), we obtain

Pr[Tm+1 − T1 <
1

2
ε−1m|B] ≤ Pr[Tm+1 − T1 < E[Tm+1 − T1|B]− 2

√
Var[Tm+1 − T1|B]] <

1

4

Hence, for an algorithm that takes
⌊
1
2ε

−1m
⌋
samples, the probability to draw m+1 distinct samples

is less than Pr[¬B] + 1
4 ≤ 2ε+ 1

4 < 1
3 . Since a one-sided algorithm cannot reject without observing

more than m distinct members in the support of µ, this concludes the proof.

As with Proposition 4.1, the above can be immediately converted to a Huge Object model bound.

Proposition 4.7. Every one-sided ε-test for Sm in the Huge Object model must make at least
Ω(ε−1m) queries as well.

In this paper we improve this proposition, showing a gap between the standard model and the Huge
Object model for one-sided error tests.
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5 Additional preliminaries

5.1 Common notations

For an integer n and a set A ⊆ {1, . . . , n}, we denote by 1A the n-bit binary string for which the
i-th bit is 1 if and only if i ∈ A. Given two sets A,B ⊆ {1, . . . , n}, we let A∆B be their symmetric
difference. For a finite set Ω, we define D(Ω) as the set of all distributions over Ω.

The following is a useful notation for analyzing expectations of random variables.

Definition 5.1 (Contribution of a random variable over an event). Let µ be a probability distri-
bution, X be a random variable and B be an event. We define the contribution Ct[X | B] of X
over B to be 0 if Pr[B] = 0, and otherwise by

Ct [X | B] = E[X | B] · Pr[B] =
∑
x∈B

µ(x)X(x).

Observation 5.2. The following properties are immediate.

• Inclusion-Exclusion: Ct [X|B1 ∨B2] = Ct [X|B1] + Ct [X|B2]− Ct [X|B1 ∧B2].

• Total expectation: If Pr
[∨k

i=1Bi

]
= 1 and the events B1, . . . , Bk are mutually disjoint, then

E [X] =
∑k

i=1Ct [X|Bi].

Definition 5.3 (Sample map). Let P be a distribution over a finite set Ω1 and let f : Ω1 → Ω2

be a mapping to a finite set Ω2 (possibly Ω1 = Ω2). The sample map of P according to f , denoted
by f(P ), is the distribution Q over Ω2 for which, for every b ∈ Ω2, PrQ[b] = Pra∼P [f(a) = b].

Definition 5.4 (The bounded support property). We define the following variants of bounded
support properties:

1. Let m be a fixed number. The property of distributions that are supported by at most m
elements is denoted by Sm.

2. Let A be a fixed set of elements. The property of distributions that are supported by a subset
of A (possibly A itself) is denoted by SA.

3. Let f : N → N be a fixed function. The property of distributions over {0, 1}n that are
supported by at most f(n) elements is denoted by Sf .

5.2 Analysis of probabilistic algorithms

To be able to state and prove lower bounds, we use the notion of a “distribution of runs”. Informally,
it is the behavior of an algorithm A on an input that is drawn from a distribution. If we have a
distribution over inputs in a property and another distribution over inputs that are ε-far from the
property, and their distributions over runs (with respect A) are indistinguishable, then A cannot
be an ε-test for that property.

Definition 5.5 (Distribution of runs). Let T be an s-sample, q-query decision tree and let D be
a distribution over inputs. The distribution of T -runs on D is denoted by R(T,D), and is defined
over {0, 1}q as follows: first draw an input P ∼ D. Then draw s independent samples from P , and
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make the queries of T (following the corresponding root to leaf path). The result is the vector of
answers (of size q, padded with zeroes if necessary).

Note that for non-adaptive algorithms, the distribution of runs can be seen as a distribution over
functions from the fixed query set Q to {0, 1}, and can be obtained by drawing a distribution P ,
populating the matrix M using s independent samples from P , and then using the restriction M |Q.

Definition 5.5 can be naturally generalized to probabilistic algorithms since they can be seen as a
distribution over deterministic ones. That is, R(A, D) distributes like “draw T ∼ A and then draw
the run according to R(T,D)”.

Definition 5.6 (Conditional distribution of runs). Let T be an s-sample, q-query decision tree and
let D be a distribution over inputs. Also, let B be some event. The distribution of T -runs on D
conditioned on B is denoted by R (T,D|B), and is defined as the distribution R(T,D) restricted
to B.

Lemma 5.7 (Lower bounds by Yao’s principle). Let T be a class of deterministic decision trees
(which in turn define a class of probabilistic algorithms) and let q > 0. Let D1 and D2 be two distri-
butions over inputs. If, for every decision tree T ∈ T of size less than q, d(R(T,D1),R(T,D2)) <

1
3 ,

then every probabilistic algorithm that distinguishes D1 and D2 (with error less than 1
3) must make

make at least q queries (with positive probability).

The simulation method, described in the lemma below (whose proof is trivial), is a useful “user
interface” for Yao’s principle.

Lemma 5.8 (The simulation method). Let T be an s-sample, q-query decision tree, and let D1, D2

be distributions of inputs. Assume that there exist two events B1 and B2 for which R(T,D1|¬B1) is
identical to R(T,D2|¬B2). In this setting, d(R(T,D1),R(T,D2)) ≤ PrR(T,D1)[B1]+PrR(T,D2)[B2].

5.3 Analysis of properties of distributions

Definition 5.9 (Being closed under mapping, [GR23]). A property P of distributions over {0, 1}n
is closed under mapping if for every function f : {0, 1}n → {0, 1}n and for every distribution P ∈ P
we have f(P ) ∈ P.

Note that the bounded support properties (Sm for fixed sizes and Sf for functions) are closed under
mapping.

Definition 5.10 (Label-invariance). A property P of distributions over {0, 1}n is label-invariant
if for every distribution P ∈ P and for every permutation σ : {0, 1}n → {0, 1}n, σ(P ) ∈ P as well.

Note that every property that is closed under mapping is also label-invariant.

The following proposition informally states that a specific strong constraint fully characterizes the
bounded support property. We prove it in Appendix B.

Proposition 5.11. Consider any label-invariant property of distributions P that has a one-sided
ε-test for every ε > 0 (with any number of samples and queries). There exists a function f : N→ N
such that P = Sf .
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5.4 Analysis of the bounded support property

We start by stating simple observations that we use throughout our work.

Lemma 5.12 ([AF23]). Let P be a distribution over {0, 1}n and A be a subset of {0, 1}n. Let
f : supp(P ) → A be the following function: for every x ∈ supp(P ), f(x) = argminy∈A{d(x, y)}
(ties are broken arbitrarily). Then d(P, f(P )) = d(P,SA).

Observation 5.13 ([AF23]). Let A ⊆ {0, 1}n be a set of elements, and let P be a distribution that
is ε-far from being supported by any subset of A. Then d(P,SA) = E

x∼P
[d(x,A)] > ε.

The following lemma shows the correctness of Definition 2.8 (witness against m-support).

Lemma 5.14. Let x1, . . . , xs ∈ supp(P ) be a set of samples and let Q ⊆ {1, . . . , s} × {1, . . . , n}
be a query set. Let Q1, . . . , Qs be the sample-specific query sets, that is, Q =

⋃s
i=1({i} ×Qi), and

let G be the contradiction graph as per Definition 2.7. If G is not colorable by m colors, then
|{x1, . . . , xs}| > m. And if G is colorable by m colors, then there exists P̂ with |supp(P̂ )| ≤ m and
a sequence y1, . . . , ys ∈ supp(P̂ ) such that for every 1 ≤ i ≤ s, xi|Qi = yi|Qi.

Proof. Let A ⊆ {0, 1}n, and let f : {x1, . . . , xs} → A be a mapping such that for every 1 ≤ i ≤ s,
xi|Qi = (f(i))|Qi . If G is not colorable bym colors, then f cannot be a valid coloring unless |A| > m.
Specifically, |{x1, . . . , xs}| > m, since with A = {x1, . . . , xs} we have the coloring f(i) = xi.

Now assume that G is colorable by m colors. Let f : {1, . . . , s} → {1, . . . ,m} be a valid coloring.
Let Â = {y1, . . . , ym} be the following set: for every 1 ≤ k ≤ m, yk ∈ {0, 1}n is a string for which
yk|Qi = xi|Qi for every i for which f(i) = k. A concrete example for yk would be: the j-th bit

is 1 if and only if there exists 1 ≤ i ≤ s such that f(i) = k, j ∈ Qi and xi|j = 1. Let P̂ be the
uniform distribution over this Â. There exist y1, . . . , ys ∈ supp(P̂ ) such that for every 1 ≤ i ≤ s,
xi|Qi = yi|Qi . Finally, note that |supp(P̂ )| ≤ m.

The following lemma is a counterpart of Lemma 5.7 for the special case of one-sided error. It follows
from the same observation by Yao that a probabilistic algorithm can be viewed as a distribution
over deterministic algorithms, along with the observation that without loss of generality a one-sided
error algorithm rejects if and only if it finds a witness against the property.

Lemma 5.15 (Lower bounds by Yao’s principle for one-sided algorithms). Let P be a property, T
be a class of deterministic decision trees and let q > 0. Let D be a distribution over inputs that
always draws an input distribution that is ε-far from P.

Consider a decision tree T ∈ T , and let BT be the set of witnesses against P (that is, the set of
leaves, or runs, that are unreachable given any input P ∈ P). If PrR(T,D)[BT ] < 1

3 , for every T ∈ T
of size less than q, then every one-sided probabilistic algorithm for P conforming to T must make
at least q queries (with positive probability).

6 Superlinear lower-bound for non-adaptive 2-support test

We show an Ω(ε−1 log ε−1) lower bound for non-adaptive 2-support tests, even with two-sided
error. Generalizing the construction, we show a bound of Ω(ε−1 log ε−1) for m-support tests with
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any m ≥ 2 (note that a single f(ε) = Ω(ε−1 log ε−1) holds simultaneously for all m ≥ 2, rather than
having an implicit coefficient that depends on m), and a one-sided bound of Ω(ε−1 log ε−1 ·m).

Theorem 6.1. Every non-adaptive ε-test for Sm must make Ω(ε−1 log ε−1) queries, even if it has
two-sided error.

We prove this theorem in this section. To do so, we first define distributions over inputs (which are
in themselves distributions over {0, 1}n) and analyze them.

Definition 6.2 (Dt
no for ε). Draw α such that log2 α

−1 is uniform over {2, . . . ,
⌊
log2 ε

−1
⌋
− 2}.

Draw a set D ⊆ {1, . . . , n} such that for every 1 ≤ j ≤ n, Pr[j ∈ D] = 4α, independently. Then,
for every 1 ≤ k ≤ t, draw a set Ak ⊆ D such that for every j ∈ D, Pr[j ∈ Ak|j ∈ D] = 1

2 ,
independently. The resulting input is defined as the following distribution over {0, 1}n:

P :


0 with probability 1− 2α−1ε

1A1 with probability 2α−1ε/t
...

1At with probability 2α−1ε/t

Definition 6.3 (Dyes for ε). We simply define Dyes as D
1
no. An equivalent definition of Dyes is the

following: draw α such that log2 α
−1 is uniform over {2, . . . ,

⌊
log2 ε

−1
⌋
− 2}, and then draw a set

A ⊆ {1, . . . , n} such that for every 1 ≤ j ≤ n, Pr[j ∈ A] = 2α, independently. The resulting input
is defined as the following distribution over {0, 1}n:

P :

{
0 with probability 1− 2α−1ε

1A with probability 2α−1ε

First we show that Dt
no and Dyes can be used to demonstrate lower bounds for ε-testing Sm.

Trivially, Dyes draws a distribution in S2 (and hence Sm) with probability 1.

Observation 6.4. If a1, . . . , ak are non-negative integers, then
∑k

i=1 ⌊ai/2⌋ ≥
∑k

i=1 ai−k
2 .

Lemma 6.5. Let t ≥ 2 and P ∼ Dt
no. For sufficiently large n (as a function of t and ε) and

for every 1 ≤ m ≤ t, with probability at least 1 − 3
1000 , the distance of P from Sm is more than

(2− 2m−1
t )ε.

Moreover, P is ε-far from S2 with probability at least 1− 3
1000 , and for every t ≥ 3, P is ε-far from

S⌈t/2⌉ with this probability.

Proof. Let n > 480000ε−1t2(ln t+10). By the multiplicative Chernoff’s bound (Lemma A.3), every
individual event of one of the following forms happens with probability at least 1− 3

1000t2
:

•
(
4− 1

100t

)
αn < |D| <

(
4 + 1

100t

)
αn.

•
(
2− 1

100t

)
αn < |Ak| <

(
2 + 1

100t

)
αn, for every 1 ≤ k ≤ t.

•
(
2− 1

100t

)
αn < |Ak1∆Ak2 | <

(
2 + 1

100t

)
αn, for every 1 ≤ k1 < k2 ≤ t.
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By the union bound over
(
t
2

)
+ t+ 1 ≤ t2 events, with probability 1− 3

1000 , all of the above events
happen simultaneously.

Assume that this is the case, and consider a set A of size m. Let f : supp(P ) → A be a mapping
from every element in the support of P to a closest element in A (ties are broken arbitrarily).
By Lemma 5.12, f realizes the distance from P to a closest distribution supported by A, that is,
d(P, f(P )) = d(P,SA). Consider some a ∈ A. For every distinct u, v ∈ f−1(a), the contribution to
the distance is at least d(u, a) + d(v, a) ≥ d(u, v) >

(
2− 1

100t

)
α. The probability weight of u, v is

at least 2α−1ε/t individually, hence their contribution to the distance is more than
(
4− 1

50t

)
ε/t.

Considering
⌊
|f−1(a)|/2

⌋
disjoint pairs of elements in f−1(a), the contribution of f−1(a) elements

to the distance d(P,SA) is at least (4− 1
50t)

ε
t

⌊
|f−1(a)|/2

⌋
. Note that, since the domain of f consists

of t + 1 ≥ m elements, there exists some a for which |f−1(a)| ≥ 2. Summing over all a ∈ A we
have:

d(P,SA) >
(
4− 1

50t

)
ε

t

∑
a∈A

⌊
|f−1(a)|/2

⌋
≥
(∗)

(4− 1
50t)ε

t
·max

{
1,
|supp(P )| − |A|

2

}

= max

{
4− 1

50t

t
,

(
2− 1

100t

)
t+ 1−m

t

}
ε

≥ max

{
4− 1

50t

t
, 2− 2m− 1

t

}
ε ≥

(
2− 2m− 1

t

)
ε

The starred transition is implied by the existence of a non-singleton f -origin set (first bound) and
by Observation 6.4 (second bound). This holds for every A of size m, hence d(P,Sm) > (2− 2m−1

t )ε.

For the moreover part: observe that
(
2− 1

100t

)
t−m+2

t ≥ 1 for every t ≥ 3 and m ∈ {2, ⌈t/2⌉}.
Additionally, for t = 2 and m = 2, the coefficient

4− 1
50t
t is strictly greater than 1 as well.

We show that a non-adaptive algorithm that only uses q < 1
300ε

−1 log ε−1 queries cannot distinguish
Dt

no from Dyes with error smaller than 2
7 < 1

3 −
3

1000 , for every t ≥ 2 and sufficiently small ε (whose
bound is independent of t).

Proof of Theorem 6.1. Let Q be a query set of size q < 1
300ε

−1 log ε−1. Our Dno for this proof is
Dt

no with t = 2m (and Dyes = D1
no). By Lemma 6.5, a distribution that is drawn from D2m

no is ε-far
from Sm with probability 1− 3

1000 .

Let RQ be the following distribution over responses to the query set:

• Choose α such that logα−1 is uniform in {2, . . . ,
⌊
log ε−1

⌋
− 2}.

• Choose a set D ⊆ {1, . . . , n} such that for every 1 ≤ j ≤ n, Pr[j ∈ A] = 4α, independently.

• Choose a set S ⊆ {1, . . . , s} such that for every 1 ≤ i ≤ s, Pr[i ∈ S] = 2α−1ε, independently.

• The result is f : Q→ {0, 1}, where f(i, j) = 0 if i /∈ S or j /∈ D, and for every (i, j) ∈ S ×D,
Pr[f(i, j) = 1] = 1

2 , independently.
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We show that both R(Q,Dyes) and R(Q,Dno) are 1
7 -close to a distribution related to RQ, hence

they must be 2
7 -close to each other. By Yao’s method (Lemma 5.7), this means that there is no

non-adaptive ε-test for Sm making only q queries, as required.

Let B be the following bad event: there exists an index j ∈ D at which two (or more) non-zero
samples are queried. If B does not happen then the algorithm does not even have an opportunity to
compare those non-zero samples (which in mathematical terms means having the same distribution
over the query answers when conditioned on this event). In RQ, B is defined correspondingly as
the event that there exists j ∈ D, i1, i2 ∈ S (i1 ̸= i2) for which (i1, j), (i2, j) ∈ Q.

The rest of the proof has two parts: the first is proving that the probability of B is less than 1
3−

3
1000 ;

and the second is proving that Dno and Dyes are both identical to RQ when those are conditioned
on the negation of B.

We decompose Q by its indices. That is, Q =
⋃n

j=1(Sj × {j}), where Sj are the samples that the
algorithm queries at the j-th index. For every 2 ≤ ℓ ≤ q, let wℓ = |{1 ≤ j ≤ n : |Sj | = ℓ}| be the
number of indices that have exactly ℓ samples.

Consider some index j with ℓ samples. Given α, the probability to draw more than one non-
zero sample among these ℓ samples is bounded by min{1, (2α−1εℓ)2}. Note that the non-constant
expression is effective only when logα−1 ≤ log ε−1 − log ℓ− 1.

For every 1 ≤ j ≤ n, let Xj be an indicator for being queried in two (or more) non-zero samples, as
well as belonging to D. If Xj = 0, then the algorithm cannot distinguish between any two non-zero
samples using j-queries. Consider some index j with |Sj | = ℓ samples.

E[Xj ] = Pr[Xj = 1] =

⌊log ε−1⌋−2∑
a=2

Pr
[
α = 2−a

]
Pr
[
j ∈ D

∣∣α = 2−a
]
Pr
[
Xj = 1

∣∣α = 2−a, j ∈ D
]

≤ 1

⌊log ε−1⌋ − 3

⌊log ε−1⌋−2∑
a=2

4 · 2−amin{1, (2 · 2aεℓ)2}

=
1

⌊log ε−1⌋ − 3

⌊log ε−1−log ℓ⌋−1∑
a=2

4 · 2−a(2 · 2aεℓ)2 +
⌊log ε−1⌋−2∑

a=⌊log ε−1−log ℓ⌋

4 · 2−a


=

1

⌊log ε−1⌋ − 3


16ε2ℓ2

⌊log ε−1−log ℓ⌋−1∑
a=2

2a

+

4

⌊log ε−1⌋−2∑
a=⌊log ε−1−log ℓ⌋

2−a




≤ 1

⌊log ε−1⌋ − 3

((
16ε2ℓ2 · ε−1/ℓ

)
+ (4 · 2ℓε)

)
=

24εℓ

⌊log ε−1⌋ − 3

Let X be the number of indices that are queried in two (or more) non-zero samples, and also belong
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to D. Considering all indices, by linearity of expectation:

E[X] =
∑
ℓ

∑
j:|Sj |=ℓ

E[Xj ] ≤
∑
ℓ

24εℓ

⌊log ε−1⌋ − 3
wℓ

<
24ε

⌊log ε−1⌋ − 3
· 1

300
ε−1 log ε−1 =

2

25
· log ε−1

⌊log ε−1⌋ − 3
<

ε<2−12

1

7

To summarize the first part of the proof, Pr[B] = Pr[X ̸= 0] ≤ E[X] < 1
7 for ε < 2−12. Note that

at this point we showed a lower bound of Ω(ε−1 log ε−1) queries for a one-sided ε-test of Sm.

In the following we show that if B did not happen then R(Q,Dno) and R(Q,Dyes) are identical to
RQ conditioned on ¬B. Note that Dyes always draws a distribution in Sm, since S2 ⊆ Sm for every
m ≥ 2.

Consider the answer function of the run. For every query (i, j) ∈ Q, if the i-th sample is a zero
sample (that is, i /∈ S), then f(i, j) = 0. Additionally, if j /∈ D, then f(i, j) = 0 as well. For
(i, j) ∈ S × D, Pr[f(i, j) = 1|i ∈ S, j ∈ D] = Pr[(1Akj

)j = 1|j ∈ D] = 1
2 . Also, if B does not

happen, then for every (i, j) ̸= (i′, j′) that are both in S × D we must have j ̸= j′. Thus all the
“f(i, j)” events for Q ∩ (S ×D) are mutually independent, making the distribution of the answers
to the queries, when conditioned on ¬B, identical to RQ conditioned on ¬B.

The above argument holds for both Dyes and Dno, hence R(Q,Dyes) and R(Q,Dno) are 2
7 -close

to each other (since 2Pr[B] ≤ 2
7). Since Dno draws a distribution ε-far from Sm with probability

1 − 3
1000 , and Dyes always draws a distribution that belongs to Sm, every non-adaptive ε-test for

Sm must make at least Ω(ε−1 log ε−1) queries.

6.1 Composite lower bound for non-adaptive one-sided ε-tests of Sm
Theorem 6.6. Every one-sided non-adaptive ε-test of Sm must make Ω(ε−1m log ε−1) queries.

Proof. Without loss of generality, assume that m is divisible by 3. Our Dno for this proof is Dt
no

with t = 4
3m and ε̂ = 2ε. By Lemma 6.5, with probability 1− 3

1000 , Dno draws a distribution that
is (12 + 3

4m)ε̂-far from Sm, which is ε-far. For a bound against a one-sided test we will bound the
probability of finding a witness against Sm under this distribution (and then use Lemma 5.15), so
in particular there is no Dyes.

Let Q be a query set of size q < m
2000ε

−1 log ε−1 ≤ m
500 ε̂

−1 log ε̂−1 (for ε < 1
4). Fix two indices

1 ≤ k1 < k2 ≤ 4
3m. For every 1 ≤ j ≤ n, let Xj,k1,k2 be an indicator for having queries in two

(or more) samples in {1Ak1
, 1Ak2

}, as well as belonging to D. If Xj,k1,k2 = 0, then the algorithm
cannot distinguish between 1Ak1

and 1Ak2
using j-queries. Also, let Xk1,k2 =

∑n
j=1Xj,k1,k2 be the

number of indices that have an opportunity to distinguish between 1Ak1
and 1Ak2

(note that it is
similar to X in Theorem 6.1). Finally let Bk1,k2 be the event for Xk1,k2 > 0, and Yk1,k2 ∈ {0, 1} be
the indicator for Bk1,k2 .

Let G′ be the graph over {1, . . . , 43m} whose edges are defined by {Yk1,k2}1≤k1<k2≤ 4
3
m. The number

of edges in G′ is
∑

1≤k1<k2≤ 4
3
m Yk1,k2 . Observe that if Yk1,k2 = 1 then the algorithm has an

opportunity to distinguish between 1Ak1
-samples and 1Ak2

-samples, but it can still fail to do so.

19



Observe that the chromatic number of the contradiction graph (Definition 2.7) is bounded by the
chromatic number of G′ plus 1: given a coloring for G′, we can color every sample with the color
associated with its element in G′, using an additional distinct color for the zero vector (that has
no corresponding vertex in G′).

Consider some 1 ≤ k1 < k2 ≤ 4
3m and some index j of with ℓ samples. The probability to draw a

single sample in {1Ak1
, 1Ak2

} is 2 · (2α−1ε̂/(43m)) = 3α−1ε̂/m. The probability to draw more than

one sample in {1Ak1
, 1Ak2

} among these ℓ samples is bounded by min{1, (3α−1εℓ/m)2}. As in the
previous subsection, for every 2 ≤ ℓ ≤ q, let wℓ = |{1 ≤ j ≤ n : |Sj | = ℓ}| be the number of indices
that have exactly ℓ samples.

For convenience, let h = log ε̂−1 + logm− log ℓ.

E[Xj,k1,k2 ] = Pr[Xj,k1,k2 = 1]

=

⌊log ε̂−1⌋−2∑
a=2

Pr
[
α = 2−a

]
Pr
[
j ∈ D

∣∣α = 2−a
]
Pr
[
Xj,k1,k2 = 1

∣∣α = 2−a, j ∈ D
]

≤ 1

⌊log ε̂−1⌋ − 3

⌊log ε̂−1⌋−2∑
a=2

4 · 2−amin{1, (3 · 2aε̂ℓ/m)2}

=
1

⌊log ε̂−1⌋ − 3

⌊h−log 3⌋∑
a=2

4 · 2−a(3 · 2aε̂ℓ/m)2 +

⌊log ε̂−1⌋−2∑
a=⌊h−log 3⌋+1

4 · 2−a


=

1

⌊log ε̂−1⌋ − 3


 36

m2
ε̂2ℓ2

⌊h−log 3⌋∑
a=2

2a

+

4

⌊log ε̂−1⌋−2∑
a=⌊h−log 3⌋+1

2−a




≤ 1

⌊log ε̂−1⌋ − 3

((
36

m2
ε̂2ℓ2 · 2

3
ε̂−1m/ℓ

)
+

(
8

3
· ℓε̂/m

))
≤ 27ε̂ℓ

m(⌊log ε̂−1⌋ − 3)

Considering all indices,

E[Xk1,k2 ] =
∑
ℓ

∑
j:|Sj |=ℓ

E[Xj,k1,k2 ]

≤
∑
ℓ

27ε̂ℓ

m(⌊log ε̂−1⌋ − 3)
wℓ

<
27ε̂

m(⌊log ε̂−1⌋ − 3)
· m

500
ε̂−1 log ε̂−1 =

27

500
· log ε̂−1

⌊log ε̂−1⌋ − 3
<

1

16

(The last transition is correct for every sufficiently small ε̂). That is, Pr[Yk1,k2 = 1] = Pr[Bk1,k2 ] < 1
16

for every 1 ≤ k1 < k2 ≤ 4
3m.
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By linearity of expectation, the expected number of edges in the G′, is bounded by 1
16

(
4m/3

2

)
<

1
4

(
2m/3

2

)
. By Markov’s inequality, with probability at least 3

4 , G
′ has less than

(
2m/3

2

)
edges, hence

it is colorable using 2
3m colors. Recall that the chromatic number of the contradiction graph is

bounded by one plus the chromatic number of G′, giving at most 2
3m+ 1 ≤ m colors. In this case,

there is no witness against P ∈ Sm. The lower bound is then implied by Lemma 5.15.

7 Quasilinear non-adaptive one-sided m-support test

We show a one-sided non-adaptive ε-test algorithm for Sm using O(ε−1m log ε−1 logm) queries for
every m ≥ 2. Note that for every fixed constant ε this bound is tight, since in Section 10 we show
an Ω(m logm) lower bound. The bound is tight for every fixed constant m as well, since we have
a corresponding non-adaptive lower bound of Ω(ε−1 log ε−1).

Let ε > 0 and m ≥ 2. The algorithm looks for a set A for of size at least m+1 whose elements are
fully distinguishable using queries. The algorithm is defined for ε that is a power of 2 (for other

choices of ε, we can use ε̂ = 2−⌈log2 ε−1⌉ instead).

At first, the algorithm chooses I0 ⊆ I1 ⊆ · · · ⊆ Ilog ε−1 ⊆ {1, . . . , n}, where Ia consists of⌈
2a+2 log(m+ 1)

⌉
indices drawn uniformly and independently.

The algorithm takes 1+32ε−1m samples. Except for the first sample, they are partitioned into 2m
“blocks” of at most 16ε−1 samples each. For every 1 ≤ k ≤ 2m and 0 ≤ a ≤ log ε−1, the algorithm
takes a sequence Sa,k of 23−aε−1 new samples, and queries every sample in it at the indices of Ia.
The first sample is queried at the indices of Ilog ε−1 .

The algorithm rejects if there exists a distinguishable composition of size m+1 (which in particular
is also a witness against Sm). We formally define this term (and others) below.

Definition 7.1 (K-composition). For K ⊆ {1, . . . , 2m}, a sequence A = (u1, a2, u2, . . . , aℓ, uℓ) is
called a K-composition of length ℓ if u1 is the first sample and for every 2 ≤ i ≤ ℓ, 0 ≤ ai ≤ log ε−1

and ui ∈ Sai,ki (for some ki ∈ K). A {1, . . . , 2m}-composition is called a composition.

Definition 7.2 (Soundness of a K-composition). For some K, let A = (u1, a2, u2, . . . , aℓ, uℓ) be a
K-composition. We say that it is sound, if for every 1 ≤ i < j ≤ ℓ, d(ui, uj) > 2−aj−1.

In other words, a composition is sound if for every i, the choice of ai results in lower bound for
the distance of ui from all {u1, . . . , ui−1}. Note that the algorithm cannot be certain about the
soundness of a K-composition unless it makes Ω(εn) queries for every individual element in the
composition (which it does not).

Definition 7.3 (Monotonicity of a K-composition). For some K, let A = (u1, a2, u2, . . . , aℓ, uℓ) be
a K-composition. We say that it is monotone if a2 ≥ . . . ≥ aℓ.

Observe that the algorithm can easily verify the monotonicity of a K-composition.

Definition 7.4 (Distinguishability of aK-composition). For someK, let A = (u1, a2, u2, . . . , aℓ, uℓ)
be a K-composition. We say that it is distinguishable if, for every 1 ≤ i1 < i2 ≤ ℓ, there exists a
query j ∈ Iai1 ∩ Iai2 for which (ui1)j ̸= (ui2)j . For this definition, we set a1 = log ε−1 (since u1 is
the first sample and the algorithm queries it at Ilog ε−1).

21



In other words, a sequence is distinguishable if for every two samples in the composition, there
exists a common query that distinguishes them. Observe that the algorithm can always verify the
distinguishability of a K-composition.

Definition 7.5 (Valid composition). For some K, a K-composition is valid if it is both sound and
monotone.

Definition 7.6 (Rank of a monotone composition). Let A = (u1, a2, u2, . . . , aℓ, uℓ) be a monotone
K-composition (for some K). Its rank is defined as r⃗(A) = (a2, . . . , aℓ).

Definition 7.7 (Order of ranks). Ranks are ordered lexicographically as strings in {0, . . . , log ε−1}∗.
In particular, if r⃗(A1) is a proper prefix of r⃗(A2), then r⃗(A1) < r⃗(A2). That is, the “end-of-string”
virtual character is considered smaller than every actual character.

Algorithm 1 Non-adaptive construction of a valid composition

choose indices i1, . . . , i⌈4ε−1 log(m+1)⌉ uniformly and independently, with repetitions.
for 0 ≤ a ≤ log ε−1 do

let Ia = {i1, . . . , i⌈2a+2 log(m+1)⌉}.
take a sample u.
query u at Ilog ε−1 .
for k from 1 to 2m do

for a from 0 to log ε−1 do
take 23−aε−1 new samples, denoting the sequence by Sa,k.
query all samples in Sa,k at Ia.

if there exists a distinguishable composition of size m+ 1 then
return reject

else
return accept

Observation 7.8. For every composition A of length ℓ there exists some K ⊆ {1, . . . , 2m} of size
ℓ− 1 for which A is a K-composition.

Definition 7.9 (Bad events). For every 1 ≤ ℓ ≤ m and for every K ⊆ {1, . . . , 2m} of size
ℓ, let BK,ℓ be the following event: considering the maximum rank r⃗ of a valid K-composition
A = (u1, a2, u2, . . . , aℓ, uℓ) of length ℓ (for some a2, . . . , aℓ), there is no valid composition Ã (not
necessarily a K-composition) with r⃗(Ã) > r⃗(A) of size 2 ≤ ℓ′ ≤ ℓ+ 1.

Informally, BK,ℓ is the event that there exist some valid K-composition whose length is too short
and yet has the maximal rank among all valid compositions.

Lemma 7.10. Assume that for every 1 ≤ ℓ ≤ m and for every K ⊆ {1, . . . , 2m} of size ℓ, BK,ℓ

does not happen. Then there exists a valid composition of size m+ 1 or more.

Proof. Let A be a valid composition with the maximal rank among all valid compositions (A is
not necessarily unique). Let K ⊆ {1, . . . , 2m} be the set of blocks that contain the elements of A
(|K| ≤ |A|). If |A| ≤ m, then by maximality, BK,|A| must have happened. Since we assumed that
it has not, the length of |A| must be at least m+ 1.
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Lemma 7.11. If the input distribution is ε-far from Sm, then for every 1 ≤ ℓ ≤ m and K ⊆
{1, . . . , 2m} of size ℓ, Pr[BK,ℓ] ≤ e−4m.

Proof. Let A be a valid K-composition of maximum rank. There are at least 2m− |K| ≥ m blocks
that are entirely free from the conditions on A. For every k ∈ {1, . . . , 2m} \ K, and for every
0 ≤ a ≤ log ε−1, the expected number of samples in Sa,k that are 2−a−1-far from all elements A is
at least

Pr
[
2−a−1 < d(x,A) ≤ 2−a

]
· 23−aε−1 ≥ 2acAa · 8 · 2−aε−1 = 8ε−1cAa

Where cAa is a short notation for Ct[d(x,A)|2−a−1 < d(x,A) ≤ 2−a].

Considering all possible values for a in the same block, the expected number of these “matches” is
at least

log ε−1∑
a=0

8ε−1cAa = 8ε−1Ct

[
d(x,A)

∣∣∣∣d(x,A) > 1

2
ε

]
≥ 8ε−1

(
E[d(x,A)]− 1

2
ε

)
> 8ε−1 · 1

2
ε = 4

Considering all k ∈ {1, . . . , 2m} \ K as well (at least m of them), the expected number of these
matches is at least 4m. This is a sum of independent binomial variables, hence by Lemma A.1
the probability that there are no matches at all is bounded by e−4m. That is, with probability
at least 1 − e−4m, there exist a ∈ {0, . . . , log ε−1}, k ∈ {1, . . . , 2m} \ K and v ∈ Sa,k for which
d(v, {u1, . . . , uℓ}) > 2−a−1. Consider the valid composition: Ã = (u1, a2, u2, . . . , ai0 , ui0 , a, v), where
i0 = max({1} ∪ {i|ai ≥ a}) (possibly i0 = 1, and in this case Ã = (u1, a, v)). Comparing the ranks,

r⃗(A) = (a2, . . . , ai0 ,ai0+1, . . .) < (a2, . . . , ai0 ,a) = r⃗(Ã)

Note that possibly also i0 = ℓ, and in this case ai0+1 is the virtual “end-of-string” character that
is defined as smaller than every value of a. Hence in all cases r⃗(Ã) > r⃗(A) as desired.

Theorem 7.12. Algorithm 1 is a one-sided ε-test of Sm that makes O(ε−1 log ε−1 ·m logm) queries.

Proof. For the query complexity, note that for every 1 ≤ k ≤ 2m and for every 0 ≤ a ≤ log ε−1,
the algorithm makes

⌈
23−aε−1

⌉
·
⌈
2a+2 log(m+ 1)

⌉
= O(ε−1 logm) queries inside Sa,k. Since the

number of pairs of (a, k) is O(m log ε−1), the query complexity is O(ε−1 log ε−1 ·m logm).

Perfect completeness is trivial, since a distinguishable composition of length m+ 1 is in particular
an explicit witness against Sm. For soundness, recall Lemma 7.10. If none of the bad events BK,ℓ

happens, then there exists a valid composition A of size m+ 1. If the input is ε-far from Sm, then
by the union bound (of the complement events), the probability for this is at least

1−
m∑
ℓ=1

·
(
2m

ℓ

)
· e−4m ≥ 1− 22me−4m >

99

100
for m ≥ 2

Hence, with probability 99
100 , there exists a valid composition A of size m+ 1.

Assume that this happens with some valid composition A = (u1, a2, u2, . . . , am+1, um+1). Set
a1 = log ε−1 for convenience.

By the constraints of A, for every 1 ≤ i < j ≤ m+ 1:

23



• d(ui, uj) > 2−aj−1.

• ui is queried in Iai ⊇ Iaj .

• uj is queried in Iaj .

The probability that Iaj distinguishes ui and uj is at least 1 − (1 − 2−aj−1)⌈2
aj+2 log(m+1)⌉ >

1 − e−2 log(m+1). The probability that this happens for every 1 ≤ i < j ≤ m + 1 is at least
1−
(
m+1
2

)
e−2 log(m+1), which is at least 5

6 (for m ≥ 2). Overall, with probability at least 99
100 ·

5
6 > 2

3 ,
there exists a valid composition A of size m+ 1 which is also distinguishable, and in this case the
algorithm rejects.

8 The fishing expedition paradigm

We construct and prove here the algorithm for the fishing expedition paradigm, Lemma 2.6.

The algorithm has three parameters: a threshold p, a confidence q and a goal k ≥ 1. The input
is a subroutine A with diminishing returns and fail stability. Informally, the goal of the algorithm
is to have k successful executions of A, but also to terminate earlier if the probability of A to
succeed becomes lower than p. Since the algorithm has no actual access to the success probability
of A, it should terminate early only if it is confident enough that the success probability of further
executions is too low for them to be effective.

In this section we construct the fishing expedition paradigm providing Lemma 2.6. The algorithm
providing it is Algorithm 2. The observations and lemmas below show that this algorithm satisfies
the corresponding components of Lemma 2.6.

Algorithm 2 repeatedly executes A. Of course, if A was successful for the k-th time, the algorithm
terminates immediately. At some predefined check points (which are determined by p, q and k),
the algorithm considers an early termination. Concretely, for tmax = ⌊log k + 1⌋ and for every
2 ≤ t ≤ tmax, after

⌈
p−1 ·max{2t, 5(log q−1 + log(log k + 2))}

⌉
executions of A, the algorithm

terminates if the number of successful executions was less than a 1
2p-portion of the total number

of executions. The algorithm must terminate in one of these iterations, as stated in the following
observation.

Observation 8.1. If Algorithm 2 has not terminated by the tmax-th iteration, it must do so there.

Proof. Note that Ntmax = N⌊log k+1⌋ ≥
⌈
p−12⌊log k+2⌋⌉ ≥ p−12log k+1 = 2p−1k. That is, at the end

of the tmax-th iteration, if H < k then H < 1
2pNtmax and the iteration must terminate.

For every N ≥ 0, let HN be the value of H after the N -th execution (that is, HN =
∑N

i=1Xi).

Lemma 8.2. Algorithm 2 always terminates with N ≤ p−1(4H + 5(log q−1 + log(log k + 1))) + 1.

Proof. If the algorithm terminates in the first iteration (t = 2), then

N ≤ N2 =
⌈
p−1max{22, 5(log q−1 + log(log k + 2))}

⌉
≤ 5p−1(log q−1 + log(log k + 2)) + 1
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Algorithm 2 Fishing expedition

parameters k ≥ 1 (goal), p > 0 (threshold), q > 0 (confidence).
input A subroutine A with output, given as a black box, where the output “0” means fail.
let tmax ← ⌊log k + 1⌋.
let N1 ← 0.
set H ← 0.
for t from 2 to tmax do

let Nt ←
⌈
p−1max{2t, 5(log q−1 + log(log k + 1))}

⌉
.

for N from Nt−1 + 1 to Nt do ▷ possibly empty
run A, let RN be its outcome.
let XN be an indicator for success (XN = 1 if RN ∈ G, otherwise XN = 0).
set H ← H +XN .
if H = k then terminate with N . ▷ goal is reached

if H < 1
2pNt then

terminate with Nt. ▷ continuing is ineffective

unreachable point ▷ Observation 8.1.

In terminations outside the first iteration, observe that Nt ≤ 2Nt−1. Since the algorithm did not
terminate in the previous iteration, HNt−1 ≥ 1

2pNt−1 ≥ 1
4pNt. Since HNt ≥ HNt−1 as well, we have

HNt ≥ 1
4pNt and thus Nt ≤ 4p−1HNt .

By Observation 8.1, the algorithm must have terminated in one of the iterations. This completes
the proof.

Lemma 8.3. Let p > 0, q > 0, k ≥ 1, and let A be a subroutine with diminishing returns and fail
stability. Let N be the number of executions of A done by Algorithm 2 and let H be the number
of successful executions. Let p̂ = Pr[XNt+1 = 1|R1, . . . , RNt ] be the probability that an additional,
hypothetical execution of A is successful (note that p̂ is a random variable that depends on the
outcomes of the N executions of A). In this setting, with probability higher than 1 − q, H = k or
p̂ ≤ p (or both).

Proof. Consider the following equivalent algorithm: we simulate Algorithm 2, but ignore the ter-
mination requests. When reaching what was the “unreachable point”, we stop and choose the
output (N,H) according to the first termination request. Clearly, this algorithm always returns
the same N , H as would be in a run of Algorithm 2 for the same outcome sequence, but it is
non-adaptive (more precisely, it always makes Ntmax executions of A regardless of their outcomes
and then chooses the output).

For every 0 ≤ n ≤ Ntmax , let Hn =
∑n

i=1Xi. For every 2 ≤ t ≤ tmax, let Bt be the following bad
event: (HNt < k) ∧ (HNt < 1

2pNt) ∧ (Pr[XN+1 = 1|R1, . . . , RN ] ≥ p). Note that if no bad event
happens, then the output satisfies H ≥ k or Pr[XNt+1 = 1|R1, . . . , RNt ] < p. We will use a variant
of Chernoff’s bound that is proved in the appendix (Lemma A.4) to bound the probabilities of the
bad events.

Let G = {(R1, . . . , RN ) ∈ supp(R1, . . . , RN ) : |{Ri ̸= 0}| ≥ k ∨ Pr[RN+1 ̸= 0|R1, . . . , RN ] < p} be
the set of outcome sequences where a termination would be justifiable (note that it is not exactly the
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same as the set of termination conditions). Note that if (R1, . . . , RN−1) ∈ G, then (R1, . . . , RN ) ∈ G
as well, since the number of non-zero elements cannot decrease and the probability of the next trial
cannot increase.

For every 2 ≤ t ≤ tmax, by Lemma A.4, for δ = 1
2 , m = Nt and X = HNt

Pr[Bt] = Pr

[
(HNt < k) ∧ (HNt <

1

2
pNt) ∧ (Pr [RNt+1 /∈ G|R1, . . . , RNt)] ≥ p

]
= Pr

[
((R1, . . . , RNt) /∈ G) ∧ (HNt <

1

2
pNt)

]
< (

√
2/e)pNt ≤ 0.86pNt ≤ 0.865(log q

−1+log(log k+2)) < 0.5log q
−1+log(log k+2) =

q

log k + 2

By the union bound, Pr[
∨tmax

t=2 Bt] < ⌊log k + 2⌋· q
log k+2 ≤ q. With probability greater than 1−q, no

bad event happens, and the algorithm terminates withH ≥ k or Pr [RN+1 /∈ G|R1, . . . , RN ] < p.

At this point we can prove the fishing expedition lemma.

Proof of Lemma 2.6. This lemma follows immediately from Lemma 8.2 (number of executions) and
Lemma 8.3 (the algorithm reaches one of its goals with probability at least 1− q).

9 Adaptive m-support test

We construct here an adaptive one-sided error algorithm using O(ε−1m logm ·min{log ε−1, logm})
many queries.

The advantage of being adaptive The non-adaptive algorithm considers Ω(log ε−1) buckets
of distance ranges at the cost of Ω(ε−1 ·m logm) queries per bucket, and we believe that we cannot
do much better (the Ω(log ε−1) buckets are required according to the non-adaptive lower bound,
and the Ω(ε−1m logm) queries per bucket are required according to the adaptive lower-bound in
Section 10). For ε < 1

m , the number of distance buckets is more than logm+ 1.

An adaptive algorithm can do better. Initially, we consider logm + 1 distance buckets. Then,
using a decision tree constructed incrementally as more distinct elements are found, we avoid the
need to consider the rest of the buckets. In particular, the “far buckets” phase is the bottleneck
of the algorithm (Θ(m3 logm+ ε−1m log2m) queries), where the second phase is extremely cheap:
O(ε−1m) queries, below the lower bound for adaptive algorithms (see Section 10). This means that
further improvements of the query complexity must address the first phase (which only considers
distinct elements that are 1

2m -far from each other). We later get rid of the Θ(m3 logm) term by
using the non-adaptive algorithm when ε is too large.

9.1 Additional building blocks

The “fishing expedition” paradigm (Algorithm 2) is an important building block in our algorithm.
Here we define some additional algorithmic building blocks.
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Building Block 9.1 (Using a decision tree). Let A = {x1, . . . , xk} be a set of k distinct strings, and
let T be a query-based decision tree with exactly k leaves, such that every string in A corresponds
to a different leaf in T . For every input string x, we can algorithmically find an 1 ≤ i ≤ k such
that T (x) = T (xi). The number of queries made by this procedure is bounded by the height of T .

Proof. Trivially, start at the root and follow the path according to the queries and the answers of
x to these queries. At some point we reach a leaf. This leaf must correspond to some xi ∈ A, since
T has exactly k leaves and they fully distinguish the k elements in A.

Building Block 9.2 (Updating a decision tree). Let T be a decision tree with k leaves that fully
distinguishes A = {x1, . . . , xk}. Given a string x, an i for which T (x) = T (xi), and an index j for
which x|j ̸= xi|j , we can algorithmically construct a decision tree T ′ with k + 1 leaves that fully
distinguishes A′ = {x1, . . . , xk, x}, at the cost of no additional queries.

Proof. Just substitute the leaf T (xi) by an internal node consisting of the query j and two children
x and xi.

Building Block 9.3 (Construction of a decision tree). Let A = {x1, . . . , xk} be a distinguishable
set of strings, that is, for every 1 ≤ i1 < i2 ≤ k, there exists an index j at which both xi1 ,
xi2 were queried and (xi1)j ̸= (xi2)j . We can construct a decision tree T with exactly k leaves
that distinguishes all x1, . . . , xk, at the cost of at most k2 queries. Moreover, at the end of the
construction, for every 1 ≤ i ≤ k, every xi was queried at all indices in the search path of xi in T .

Proof. For k = 1 it is trivial. For k > 1, consider A′ = {x1, . . . , xk−1} and construct a decision tree
T ′ with k−1 leaves distinguishing x1, . . . , xk−1 at the cost of at most (k−1)2 queries. Use Building
Block 9.1 (using a decision tree) to find 1 ≤ i ≤ k − 1 for which T ′(xk) = T ′(xi), at the cost of
at most k − 1 queries (note that these additional queries are only done in xk). According to the
statement, there exists some index j at which both xi and xk were queried, and (xi)j ̸= (xk)j . Use
Building Block 9.2 (updating a decision tree) to insert xk to the tree at the cost of no additional
queries.

We used at most (k− 1)2 queries to construct T ′ and at most k− 1 additional queries to insert xk
to it. The total number of queries is at most k2, as required.

9.2 The algorithm

If ε ≥ 1
m2 then we just execute Algorithm 1. The query complexity of the algorithm is O(ε−1 log ε−1·

m logm) in this case, and it is the same as O(ε−1m logm · min{log ε−1, logm}) since log ε−1 ≤
logm2 ≤ 2 logm = O(logm). If ε < 1

m2 , then we use the adaptive algorithm below.

For ε < 1
m2 , the algorithm consists of two phases: the first one is intended to find distinct samples

that are 1
2m -far from each other, and the second one uses a decision tree to reduce the number of

queries required to find additional distinct elements that are 1
2m -close to those already found.
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Batches Assume that we know (or guess) that Pr[d(x,A) > α] > α−1ε
logm . If we draw O(αε−1 logm)

samples, then with high probability there is a sample Y that is α-far from A. In this case, a set
of O(α−1 logm) indices should distinguish Y from all X ∈ A. That is, under this assumption, we
can find an additional distinct element with probability greater than some global positive constant.
This subroutine is called a batch.

For every 0 ≤ a ≤ ⌈logm⌉, we deploy a batch for which α = O(2aε). Concretely, every a-batch
chooses a set J of

⌈
2a+2 logm

⌉
indices (uniformly and independently) and queries all samples in A

at the indices of J . Then it draws additional
⌈
22−aε−1 logm

⌉
samples and queries all of them at

the indices of J . If there exists a sample Y for which Y |J ̸= X|J for every X ∈ A, the batch is
considered successful, and we add Y to A.

Algorithm 3a Adaptive one-sided ε-test for Sm, a single batch

parameters ε > 0, A, m ≥ 2, 0 ≤ a ≤ ⌈logm⌉ where |A| ≤ m.
input A distribution P .
choose a set J of

⌈
2a+2 logm

⌉
indices uniformly and independently.

query X at J for every X ∈ A.
take

⌈
22−aε−1 logm

⌉
samples.

query each new sample at J .
if there exists a sample Y for which Y |J ̸= XJ for every X ∈ A then

set A← A ∪ {Y }.
return success with (Y, J).

else
return fail

Observation 9.4. Algorithm 3a has diminishing returns and fail stability as per Definition 2.4
and Definition 2.5, where for formality’s sake we use some fixed mapping of the set of possible
non-failing output values to distinct positive natural numbers.

Lemma 9.5. Algorithm 3a uses O(m2 logm + ε−1 log2m) queries, and if Pr[d(x,A) > 2−a−1] >
2aε

4 logm , then the success probability of Algorithm 3a is at least 1
3 .

Proof. The query complexity of Algorithm 3a is (|A|+
⌈
2−aε−1 logm

⌉
)|J | ≤ (m+ 2−aε−1 logm+

1)(2a logm+ 1) = O(m2 logm+ ε−1 log2m) (since a ≤ logm+ 1).

If Pr[d(x,A) > 2−a−1] > 2aε
4 logm , then the expected number of samples 2−a−1-far from A within the

new
⌈
22−aε−1 logm

⌉
samples is at least 1. Hence the probability that there is at least one them is

at least 1− e−1 > 3
5 (by Lemma A.1).

If this happens, let Y be such a sample. With probability at least 1−m(1− 2−a−1)2
a+2 logm > 7

10 ,
Y |J ̸= X|J for every X ∈ A. Overall, the probability to have a sample Y for which Y |J ̸= X|J for
all X ∈ A is at least 3

5 ·
7
10 > 1

3 .

The first phase The batches are not standalone, since they must have some parameter a. The
first phase of the algorithm consists of ⌈logm⌉+ 1 iterations. For every 0 ≤ a ≤ ⌈logm⌉, the a-th
iteration consists of batches with parameter a. To make sure that the batches are only executed
when it is cost-effective, we use the “fishing expedition” paradigm (Algorithm 2).
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Algorithm 3b Adaptive one-sided ε-test for Sm, first phase
parameters ε > 0, m ≥ 2.
input A distribution P , a non-empty set A ⊆ supp(P ) of distinguishable elements.
for a from 0 to ⌈logm⌉ do

let ka = m+ 1− |A|.
run Algorithm 2 (“fishing expedition”) with parameters k = ka, q = 1

4⌈logm+1⌉ , p = 1
3 ,

input A = Algorithm 3a (a single batch).
if |A| ≥ m+ 1 then

return reject
Proceed to the second phase with the altered A.

Lemma 9.6. Algorithm 3b makes O(m3 logm+ ε−1m log2m) queries. With probability at least 3
4 ,

either |A| ≥ m+ 1 or Ct[d(x,A)|d(x,A) > 1
2m ] ≤ 1

2ε.

Proof. For every 0 ≤ a ≤ ⌈logm⌉, let Ha be the number of successful executions of Algorithm 3a
within the a-th iteration. Also, let Na be the total number of executions. Lemma 8.2 guarantees
that

Na ≤ 3 (4Ha + 5 (log (4⌈logm+ 1⌉) + log (logm+ 2))) + 1 ≤ 12Ha +O(logm)

Note that
∑⌈logm⌉

a=0 Ha ≤ |A| − 1, where the bound is achieved when the initial A is a singleton.

Either |A| ≥ m+ 1 or
∑⌈logm⌉

a=0 Ha < m. Considering all iterations,

⌈logm⌉∑
a=0

Na ≤ 12

⌈logm⌉∑
a=0

Ha + (⌈logm⌉+ 1)O(logm)

< 12m+O(log2m) = O(m)

Every call to Algorithm 3a makes at most O(m2 logm+ε−1 log2m) queries, hence the total number
of queries is O(m3 logm+ ε−1m log2m).

For every 0 ≤ a ≤ ⌈logm⌉, by Lemma 8.3, with probability at least 1− 1
4⌈logm+1⌉ , either Ha = ka

or the probability to find an additional distinct element is less than 1
3 . In the first case, |A| = m+1

at the end of the iteration (since ka = m + 1 − |A|, considering the size of A at the beginning of
the iteration). In the second case, Pr[d(x,A) > 2−a−1] ≤ 2aε

4 logm (by Lemma 9.5).

With probability at least 1 − ⌈logm⌉+1
4⌈logm+1⌉ = 3

4 , this happens for all values of a. That is, either

|A| ≥ m + 1 (once) or Pr[d(x,A) > 2−a−1] ≤ 2aε
4 logm for all 0 ≤ a ≤ ⌈logm⌉. In the first case we
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reject, and in the second case,

Ct

[
d(x,A)|d(x,A) > 1

2m

]
≤

⌈logm⌉∑
a=0

2−a Pr[2−a−1 < d(x,A) ≤ 2−a]

≤
⌈logm⌉∑
a=0

2−a Pr[d(x,A) > 2−a−1]

≤
⌈logm⌉∑
a=0

2−a · 2aε

4 logm
=
⌈logm⌉+ 1

4 logm
ε ≤ 1

2
ε

The second phase The second phase of the algorithm handles the case where |A| ≤ m and
also Ct[d(x,A)|d(x,A) ≥ 1

2m ] ≤ 1
2ε. If the input distribution is ε-far from being supported by any

subset of A, the contribution of “small distances”, Ct[d(x,A)|d(x,A) < 1
2m ], is strictly greater than

1
2ε.

First, we construct a decision tree T for the elements in A, according to Building Block 9.3, at
the cost of at most m2 queries. After the decision tree is constructed, the algorithm is iterative.
It tracks a set A = {X0, . . . , X|A|−1} of distinguishable samples (initialized with the A supplied by
the first phase) and a decision tree T with |A| leaves corresponding to A’s elements.

In every iteration, the algorithm draws a new sample Y ∼ P and executes the decision tree T on
Y , resulting in an index 0 ≤ i ≤ |A| − 1 for which T (Y ) = T (Xi). Then it queries both Xi and Y
at a brand new query set J of size m. If Y is 1

2m -close to A, then with probability proportional to
the distance, Y |J ̸= Xi|J . If this happens, then we add Y to A and to the decision tree.

Algorithm 3c Adaptive one-sided ε-test for Sm, a single iteration of the second phase

input A sample Y ∈ supp(P ), A ⊆ supp(P ), a decision tree T ; |A| ≥ 1.
invariant T has |A| leaves corresponding to A’s elements.
choose a set J of min{n,m} indices uniformly, independently, without repetitions.
let X ∈ A for which T (Y ) = T (X). ▷ Building Block 9.1
query X,Y at J .
if Y |J ̸= X|J then

set A← A ∪ {Y }.
add Y to T . ▷ Building Block 9.2, no extra queries

Lemma 9.7. Algorithm 3c makes at most 3m queries and keeps its invariants. If A contains the
set obtained as a result of a run of Algorithm 3b and |A| ≤ m, the input distribution P is ε-far from
Sm and Y was unconditionally drawn from P , then the algorithm adds Y to A with probability at
least 1

4mε.

Proof. Observe that choosing J without repetitions cannot decrease the probability that Y |J ̸= X|J ,
since we could draw J uniformly with repetitions and then drop the repeated indexes and draw
new ones instead, which have additional opportunity to find a difference. If n ≤ m then we fully
query X and Y , and otherwise we proceed with the analysis using m < n and |J | = m.
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By assumption, there exists some Â ⊆ A of size at most m for which Ct[d(x, Â)|d(x, Â) > 1
2m ] ≤ 1

2ε

(Â is the output of the first phase). Since A contains Â, Ct[d(x,A)|d(x,A) > 1
2m ] ≤ 1

2ε as well.
Since |A| ≤ m, E[d(x,A)] ≥ d(P,Sm) > ε, and Ct[d(x,A)|d(x,A) ≤ 1

2m ] > 1
2ε.

For every Y ∈ supp(P ), consider X(Y ) ∈ A for which T (Y ) = T (X(Y )). For a sample Y drawn
from P , the probability to distinguish between X(Y ) and Y is:

Pr
Y∼P

[Y |J ̸= X|J ] ≥ E
Y∼P

[
1− (1− d (Y,X(Y )))|J |

]
≥ E

Y∼P

[
1− (1− d (Y,A))|J |

]
≥ Ct

Y∼P

[
1− (1− d(Y,A))|J |

∣∣∣∣d(Y,A) ≤ 1

2m

]
= Ct

Y∼P

[
1− (1− d(Y,A))m

∣∣∣∣d(Y,A) ≤ 1

2m

]
(∗) ≥ 1

2
m Ct

Y∼P

[
d(Y,A)

∣∣∣∣d(Y,A) ≤ 1

2m

]
>

1

4
mε

The starred transition is correct since 1− (1− t)m ≥ 1
2mt for every for 0 ≤ t ≤ 1

2m .

If the algorithm distinguishes between Y and X(Y ), then the invariant is kept by the constraints
of Building Block 9.2. If the algorithm fails to distinguish between Y and X(Y ), then the invariant
is kept trivially.

Algorithm 3d Adaptive one-sided ε-test for Sm
input A distribution P .
if ε ≥ 1

m2 then
run Algorithm 1 and return its answer.

take the first sample u.
set A← {u}.
run Algorithm 3b (possibly modifying A, possibly rejecting).
construct a decision tree T based on A. ▷ Building Block 9.3
invariant T has |A| leaves corresponding to A’s elements.
for

⌈
48ε−1

⌉
times do

draw another sample Y .
run Algorithm 3c with (Y,A, T ) (note that A, T may have been modified).
if |A| ≥ m+ 1 then

return reject
return accept

Theorem 9.8. Algorithm 3d is a one-sided ε-test of Sm using O(ε−1m logm ·min{log ε−1, logm})
many queries.

Proof. If ε ≥ 1
m2 then the correctness is implied by Theorem 7.12, and the query complexity is

O(ε−1 log ε−1 ·m logm). Since ε ≥ 1
m2 , log ε

−1 ≤ 2 logm and the query complexity is bounded by
O(ε−1m logm ·min{log ε−1, logm}).
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If ε < 1
m2 , the query complexity of the first phase is O(m3 logm+ ε−1m log2m) (Lemma 9.6). The

query complexity of constructing T for the first time (between the phases) is m2 queries, which is
at most ε−1 since ε < 1

m2 . The query complexity of the second phase is O(ε−1) · 3m = O(ε−1m)

(Lemma 9.7). Overall, the query complexity of the algorithm is O(m3 logm+ ε−1m log2m). Since
m2 < ε−1, m3 < ε−1m and thus the query complexity is bounded by O(ε−1m log2m). Since
logm ≤ log ε−1, it is bounded by O(ε−1m logm ·min{log ε−1, logm}) as well.

Perfect completeness is trivial, since the algorithm rejects only if |A| ≥ m+1, where |A| is a set of
fully distinguishable samples.

For soundness, consider an input distribution P that is ε-far from Sm.

By Lemma 9.6, with probability 3
4 , either |A| ≥ m + 1 or Ct

[
d(x,A)|d(x,A) > 1

2m

]
≤ 1

2ε. In the
first case the algorithm rejects immediately. Otherwise, we analyze the second phase.

Assume that the second phase of the algorithm had infinitely many iterations. By Lemma 9.7, as
long as |A| ≤ m, every iteration of the second phase extends A with probability at least 1

4mε. The
number of iterations until A has m+1 elements is a sum of at most m geometric random variables,
each having success probability at least 1

4mε. The expected number of iterations until A has m+1
elements is thus bounded by m · 4ε−1/m = 4ε−1. By Markov’s inequality, with probability at least
11
12 , this number of iterations is at most 48ε−1.

To conclude: with probability at least 3
4 , there exists a distinguishable set A for which |A| ≥ m+1

or Ct[d(x,A)|d(x,A) > 1
2m ] ≤ 1

2ε. In the first case the algorithm rejects the input immediately,
and in the second case, with probability at least 11

12 , the algorithm rejects the input within the first⌈
48ε−1

⌉
samples of the second phase. Overall, the probability to reject an ε-far input is at least

3
4 ·

11
12 > 2

3 .

10 Superlinear lower-bound for one-sided adaptive m-support test

10.1 Lower bound on the size of witnesses against Sm
We show that every witness against Sm must be of size at least Ω(m logm), hence every one-sided ε-
test algorithm for Sm must use Ω(m logm) queries as well. We use this to show an Ω(ε−1m logm)
lower bound for non-adaptive algorithms, and after a short discussion we extend this result to
adaptive algorithms as well.

Definition 10.1 (Capacity of an edge cover). Let G be a graph over a set V vertices and let
G = (G1, . . . , Gk) be a sequence of graphs over V1, . . . , Vk ⊆ V such that G =

⋃k
i=1Gi. We define

the capacity of G as cap(G) =
∑k

i=1 |Vk|.

The following observation follows directly from the definition of capacity.

Observation 10.2. Let P be a distribution over {0, 1}n, x1, . . . , xs ∈ supp(P ) be a set of samples
and Q ⊆ {1, . . . , s} × {1, . . . , n} be a query set. Let S1, . . . , Sn be the index-specific query sets, that
is, Q =

⋃n
j=1(Sj × {j}). In other words, for every j, all samples in Sj are queried at the index

j. Let G = (G1, . . . , Gn) be the edge cover of the contradiction graph (Definition 2.7) implied by
(x1, . . . , xs;Q): for every 1 ≤ j ≤ n, Gj is the complete bipartite graph whose vertices are Sj and
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the sides are:

Lj = {i ∈ Sj |(xi)j = 0}, Rj = {i ∈ Sj |(xi)j = 1}

In this setting, cap(G) = |Q|.

Lemma 10.3 ([Han64, KS67, Alo23]). Let V be a set of vertices, and let G = (G1, . . . , Gk) be an
edge cover of the V -clique such that all graphs G1, . . . , Gk are bipartite. Then cap(G) ≥ |V | log2 |V |.

Lemma 10.4. Let G be a graph over a set V of vertices that is not m-colorable, and let G =
(G1, . . . , Gk) be an edge cover of G such that all graphs G1, . . . , Gk are bipartite. Then cap(G) ≥
(m+ 1) log2(m+ 1).

Proof. Without loss of generality we assume that G is exactly m + 1-colorable (otherwise we can
just omit vertices one by one until it is). Let U1, . . . , Um+1 be a coloring of G using m + 1 colors
(that is, Ui is an independent set for every 1 ≤ i ≤ m+ 1 and

⋃m+1
i=1 Ui = V ).

Let Ĝ be a graph over {1, . . . ,m+1} such that the edge {i, j} exists if and only if there is an edge
between a vertex in Ui and a vertex in Uj . We define the edge cover Ĝ = (Ĝ1, . . . , Ĝk) similarly:
the vertex i belongs to Ĝj if some vertex in Ui belongs to Gj . Note that the sides are implied since
all vertices of Ui must be on the same side. Note that cap(Ĝ) ≤ cap(G), since every vertex in Ĝ
represents a (disjoint) set of vertices in G.

Observe that Ĝ must be a clique: if an edge {i, j} is missing, then Ui ∪ Uj is an independent
set and hence G is m-colorable. Hence Ĝ is an edge cover of m + 1-clique using bipartite graphs,
and by Lemma 10.3 its capacity must be at least (m + 1) log2(m + 1). Hence cap(G) ≥ cap(Ĝ) ≥
(m+ 1) log2(m+ 1).

Proposition 10.5. Every witness against belonging to Sm must be at least m log2m-bits long. In
particular, every one-sided ε-testing algorithm for Sm must make at least m log2m queries.

Proof. By Lemma 5.14, there exists a witness against Sm if and only if the contradiction graph
is not m-colorable. By Lemma 10.4, the capacity of every bipartite cover of the contradiction
graph is at least (m+1) log2(m+1). By Observation 10.2, the number of queries must be at least
(m+ 1) log2(m+ 1) as well.

10.2 An improved bound for non-adaptive algorithms

The lower bound on the size of a witness implies a trivial bound of Ω(m logm) queries for every
one-sided ε-test of Sm for any 0 < ε < 1. To extend this result to a slightly better Ω(ε−1m logm)
bound for non-adaptive algorithms, we first need the following almost-trivial observation.

Observation 10.6. Let G be a graph over V = V0 ∪ V1 (where V0 ∩ V1 = ∅). If the subgraph of G
induced by V1 is k-colorable, then G is (|V0|+ k)-colorable.

Based on this observation we can improve the Ω(m logm) bound for non-adaptive algorithms.

Proposition 10.7. Every one-sided non-adaptive ε-testing algorithm for Sm must make at least
Ω(ε−1m logm) many queries.
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Proof. Consider the following Dno distribution: first, we choose a1, . . . , a2m ∼ {0, 1}n uniformly
and independently, and then we return

P ∼

{
0 with probability 1− 10ε

ai with probability 5ε
m , 1 ≤ i ≤ 2m

With probability 1− o(1), all ais are 0.49-far from each other and from the zero vector, hence the
distance of P from Sm is at least 0.24 ·m · 5εm > ε.

Let Q be a query set with |Q| < 1
100ε

−1m log2m queries over s samples. For every 1 ≤ i ≤ s, let qi
be the number of queries in the i-th sample. Note that q =

∑s
i=1 qi, by definition. This is where we

use the assumption that the algorithm is non-adaptive, since q1, . . . , qs may not be pre-determined
for adaptive algorithms.

By linearity of expectation, the expected number of queries applied to non-zero samples is bounded
by 10ε

∑s
i=1 qi = 10ε · |Q| < 1

10m log2m. With probability higher than 4
5 , this number of queries is

smaller than 1
2m log2m, and in this case, there cannot be a witness for m distinct elements among

a1, . . . , a2m. This means that, with the same probability, there is no witness for m + 1 elements
among 0, a1, . . . , a2m. The lower bound follows from Lemma 5.15.

10.3 Extending the bound to adaptive algorithms

Proposition 10.7 only applies to non-adaptive algorithms, and may also apply to the class of locally-
bounded adaptive algorithms defined in [AF23] (but we do not show it here). The bottleneck of
the proof is the need of having a “good” upper bound on the maximum number of queries per
sample as compared to the expected number of queries per sample, which is impossible for adaptive
algorithms. To extend the proof, we must make the algorithm completely clueless unless it queries
every individual sample within a fixed portion of the maximum. To achieve these goals we use
two concepts: very short strings (to reduce the maximum number of queries per sample – but the
extension for arbitrarily long strings is then proved as a simple corollary) and secret sharing (see
below).

Lemma 10.8 (Definition and existence of secret-sharing code ensembles, [BEFLR20]). There exist
some constants δ, ζ > 0 and η > 1, for which: for every k ≥ 1, there exist m(k) ≥ 2k divisible by 3,

and some n(k) with n(k) ≤ η log2m(k) for which there exists a code-ensemble H : {0, 1} → 2{0,1}
n(k)

with the following properties:

• Sufficiently large: |H(0)| = |H(1)| = 2
3m(k).

• Fixed lower bound on the distance: for every u, v ∈ H(0) ∪H(1) either u = v or d(u, v) > δ.

• Shared secret: for every set I ⊆ {1, . . . , n(k)} of size |I| ≤ ζn(k), and for every w ∈ {0, 1}|I|,

Pr
u∼H(0)

[u|I = w] = Pr
u∼H(1)

[u|I = w]

By the specific construction of [BEFLR20], we can have δ = 1
30 , ζ = 1

12 and η = 4, and also that
every restriction of H(0) (or H(1)) to a set I of at most ζn(k) bits is uniform over {0, 1}I . Note
that the following does not rely on the exact values of δ, ζ, η, only on the constraints guaranteed
by the lemma.
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Theorem 10.9. Consider δ, ζ, η of Lemma 10.8. For every ε < 1
4δ and every k ≥ 1 there exist

m(k) ≥ 2k, n(k) ≤ η log2m(k) and a distribution P over {0, 1}n(k) that is ε-far from Sm(k) for

which every ε-testing adaptive algorithm that makes less than 1
96ζδε

−1m(k) log2m(k) queries cannot
find a witness against P ∈ Sm(k) with probability 1

3 .

Proof. Let k ≥ 1 and let m = m(k) ≥ 2k and log2m ≤ n(k) ≤ η log2m as per Lemma 10.8. For
every 0 < ε < 1

4δ, we define the following distribution:

P :

{
a with probability 1−4δ−1ε

2m/3 , ∀a ∈ H(0)
b with probability 4δ−1ε

2m/3 , ∀b ∈ H(1)

By the secret sharing property, for every set Q of at most ζn(k) indices and for every w ∈ {0, 1}|Q|,

Pr
x∼P

[x ∈ H(1)|x|Q = w] = Pr
x∼P

[x ∈ H(1)] = 4δ−1ε

Observe that P is supported by exactly 4
3m elements. For every set A of m elements, at least 1

3m
elements in the support of P are 1

2δ-far from every element in A. The minimum probability mass

of an individual element in P is at least 4δ−1ε
2m/3 , hence

d(P,SA) >
1

3
m · 4δ

−1ε

2m/3
· 1
2
δ = ε

This holds for every A of size m, hence d(P,Sm) > ε.

Assume that m ≥ max
{
22ζ

−1
, 6
}
. Let n = n(k) be the length of the string and n′ = ⌊ζn(k)⌋ be

the number of bits whose reading supplies no information about x ∼ P coming from H(0) or H(1).
Consider a deterministic adaptive algorithm T with q < 1

96ζδε
−1m log2m queries. The number of

queries per sample is trivially bounded by n = O(log2m), since this is the bit length of a sample.

We color every query in T with either red or green. In every path in the tree, for every 1 ≤ i ≤ s,
the first n′ queries of the i-th sample are red and the others are green. Note that the color of a
query is unambiguous even if it is common to multiple paths, since the coloring only takes the path
from the root into account. Note that in every path in T , the number of queries is bounded by
n/n′-times the number of red queries, which is:

n

n′ =
n

⌊ζn⌋
≤ n

ζn− 1
≤ log2m

ζ log2m− 1
≤ 2ζ−1

ζ · 2ζ−1 − 1
= 2ζ−1

We would like to bound the expected number of queries applied to H(1)-samples to apply Propo-
sition 10.5. For every 1 ≤ i ≤ q, let Ri be an indicator for “the i-th query is red” and Xi be
an indicator for “the i-th query is red, and it applies to H(1)-sample”. Let X =

∑q
i=1Xi be the

number of red queries applied to H(1)-samples and Y be the total number of queries (of any color)
applied to H(1)-samples.
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By the secret sharing property, and the definition of “red queries” as the first ⌊ζn⌋ queries,
E[Xi| Ri = 1] = 4δ−1ε, since the restriction of a sample drawn from P to at most ζn indices
distributes exactly the same regardless of whether it belongs to H(0) or to H(1). Hence

E[Xi] = Pr[Ri = 0]E[Xi | Ri = 0]︸ ︷︷ ︸
=0

+Pr[Ri = 1]︸ ︷︷ ︸
≤1

E[Xi | Ri = 1]︸ ︷︷ ︸
=4δ−1ε

≤ 4δ−1ε

By linearity of expectation, E[X] =
∑q

i=1 E[Xi] ≤ 4δ−1εq < 1
24ζm log2m. Recall that Y ≤

2ζ−1X for every sufficiently large m, hence E[Y ] ≤ 1
12m log2m. By Markov’s inequality, Pr[Y >

1
8m log2m] < 2

3 .

Consider a witness against P ∈ Sm. By Observation 10.6, since supp(P ) = H(0) ∪ H(1) and
|H(0)| = 2

3m, there must exist a “sub-witness” against |H(1)| ≤ 1
3m, meaning that the restriction

of the queries and answers to H(1)-samples forms a witness against having support at most 1
3m.

By Proposition 10.5, this sub-witness must consist of at least 1
3m log2(

1
3m) bits of H(1)-samples.

For m ≥ 6, this bound requires more than 1
8m log2m bits.

With probability greater than 1
3 , there are fewer than 1

8m log2m queries in H(1)-samples, hence
they cannot form a witness against |H(1)| ≤ 1

3m. In particular, in this case, there is no witness
against P ∈ Sm. For every k ≥ 1 there exists m ≥ 2k for which this result applies for every ε > 0
smaller than some global constant. The lower bound follows from Lemma 5.15.

Theorem 10.9 shows a lower bound of Ω(ε−1m logm) queries for every one-sided adaptive ε-testing
of Sm for some fixed n (that depends on m). However, a “full” property testing lower bound would
need to apply for at least an infinite set of value for n. The following corollary uses a simple
repeating technique to provide this.

Lemma 10.10. Let P be a distribution over {0, 1}n. Let fℓ : {0, 1}n → {0, 1}ℓn be defined by the
ℓ-fold repetition, that is fℓ(x1, . . . , xn) = y where yi·n+j = xj for 1 ≤ j ≤ n and 0 ≤ i ≤ ℓ− 1, and
consider the distribution P̂ = fℓ(P ). Then for every m ≥ 1, d(P,Sm) ≤ d(P̂ ,Sm).

Proof. Let Â = {x̂1, . . . , x̂m} be a set that realizes the distance d(P̂ ,Sm). Let g : supp(P̂ ) → Â
be the mapping provided by Lemma 5.12. For every 0 ≤ i ≤ ℓ − 1, let hi : {0, 1}ℓn → {0, 1}n
be the mapping hi(x) = x{i·n+1,...,i·n+n}. Choose 0 ≤ i ≤ ℓ − 1 uniformly, and let h = hi. Let
A = {h(x̂1), . . . , h(x̂m)}.

d(P,Sm) ≤ E
i∼{1,...,n}

[d(P,SA)] = E
x∼P,i∼{1,...,n}

[d(x,A)] =
∑

x∈supp(P )

Pr
P
[x] E

i
[d(x,SA)]

≤
(∗)

∑
x∈supp(P )

Pr
P
[x] E

i
[d(x, h(g(fℓ(x))))]

=
(†)

∑
x∈supp(P )

Pr
P
[x]d(fℓ(x), g(fℓ(x)))

=
∑

x∈supp(P )

Pr
P̂
[fℓ(x)]d(fℓ(x), g(fℓ(x)))

=
∑

x̂∈supp(P̂ )

Pr
P̂
[x̂]d(x̂, g(x̂)) = d(P̂ ,SÂ) = d(P̂ ,Sm)

36



The starred transition is correct since h(g(fℓ(x))) ∈ A by its definition. The daggered transition is
correct since:

E
i∼{1,...,n}

[d(x, h(g(fℓ(x))))] =
1

ℓ

ℓ−1∑
i=0

d(x, hi(f(x)))

= d(x · · ·x, h0(g(fℓ(x))) · · ·hℓ−1(g(fℓ(x)))) = d(fℓ(x), g(fℓ(x)))

Corollary 10.11. Every one-sided (possibly adaptive) ε-testing algorithm for Sm must make at
least Ω(ε−1m logm) many queries, for infinitely many values of the string length n.

Proof. For a proper choice of m ≥ 2, q ≥ 1 and ε > 0, let P be a distribution over {0, 1}n (for some
n that may depend on m and ε) that is ε-far from Sm for which, for every deterministic adaptive
algorithm T that makes at most q queries, the probability that it finds a witness against P ∈ Sm is
less than 1

3 . For every n̂ ≥ n, let P̂ = f⌈n̂/n⌉(P ) (as per Lemma 10.10). Note that P is ε-far from
Sm as well.

Every bit of a sample drawn from P̂ corresponds to a concrete bit of a sample drawn from P , hence
every witness against P̂ ∈ Sm is also a witness against P ∈ Sm. The probability to find this witness
using less than q queries is less than 1

3 , hence every one-sided adaptive ε-testing algorithm for Sm
must use at least q queries, even for distributions over arbitrarily long strings. This completes the
proof since q = Ω(ε−1m logm).

As a final remark, note that the corollary actually holds for sets of values of m and n that are not
very sparse – all large enough integers of the form 3 · 24k for m, and a set of positive density (that
depends on m) for n.
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A Probabilistic Bounds

We prove and recall here some technical probabilistic bounds that are used in our proofs.
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Lemma A.1 (A technical bound). Let X be a sum of independent variables X1, . . . , Xn, where
each evaluates to 1 with probability pi and evaluates to 0 otherwise. Then Pr[X = 0] ≤ e−E[X].

Proof. Pr[X = 0] =
∏n

i=1(1− pi) ≤ e−
∑n

i=1 pi = e−E[X]

Observation A.2. For n ≥ 1 and 0 ≤ p < 1
2n , 1− (1− p)n ≥ 1

2np.

Proof. Since np < 1/2, we have (1− p)n ≤ 1− np+ (np)2 ≤ 1− np+ 1
2np = 1− 1

2np.

Lemma A.3 (Multiplicative Chernoff’s Bound). Let X1, . . . , Xm be independent variables in {0, 1}.
Let X =

∑m
i=1Xi, then for every δ > 0:

Pr[X < (1− δ) E[X]] <

(
e−δ

(1− δ)1−δ

)E[X]

Pr[X > (1 + δ) E[X]] <

(
eδ

(1 + δ)1+δ

)E[X]

Lemma A.4 (Multiplicative Chernoff for well-dependent variables with a goal). Let G ⊂ R∗ be
a set of goal sequences, satisfying that if u is a prefix of v and u ∈ G then v ∈ G. Additionally
let R1, . . . , Rm be a set of random variables and p1, . . . , pm be values in [0, 1], such that for every
1 ≤ i ≤ m and v = (r1, . . . , ri−1) ∈ Ri−1 \ G (that can happen with positive probability) we have
Pr [Ri ̸= 0|R1 = r1, . . . , Ri−1 = ri−1] ≥ pi. For every 1 ≤ i ≤ m, let Xi ∈ {0, 1} be an indicator for
Ri ̸= 0 and X =

∑m
i=1Xi. Under these premises, for every 0 < δ < 1,

Pr

[
((R1, . . . , Rm) /∈ G) ∧

(
X < (1− δ)

m∑
i=1

pi

)]
<

(
e−δ

(1− δ)1−δ

)∑m
i=1 pi

Proof. We first define auxiliary random variables Y1, . . . , Ym ∈ {0, 1} that depend on R1, . . . , Rm

but will be independent of each other. To draw the value of Yi, we consider R1, . . . , Ri. Considering
their respective values r1, . . . , ri, if (r1, . . . , ri−1) ∈ G we take Yi to be equal to 1 with probability
pi and to 0 with probability 1− pi, independently of all other choices so far. If (r1, . . . , ri−1) /∈ G,
then we set αi = Pr[Ri ̸= 0|R1 = r1, . . . , Ri−1 = ri−1] and choose Yi according to ri: If ri = 0
(meaning in particular that Xi = 0) then we choose Yi = 0. If ri ̸= 0, we choose Yi = 1 with
probability pi

αi
and choose Yi = 0 with probability αi−pi

αi
. This last choice is drawn independently

of previous choices (note that in particular these are indeed probabilities between 0 and 1, since by
the assumptions of the lemma pi ≤ αi ≤ 1). We also define the sum Y =

∑m
i=1 Yi.

It is not hard to see that Pr[Yi = 1] = pi for every 1 ≤ i ≤ m. To conclude the proof, it remains to
show that Y1, . . . , Ym are indeed independent (when not conditioning on the other random variables
defined over our probability space), and that it is always the case that Y ≤ X or (R1, . . . , Rm) ∈ G
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(or both), since then we can use the multiplicative Chernoff bound to conclude that

Pr

[
((R1, . . . , Rm) /∈ G) ∧

(
X < (1− δ)

m∑
i=1

pi

)]

≤ Pr

[
((R1, . . . , Rm) /∈ G) ∧

(
Y < (1− δ)

m∑
i=1

pi

)]

≤ Pr [Y < (1− δ) E[Y ]] <

(
e−δ

(1− δ)1−δ

)∑m
i=1 pi

For the independence assertion, we need to show that for every sequence of values (b1, . . . , bi−1) ∈
{0, 1}i−1 we have Pr[Yi = 1|Y1 = b1, . . . , Yi−1 = bi−1] = pi. We note that it is enough to show
that for every sequence (r1, . . . , ri−1) ∈ supp(R1, . . . , Ri−1) we have Pr[Yi = 1|R1 = r1, . . . , Ri−1 =
ri−1] = pi, since the choices of Y1, . . . , Yi−1 depend only on the values of R1, . . . , Ri−1 (and possible
additional independent coin tosses). To show the latter, we go over the cases. If (r1, . . . , ri−1) ∈ G
then Yi was explicitly defined to be 1 with probability exactly pi. If (r1, . . . , ri−1) /∈ G, we write

Pr [Yi = 1|R1 = r1, . . . , Ri−1 = ri−1]

= Pr [Yi = Xi = 1|R1 = r1, . . . , Ri−1 = ri−1]

= Pr [Yi = 1|Xi = 1, R1 = r1, . . . , Ri−1 = ri−1] · Pr [Xi = 1|R1 = r1, . . . , Ri−1 = ri−1]

=
pi
αi
· αi = pi

To show the conditional inequality assertion, note that (R1, . . . , Rm) /∈ G implies in particular that
(R1, . . . , Ri−1) /∈ G for every 1 ≤ i ≤ m. Hence, all the choices of Yi in this case are made so that
Yi ≤ Xi for 1 ≤ i ≤ m, and in particular Y ≤ X.

B Proof of Proposition 5.11

To prove Proposition 5.11, we need the following lemma.

Lemma B.1. Consider a property P of distributions over {0, 1}n that has a one-sided ε-test for
every ε > 0, and consider some P ∈ P. For every distribution Q for which supp(Q) ⊆ supp(P ),
Q ∈ P as well.

Proof. LetAε,n be an ε-testing algorithm for P in the Huge Object model that draws s(ε, n) samples
and makes q(ε, n) queries. For every ε, if Aε,n rejects Q with positive probability, then there must
be a sequence of samples X1, . . . , Xs(ε,n) and a sequence of random query choices Y1, . . . , Yq(ε,n)
for which the algorithm rejects. If we run Aε,n on P as its input, there is a positive probability
to draw exactly the same sequence X1, . . . , Xs(ε,n) (since supp(Q) ⊆ supp(P )), and to make the
exact same random query choices Y1, . . . , Yq(ε,n). In this case, Aε,n rejects P , a contradiction to
its one-sideness. Hence Aε,n must always accept Q and this holds for every ε > 0, which implies
Q ∈ P.

We now recall the proposition to be proved.
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Proposition 5.11. Consider any label-invariant property of distributions P that has a one-sided
ε-test for every ε > 0 (with any number of samples and queries). There exists a function f : N→ N
such that P = Sf .

Proof. Let f(n) be as follows:

f(n) =

{
0 P ∩ D({0, 1}n) = ∅
maxP∈P |supp(P )| otherwise

In the first case, the property is empty for n-bit strings. In the second case, a maximum must exist,
and it cannot be more than 2n. For every n for which f(n) > 0, we also define Pn as one of the
distributions that demonstrate the maximum. By the definition of f(n), P does not contain any
distribution that is supported by more than f(n) elements.

Consider some n for which f(n) > 0, and consider some distribution P over {0, 1}n that is supported
by at most f(n) elements. Let σ : {0, 1}n → {0, 1}n be a permutation for which supp(P ) ⊆
supp(σ(Pn)). By the label invariance of P, σ(Pn) ∈ P. By Lemma B.1, P ∈ P, because its support
is a subset of the support of σ(Pn) which belongs to P. Hence P contains all distributions that are
supported by at most f(n) elements, as desired.
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