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Abstract

The Huge Object model for distribution testing, first defined by Goldreich and Ron in 2022,
combines the features of classical string testing and distribution testing. In this model we are
given access to independent samples from an unknown distribution P over the set of strings
{0, 1}n, but are only allowed to query a few bits from the samples. The distinction between
adaptive and non-adaptive algorithms, which occurs naturally in the realm of string testing
(while being irrelevant for classical distribution testing), plays a substantial role also in the
Huge Object model.

In this work we show that the full picture in the Huge Object model is much richer than just
that of the “adaptive vs. non-adaptive” dichotomy. We define and investigate several models
of adaptivity that lie between the fully-adaptive and the completely non-adaptive extremes.
These models are naturally grounded by observing the querying process from each sample in-
dependently, and considering the “algorithmic flow” between them. For example, if we allow
no information at all to cross over between samples (up to the final decision), then we obtain
the locally bounded adaptive model, arguably the “least adaptive” one apart from being com-
pletely non-adaptive. A slightly stronger model allows only a “one-way” information flow. Even
stronger (but still far from being fully adaptive) models follow by taking inspiration from the
setting of streaming algorithms. To show that we indeed have a hierarchy, we prove a chain of
exponential separations encompassing most of the models that we define.
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1 Introduction

Property testing is the study of sublinear, query-based probabilistic decision-making algorithms.
That is, algorithms that return accept or reject after reading only a small portion of their
input. The study of (classical) property testing, starting with [BLR90], [RS92] and [RS96], has
seen an extensive body of work. See for example [Gol17]. Usually, a property-testing algorithm
with threshold parameter ε is required to accept an input that satisfies the property with high
probability, and reject an input whose distance from any satisfying one is more than ε, with high
probability as well. For string properties, which were the first to be studied (along with functions,
matrices, etc. that can also be represented as strings), the distance measure is usually the normalized
Hamming distance.

Distribution testing is a newer model, first defined implicitly in [GR11] (a version of which has
already appeared in 2000 as a technical report). In [BFF+01] and [BFR+00] it was explicitly
defined and researched. The algorithms in this model are much weaker, where instead of queries,
the decision to accept or reject must be made based only on a sequence of independent samples
drawn from an unknown distribution. In such a setting the distance metric is usually the variation
distance. For a more comprehensive survey, see [Can20].

The study of a combination of string and distribution testing was initiated in [GR22]. Here the
samples in themselves are considered to be very large objects, and hence after obtaining a sample
(usually modeled as a string of size n), queries must be made to obtain some information about
its contents. This requires an appropriate modification in the distance notion. This model is
appropriately called the Huge Object model.

Contrast the above to the original “small object” distribution testing model, where it is assumed
that every sample is immediately available to the algorithm in its entirety. In particular, in the
original model, the algorithm does not have any choice of queries, as it just receives a sequence of
independent samples from the distribution to be tested. Hence one might even call it a “formula”
rather than an “algorithm”. Grossly speaking, the only decision made is whether to accept or reject
the provided sequence of sampled objects.

On the other hand, in the string testing model, an algorithm is provided with a (deterministic)
input string, and may make query decisions based both on internal random coins and on answers
to previous queries. An algorithm which makes use of the option of considering answers to previous
queries when choosing the next query is called adaptive, while an algorithm that queries based only
on coin tosses is called non-adaptive (the final decision on whether to accept or reject the input
must, of course, depend on the actual answers).

Algorithms for the Huge Object model, due to their reliance on individual queries to the provided
samples, can be adaptive or non-adaptive. This relationship with respect to the Huge Object model
was first explored in [CFG+22].

However, as we shall demonstrate below, the complete picture here is richer than the standard
adaptive/non-adaptive dichotomy used in classical string testing. As it turns out, several categories
of adaptivity can be defined and investigated based on the consideration of the shared information
between the different samples that are queried.
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1.1 Adaptivity notions in the Huge Object model

For our purpose, unless we state otherwise, we assume that the sequence of samples is taken in
advance (but is not directly disclosed to the algorithm), and is presented as a matrix from which
the algorithm makes its queries. For a sequence of s samples from a distribution whose base set is
{0, 1}n, this would be a binary s× n matrix.

We say that an algorithm is non-adaptive if it chooses its entire set of queries before making them,
which means that it cannot choose later queries based on the answers to earlier ones. This is
identical to the definition of a non-adaptive algorithm for string properties.

A fully adaptive algorithm is allowed to choose every query based on answers to all queries made
before it. This is quite similar to the definition of an adaptive algorithm for string properties,
but restricting ourselves to this dichotomy does not give the full picture. We refine the notion of
adaptivity by considering more subtle restrictions on the way that the algorithms plan their queries,
leading to query models that are not as expressive as those of fully adaptive algorithms, but are
still more expressive than those of non-adaptive ones. In this introduction we only introduce the
rationale of every model; the formal definitions appear in the preliminaries section.

One interesting restriction, which is surprisingly difficult to analyze, is “being adaptive for every
individual sample, without sharing adaptivity between different samples” (the results of random
coin tosses are still allowed to be shared). We say that an algorithm is locally-bounded if it obeys
this restriction. This model captures the concept of distributed execution, in a way that every node
has a limited scope of a single sample, and only when all nodes are done, their individual outcomes
are combined to facilitate a decision.

A more natural restriction is “being able to query only the most recent sample”. We say that an
algorithm is forward-only if it cannot query a sample after querying a later one. This can be viewed
(if we abandon the above-mentioned “matrix representation”) as the algorithm being provided with
oracle access to only one sample at a time, not being able to “go back in time” once a new sample
was taken. An example for the usage of the model is an anonymous survey. As long as the survey
session is alive, we can present new questions based on past interactions and on the current one,
but once the session ends, we are not able to recall the same participant for further questioning.

A natural generalization of forward-only adaptiveness is having a bounded memory for holding
samples (rather than only having one accessible sample at a time). Once the memory is full, the
algorithm must drop one of these samples (making it inaccessible) in order to free up space for a
new sample. An additional motivation for this model is the concept of stream processing, whose
goal is computing using sublinear memory. Relevant to our work is [AMNW22], where the input
stream is determined by an unknown distribution, in contrast to the usual streaming setting where
the order of the stream is arbitrary. Within the notion of having memory of a fixed size, we actually
distinguish two models. In the weak model, when the memory is full, the oldest sample is dropped.
In the strong model, the algorithm decides (possibly adaptively) which sample to drop.

We show that every two consecutive models in the above hierarchy have an exponential separation,
which means that there is a property that requires Ω(poly(n)) queries for an ε-test in the first model
(for some fixed ε), but is also ε-testable using O

(
poly

(
ε−1
)
log n

)
queries in the second model (for

every ε > 0). Moreover, our upper bounds always have one-sided error, while the lower bounds
apply for both one-sided and two-sided error algorithms. The exact relationship between the weak
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and the strong limited memory models remains open, however.

We believe that investigating limited adaptiveness models can apply to other areas where there are
two “query scales”. That is, when investigating a model takes into account collections of objects
that are restricted both in the way that whole objects are obtained and in the access model inside
each obtained object. For example, one could think of a distributed computing scenario where
the communication between the nodes follows a LOCAL or a CONGEST scheme (see [Pel00]),
but additionally each node holds a “large” input from which it may only perform sub-linear time
computation between the communication rounds.

1.2 Organization of the paper

We start with formal definitions of the models which are required to state our results, followed
by an overview of the results themselves and a description of the main ideas of their proofs. The
overview also serves as a guide to the rest of the paper, that contains the formal proofs. While
the statements in the overview are labeled as “informal”, the main difference between them and
the formal statements to which they refer is that the latter also specify the specific properties that
demonstrate the query bounds.

2 Foundational preliminaries

The following are the core definitions and lemmas used throughout this paper, including the model
definitions used in the overview in Section 3. Here, all distributions are defined over finite sets.

Definition 2.1 (Common notations). For a set A, the power set of A is denoted by P(A). For two
sets A and B, the set of all functions f : A→ B is denoted by BA. For a finite set A, the set of all
permutations over A is denoted by π(A).

Definition 2.2 (Set of distributions). Let Ω be a finite set. The set of all distributions that are
defined over Ω is denoted by D(Ω).

While parts of this section are generalizable to distributions over non-finite sets Ω with compact
topologies, we restrict ourselves to distributions over finite sets, which suffice for our application.

Definition 2.3 (Property). A property P over a finite alphabet Σ is defined as a sequence of
compact sets Pn ⊆ D(Σn). Here compactness refers to the one defined with respect to the natural
topology inherited from R|Σ|n .

All properties are defined over Σ = {0, 1} unless we state otherwise.

2.1 Distances

The following are the distance measures that we use. In the sequel, we will omit the subscript (e.g.
use “d(x, y)” instead of “dH(x, y)”) whenever the measure that we use is clear from the context.

Definition 2.4 (Normalized Hamming distance). For two strings s1, s2 ∈ Σn, we use dH(s1, s2) to
denote their normalized Hamming distance, 1

n |{1 ≤ i ≤ n|s1[i] ̸= s2[i]}|.
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For all our distance measures we also use the standard extension to distances between sets, using
the corresponding infimum (which in all our relevant cases will be a minimum). For example, For
a string s ∈ {0, 1}n and a set A ⊆ {0, 1}n, we define dH(s,A) = min

s′∈A
dH(s, s

′).

Definition 2.5 (Variation distance). For two distributions P and Q over a common set Ω, we use
dvar(P,Q) to denote their variation distance, maxE⊆Ω |PrP [E]− PrQ[E]|. Since Ω is finite there is
an equivalent definition of dvar(P,Q) = 1

2

∑
s∈Ω |P (s)−Q(s)|.

Definition 2.6 (Transfer distribution). For two distributions P over Ω1 and Q over Ω2, we say
that a distribution T over Ω1 ×Ω2 is a transfer distribution between P and Q if for every x0 ∈ Ω1,
Pr(x,y)∼T [x = x0] = PrP [x0], and for every y0 ∈ Ω2, Pr(x,y)∼T [y = y0] = PrQ[y0]. We use T (P,Q)
to denote the set of all transfer distributions between P and Q.

We note that for finite Ω1 and Ω2 the set T (P,Q) is compact as a subset of D(Ω1 × Ω2).

Definition 2.7 (Earth Mover’s Distance). For two distributions P and Q over a common set Ω
with a metric dΩ, we use dEMD(P,Q) to denote their earth mover’s distance, defined by the infimum
of the “average distance” demonstrated by a transfer distribution, infT∈T (P,Q) E(x,y)∼T [dΩ(x, y)].

In the sequel, the above “inf” can and will be replaced by “min”, by the compactness of T (P,Q)
for finite Ω. Most papers (including the original [GR22]) use an equivalent definition that is based
on linear programming, whose solution is the optimal transfer distribution.

In our theorems, Ω is always {0, 1}n for some n and the metric is the Hamming distance. Sometimes,
as an intermediate phase, we may use a different Ω (usually {1, . . . , k}n for some k), and then show
a reduction back to the binary case.

Definition 2.8 (Distance from a property). The distance of a distribution P from a property
P = ⟨Pn⟩ is loosely noted as d(P,P) and is defined to be dEMD(P,Pn) = infQ∈Pn dEMD(P,Q).

It is very easy to show that for any two distributions P,Q ∈ D(Σn) we have dEMD(P,Q) ≤
dvar(P,Q). This means that the topology induced by the variation distance is richer than that
induced by the earth mover’s distance (actually for finite sets these two topologies are identical).
In particular it means that all considered properties form compact sets with respect to the earth
mover’s distance. We obtain the following lemma.

Lemma 2.9. For a property P of distributions over strings, and any distribution P ∈ D(Σn),
there is a distribution realizing the distance of P from P, i.e. a distribution Q ∈ Pn for which
d(P,Q) = d(P,Pn). In particular, the infimum in Definition 2.8 is a minimum.

2.2 The testing model

This model is defined in [GR22]. We use an equivalent definition which will be the “baseline” for
our restricted adaptivity variants.

The input is a distribution P over Σn (our final theorems will be for Σ = {0, 1}, but some lemmas
will have other finite Σ). An algorithm A gets random oracle access to s samples that are indepen-
dently drawn from P . Then it is allowed to query individual bits of the samples. The output of
the algorithm is either accept or reject. For convenience we identify the samples with an s× n
matrix, so for example the query “(i, j)” returns the jth bit of the ith sample.
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The input size n and the number of samples s are hard-coded in the algorithm. As with boolean
circuits, an algorithm for an arbitrarily sized input is defined as a sequence of algorithms, one for
each n.

For a given algorithm we define another measure of complexity, which is the total number of queries
that the algorithm makes. Without loss of generality, we always assume that every sample is queried
at least once (implying that q ≥ s).

For a property P and ε > 0, we say that an algorithm A is an ε-test if:

• For every P ∈ P, A accepts the input P with probability higher than 2
3 .

• For every P that is ε-far from P, A accepts the input P with probability less than 1
3 .

We say that A is an ε-test with one sided error if:

• For every P ∈ P, A accepts the input P with probability 1.

• For every P that is ε-far from P, A accepts the input P with probability less than 1
2 .

The choice of the probability bounds in the above definition are somewhat arbitrary. For the one
sided error definition 1

2 is more convenient than 1
3 . We also note that for non-ε-far inputs that are

not in P, any answer by A is considered to be correct.

2.3 Restricted models

As observed by Yao in [Yao77], every probabilistic algorithm can be seen as a distribution over
the set of allowable deterministic algorithms. This simplifies the algorithmic analysis, since we
only have to consider deterministic algorithms (a distinction between public and private coins may
break this picture, but this will not be the case here). We will use Yao’s observation to define every
probabilistic algorithmic model by defining its respective set of allowable deterministic algorithms.

Definition 2.10 (Fully adaptive algorithm). Every deterministic algorithm can be described as
a full decision tree T and a set A of accepted leaves. Without loss of generality we assume that
all leaves have the exactly the same depth (we use dummy queries if “padding” is needed). Every
internal node of T consists of a query (i, j) ∈ {1, . . . , s}×{1, . . . , n} (the jth bit of the ith sample),
and every edge corresponds to an outcome element (in Σ). The number of queries q is defined as
the height of the tree. Every leaf can be described by the string of length q detailing the answers
given to the q queries, corresponding to its root-to-leaf path. Thus we can also identify A with a
subset of Σq. We use variants of the decision tree model to describe our adaptivity concepts.

Now that we have defined the most general form of a deterministic algorithm in the Huge Object
model, we formally define our models for varying degrees of adaptivity.

Definition 2.11 (Non-adaptive algorithm). We say that an algorithm is non-adaptive if it chooses
its queries in advance, rather than deciding each query location based on the answers to its previous
ones. Formally, every deterministic non-adaptive algorithm is described as a pair (Q,A) such that
Q ⊆ {1, . . . , s}×{1, . . . , n} (for some sample complexity s) is the set of queries, and A ⊆ ΣQ is the
set of accepted answer functions. The query complexity is defined as q = |Q|.

Definition 2.12 (Locally-bounded adaptive algorithm). We call an algorithm locally-bounded if
it does not choose its queries to a sample based on answers to queries in other samples. Formally,
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every s-sample deterministic locally-bounded algorithm is a tuple (T1, . . . , Ts;A), where every Ti is
a decision tree of height qi (where q =

∑s
i=1 qi is the total number of queries) that is only allowed

to query the ith sample, and A ⊆ Σq represents a set of accepted superleaves, where a superleaf
is defined as the concatenation of the q1, . . . , qs symbol long sequences that represent the leaves of
trees T1, . . . , Ts respectively.

Definition 2.13 (Forward-only adaptive algorithm). We call an algorithm forward-only if it cannot
query a sample after querying a later one. Formally, a forward-only algorithm for s samples of n-
length strings is defined as a pair (T,A), where T is a decision tree over {1, . . . , s}×{1, . . . , n} and
A ⊆ Σq (as with general adaptive algorithms), additionally satisfying that for every internal node
of T that is not the root, if its query is (i, j) and its parent query is (i′, j′), then i′ ≤ i.

Definition 2.14 (Weak memory-bounded adaptive algorithm). We say that an algorithm is weak
m-memory bounded if it can only query a sliding window of the m most recent samples at a time.
Formally, a weak m-memory-bounded adaptive algorithm using s samples of n-length strings is
defined as a pair (T,A), where T is a decision tree over {1, . . . , s}×{1, . . . , n} and A ⊆ Σq (as with
general adaptive algorithms), additionally satisfying that for every internal node of T that is not
the root, if its query is (i, j), then for every ancestor whose query is (i′, j′), it holds that i′−m < i.

Definition 2.15 (Strong memory-bounded adaptive algorithm). A strong memory-bounded adap-
tive algorithm for s samples of n-length strings is defined as a triplet (T,A,M) where T is a
decision tree, A ⊆ Σq is the set of accepted answer vectors, and M : nodes(T ) → P({1, . . . , s}) is
the “memory state” at every node. The explicit rules of M are:

• For every internal node u ∈ T , |M(u)| ≤ k (there are at most k samples in memory).

• For every internal node u ∈ T , if i ∈ M(u), and if v is a child of u for which i /∈ M(v), then
for every descendant w of v, i /∈M(w) (a “forgotten” sample cannot be “recalled”).

• For every internal node u ∈ T whose query is (i, j), i ∈ M(u) (the ith sample must be in
memory in order to query it).

Without loss of generality, because the samples are independent, we can assume that:

• M(root) = {1, . . . , k} (the algorithm has initial access to the first k samples).

• For every internal node u ∈ T and the set V of all its ancestors, it holds that max(M(u)) ≤
1 + max

v∈V
(maxM(v)) (new samples are accessed “in order”).

3 Overview of results and methods

The following is an informal overview of our work. Most of our results are exponential separations
between models (that is, O(log n) vs nΩ(1) bounds), but we also define new methodologies and
analyze example properties.

All separations are with an exponential gap, and are achieved by properties that have an efficient
1-sided error test in one model, but do not even have an efficient 2-sided test in the other model.

Figure 1 provides a visualization of our results. More details about the difference between the weak
k-memory and the strong k-memory model are provided below.
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Figure 1: Graphical summary of our results

3.1 Non-adaptive algorithms

In section 5 we analyze three example properties to examine the similarities and differences between
the Huge Object model (when restricted to non-adaptive queries) and the classic sampling model.
Here we shortly describe two of them.

We show that the determinism property (the property of all distributions that draw a specific
element with probability 1) can be tested non-adaptively using O(ε−1) queries, consisting of O(ε−1)
samples (as in the classic model) and O(1) queries per sample.

Observation. (Informal statement of Observation 5.2 regarding Algorithm 2) The property of
drawing a fixed string has a one-sided error non-adaptive ε-test that uses O(ε−1) queries.

The immediate generalization of the determinism property is the bounded support property.

Observation. (Informal statement of Theorem 5.4 about Algorithm 3) The property of being
supported on a set of at most m elements has a one-sided error non-adaptive ε-test that uses
O(ε−2m logm) queries.

As described in detail in Section 5, our ε-test for the m-support property needs more than a fixed
number of queries per sample. Though not necessarily optimal, this algorithm demonstrates the
core difference between the Huge Object model and the classic one: the limited ability to distinguish
different samples. This limitation holds for adaptive algorithms as well, even though the adaptivity
can reduce the number of queries per sample for some properties.

Locally bounded adaptive algorithms

The locally-bounded adaptive model allows the algorithm to pick its queries based on answers to
previous queries for every fixed sample, but lacks the ability to pass information between samples.
The ability of being adaptive allows the algorithm more ways to query its samples, but it still lacks
the ability to test relations between the samples.
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Analysis method To analyze the locally-bounded model, we define an intermediate model of
string testing which we call the split-adaptive model. In this model, we test properties of k-tuples
of strings, where the queries are made separately for every entry of the tuple (that is, every en-
try is processed using an adaptive algorithm that is oblivious of the other entries). To obtain a
reduction, we consider every s-sample locally-bounded algorithm over an input distribution P as
a split-adaptive algorithm whose input is drawn from P s (that is, an s-tuple whose entries are
independently drawn from P ).

Exponential separation from the non-adaptive model Naturally, there is an exponential
separation between the locally-bounded model and the non-adaptive model of the Huge Object
model.

Lemma 3.1. There exists a property P of distributions over {0, 1}n that has a locally-bounded
ε-test that uses O(poly(ε−1) log n) queries for every ε > 0, but there exists some ε0 > 0 for which
non-adaptive ε0-test requires Ω(poly(n)) queries.

This is an almost-direct corollary of a result from [GR22] regarding converting string testing prob-
lems to the Huge Object model. Essentially, the Huge Object model “contains” the string testing
one, and the conversion produces locally adaptive algorithms out of their respective adaptive string
algorithms.

Forward only adaptive algorithms

In the forward-only model, the algorithm virtually gets a stream of samples, and is allowed to
query only the current sample without any restriction (but further queries to past samples are not
allowed), based on answers to all past queries. In contrast to the locally bounded model, forward
algorithms can test a richer collection of binary relations between samples, due to the ability to
query one sample and then use the gathered data to choose the queries for the next one.

The query foresight method Some adaptive algorithms do not obey the forward only restric-
tion but can be modified to do so, using a method we call query foresight. Intuitively, an adaptive
algorithm that has some knowledge about the structure of the queries it may make in the future can
make them speculatively at present (that is, we make all potential queries to satisfy the forward-
only constraint, even though we believe that some of them will later be considered as irrelevant).
The more knowledge the algorithm has about the potential future queries, the less queries are
wasted on the current sample.

As an example to the query foresight method, we present a fully adaptive algorithm for the m-
support property (Algorithm 4), which is usually better than the algorithm presented in the dis-
cussion about the non-adaptive algorithm. We observe that the general structure of its queries is
highly predictable, and provide a modified version thereof (Algorithm 5) which is also forward-only,
without increasing its worst-case query complexity.

Exponential separation from the locally-bounded model We use the ability of forward-
only algorithms to consider richer collection of relations between samples, as compared to locally-
bounded algorithms, to show an exponential separation between these models.
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Observation. (Informal, combined statement of Theorem 6.4 and Theorem 7.2) There exists a
property of distributions over {0, 1}n that has a forward-only ε-test that uses O(poly(ε−1) log n)
queries for every ε > 0, but for which there exists some ε0 > 0 so that any locally-bounded adaptive
ε0-test requires Ω(poly(n)) queries.

In [EKR99] it was shown that ε-testing two functions over {1, . . . , n} for being inverses of each
other is possible with O(ε−1) many queries, while testing a single function for having an inverse is
harder and requires a polynomial number of queries. Here we separate the two functions by setting
them in a probability space with support size 2. If we allow forward-only adaptivity, then the
original inverse test can be implemented, as it works by verifying that g(f(i)) = i for sufficiently
many is. We can call the first sample “f”, and after writing down our f(i1), . . . , f(iq), we “wait”
for a sample of g and then verify that g(f(ij)) = ij for i1, . . . , iq.

To make the above work for binary strings (rather than an alphabet of size n) we use an appropriate
large distance encoding of the values. Also, we modify the definition of the property slightly to
make sure that it is possible to construct a one-sided test also using forward-only adaptivity.

The lower bound against locally-bounded adaptivity requires an intricate analysis of the model.
Essentially we use the split-adaptive string-testing model to show that when querying each of f
and g “in solitude”, being adaptive over a function that is drawn at random does not provide an
advantage over a non-adaptive algorithm. In particular, the values of a uniformly drawn permuta-
tion are “too random” to allow the implementation of a meaningful query strategy without getting
some information from the inverse function. Essentially, we show that “coordinating in advance”
the query strategy is insufficient.

k-bounded memory algorithms

As per Definitions 2.14, 2.15 we have two kinds of bounded memory, which we call weak and strong.
Intuitively, in both models, the algorithm gets a stream of samples, and it has an unrestricted access
to k of these samples. When the algorithm needs an access to a new sample, it must give up the
ability to access one of the past samples. In the weak model, the algorithm does not have a choice
and it must drop the earliest sample. In other words, the weak model has an unrestricted access
to a sliding window of the k most recent samples. In the strong model, the algorithm is allowed to
choose the sample to drop.

For k = 1, the weak and strong models are both equal to each other and to the forward-only model.
Intuitively, as k increases, the algorithm is able to consider more complicated relations between
samples, especially k-ary relations, which are more challenging for k − 1-memory algorithms.

Exponential separation from the forward-only model We use the ability to fully consider
binary relations using 2-memory algorithms, compared to the slightly limited ability to do that
using forward-only algorithms, to establish an exponential separation between them.

Observation. (Informal, combined statement of Theorem 7.4 and Theorem 8.9) There exists a
property P of distributions over {0, 1}n that has a weak 2-memory ε-test that uses O(poly(ε−1) log n)
queries for every ε > 0, but for which there exists some ε0 > 0 so that any forward-only adaptive
ε0-test requires Ω(poly(n)) queries.
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To prove the theorem, we define a property that catches the idea of symmetric functions. For some
symmetric function f : [m] × [m] → {0, 1}, a distribution in the property draws a random key
a ∈ [m] and returns a vector that contains both a (using a high distance code of length m) and all
values of f at points (a, b) for b ∈ [m].

For the upper-bound, the algorithm makes a sequence of independent iterations of two samples
at a time. In every iteration, it gathers their “keys” a1 and a2, verifies the correctness of their
codewords, and then checks whether f(a1, a2) = f(a2, a1). There are some cases that should be
carefully analyzed, for example the case where the distribution does not correspond to a single f ,
or the case where some values for “a” appear very rarely or not at all, but these do not defeat the
above algorithm (they somewhat affect its number of needed iterations).

The lower bound follows from a forward-only algorithm being given access to every sample without
any knowledge about the keys of “future” samples. If the algorithm has only one accessible sample
at a time, it can only “guess” the other key, but the probability to actually draw a later sample
with that key is too low, unless the algorithm collects queries according to about

√
m guessed keys.

Larger memory generalization We generalize the above theorem to state an exponential sep-
aration between the k-weak model and the k − 1-strong model, for every k ≥ 2:

Observation. (Informal, combined statement of Theorem 7.4 and Theorem 8.9) For every fixed
k ≥ 2, there exists a property Pk of distributions over {0, 1}n that has a weak k-memory ε-test that
uses O(poly(ε−1) log n) queries for every ε > 0, but there exists some εk > 0 for which any strong
k − 1-memory adaptive εk-test requires Ω(poly(n)) queries.

Note that the degree of the polynomials in the above theorem’s statement, as well as some hidden
constant factors, depend on k.

We define a property based on parity, which generalizes the above symmetry property. Suppose
that f :

([m]
k

)
→ {0, 1}k is a function such that f(A) has zero parity for every subset A ⊆ [m] of

size k. We “encode” such a function as a distribution, making sure to “separate” the k bits of f(A)
to k different samples. A typical sample in the distribution would have an encoding (using a high
distance code) of a random key a ∈ [m], followed by some information on f(A) for every A that
contains a. Specifically, for each such A we supply the ith bit of f(A), where i is the “rank” of a
in A (going by the natural order over [m]).

For the upper bound, the algorithm makes a sequence of independent iterations of k samples at a
time. In every iteration it gathers the keys a1, . . . , ak and verifies their codewords. If they are all
different, the algorithm constructs the value of f({a1, . . . , ak}) and checks its parity.

For the lower bound, if the algorithm has less than k accessible samples at a time, again it can only
“guess” the missing key, and the probability to make the right guess is too low.

We go even further, and show that even if the k − 1-memory algorithm is allowed to choose which
of the samples are retained in every stage (strong k − 1-memory) rather than keeping a sliding
window of recent history, the exponential separation still holds. The separation is achieved for an
εk-test of the property where εk = Θ(1/k).
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Remaining open problems

It is an open problem whether the weak k-memory model is indeed strictly weaker than the strong
k-memory model (for the same k). And if so, is the separation exponential? Also, we do not know
whether or not for every k there exists k∗ such that the k∗-weak model contains the k-strong one.

We believe that there exist some ε0 > 0 and 0 < α < 1 such that for every sufficiently large k, there
is an exponential separation between the weak k-memory model and the strong αk-memory model,
with respect to an ε0-test, rather than the separation for εk = Θ(1/k) that we show for k − 1 vs k
memory.

Another interesting open problem is whether the fully adaptive model has a simultaneous expo-
nential separation from all fixed k-memory models. That is, whether there exists a property P and
some ε0 > 0 such that ε0-testing of P would require Ω(poly(n)) queries in every k-memory model
(the polynomial degree possibly depending on k), but P is ε-testable using O(log n) queries using
a fully adaptive algorithm for every fixed ε > 0.

4 Additional preliminaries

The following are some mechanisms and technical lemmas that will aid us throughout the proofs.

4.1 Property building blocks

Here we present some useful notions for defining our properties. The following two definitions are
used in most of our constructions.

Definition 4.1 (Vectorization of functions). Let f : S → Σ∗ be a function from a (finite) well-
ordered set S to strings over a finite alphabet Σ. For S′ ⊆ S, we use ⟨f(i)|i ∈ S′⟩ to denote the
concatenation of f(s) for every s ∈ S′, such that the order of concatenation follows the order that
is defined for S.

Definition 4.2 (Sample map). Let P be a distribution over Ω1 and let f : Ω1 → Ω2 be a function.
We define the sample map f(P ) as the following distribution:

∀y ∈ Ω2 : Pr
f(P )

[y]
def
= Pr

x∼P
[f(x) = y]

We will also make good use of the following notational conventions.

Definition 4.3 (Binomial collection). Let S be a set and k be an integer. Define
(
S
k

)
as the set of

all subsets of S whose size is exactly k.

Definition 4.4 (Rank). Let A be a finite, well ordered set and let a ∈ A. We define ord(a,A) as
the ranking of a in A. Formally, ord(a,A) = |{a′ ∈ A|a′ ≤ a}|.

From now on we will use [k] to denote {1, . . . , k}. In particular for 1 ≤ i ≤ k we have ord(i, [k]) = i.

4.2 Reductions between properties

As per Definition 4.2, given a distribution P over (Σ1)
n and a function f : (Σ1)

n → (Σ2)
k, the

sample map f(P ) is a distribution over (Σ2)
k.

11



Lemma 4.5. Let P and Q be distributions over some metric set and let f : (Σ1)
n → (Σ2)

k be a
function. If there are two constant factors 0 < a < b such that a ·d(x, y) ≤ d(f(x), f(y)) ≤ b ·d(x, y)
for every x, y ∈ (Σ1)

n, then a · d(P,Q) ≤ d(f(P ), f(Q)) ≤ b · d(P,Q).

Proof. The upper bound is immediate by taking a transfer distribution T ∈ T (P,Q) and moving
to the sample map g(T ) ∈ T (f(P ), f(Q)), where g is defined by g(x, y) = (f(x), f(y)).

For the lower bound, let T be a transfer distribution from f(P ) to f(Q). Let T ′ be the following
transfer distribution from P to Q:

T ′(x, y) =
PrP [x] PrQ[y]

Prf(P )[f(x)] Prf(Q)[f(y)]
T (f(x), f(y))

And bound the distance:

a · d(P,Q) ≤ E
(x,y)∼T ′

[a · d(x, y)] ≤ E
(x,y)∼T ′

[d(f(x), f(y))]

=
∑

u,v∈(Σ2)k

Pr
(x,y)∼T ′

[f(x) = u, f(y) = v] d(u, v)

=
∑

u,v∈(Σ2)k

T (u, v) · d(u, v) = E
(u,v)∼T

[d(u, v)]

Hence d(f(P ), f(Q)) = infT∈T (f(P ),f(Q)) E(u,v)∼T [d(u, v)] ≥ a · d(P,Q).

Assume that we have some property of distributions of n-length strings over a finite alphabet Σ of
size m, rather than over {0, 1}. Consider some error correction code C : Σ → {0, 1}2 log2 m whose
minimal distance is at least 1

3 . We extend C to be defined over Σn → {0, 1}2n log2 m by encoding
every element individually.

C(x1 . . . xn)
def
= C(x1) . . . C(xn)

Lemma 4.5 implies that for every P and Q that are distributions over Σn, it holds that

1

3
d(P,Q) ≤ d(C(P ), C(Q)) ≤ d(P,Q)

We note that for all models that we define, using this reduction keeps the algorithm in its respective
model, and also preserves one-sided error (if the original algorithm has it).

Based on the above inequality we observe that if there exists an ε-tester for a property over Σn that
uses s samples and q queries, then there exists a 3ε-tester for the corresponding binary property,
that uses s samples and at most 2q log2m bit queries. Also, if there is no ε-tester for the property
over Σ (for some s and q bounds), then there is no ε-tester for the encoded property (for the same
s and q bounds).

4.3 Useful Properties

In the following we will use (very sparse) systematic codes, whose existence is well-known.
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Lemma 4.6 (Systematic code). There exists a set C of error correction codes, such that for every
n ≥ m ≥ 10, it has a code Cm,n : [m] → {0, 1}n with the following properties: (1) Its minimal
codeword distance is at least 1

3 and (2) The projection of Cm,n on its first ⌈log2m⌉ is one-to-one,
that is, Cm,n can be decoded by reading the first ⌈log2m⌉ bits.

From now on, every use of systematic codes refers to the set C that is guaranteed by Lemma 4.6,
usually denoted just by C (rather than the explicit notion Cm,n).

The next property is very useful for proving adaptivity gaps.

Definition 4.7 (string property cpal, see [CFG+22], [AKNS01]). For any fixed n, the property
cpal is defined over {0, 1, 2, 3}n as the set of n-long strings that are concatenations of a palindrome
over {0, 1} and a palindrome over {2, 3} (in this order).

The following lemma is well-known (the adaptive bound, using binary search, is described in
[CFG+22]).

Lemma 4.8. Property cpal does not have a non-adaptive 1
5 -test using o(

√
n) queries, while having

an adaptive ε-test using O(log(n) + 1/ε) many queries.

In [CFG+22] this was made into a distribution property by using “distributions” that are deter-
ministic.

Definition 4.9 (Distribution property CPal, see [CFG+22]). For a fixed, even n, the property
CPal is defined as the set of distributions over {0, 1}n that are deterministic (have support size
1), whose support is an element that belongs to cpal, with respect to the encoding (0, 1, 2, 3) 7→
(00, 01, 10, 11).

In Subsection 6.2 we use CPal to show an exponential separation between the non-adaptive model
and the locally bounded model.

Our next property relies on function inverses to provide adaptivity bounds, and was first investi-
gated in relation to [EKR99]. For a technical reason (that will allow for one-sided error testing
later on) we add a special provision for function equality (the original property allowed only for
inverse functions).

Definition 4.10 (Function property inv). For a fixed n, the property inv is defined over [n][2n] as
the set of ordered pairs of functions f, g : [n]→ [n] such that either f(i) = g(i) for every 1 ≤ i ≤ n
or g(f(i)) = i for every 1 ≤ i ≤ n.

It is well-known (first proved in a more general version in [EKR99]) that an ε-test for function
inverses takes O(1/ε) many queries, while e.g. testing a single function f for being a bijection
requires at least Ω(

√
n) many queries. For making it into a distribution property we “split apart”

f and g.

Definition 4.11 (Distribution property Inv). For a fixed n, the property Inv is defined as the
set of distributions over [n][n] that are supported by a set of the form {f, g} such that (f, g) ∈ inv.
Note that in particular all deterministic distributions satisfy Inv, since we allow f = g to occur.

Definition 4.12 (Distribution property Inv∗). For a fixed n, let Cn : [n] → {0, 1}2⌈log2⌉n be an
error-correction code whose distance is at least 1

3 . We define Inv∗ as the property of distributions
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over {0, 1}2⌈log2 n⌉n, that can be represented as Cn(P ) for P ∈ Inv (see the discussion after Lemma
4.5).

In Subsection 6.3 and Subsection 7.2 we use Inv through its encoding Inv∗ to show an exponential
separation between the locally bounded model and the forward-only model.

We finally define a simple property of a matrix (considered as a function with two variables) being
symmetric.

Definition 4.13 (Matrix property sym). For a fixed n, the property sym of functions with two
variables f : [n]2 → {0, 1} is defined as the property of being symmetric, i.e. satisfying f(i, j) =
f(j, i) for all i, j ∈ [n].

The corresponding distribution property is inspired by considering distributions over the rows of a
symmetric matrix, along with properly encoded identifiers.

Definition 4.14 (Distribution property Sym). For any m and the systematic code C : [m] →
{0, 1}m from Lemma 4.6, the property Sym is defined as the set of distributions for which

Pr
x∼P

[∃a ∈ [m] : x1,...,m = C(a)] = 1

(i.e. all vectors start with an encoding of a “row identifier”), and for every a, b ∈ [m],

Pr
x,y∼P

[x1,...,m = C(a) ∧ y1,...,m = C(b) ∧ xm+b ̸= ym+a] = 0

(if two “identifiers” a and b appear with positive probability, then the respective “f(a, b)” and
“f(b, a)” are identical).

To understand Definition 4.14, consider first the set of distributions P over {0, 1}2m that are
supported over a set of the form

{
C(a), ⟨f(a, b)⟩b∈[n] : a ∈ [n]

}
where f satisfies sym. However, we

need to go in a more roundabout way when defining Sym due to technical difficulties when only
a subset of the possible identifiers appears in the distribution. In Subsection 7.3 and Subsection
8.1 we use Sym to show an exponential separation between the forward-only model and the weak
2-memory model.

4.4 Useful lemmas

The following lemma is well known and is justified by Markov’s inequality for X̃ = 1−X.

Lemma 4.15 (reverse Markov’s inequality). Let X be a random variable whose value is bounded
between 0 and 1. Then for every 0 < ρ < 1, Pr[X > ρE[X]] ≥ (1 − ρ) E[X]. Specifically,
Pr[X > 1

2 E[X]] ≥ 1
2 E[X].

The following lemma simplifies EMD-distance lower bounds, by characterizing for some properties
the distance between them as that achievable by a “direct translation” of every vector (or in other
words, a sample map). But before the lemma itself we need to define the relevant properties.

Definition 4.16. Given a family Π of subsets of Σn that is monotone non-increasing, that is, such
that for every A ∈ Π and B ⊆ A, B ∈ Π too, we define the property D(Π) =

⋃
A∈ΠD(A) as the

property of having a support that is a member of Π.
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Lemma 4.17. For a fixed alphabet Σ, let Π be a monotone non-increasing family of subsets of Σn.
For every distribution P ∈ D(Σn) there is an A ∈ Π and a function f : supp(P ) → A such that
d(P,D(Π)) = d(P, f(P )) =

∑
x∈supp(P ) PrP [x]d(x, f(x)).

Proof. Let Q be a distribution that realizes the distance of P from D(Π), so that supp(Q) ∈ Π and
d(P,D(Π)) = d(P,Q). Let T be a transfer distribution (over Σn × Σn) that realizes the (EMD)
distance between P and Q. For every x ∈ supp(P ), let f(x) = arg min

y∈supp(Q)
d(x, y) (ties are broken

arbitrarily but consistently). Observe that supp(f(P )) ⊆ supp(Q), and thus f(P ) ∈ D(Π). Finally,

d(P,D(Π)) ≤ d(P, f(P )) ≤
∑

x∈supp(P )

Pr
P
[x]d(x, f(x))

=
∑

x∈supp(P )
y∈supp(Q)

T (x, y)d(x, f(x))

≤
∑

x∈supp(P )
y∈supp(Q)

T (x, y)d(x, y) = d(P,Q) = d(P,D(Π))

and hence all are equal.

Finally we state the following ubiquitous lemma for property testing lower bounds. A restricted
version appears in [Fis04]. A specific instance of this lemma for (fully adaptive) decision trees was
first implicitly proved in [FNS04].

Lemma 4.18 (useful form of Yao’s principle). Fix some ε > 0 and α < 1
3 , and let P be a property

of distributions over length n strings over a specific alphabet Σ. Let Dyes be a distribution over
distributions over strings that draws distributions that belong to P , and let Dno be a distribution
over distributions over strings that draws a distribution that is ε-far from P with probability 1− α
or more. If, for every allowable deterministic algorithm that uses less than q queries, the variation
distance between the distribution over answer sequences (e.g. leaf identifiers) from an input drawn
from Dyes and the distribution over answer sequences from an input drawn from Dno is less than
1
3 − α, then every ε-test (in the corresponding model) for P must use at least q queries.

For the meaning of “allowable deterministic algorithms” above, refer to the discussion surrounding
the various models of adaptivity defined in Subsection 2.3. This form of Yao’s lemma is well known
and justified by analyzing the behavior of any deterministic algorithm over the distribution over
input distributions 1

2(Dyes +Dno), leading to an error probability larger than 1
3 .

5 The non-adaptive model

The following section presents some core properties and methodologies that serve as building blocks
for other Huge Object algorithms and their analysis. While the results in this section appear
implicitly in [GR22] (through non-specific reductions), we optimize their query complexity using
property-specific algorithms.
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5.1 All zero test

The all zero test is conceptually the simplest non-trivial testing problem in every reasonable model.
Despite its simplicity, in the Huge Object model it is a core building block for reducing the polyno-
mial order of ε in the query complexity of some properties, compared to black box reductions like
in [GR22, Theorem 1.4]. Formally, a distribution P over {0, 1}n belongs to D(0) if supp(P ) = {0n}.

The ε-testing algorithm is quite simple. We take
⌈
ε−1
⌉
samples, and from each one of them we

query a randomly chosen index. We accept if all answers are 0, and otherwise we reject.

Algorithm 1 One-sided ε-test for all zero, non adaptive, O(ε−1) queries

take s =
⌈
ε−1
⌉
samples.

for i from 1 to s do
choose ji ∈ [n] uniformly at random.
query sample i at index ji, giving bi.
if bi ̸= 0 then

return reject
return accept

Observation 5.1. Algorithm 1 is a one-sided error ε-test, and its query complexity is O(ε−1).

Proof. Given a string sample x, the probability to query a 1-bit is exactly d(x, 0n). If x itself is
drawn from another distribution P , then:

Pr
x∼P
j∼[n]

[xj = 1] = E
x∼P

[
Pr

j∼[n]
[xj = 1]

]
= E

x∼P
[d(x, 0n)] = d(P,D(0))

Where the last transition relies on Lemma 2.9. For ε-far inputs,

Pr
P

[accept] =

s∏
i=1

Pr
xi∼P
j∼[n]

[
(xi)j = 0

]
=

s∏
i=1

(1− d(P,D(0))) = (1− d(P,D(0)))s

For s ≥ ε−1, the probability to accept ε-far inputs is at most (1− ε)ε
−1

< 1
2 as desired.

5.2 Determinism test

We show a one-sided ε-test algorithm for the property of having only one element in the support,
using O(ε−1) samples and O(ε−1) queries.

Consider some fixed z ∈ {0, 1}n. If a distribution is ε-far from being deterministic, then it must
also be ε-far from being supported by {z}. Our algorithm considers the first sample as z, and then
it uses the other samples to test P for being supported by {z}. The cost of every logical query
is two physical queries (because z is not actually fixed, and to find its individual bits we need to
query them).
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Algorithm 2 One-sided ε-test for determinism, non adaptive, O(ε−1) queries

take s = 1 +
⌈
ε−1
⌉
samples.

for i from 2 to s do
choose ji ∈ [n], uniformly at random.
query ji at sample 1, giving x1ji .

query ji at sample i, giving xiji .

if xiji ̸= x1ji then
return reject

return accept

Observation 5.2. Algorithm 2 is a non-adaptive one-sided error ε-test for determinism, and its
query complexity is O(ε−1).

Proof. By the discussion above, proving that it is a one-sided ε-test is almost identical to the proof
of the all-zero test. Observe that the algorithm cannot reject an input with support size 1. The
probability to reject an ε-far input is:

Pr
P

[reject] =
∑

z∈{0,1}n
Pr
P

[
x1 = z

]
Pr
P

[
reject

∣∣x1 = z
]

︸ ︷︷ ︸
≥1/2 like the all zero test

≥ 1

2

To show that it is non-adaptive, note that we can make the random choices for j2, . . . , js in advance,
and then we can query these indexes from x1 and the other corresponding samples in a single
batch.

5.3 Bounded support test

We show a one-sided, non-adaptive ε-test algorithm for the property of having at most m elements
in the support, using O(ε−1m) samples and O(ε−2m logm) queries.

Lemma 5.3. Let P be a distribution over {0, 1}n that is ε-far from being supported by m elements
(or less). The expected number of independent samples that we have to draw until we get m + 1
elements of the support that are pairwise 1

2ε-far, is at most 1 + 2ε−1m.

Proof. For the purpose of the analysis, consider an infinite sequence X1, X2, . . . of samples that are
independently drawn from P . For every set A of at most m elements, the expected distance of the
next sample from A is at least ε (since otherwise P would be ε-close to be supported by A). By
reverse Markov’s inequality (Lemma 4.15), the probability to draw a sample that is 1

2ε-far from A
is at least 1

2ε.

For every i ≤ 1, let Ti be the index of the first sample that is 1
2ε-far from {XT1 , . . . , XTi−1}. Trivially,

T1 = 1, and for every 2 ≤ i ≤ m + 1, Ti − Ti−1 is a geometric variable with success probability of
at least 1

2ε (the set {XT1 , . . . , XTi−1} takes the role of the set A in the discussion above), and thus
its expected value is at most 2ε−1.

By linearity of expectation, E [Tm+1] = E [T1] +
∑m+1

i=2 E [Ti − Ti−1] ≤ 1 + 2mε−1.
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The algorithm works as follows: we choose a set J of t =
⌈
4ε−1 lnm

⌉
indexes, and take s =

1 +
⌈
8mε−1

⌉
samples. Then we query every sample in all indexes of J , and reject if we find a set

of m+ 1 samples whose restrictions to J are distinct.

Algorithm 3 One sided ε-test for m-bounded support, non adaptive, O(ε−2m logm) queries

take s = 1 +
⌈
8ε−1m

⌉
samples.

let t =
⌈
4ε−1(lnm+ 2)

⌉
choose j1, . . . , jt ∈ [n] uniformly and independently at random.
let J = {j1, . . . , jt}
for i from 1 to s do

query sample i at j for every j ∈ J , giving substring yi of length |J |.
if
∣∣{y1, . . . , ys}∣∣ > m then
return reject

return accept

Theorem 5.4. Algorithm 3 is a one-sided ε-test for being supported by at most m elements.

Proof. For proving complexity, observe that the algorithm draws O(ε−1m) samples and makes
O(ε−1 logm) queries to each of them, giving a total of O(ε−2m logm) queries.

For perfect completeness, consider an input distribution P that is supported by a set of k elements
(for k ≤ m).Note that in this case

∣∣{y1, . . . , ys}∣∣ ≤ k for every choice of J . Thus, the algorithm
must accept it with probability 1.

For soundness, consider an input distribution P that is ε-far from being supported by any set of
m elements. By Lemma 5.3 and Markov’s inequality, with probability higher than 1− 1

4 , there are
at least m + 1 pairwise 1

2ε-far elements within the s samples of the algorithm. If this happens,
then for every pair of these elements, the probability that they agree on all indexes of J is at
most (1 − 1

2ε)
4ε(lnm+2), which is less than 1

e2m2 . The probability that J fails to distinguish even
one of the

(
m
2

)
pairs is at most e−2. Hence, the probability of the algorithm to reject is at least

1− 1
4 − e−2 > 1

2 .

6 The locally-bounded model

The locally bounded model captures the concept of distributed execution in the Huge Object model.
Every sample is processes adaptively using a (possibly) different logic, but nothing is shared across
samples. After all nodes are done, the algorithm makes its decision based on the concatenation of
their results. Lower bounds for this model are surprisingly hard to prove, and we use a corresponding
string model to show them.

6.1 Split adaptive string testing

We define a model of string algorithms that helps us to analyze some variants of locally bounded
adaptive algorithms.

Definition 6.1 (Split adaptive algorithm). For a fixed k, a k-split adaptive deterministic algorithm
for n-long strings (where n is divisible by k) over some alphabet Σ is a sequence of k decision trees
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T1, . . . , Tk, where the tree Ti can only query at indexes between (i − 1)k + 1 and ik, and a set of
accepted answer sequences. The query complexity of the algorithm is defined as the sum of heights
of its trees.

Observation 6.2. Every k-split deterministic adaptive algorithm can be represented as the tuple
(T1, . . . , Tk, A), that consists of its k decision trees and the set of accepted answer sequences. A
k-split probabilistic algorithm can be seen as a distribution over such tuples.

Lemma 6.3 (Construction of a 2-split adaptive string algorithm from locally bounded one). For
some fixed alphabet Σ, let R ⊆ (Σn)2 be a reflexive and symmetric binary relation, and let ΠR be
the property of 2n-long strings that are concatenation of u, v ∈ Σn such that (u, v) ∈ R. Let PR
be the property over distributions over Σn which states that P ∈ PR if it is supported over a set
{u, v} such that (u, v) ∈ R (note that by the assumption that R is reflexive, every deterministic
distribution is in PR). There exists an algorithmic construction whose input is a 2-split adaptive
ε-test algorithm for ΠR, and its output is a locally-bounded ε-test algorithm for PR, with the same
number of queries. Also, the construction preserves one-sided error, if exists in the input.

There is a natural generalization of lemma 6.3 for every fixed k ≥ 2, but it is much more detailed,
and we choose to avoid it as we only need the k = 2 case.

Proof. For every u, v ∈ Σn, let Pu,v be the distribution that draws u with probability 1
2 and v with

probability 1
2 (if u = v then Pu,v is deterministic). Observe that d(Pu,v,PR) = d(uv,ΠR): if u = v

then they are both 0 (because R is reflexive), otherwise

d(Pu,v,PR) ≤ min
(u∗,v∗)∈R

(
1

2
d(u, u∗) +

1

2
d(v, v∗)

)
= min

u∗v∗∈ΠR

d(uv, u∗v∗) = d(uv,ΠR)

On the other hand, by Lemma 4.17 there exists (u∗, v∗) ∈ R such that:

d(Pu,v,PR) =
1

2
d(u, u∗) +

1

2
d(v, v∗) = d(uv, u∗v∗) ≥ d(uv,ΠR)

Let A be a locally bounded ε-test for PR. A is a distribution over deterministic algorithms of
the form (T1, . . . , Ts;A). Consider the following conceptual algorithm for strings: the input is a
2n-long string uv (where u is the n-prefix and v is the n-suffix). Simulate A with Pu,v as its input,
and return the same answer. If uv ∈ ΠR then Pu,v ∈ PR, and the algorithm should accept with
probability higher than 2

3 (observe that one-side error is preserved). If uv is ε-far from ΠR then
d(Pu,v,PR) = d(uv,ΠR) > ε, and the algorithm should reject with probability higher than 2

3 , as
desired.

To complete the proof we show the actual implementation Ã of the conceptual algorithm. Recall
that a 2-split adaptive probabilistic algorithm is a distribution over deterministic algorithms of the
form (T̃1, T̃2, Ã). We draw a deterministic algorithm (T1, . . . , Ts;A) from A, and uniformly and
independently draw b1, . . . , bs ∈ {0, 1}. We define the first tree (T̃1, which is then executed on the
u-part of the input) as the concatenation of all trees Ti where bi = 0. The second tree (T̃2, which
is then executed on the v-part of the input) is defined as the concatenation of all trees Ti where
bi = 1 and every query j of the original trees is translated into a query n + j (because we want
to query the v-part, whose indexes are n + 1, . . . , 2n). The set of accepted answer sequences Ã is
defined analogously: a pair of leaves in T̃1, T̃2 is accepting if the corresponding sequence of leaves
in T1, . . . , Ts is an accepting superleaf in A.
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Every accepting (respectively, rejecting) run of Ã given an input uv ∈ Σ2n corresponds to an
accepting (respectively, rejecting) run of A given the input Pu,v that has the same probability to
be executed, hence the construction is correct.

6.2 Exponential separation from the non-adaptive model

As mentioned in [CFG+22], based on a similar analysis in [AKNS01], the property CPal (Definition
4.9) requires at least Ω(

√
n) queries for a non-adaptive ε-test (for sufficiently small values of ε) in

the Huge Object model, but can be ε-tested adaptively using O(poly
(
ε−1
)
) · log n queries. Their

proof is based on an algorithm that considers every sample individually (for every sample they
make an adaptive O(ε)-test for being in cpal), and thus it is locally bounded.

CPal demonstrates an exponential separation of the locally bounded model and the completely
non-adaptive one.

6.3 Polynomial lower bound for Inv

Theorem 6.4. Every locally-bounded adaptive 1
5 -test for Inv must make at least 1

3

√
n queries.

By Lemma 6.3, this follows immediately from the following lemma:

Lemma 6.5. Every 2-split adaptive 1
5 -test for inv must make at least 1

3

√
n queries.

For convenience we denote the identity permutation over [n] by id. We assume that n > 60.
Let Dyes be a distribution that chooses some permutation f : [n] → [n] uniformly at random, and
returns (f, f−1). Let Dno be a distribution that chooses two permutations f, g : [n]→ [n] uniformly
at random and independently, and returns (f, g). Observe that Dyes returns only strings in inv.

Lemma 6.6. For every n > 60, Dno draws a 1
5 -far input with probability more than 1− 1

12 .

Proof. The expected distance of (f, g) from being the same function is 1
2 −

1
2n , because for every

1 ≤ i ≤ n, the probability that g(i) ̸= f(i) is 1 − 1
n . By Markov’s inequality (denoting by “same”

the property of all pairs (f, g) for which f = g),

Pr

[
d((f, g), same) <

1

5

]
= Pr

[
1

2
− d((f, g), same) >

1

2
− 1

5

]
<

1/n

3/10
<

1

18

Let f̃ and g̃ be co-inverse permutations such that d((f, g), (f̃ , g̃)) = d((f, g), inv). Observe that
d(f ◦ g, f̃ ◦ g̃) ≤ d(f, f̃) + d(g, g̃), hence d((f, g), inv) = 1

2d(f, f̃) +
1
2d(g, g̃) ≥

1
2d(f ◦ g, id). Also,

for f and g that are drawn from Dno, the composition f ◦ g distributes uniformly, and its expected
distance from the identity permutation is n−1

n , that is, E [1− d(f ◦ g, id)] = 1
n . By the union bound

with the case that (f, g) is 1
5 -close to being deterministic,
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Pr

[
d ((f, g) , inv) <

1

5

]
≤ 1

18
+ Pr

[
d (f ◦ g, id) < 2

5

]
=

1

18
+ Pr

h∼π([n])

[
d (h, id) <

2

5

]
=

1

18
+ Pr

h∼π([n])

[
1− d (h, id) >

3

5

]
≤ 1

18
+

1/n

3/5
=

1

18
+

5

3n
<

1

12

Recall Yao’s principle, as detailed in Lemma 4.18. If for every deterministic algorithm that uses
less than q queries the variation distance between Dyes and Dno is less than 1

3 −
1
12 = 1

4 , then every
probabilistic 1

5 -tester for inv must use at least q queries.

We will prove that the lower bound holds even if we have an additional promise on the input, that
both f and g are permutations (but not necessarily inverses). Note that our two input distributions
satisfy this.

Fix some deterministic algorithm (T1, T2, A), and let qf and qg be the number of queries in the first
and the second tree respectively (so qf + qg = q). Without loss of generality, we assume that both
T1 and T2 are balanced (all leaves of a tree have the same depth), and that every internal node in
the ith depth has n − i children corresponding to the elements in {1, . . . , n} that did not appear
earlier in the path from the root (whose depth is 0). These trees can handle every sequence of
answers when the input is guaranteed to be a pair of permutations, which we assume from now on
as per the discussion above. Also, without loss of generality, we assume that the tree never makes
a query that it has already made earlier in the path.

From now on, given (f, g) that is drawn according to our input distribution (either Dyes or Dno),
we denote by T1(f) the path followed by T1 on the input f , and analogously denote by T2(g) the
path followed by T2 on g. The following lemma, together with Lemma 6.6, immediately implies
Lemma 6.5.

Lemma 6.7. Given a distribution over inputs D, denote by D̃ the resulting distribution over the
pair of tree paths (T1(f), T2(g)) where (f, g) is drawn by D. If q < 1

3

√
n, then d(D̃yes, D̃no) <

1
8 .

We now define and analyze features in T2 that depend on a fixed path F in T1. Let a1, . . . , aqf be
the f -queries and let c1, . . . , cqf be their answers (ci = f(ai)). We define the following traps in T2:

• A revealing node is an internal node whose query b belongs to {c1, . . . , cqf }. Observe that the
count of revealing nodes depends on the choice of the f -path. A revealing path is a path that
contains at least one revealing node.

• A wrong node is a node (possibly a leaf) whose parent edge’s label belongs to {a1, . . . , aqf }.
Observe that every internal node has exactly qf children that are wrong, regardless of the
choice of f . A wrong path is a path that contains at least one wrong node.

Note that the above definitions depend only on F , that is, if T1(f) = T1(f
′) = F , then the sets of

revealing nodes and wrong nodes are identical.
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Lemma 6.8. In T2, for any F , at most
qgqf
n nqg paths are wrong.

Proof. Fix some f -path and then choose a path x1, . . . , xqg , uniformly at random. The path is
wrong if there exists some 1 ≤ i ≤ qg such that xi ∈ {a1, . . . , aqf }. For every individual i, the

probability to do that is at most
qf

n−i+1 , hence by the union bound the probability to have a wrong

path is at most
∑qg

i=1
qf

n+1−i . There are
∏qg−1

j=0 (n − j) paths at all, so the total number of wrong

paths is bounded by
∑qg

i=1
qf

n+1−i

∏qg−1
j=0 (n− j) ≤ qgqf

n nqg .

Lemma 6.9. The expected number of revealing paths in T2, where F is drawn by taking a uniformly
random permutation f and setting F = T1(f), is at most

qgqf
n

∏qg−1
j=0 (n− j) ≤ qgqf

n nqg .

Proof. For a uniform choice of f , the set {c1, . . . , cqf } distributes uniformly over subsets of size qf ,

and thus every individual internal node is a revealing node with probability
qf
n . In every individual

path, the expected number of revealing nodes is bounded by
qgqf
n , and thus the probability that it

is a revealing path is at most
qgqf
n . By linearity of expectation, the expected number of revealing

paths is at most
qgqf
n nqg .

Lemma 6.10. The expected number of bad (revealing or wrong) paths in T2 is at most q2

n nqg .

Proof. The sum of the lemmas above bounds the expected number by at most
2qgqf
n nqg ≤ q2

n nqg .

Lemma 6.11. The probability of hitting a trap, under both Dyes and Dno, is bounded by e q
2/(n−q) q2

n .

Proof. Let N be a random variable for the number of bad paths in T2, and let B be the set of
traps in T2 that have no ancestor traps. Recall that both N and B depend on the T1(f). When
we want to refer to them conditioned on a certain path T1(f) = F , we denote them by N(F ) and
B(F ) respectively.

The set of bad paths is a disjoint-union of all subtrees of B-nodes. For every node u ∈ B we denote
its depth with l(u). The number N of bad paths is at most

∑
u∈B nqg−l(u), because the number of

leaves in a subtree of an l-deep node is nqg−l. Every bad path must go through exactly one B-node,
and thus the probability to hit a bad path is the probability to hit an B-node. By a disjoint union
bound,

Pr [trap|T1(f) = F ] <
∑

u∈B(F )

1

(n− q)l(u)

≤
∑

u∈B(F )

e q
2/(n−q)

nl(u)

= e q
2/(n−q)n−qg

∑
u∈B(F )

nqg−l(u) ≤ e q
2/(n−q)n−qgN(F )

To get the first (leftmost) bound, observe that as long as we did not hit a trap so far, the next step
distributes uniformly over the set of children that are not eliminated for trivial reasons. For Dno,
it is the set of all children (exactly n− qg), and for Dyes it is the set of non-wrong children (at least
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n − q, noting that we assumed that the current node is not already revealing). To hit a specific
trap (that has no ancestor traps), we should take the correct edge h(u) times, and the probability
to do that is at most 1

n−q for every step. Overall, using Observation A.4, the probability to hit a
trap is:

Pr [trap] =
∑
F

Pr [T1(f) = F ] · Pr [trap|T1(f) = F ]

≤
∑
F

Pr [T1(f) = F ] · e q2/(n−q)n−qgN(F )

= e q
2/(n−q)n−qg E [N(T1(f))] ≤ e q

2/(n−q) q
2

n

This completes the proof.

Proof (of Lemma 6.7). Both in Dyes and Dno, the T1(f) distributes uniformly over the set of
(n−q)!

n allowable paths. Conditioned on a specific path F = T1(f), the path T2(g) distributes
under Dno uniformly as well. On under Dyes, the distribution of the path T2(g) (conditioned
on T1(f) = F ) is more complicated, but when additionally conditioned on avoiding traps, T2(g)
indeed distributes uniformly over the trap-free paths in T2. The number of bad paths in T2 is

n!
(n−qg)!

Pr [trap|T1(f) = F ]. Hence the distance between D̃yes and D̃no, conditioned on T1(f) = F ,

is bounded by Pr [trap|T1(f) = F ]. The unconditional variation distance is bounded by the ex-
pectation of the conditional variation distance over the choice of F , and hence, using Lemma 6.11

d(D̃yes, D̃no) ≤
∑
F

Pr [T1(f) = F ] · Pr
Dyes

[trap|T1(f) = F ] = Pr
Dyes

[trap] ≤ e q
2/(n−q) q

2

n

With q < 1
3

√
n, the variation distance between D̃yes and D̃no is less than 1

8 , as desired.

7 The forward-only model

The power of forward-only algorithms over locally bounded ones is the ability to make queries to
samples based on knowledge about prior samples. More precisely, it has the advantage of considering
relations between samples. We show a forward-only improved support test, that avoids redundant
queries that appear to be inevitable in models that do not allow “communication” between different
samples [AFL23]. We also show a logarithmic test for Inv, that demonstrates the ability to test
binary relations between samples. However, this power is bounded, because looking back may be
necessary to deal with complicated binary relations between the members of a set of an unbounded
size, as we show in the lower bound for Sym.

7.1 Query foresight

Query foresight a method for constructing a forward-only algorithm out of an unrestricted adaptive
one by reordering its queries (possibly with some cost) to avoid “looking back”. There are some
algorithms that could be forward-only but are “loosely written”, in a sense that they make their
queries in a “needlessly complex” ordering.
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The idea is straightforward: we simulate the run of an adaptive algorithm. Every time that
the simulation is about to query a new sample, we make additional speculative queries in the
current sample, before dropping it as per the requirement of a forward-only algorithm. If the
simulated algorithm makes a query to an old sample, we feed it with the answer of the corresponding
speculative query. If such a speculative query does not exists, we either accept (for one-sided
algorithms) or behave arbitrarily (for two-sided algorithms). If the prediction is conservative, that
is, the speculated queries are ensured to cover all queries to past samples, then the construction
guarantees the exact acceptance probability for every individual input. This is not guaranteed when
the prediction is not conservative, and in this case we need to analyze the effect of bad speculations.

Improved bounded support test

We show a one-sided error ε-testing algorithm for the property of having at most m elements in
the support, using O(ε−1) samples and O(ε−1m2) queries, which is more efficient, for a fixed m,
than what we do in the non-adaptive model. We reduce queries by using the ability to have extra
queries only for samples that are found to be “new” (at most m+ 1 of them). This algorithm also
reports distinct elements from the support as soon as it encounters them. Note that the algorithm
is not necessarily optimal. We introduce it to demonstrate query foresight.

The algorithm is generally based on the non-adaptive support test in Section 5. For an input
distribution that is ε-far from being supported by m elements, O(mε−1) samples are sufficient for
having m + 1 elements that are pairwise 1

2ε-far. In the non-adaptive algorithm we just choose a
large set of indexes that deals with all pairs of elements at once. We reduce the number of queries
by being adaptive. If we already know that some samples are similar to each other, and we draw
another one, we only compare it to one of the similar samples rather than to all of them.

Consider an ε-far input distribution, and assume that we have already found r distinct samples
(r ≤ m). The expected distance of the next sample from all of them is at least ε (since otherwise
the distribution is not ε-far from being m-supported). For every two samples that we know to be
different, we also know about a specific query that indicates this. If we query a new sample at all
of these indices (at most r − 1), we immediately find at least r − 1 samples that are not the same
as the new one. As for the last standing sample, we just query it in a uniform index to compare
it to the new sample. The probability that they are different is at least ε. The expected number
of samples that we have to draw until we find a new distinct sample is then at most ε−1. The
expected number of samples for finding m + 1 distinct samples is hence 1 + mε−1. By Markov’s
inequality, after 1+ 2ε−1m many samples, the probability to find m+1 distinct samples is at least
1
2 . See Algorithm 4, whose formal correctness is given below, and observe that Algorithm 5, which
is constructed using speculative queries and is forward only, is logically equivalent.

Theorem 7.1. Algorithm 4 is a one-sided ε-test for being supported by at most m elements.

Proof. The query complexity of Algorithm 4 is O(ε−1m2): every sample is queried in at most t+1
indexes (where t ≤ m) when it is the current one, and in every iteration there is at most one extra
query to one of the zis. The total number of queries is at most (m+ 1)s+ s, which is Ω(ε−1m2).

For perfect completeness, observe that the invariants guarantee that {z1, . . . , zm} \ {NULL} is a
subset of the input distribution’s support, and thus the algorithm can never reject an input that is
supported by at most m elements (it never finds a sample that is different from all zis).
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Algorithm 4 One sided ε-test for m-bounded support, strong m+ 1-memory, O(ε−1m2) queries

Memory storage for samples: z1, . . . , zm;x, all initialized to NULL.
Extra cell: We have another syntactic “write-only” memory storage zm+1 which we never query.
take s = 1 +

⌈
2ε−1m

⌉
samples.

set c, t← 0.
set j1, . . . , jm ← NULL
for k from 1 to s do

Invariant 1 c = m or zc+1 = NULL.
Invariant 2 for 1 ≤ i ≤ c, ziJ are distinct where J = {j1, . . . , jt}.
store x← sample k.
query x at j1, . . . , jt, giving substring yk.
for i from 1 to c do

query sample zi at j1, . . . , jt giving substring yi. ▷ the yis are distinct

choose j ∈ [n] uniformly at random.
query x at j, giving xj .
if ∃i : yi = yk then ▷ if exists it is unique

query sample zi at j giving zij .

if xj ̸= zij then

store zc+1 ← x.
set jt+1 ← j. ▷ keep Invariant 2
set t← t+ 1 and c← c+ 1. ▷ keep Invariant 1

else
store zc+1 ← x. ▷ Invariant 2 still holds
set c← c+ 1. ▷ keep Invariant 1

if c > m then
return reject

return accept
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For soundness, consider an ε-far input distribution, and assume that we have an infinite number of
samples. We will bound for every zi the expected iteration that assigns it with a valid sample. Let
T1, . . . , Tm, Tm+1 be these counts. Tm+1 is the iteration of reject. Trivially, Pr[T1 = 1] = 1, because
we must assign z1 in the first iteration. For 2 ≤ i ≤ m + 1, observe that the expected distance of
“the next sample” from {z1, . . . , zi−1} is at least ε. Otherwise, the input would be ε-close to be
supported by {z1, . . . , zi−1}. Thus:

Pr
x∼P

[
yk /∈

{
y1, . . . , yt

}
∨ xj ̸= zij

]
≥ min

1≤i≤t
Pr
x∼P

[
xj ̸= zij

]
= min

1≤i≤t
E

x∼P

[
d
(
x, yi

)]
≥ E

x∼P

[
min
1≤i≤t

d
(
x, yi

)]
≥ ε

The number of iterations until zi is assigned (counting since the assignment of zi−1) is a geometric
variable with success probability at least ε, and thus its expected value is at most ε−1. By linearity
of expectation,

E [Tm+1 − T1] =

m+1∑
i=2

E [Ti+1 − Ti] ≤ ε−1m

By Markov’s inequality, Pr
[
Tm+1 − T1 ≤ 2ε−1m

]
> 1

2 . Going back to Algorithm 4, note that it
uses 1+

⌈
2ε−1

⌉
samples (rather than an infinitely many), and thus it rejects every ε-far input with

probability higher than 1
2 .

Applying query foresight on the improved m-support test

Observe that Algorithm 4 is not forward-only, because it holds up to m samples in memory and
keeps querying them with every new sample. Though easier to analyze for correctness, it is not
streamlined. We know that every “sample in memory” is going to be queried in at most one “new”
location per each incoming sample, hence we can just choose all these indexes in advance and make
all queries as soon as we (virtually) “store” the sample in memory. The cost is at most m extra
queries for every sample that we take in future. Algorithm 5 is a rephrasing of Algorithm 4 using
query foresight.

7.2 Exponential separation from the locally bounded model

As observed above, one of the advantages of forward-only algorithms over locally bounded ones
is the ability to consider binary relations between samples. We show a logarithmic, forward-only
ε-test for Inv, demonstrating the exponential separation between the models.

Logarithmic forward-only ε-testing algorithm for Inv

We show an algorithm that ε-tests Inv using O(ε−2) element queries (that translate to O(ε−2 log n)
bit queries in the binary encoding). We consider the first sample as “f”, and observe that it allows
us some indirect access to a presumptive f−1 (even if it does not even exist, which is the case if
f is not a permutation). Then we take samples and try to distinguish them from both f and the
presumptive f−1. If we manage to do it, we reject. After

⌈
3ε−2

⌉
tries, the probability to reject an

ε-far input is higher than 1
2 .
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Algorithm 5 One sided ε-test for m-bounded support, forward only, O(ε−1m2) queries

take s = 1 +
⌈
2ε−1m

⌉
samples.

choose j1, . . . , js ∈ [n] uniformly and independently at random.
let M be an uninitialized m× n sparse matrix {0, 1}. ▷ storage for speculative queries
let A be an empty list over [n].
c← 0.
for k from 1 to s do

Invariant Mi,j is initialized for all 1 ≤ i ≤ c and j ∈ {j1, . . . , js}.
for all j in A do ▷ simulation of yk

query sample k at j, giving xkj .

set found ← 0.
for i from 1 to c do

if
∧

j∈A

(
Mi,j = xkj

)
then ▷ simulation of the yis

set found ← 1.
j ← jk.
query sample k at j, giving xkj .

if Mi,j ̸= xkj then
c← c+ 1.
add j to A.
query sample k at j1, . . . , js, giving Mc,j1 , . . . ,Mc,js . ▷ speculative queries

▷ keep the invariant

if found = 0 then
c← c+ 1.
query sample k at j1, . . . , js, giving Mc,j1 , . . . ,Mc,js . ▷ speculative queries

▷ keep the invariant

if c > m then
return reject

return accept

Algorithm 6 One sided ε-test for Inv, forward only, O(ε−2) queries

Treat samples as n-long strings over [n].
let s = 1 +

⌈
3ε−2

⌉
.

choose j2, . . . , js ∈ [n], uniformly at random and independently.
choose k2, . . . , ks ∈ [n], uniformly at random and independently.
query sample 1 at j2, . . . , js, giving f(j2), . . . , f(js).
query sample 1 at k2, . . . , ks, giving f (k2) , . . . , f (ks).
for i from 2 to s do

query sample i at ji, f(ki), giving g(ji), g(f(ki)).
if f(ji) ̸= g(ji) and g(f(ki)) ̸= ki then

return reject
return accept
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Theorem 7.2. Algorithm 6 is a one-sided ε-test for Inv.

Proof. The query complexity is trivially O(ε−2).

For perfect completeness, let P ∈ Inv be an input distribution that is supported either by some
{f0} or by some {f0, f−1

0 }. In the first case, f(ji) = g(ji) for every i and thus the algorithm
cannot reject. In the second case, without loss of generality, assume that the first sample is f0 (the
analysis for f−1

0 is the same). For every i ≥ 1, and g being the ith sample, either g = f0, and then
f(ji) = g(ji), or g = f−1

0 , and then g(f(ki)) = ki. In both subcases, the algorithm cannot reject.

For soundness, consider P that is ε-far from Inv, and fix some function f : [n] → [n]. Let g be
drawn from P . To reject, the algorithm seeks for two witnesses j and k such that g(i) ̸= i and
g(f(k)) ̸= k. For every specific g, the probability to reject is exactly d(g, f) · d(g ◦ f, id).

If f is a permutation then d(g ◦ f, id) = d(g, f−1), and in this case, by positivity of variance, we
obtain for g that is distributed as a random sample from P :

E
[(
min

{
d (g, f) , d

(
g, f−1

)})2] ≥ (
E
[
min

{
d (g, f) , d

(
g, f−1

)}])2
=

(
E
[
d
(
g, {f, f−1}

)])2 ≥ ε2

If f is 1
3ε-far from a permutation, then d(g ◦ f, id) > 1

3ε for every g as well, hence:

E [d (g, f) · d (g ◦ f, id)] ≥ E

[
d (g, f) · 1

3
ε

]
≥ 1

3
ε2

If f is 1
3ε-close to a permutation, let f̃ be one of the closest permutations to f . For every specific

g it holds that d(g ◦ f, id) ≥ d(g ◦ f̃ , id) − d(g ◦ f̃ , g ◦ f) ≥ d(g ◦ f̃ , id) − d(f̃ , f). Note that f̃ is
necessarily constructed considering every set of preimages f−1(k) = {i : f(i) = k}, and changing
exactly |f−1(k)| − 1 values of f in it. Considering any function g, the distance of g ◦ f from the
identity, and even from being one-to-one, is at least d(f, f̃), hence

d(g ◦ f, id) ≥ max{d(g ◦ f̃ , id)− d(g ◦ f̃ , g ◦ f), d(f, f̃)}

≥ max{d(g, f̃−1)− d(f, f̃), d(f, f̃)} ≥ 1

2
d(g, f̃−1)

Hence,

E [d(g, f) · d(g ◦ f, id)] ≥ E

[
(d(g, f̃)− 1

3
ε) · 1

2
d(g, f̃−1)

]
≥ 1

2
E

[(
min{d(g, f̃), d(g, f̃−1)} − 1

3
ε

)
min{d(g, f̃), d(g, f̃−1)}

]
≥
(∗)

1

2

(
E
[
min{d(g, f̃), d(g, f̃−1)}

]
− 1

3
ε

)(
E
[
min{d(g, f̃), d(g, f̃−1)}

])
≥ 1

2
(ε− 1

3
ε)ε =

1

3
ε2
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The starred transition is by a specific case of Jensen’s inequality: E[(X − t)X] ≥ (E[X])2 − tE[X].
For every specific choice of f as the first sample, the probability to reject is at least 1

3ε
2, and thus

after
⌈
3ε−2

⌉
iterations the probability to reject the input is higher than 1

2 .

This completes the proof.

Corollary 7.3. Based on Theorem 7.2, Theorem 6.4 and the discussion in Subsection 4.2, there
exists a property Inv∗ of distributions over binary strings for which for every ε > 0, there exists
a forward-only ε-tester for Inv∗ that uses O(ε−2 log n) bit queries, but every locally-bounded 1

5 -test

must use at least Ω(
√
n/ log n) bit queries.

Note that the string length of Inv∗ is actually O(n log n) of the analysis for Inv, hence the division
in the lower bound.

7.3 Polynomial lower bound for Sym

Theorem 7.4. Every forward-only 1
14 -test for Sym must use at least 1

2

√
m queries (for sufficiently

large m).

The whole subsection is dedicated to proving this theorem. We start with some definitions that
will help us describe our test. First, we denote the set [m] by S, and also refer it as the “set of
keys”.

Definition 7.5 (Key of an element for Sym). Let x ∈ {0, 1}2m. We define its key, κ(x), as the
element in S that is deduced from the first ⌈log2m⌉ bits of x.

Definition 7.6 (Valid key). A string x ∈ {0, 1}2m has a valid key if ⟨x1, . . . , xm⟩ = C(κ(x)) (recall
that C is a large-distance systematic code).

Definition 7.7 (Probability to draw a key). Let P be a distribution over {0, 1}2m. For every
a ∈ S, we define its probability to be drawn from P as Prx∼P [κ(x) = a], and denote it by PrP [a].

Definition 7.8 (Key support of P ). For every a ∈ S, we say that the key a appears in the support
of P if PrP [a] > 0.

Definition 7.9 (Data of an element for Sym). Let x ∈ {0, 1}2m. The last m bits (“right hand
half”) of x have one-to-one correspondence for the elements in S. For every b ∈ S we define ϕx(b)
as the value of x in b, corresponding to that one-to-one match. ϕx(b) can be explicitly defined as
xm+b, the m+ bth bit of x.

Definition 7.10 (Consistency at (a, b)). Let P be a distribution over {0, 1}2m, and let a, b ∈ S. P
is consistent at (a, b) if PrP [a] = 0, or PrP [b] = 0, or ϕx(b) is either 0 with probability 1 or 1 with
probability 1, when x is a random sample with κ(x) = a.

Definition 7.11 (Consistency). Let P be a distribution over {0, 1}2m. P is consistent if it is
consistent at every (a, b) (a ̸= b ∈ S).

Definition 7.12 (Symmetry at {a, b}). Let P be a distribution over {0, 1}2m, and let a, b ∈ S. P
is symmetric at {a, b} if Prx,y∼P [κ(x) = a ∧ κ(y) = b ∧ ϕx(b) ̸= ϕy(a)] = 0.

Definition 7.13 (Symmetry). Let P be a distribution over {0, 1}2m. P is symmetric if it is
symmetric at every {a, b} (where a ̸= b ∈ S).
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Observation 7.14. P ∈ Sym if and only if it is symmetric.

Observation 7.15. If P is symmetric at {a, b} then it is also consistent at both (a, b) and (b, a).

Observation 7.16. If P ∈ Sym, then for every distribution Q, if supp(Q) ⊆ supp(P ) then
Q ∈ Sym.

Proof. The definition of Sym has the following form: “For every x, y ∈ supp(P ), if κ(x) ̸= κ(y)
then they satisfy the symmetry condition”. If supp(Q) ⊆ supp(P ), and P ∈ Sym, then for every
x, y ∈ supp(Q), they belong to supp(P ) as well and thus they still satisfy the condition above.

To proceed with the proof of Theorem 7.4, we define a useful construction of distributions.

Definition 7.17 (Distribution Uf ). Let f : S2 → {0, 1} be a function. We define Uf as the uniform
distribution over {C(a) ⟨f(a, b)|b ∈ S⟩|a ∈ S} ⊆ {0, 1}2m.

Observation 7.18. Uf ∈ Sym if and only f ∈ sym.

Lemma 7.19. For every f : S2 → {0, 1}, it holds that d(Uf ,Sym) ≥ 1
6d(f, sym).

The proof of this lemma appears at the end of this section. Based on the “standard model” distance
bound that it guarantees, we define two distributions over inputs:

• Dyes chooses uniformly at random a symmetric function f : S2 → {0, 1}, and then outputs
Uf .

• Dno chooses uniformly at random an anti-symmetric function f : S2 → {0, 1}, and then
outputs Uf . By “anti-symmetric” we mean that f(a, b)⊕ f(b, a) = 1 for every a ̸= b ∈ S.

Observe that Dyes draws an input in Sym with probability 1. The f that is drawn by Dno is always(
m
2

)
/m2-far from sym, which is 1

2 − o(1). Hence by Lemma 7.19, an input that is drawn from Dno

is 1
12 − o(1)-far from Sym.

Lemma 7.20 (No useful queries lemma). Let f : S2 → {0, 1} be a function, and let A be a forward-
only probabilistic algorithm that uses s samples and q queries. If the input has the form of Uf for
some f : S2 → {0, 1}, then with probability higher than 1− sq

m , for every a ̸= b ∈ S, the algorithm
obtains at most one of the values f(a, b) or f(b, a).

Proof. For every 1 ≤ i ≤ q, let Xi be an indicator for the following event: there exist i′ > i and
a ̸= b ∈ S such that the ith query obtains f(a, b), and the i′th query obtains f(b, a).

Fix some i, and assume that the ith query obtains f(ai, bi) for some ai ̸= bi. The ith query is
made in some j(i)th sample whose key is ai. To be able to obtain f(bi, ai), there must be a sample
whose index is j > j(i) and whose key is bi. The jth sample (for every j > j(i)) is completely
independent of the algorithm’s behavior so far, because the algorithm is forward-only and has
never had any interaction with this sample. Hence the probability that its key is bi is

1
n , and by

the union bound, Pr[Xi = 1] ≤ (s − j(i)) · 1n ≤
s
n . Considering all q queries, by the union bound,

Pr[∃i : Xi = 1] ≤ sq
n .

Now we can complete the proof of Theorem 7.4.
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Proof (of Theorem 7.4). Consider a probabilistic forward-only algorithm A that makes less than
q ≤ 1

2

√
m queries, and without loss of generality, at most q samples (s ≤ q). By Lemma 7.20, if the

algorithm is executed on an input Uf , then with probability at least 1− 1
4 there are no a ̸= b ∈ S

for which the algorithm gathers both f(a, b) and f(b, a). For both Dyes and Dno, the distribution of
answers is the same (completely uniform for the queries taken from the data part of the samples).
Thus, the variation distance between the algorithm’s behavior on Dyes and Dno is at most 1

4 . Hence
by Yao’s principle, the algorithm cannot be a 1

5 -test for inv.

Finally we present the proof of Lemma 7.19 that was postponed earlier.

Proof (of Lemma 7.19). Let h : supp(P )→ {0, 1}2m be the mapping that is guaranteed by Lemma
4.17 (which is applicable due to Observation 7.16), that is, h(P ) ∈ Sym and d(P, h(P )) =
d(P,Sym). For every a ∈ S, let xa be the only element in the support of Uf whose key is
a.

Let g be a symmetric function that is made by fixing all violations in f using “hints” from h.
Formally,

g(a, b) =


ϕh(xa)(b) κ(h(xa)) = a

ϕh(xb)(a) κ(h(xa)) ̸= a, κ(h(xb)) = b

0 κ(h(xa)) ̸= a, κ(h(xb)) ̸= b

Observe that g is symmetric, and let h′ : supp (Uf )→ {0, 1}2m be the following mapping:

h′(x) = ⟨x1, . . . , xm⟩ ⟨g(κ(x), b)|b ∈ S⟩

Observe that d(xa, h′(xa)) ≤ 1
2 for every a ∈ S (because their key parts match) and that if

κ(h(xa)) ̸= a then d(xa, h(xa)) ≥ 1
6 , because codewords for different keys are 1

3 -far apart, and
the weight of the key is 1

2 .

For every a ∈ S: if κ(h(xa)) = a, then h(xa) = h′(xa), hence d(xa, h(xa)) ≥ 1
3d(x

a, h′(xa)).
Otherwise, d(xa, h(xa)) ≥ 1

6 ≥
1
3d(x

a, h′(xa)) as well. In total,

d(Uf ,Sym) = d(Uf , h(Uf )) =
∑
a∈S

1

m
d(xa, h(xa))

≥ 1

3

∑
a∈S

1

m
d(xa, h′(xa)) =

1

6
d(f, g) ≥ 1

6
d(f, sym)

8 The constant memory model

In this section we discuss some characteristics of bounded memory models. The intuition is that
k-memory algorithms can handle k-ary relationships of elements, while smaller memories cannot
do that. We prove this intuition by separating weak k-memories from strong k − 1 ones.
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8.1 Exponential separation of forward-only and weak 2-memory bounded

In this section we show that Sym is ε-testable using O
(
poly

(
ε−1
)
log n

)
queries by a weak 2-

memory adaptive algorithm, hence demonstrating an exponential separation from the forward-only
model.

Logarithmic, weak 2-memory adaptive ε-testing algorithm

The ε-test for Sym is straightforward: it uses sufficiently many iterations (in particular,
⌈
8ε−2

⌉
),

each one of them consisting of taking two samples and validating their keys and symmetry (with
respect to their keys). The bottleneck of the query complexity is actually reading the key of every
sample, which is logarithmic, rather than the validation itself, which requires exactly four queries
per iteration (two of them to validate the keys, and two more to validate symmetry).

Algorithm 7 One-sided ε-test for Sym, weak 2-memory, O(ε−2 log n) queries

let m← n/2.
for

⌈
8ε−2

⌉
times do

take two samples x, y.
query x1, . . . , x⌈log2 m⌉, giving κ(x) as a.
query y1, . . . , y⌈log2 m⌉, giving κ(y) as b.
choose i ∈ [m], uniformly at random.
query x, y at i, giving xi, yi.
query ϕx(b), ϕy(a).
if xi ̸= (C(a))i or yi ̸= (C(b))i then

return reject ▷ rejection by key invalidity

if ϕx(b) ̸= ϕy(a) then
return reject ▷ rejection by asymmetry

return accept

To be able to analyze the upper bound for Sym, we need some additional definitions.

Definition 8.1 (pa,b, “zeroness” of the presumed f(a, b)). Let a, b ∈ S for which PrP [a] > 0. We
set pa,b = Prx∼P [ϕx(b) = 0|κ(x) = a].

Definition 8.2 (Specific fixing cost, ca,b,x). Let P be a distribution over {0, 1}2m. For a, b ∈ S for
which PrP [a],PrP [b] > 0, let the zero-fix cost be ca,b,0 = 1

2m((1 − pa,b) PrP [a] + (1 − pb,a) PrP [b]),
and the one-fix cost be ca,b,1 =

1
2m(pa,b PrP [a] + pb,a PrP [b]). In other words, for x ∈ {0, 1}, ca,b,x is

the cost of making P symmetric at {a, b} where both values are x.

Definition 8.3 (Fixing cost, ca,b). Let P be a distribution over {0, 1}2m. For a, b ∈ S for which
PrP [a],PrP [b] > 0, let the fixing cost be ca,b = min{ca,b,0, ca,b,1}. In other words, ca,b is the earth
mover’s cost of making P symmetric at (a, b).

Observation 8.4. For every a, b ∈ S, ca,b,0 = cb,a,0 and ca,b,1 = cb,a,1.

Lemma 8.5. For a, b ∈ S for which PrP [a],PrP [b] > 0,

ca,b ≤
PrP [a] + PrP [b]

2mPrP [a] PrP [b]
Pr [κ(x) = a ∧ κ(y) = b ∧ ϕx(b) ̸= ϕy(a)]
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Proof. Let ρ = Pr [ϕx(b) ̸= ϕy(a)|κ(x) = a ∧ κ(y) = b] = (1− pa,b)pb,a + pa,b(1− pb,a).

Case I. pa,b ≤ 1
2 ≤ pb,a Observe that ρ ≥ 1

2 in this case, hence

ca,b =
1

2m
min

{
(1− pa,b) Pr

P
[a] + (1− pb,a) Pr

P
[b], pa,b Pr

P
[a] + pb,a Pr

P
[b]

}
≤ 1

2m
· 1
2

(
Pr
P
[a] + Pr

P
[b]

)
≤ PrP [a] + PrP [b]

2m
ρ

=
PrP [a] + PrP [b]

2mPrP [a] PrP [b]
Pr [κ(x) = a ∧ κ(y) = b ∧ ϕx(b) ̸= ϕy(a)]

Case II. pa,b, pb,a ≤ 1
2 Observe that ρ ≥ max{pa,b, pb,a} in this case, because (1 − pa,b)pb,a +

pa,b(1− pb,a) = pa,b + (1− 2pa,b)pb,a ≥ pa,b (and ρ ≥ pb,a analogously), hence

ca,b =
1

2m
min

{
(1− pa,b) Pr

P
[a] + (1− pb,a) Pr

P
[b], pa,b Pr

P
[a] + pb,a Pr

P
[b]

}
=

1

2m

(
pa,b Pr

P
[a] + pb,a Pr

P
[b]

)
≤ PrP [a] + PrP [b]

2m
max{pa,b, pb,a}

≤ PrP [a] + PrP [b]

2m
ρ

=
PrP [a] + PrP [b]

2mPrP [a] PrP [b]
Pr [κ(x) = a ∧ κ(y) = b ∧ ϕx(b) ̸= ϕy(a)]

The case where pa,b, pb,a ≥ 1
2 is handled similarly to Case I by replacing pa,b and pb,a with 1− pa,b

and 1−pb,a respectively. Analogously, the remaining case, pb,a ≤ 1
2 ≤ pa,b, can be handled similarly

to Case II.

Definition 8.6 (Key invalidity). For an input distribution P , we define its key invalidity as:

K(P ) = E
x∼P

[d(⟨x1, . . . , xm⟩ , C(κ(x)))] = E
x∼P,i∼[m]

[xi ̸= (C(κ(x)))i]

Key invalidity is a measure for “how far is P from having valid keys”, and it is also the probability
of a single iteration to reject a sample x by key invalidity.

Definition 8.7 (Asymmetry). For an input distribution P , we define its asymmetry as:

I(P ) = E
x,y∼P

[ϕx(κ(y)) ̸= ϕy(κ(x))]

Asymmetry is a measure for “how far is P from being symmetric”, and also the probability of the
algorithm to reject by asymmetry.
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Observation 8.8. The probability to reject an input P is at least max{K(P ), I(P )}.

Proof. Immediately, by the definitions of K(P ) and I(P ).

Theorem 8.9. Algorithm 7 is a one-sided ε-test of Sym.

Proof. The complexity of a single iteration is two samples and O(log n) queries. In total, the
algorithm uses O(ε−2) samples and O(ε−2 log n) queries.

For perfect completeness, consider some P ∈ Sym. It must be supported by a set of elements with
valid keys such that each two of them do not violate symmetry.

For soundness, consider some input distribution P that is ε-far from Sym. Let δ = 1
2ε and let

S̃ ⊆ S be the set of keys whose probability in P is at least δ
m . Let f : S̃2 → {0, 1} be the following

function:

f(a, b) =

{
1 ca,b,1 ≤ ca,b,0

0 otherwise

Observe that f is symmetric, because a and b have the exact same role in its definition. Let
h : {0, 1}2m → {0, 1}2m be the following map:

h(x) = C(κ(x))

〈{
f(κ(x), b) κ(x), b ∈ S̃

ϕx(b) otherwise

∣∣∣∣∣b ∈ S

〉

The distribution h(P ) does not necessarily belong to Sym, but it is δ-close to it: if we delete all
samples whose key is not in S̃ (and transfer their probabilities arbitrarily), the resulting distribution
does belong to Sym. Below we bound the distance of P from h(P ).

d(P, h(P )) ≤
∑
a∈S

Pr
P
[a] E

x∼P
[d(x, h(x))|κ(x) = a]

≤ 1

2
K(P ) +

1

2

∑
a∈S̃

Pr
P
[a] E

x∼P
[d(⟨xm+1, . . . , x2m⟩ , ⟨hm+1(x), . . . , h2m(x)⟩)|κ(x) = a]

≤ 1

2
K(P ) +

∑
a,b∈S̃

ca,b

≤
(∗)

1

2
K(P ) +

∑
a,b∈S̃

PrP [a] + PrP [b]

2mPrP [a] PrP [b]
Pr

x,y∼P
[κ(x) = a ∧ κ(y) = b ∧ ϕx(b) ̸= ϕy(a)]

≤
(∗∗)

1

2
K(P )+

∑
a,b∈S̃

2max{PrP [a],PrP [b]}
2m δ

m max{PrP [a],PrP [b]}
Pr

x,y∼P
[κ(x) = a ∧ κ(y) = b ∧ ϕx(b) ̸= ϕy(a)]

=
1

2
K(P ) + δ−1

∑
a,b∈S̃

Pr
x,y∼P

[κ(x) = a ∧ κ(y) = b ∧ ϕx(b) ̸= ϕy(a)]

≤ 1

2
K(P ) + δ−1I(P ).

34



The first transition is correct because we can use a transfer distribution that maps every x to its
h(x), and the rightmost sum only considers keys in S̃ because h does not modify values of samples
with rare keys. The starred transition is by Lemma 8.5, and the doubly-starred transition is correct
because Pr[a],Pr[b] ≥ δ

m . Other transitions are trivial. Using the above we bound the distance of
P from Sym.

d(P,Sym) ≤ δ + d(P, h(P )) ≤ δ +
1

2
K(P ) + δ−1I(P ) ≤ 1

2
ε+

1

2
K(P ) + 2ε−1I(P ).

Consider an input distribution P that is ε-far from Sym. By the triangle inequality, either K(P ) >
1
2ε or I(P ) > 1

8ε
2 (or both). In both cases, the probability to reject in a single iteration is at least

1
8ε

2. After
⌈
8ε−1

⌉
iterations, the probability to reject is greater than 1

2 .

8.2 Introduction to exponential separation of constant memories

Subsection 7.3 contains a lower bound for Sym, based on the concept of “useful queries” and the
low probability to obtain them. We generalize it for k-set functions in order to prove stronger
results. Note that here we “lump together” k bit values for a set {a1, . . . , ak}, while in the case for
Sym we partition the two bits for a set {a, b} ∈

(
S
2

)
to f(a, b) and f(b, a).

Definition 8.10 (String properties even, odd). even is the property of binary strings with even
parity. odd is the property of binary strings with odd parity.

Definition 8.11 (Function property park, counterpart to Definition 4.13). Let k ≥ 2. For a fixed
m and S = [m], the property park is defined as the set of functions f :

(
S
k

)
→ {0, 1}k such that for

every A ∈
(
S
k

)
, f(k) ∈ even.

Our goal is to define a property Park of distributions that relates to park in the same way that
Sym relates to sym. To be more specific, we have the following informal constraints:

1. A weak k-memory algorithm can obtain “a new value of f” (with high probability) at the
cost of k samples and O(k logm) queries.

2. For every k′ < k and for every strong k′-memory algorithm, the probability to obtain strictly

more than k′ bits of even one value of f , is O
(
ksq
m

)
, where s and q are the number of samples

and queries (respectively).

The parity property

We generalize Sym to be able to describe functions from
(
S
k

)
to {0, 1}k. Note that the generalization

does not actually contain Sym itself, because the latter uses functions from S2 to {0, 1}, rather
than from

(
S
2

)
to {0, 1}2 (which we would achieve by ignoring the diagonal “f(a, a)” values and

concatenating every f(a, b), f(b, a) into f({a, b}) of length 2), but other concepts are still relevant.

The property is denoted by Park. It has one explicit parameter k. For a size parameter m, the
property is defined for distributions over {0, 1}2n, where n =

(
m−1
k−1

)
. Below we define the notions

that we use in Park.

The following notions are identical to their counterparts in Subsection 8.1: S = [m], key (Definition
7.5), valid key (Definition 7.6), probability of a key (Definition 7.7), key support (Definition 7.8).
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In all of them, the length of the string is 2n (rather than 2m), and the key part is n-bit long (rather
than m).

Definition 8.12 (Data of an element for Park, counterpart to Definition 7.9). Let x ∈ {0, 1}2n.
As n =

(
m−1
k−1

)
, the last n bits of x have a correspondence to the subsets of S \ {κ(x)} of size k− 1.

For every such set A we define ϕx(A) as the value of x in A. If κ(x) ∈ A and also |A| = k, we
define Φx(A) as ϕx(A \ {κ(x)}).

Definition 8.13 (Consistency at A, counterpart to Definition 7.10). Let P be a distribution over
the set {0, 1}2n, and let a1 < . . . < ak ∈ S and A = {a1, . . . , ak}. P is consistent at A if there exists
a string s ∈ {0, 1}k for which:

Pr
x1,...,xk∼P

[(
k∧

i=1

(
κ(xi) = ai

))
∧ ⟨Φx1(A), . . . ,Φxk(A)⟩ ≠ s

]
= 0

Definition 8.14 (Consistency, counterpart to Definition 7.11). Let P be a distribution over
{0, 1}2n. P is consistent if it is consistent at every A ∈

(
S
k

)
.

Definition 8.15 (parity-validity at A, counterpart to Definition 7.12). Let P be a distribution
over {0, 1}2n, and let a1 < . . . < ak ∈ S and A = {a1, . . . , ak}. P is parity-valid at A if

Pr
x1,...,xk∼P

[(
k∧

i=1

κ(xi) = ai

)
∧

k⊕
i=1

Φxi(A) = 1

]
= 0

Definition 8.16 (parity-validity, counterpart to Definition 7.13). Let P be a distribution over the
set {0, 1}2n. P is parity-valid if it is parity-valid at every A ∈

(
S
k

)
.

Definition 8.17 (Property Park). For a size parameter m, n =
(
m−1
k−1

)
and a systematic code

C : [m] → {0, 1}n (whose existence is guaranteed by Lemma 4.6), Park is the property of parity-
valid distributions over {0, 1}2n with valid keys. Note that if P ∈ Park, then for every distribution
Q, if supp(Q) ⊆ supp(P ) then Q ∈ Park (see Observation 7.16).

Lemma 8.18. Let P be a distribution. Parity-validity at A implies consistency at A.

Proof. Assume that P is inconsistent at some A = {a1, . . . , ak} due to some key ai ∈ A. That is,
a1, . . . , ak appear in the support of P , and also

Pr
y,y′∼P

[
ϕy(A \ {ai}) ̸= ϕy′(A \ {ai})

∣∣κ(y) = κ(y′) = ai
]
> 0

Let y, y′ be two samples in the support of P whose key is ai, but they differ in their ϕ(A \ {ai}).
Consider some choice x1, . . . , xi−1, xi+1, . . . , xk of samples with positive probabilities for which
κ(xj) = aj for 1 ≤ j ≤ k, j ̸= i, and consider the following two sequences:

x1, . . . , xi−1, y, xi+1, . . . , xk x1, . . . , xi−1, y′, xi+1, . . . , xk

Both of these sequences have strictly positive probability to be chosen, and they represent two
words that differ only in the ith bit. Hence, one of them does not belong to even.
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As in the analysis of Sym, we define a useful construction of a distribution from a given function.
Recall Definition 4.4 of ord(a,A) for a ∈ A ∈

(
S
k

)
.

Definition 8.19 (Uf , counterpart to Definition 7.17). Let f :
(
S
k

)
→ {0, 1}k be a function. We

define Uf as the following distribution: we first choose a key a ∼ S uniformly at random, and then
return the following string:

C(a)

〈
(f(B ∪ {a}))ord(a,B∪{a})

∣∣∣∣B ∈ (S \ {a}k − 1

)〉
Observation 8.20 (see Observation 7.18). Uf ∈ Park if and only f ∈ park.

Polynomial lower bound for Park for strong k′-memory where k′ < k

To be able to show a polynomial lower bound we have to show two lemmas.

Lemma 8.21 (see Lemma 7.19). For all k ≥ 2 and f :
(
S
k

)
→ {0, 1}k, d(f,park) ≥ 1

6d(Uf ,Park).

In the context of this lemma, the distance of two functions f, g :
(
S
k

)
→ {0, 1}k is their Hamming

distance as k
(
m
k

)
-bit strings, rather than Hamming distance as

(
m
k

)
-long strings over the alphabet

{0, 1}k. Equivalently, d(f, g) = Ex∼(Sk)
dH(f(x), g(x)).

Proof. Without loss of generality, let h : supp(P )→ {0, 1}2n be the mapping that is guaranteed by
Lemma 4.17, that is, h(P ) ∈ Park and d(P,Park) = d(P, h(P )) =

∑
a∈S

1
md(xa, h(xa)). For every

a ∈ S, let xa be the only element in the support of Uf whose key is a. Let g :
(
S
k

)
→ {0, 1}k be the

following function: for A = {a1, . . . , ak} where a1 < . . . < ak, we have two cases.

Case I If, for every 1 ≤ i ≤ k, there exists bi ∈ S such that h(κ(xbi)) = ai, then we define g(A) =〈
ϕh(xbi )(A \ {ai})

∣∣∣1 ≤ i ≤ k
〉
. Note that for every choice of b1, . . . , bk such that κ(h(xbi)) = ai for

all 1 ≤ i ≤ k, we have the exact same result of
〈
ϕh(xbi )(A \ {ai})

∣∣∣1 ≤ i ≤ k
〉
. This is due to the

fact that all keys of A appear in the support of h(P ), which belongs to Park, and hence h(P ) is
consistent at A. Also, this string must have even parity for the same reason.

Case II Otherwise, we define i0 as i0 = min
{
1 ≤ i ≤ k : ∀b ∈ S : h(κ(xb)) ̸= ai

}
.

g(A) =

〈
ϕh(xai )(A \ {ai}) κ(h(xai)) = ai

ϕxai (A \ {ai}) κ(h(xai)) ̸= ai ∧ i ̸= i0⊕
j=[k]\{i0}(g(A))j i = i0

∣∣∣∣∣∣∣1 ≤ i ≤ k

〉
.

This makes sure that g(A) ∈ even (and thus valid).

Note that both in Case I and Case II, if κ(h(xai)) = ai for some ai ∈ A (not necessarily for other
keys in A), then specifically (g(A))i = (f(A))i. Let h′ : supp (Uf ) → {0, 1}2n be the following
mapping:

h′(x) = ⟨x1, . . . , xn⟩
〈
(g (B ∪ {a}))ord(a,B∪{a})

∣∣∣∣ B ∈ (S \ {a}k − 1

)〉
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Observe that d(xa, h′(xa)) ≤ 1
2 for every a ∈ S (because their key parts match) and that if

κ(h(xa)) ̸= a then d(xa, h(xa)) ≥ 1
6 , because codewords for different keys are 1

3 -far apart, and
the weight of the key is 1

2 .

For every a ∈ S: if κ(h(xa)) = a, then h(xa) = h′(xa) and so d(xa, h(xa)) = d(xa, h′(xa)) ≥
1
3d(x

a, h′(xa)). Otherwise, d(xa, h(xa)) ≥ 1
6 ≥

1
3d(x

a, h′(xa)) as well. In total,

d(Uf ,Park) = d(Uf , h(Uf )) =
∑
a∈S

1

m
d(xa, h(xa))

≥ 1

3

∑
a∈S

1

m
d(xa, h′(xa)) =

1

6
d(f, g) ≥ 1

6
d(f,park)

Lemma 8.22 (No useful queries lemma, see Lemma 7.20). Let f :
(
S
k

)
→ {0, 1}k be a function,

and let A be a strong k′-memory bounded probabilistic algorithm that uses s samples and q queries,

which we execute for the input Uf . With probability at least 1− (k−k′)sq
m , for every set A ∈

(
S
k

)
, the

algorithm obtains at most k′ bits of f(A).

Proof. Let T1, . . . , Ts−k′+1 be random variables such that Ti is the index of the first query to the
(i + k′)th sample (where Ts−k′+1 = q + 1 for convenience). It is exactly when the algorithm must
drop one of its old samples. Observe that the Tis split the algorithm execution into s−k′+1 phases
such that in every individual phase, exactly k′ samples are fully accessible (and all the others are
not). Let q1, . . . , qs−k′+1 be the number of queries in each phase.

We proceed by induction. Consider the ith phase, and assume that by its end, for every A ∈
(
S
k

)
,

the algorithm obtained at most k′ elements of f(A) using queries (observe that this is always the
case in the 1st phase). By the end of the ith phase but before the (i + 1)st one, the algorithm
queries at most qi bits of f -values. Every queried point is some bit of f(A) (for A ∈

(
S
k

)
), and thus

the total number of keys that are involved even in one query is at most k (rather than k′, because
|A| = k). The probability to draw any new sample with one of these keys that has not been seen

before, regarding f(A) with exactly k′ known bits, is at most (k−k′)sqi
m (because we have at most

s future samples). If it does not happen, then also by the end of the (i + 1)st phase, for every
A ∈

(
S
k

)
, the algorithm obtained at most k′ bits of f(A). By the union bound, the probability that

this “no useful queries” situation is preserved through all phases is at least 1− (k−k′)s
∑s

i=1 qi
m , which

is 1 − (k−k′)sq
m as desired. When this is the case, the algorithm does not obtain more than k′ bits

of f(A), for every A ∈
(
S
k

)
.

Theorem 8.23. For every k ≥ 2, every strong k − 1-memory 1
6k -test for Park must use at least

1
2

√
m queries.

Proof. Consider the following distributions of inputs:

• Dyes chooses f :
(
S
k

)
→ even ∩ {0, 1}k uniformly at random and returns Uf .

• Dno chooses f :
(
S
k

)
→ odd ∩ {0, 1}k uniformly at random and returns Uf .
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Observe that Dyes draws an input in Park with probability 1. The f that is drawn by Dno is 1
k -far

from park. By Lemma 8.21, an input that is drawn from Dno is 1
6k -far from Park.

According to Lemma 8.22, for every strong k − 1-memory algorithm, with probability higher than
1− sq

m , the distribution of answers to queries is completely uniform (because the uniform distributions
over even and odd are both k− 1-uniform), regardless of whether the input is drawn from Dyes or
from Dno. That is, the total variation distance of answers is at most sq

m . Without loss of generality
s ≤ q, and thus every algorithm that uses less than 1

2

√
m queries cannot be a 1

6k -test of Park.

8.3 Logarithmic, weak k-memory ε-test for the parity property

The ε-testing algorithm for Park is a straightforward generalization of the ε-test for Sym. It makes
O(ε−kk) iterations, each consisting of drawing k samples and validating them.

Algorithm 8 One-sided ε-test for Park, weak k-memory, O(ε−kk log n) queries

let m be such that m =
(
m−1
k−1

)
= n.

for
⌈
4ε−kk

⌉
times do

take k new samples x1, . . . , xk.
for t from 1 to k do

query xt1, . . . , x
t
⌈log2 m⌉, giving κ(xt) as at.

choose i ∈ [m], uniformly at random.
query xt at i, giving xti.
if xti ̸= (C(at))i then

return reject ▷ reject by key invalidity

if
∣∣{a1, . . . , ak}∣∣ = k then
for t from 1 to k do

query Φxt({a1, . . . , ak}), giving st.

if
⊕k

i=1 s
t = 1 then

return reject ▷ reject by parity-invalidity

return accept

To be able to prove the correctness of the algorithm we need additional definitions. Our goal is to
bound the distance d(P,Park) using the probability to reject.

Definition 8.24 (Key invalidity, counterpart to Definition 8.6). For an input distribution P , we
define its key invalidity as:

Kk(P ) = E
x∼P

[d(⟨x1, . . . , xn⟩ , C(κ(x)))] = E
x∼P,i∼[n]

[xi ̸= (C(κ(x)))i]

Key invalidity is a measure for “how far is P from having valid keys”, and it is also the probability
of a single iteration of Algorithm 8 to reject by key invalidity of x1.

Definition 8.25 (parity-invalidity, counterpart to Definition 8.7). For an input distribution P , we
define its parity-invalidity as:

Ik(P ) = Pr
x1,...,xk∼P

[
|A| = k ∧

k⊕
i=1

Φxi(A) = 1 for A = {κ(x1), . . . , κ(xk)}

]
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Parity-invalidity is a measure for “how far is P from being parity-valid”, and it is also the probability
of a single iteration of Algorithm 8 to reject by parity-invalidity.

Theorem 8.26. If m > 2k2, then for every δ > 0, d(P,Park) ≤ δ + 1
2Kk(P ) + 2δ1−kIk(P ).

Before we prove Theorem 8.26, we use it to show the correctness of the algorithm.

Theorem 8.27. Algorithm 8 is a one-sided ε-test for Park that uses O(ε−kk log n) queries.

Proof. Each iteration of the algorithm takes k samples and makes at most ⌈log2m⌉ + 2 queries
per sample. For m > 2k2: log2m ≤ 1

k−1 log2 n + log2 k + 1 (see Observation A.2), hence there

are at most (1 + 1
k−1) log2 n + k log2 k + 4k queries per iteration. Note that k log2 k ≤ log2 n (see

Observation A.3), hence the number of queries per iteration is bounded by (2 + 1
k−1) log2 n + 4k,

which is at most 7 log2 for k ≥ 2. There are
⌈
4kε−2

⌉
iterations, hence the total number of queries

is O(ε−2k log n).

Perfect completeness is trivial.

For soundness, consider an ε-far input distribution P , and let δ = 1
21/(k−1) ε. By Theorem 8.26,

ε < δ + 1
2K(P ) + 2δ1−kI(P ). Considering the bound 1− 2−1/(k−1) > 1

2k and doing the math:

1

2k
ε < (1− 1

21/(k−1)
)ε = ε− δ <

1

2
K(P ) + 2δ1−kI(P ) =

1

2
K(P ) + ε1−kI(P ).

This implies that either K(P ) > 1
2kε or I(P ) > 1

4kε
k. Either way, the probability to reject P in a

single iteration is at least 1
4kε

k, and the probability to do that after
⌈
4kε−k

⌉
iterations is greater

than 1
2 .

In preparation to the proof of Theorem 8.26, we introduce more definitions and lemmas resembling
those for the proof of Theorem 8.9. In the following we assume that P is the input distribution
over {0, 1}2n.

Definition 8.28 (pA,a, counterpart to Definition 8.1). For a ∈ A ∈
(
S
k

)
all of whose keys appear

in the support of P , pA,a is defined as Pr [Φx(A) = 0|κ(x) = a].

Definition 8.29 (Specific fixing cost, cA,s, counterpart to Definition 8.2). For A = {a1, . . . , ak} ∈(
S
k

)
where a1 < · · · < ak for which PrP [ai] > 0 for every 1 ≤ i ≤ k, and for a string s ∈ {0, 1}k, let

the s-fixing cost of A be cA,s =
1
2n

∑k
i=1 (si · pA,ai + (1− si)(1− pA,ai)) PrP [ai]. In other words, cA

is the earth mover’s cost of making P consistent at A, where its value is s.

Definition 8.30 (Fixing cost, cA, counterpart to Definition 8.3). Let P be a distribution over the
set {0, 1}2n. For A ∈

(
S
k

)
for which PrP [a] > 0 for every a ∈ A, let the fixing cost of A is defined as

cA = mins∈even cA,s. In other words, cA is the earth mover’s cost of making P parity-valid at A.

Lemma 8.31 (A technical bound). Let X1, . . . , Xk be independent random variables such that for

every 1 ≤ i ≤ k, Pr[Xi = 1] ≤ 1
2 . Then max1≤i≤k Pr[Xi = 1] ≤ Pr

[⊕k
i=1Xi = 1

]
≤ 1

2 .

Proof. Without loss of generality we assume that Pr[Xk = 1] = max1≤i≤k Pr[Xi = 1]. For every
1 ≤ i ≤ k let pi = Pr[Xi = 1] and for every 1 ≤ t ≤ k let rt = Pr

[⊕t
i=1Xi = 1

]
.
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For the lower bound, observe that:

rk = (1− pk)rk−1 + pk(1− rk−1) ≥ min{pk, 1− pk} = pk = Pr[Xk = 1]

We prove the upper bound by induction. Trivially, r1 = X1 ≤ 1
2 . For 2 ≤ t ≤ k,

rt = (1− pt)rt−1 + pt(1− rt−2) ≤
(∗)

1

2
(rt−2 + 1− rt−2) =

1

2

The starred transition is correct because α(x) = (1− x)rt−1 + x(1− rt−1) is a non-negative linear
mapping (since rt−1 ≤ 1

2), hence it is non-decreasing in x.

Lemma 8.32 (see Lemma 8.5). For A = {a1, . . . , ak} ∈
(
S
k

)
for which PrP [a] > 0 for every a ∈ A,

cA ≤
2
∑

a∈A PrP [a]

2k!n
∏

a∈A PrP [a]
Pr

x1,...,xk∼P

[
∃σ :

((
k∧

i=1

(
κ(xσ(i)) = ai

))
∧

k⊕
i=1

Φxi(A) = 1

)]

Proof. Let ρ be the probability to find parity-invalidity, conditioned on obtaining the k keys of A.
By definition,

ρ = Pr
x1,...,xk∼P

[
k⊕

i=1

Φxi(A) = 1

∣∣∣∣∣∃σ :

k∧
i=1

(
κ(xσ(i)) = ai

)]

= Pr
x1,...,xk∼P

[
k⊕

i=1

Φxi(A) = 1

∣∣∣∣∣
k∧

i=1

(κ(xi) = ai)

]

Hence

Pr
x1,...,xk∼P

[
∃σ :

((
k∧

i=1

(
κ(xσ(i)) = ai

))
∧

k⊕
i=1

Φxi(A) = 1

)]
= ρk!

∏
a∈A

Pr[a]

Below we show that cA ≤ 2ρ
2n

∑k
i=1 PrP [ai], which completes the proof.

Let s = argmins∈even cA,s, and let m be a majority string, that is, a string such that for every
1 ≤ i ≤ k, Pr [Φx(A) ̸= mi|κ(x) = ai] ≤ 1

2 . Note that m is not necessarily unique, but every
arbitrary choice would fit for the analysis.

For every 1 ≤ i ≤ k, let pi = Pr [Φx(A) ̸= si|κ(x) = ai] be the probability of the ith bit to deviate
from s and let qi = Pr [Φx(A) ̸= mi|κ(x) = ai] be the probability to deviate from the majority.
In the following cases we use the fact that every two words that differ by one bit have different
parities.

Case I. m has odd parity By Lemma 8.31, the probability to draw a string that has the same
parity as m, which is odd, is at least 1

2 . Hence cA ≤ 1
2n

∑k
i=1 PrP [ai]pi ≤

2ρ
2n

∑k
i=1 PrP [ai].
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Case II. m has even parity In this case, m = s, because of the minimality of s. That is,
pi ≤ 1

2 for every 1 ≤ i ≤ k. By Lemma 8.31, the probability to draw an odd-parity string

is at least max1≤i≤k pi. Hence ρ ≥ pi and cA = 1
2n

∑k
i=1 PrP [ai]pi ≤

1
2n

∑k
i=1 PrP [ai] max pi ≤

ρ
2n

∑k
i=1 PrP [ai].

Lemma 8.33 (A technical bound). For every m > 2k2 and for every A = {a1, . . . , ak}, if we have

PrP [a] ≥ δ
m for every a ∈ A, then

2
∑

a∈A PrP [a]

2k!n
∏

a∈A PrP [a] ≤ 2δ1−k.

Proof. Without loss of generality we assume that PrP [ak] ≥ PrP [a1], . . . ,PrP [ak−1]. Based on the

bound mk−1 ≤ e1/2(m−1)!
(m−k)! (for every m > 2k2, see Observation A.1),

2
∑

a∈A PrP [a]

2k!n
∏

a∈A PrP [a]
≤ 2kPr[ak]

2k!nPr[ak] (δ/m)k−1
=

2δ1−k ·mk−1

2(k − 1)!n
≤ 2δ1−k · e1/2(m− 1)!

2(k − 1)!(m− k)!n
≤ 2δ1−k

Now we are able to prove Theorem 8.26.

Proof (of Theorem 8.26). Let S̃ be the set of keys whose probability to be drawn is at least δ
m . Let

f :
(
S̃
k

)
→ {0, 1}k be defined by f(A) = argmins∈S cA,s. Let h(x) be the following map:

h(x) = C(κ(x))

〈{
(f(A ∪ {κ(x)})ord(κ(x),A∪{κ(x)}) κ(x) ∈ S̃, A ⊆ S̃

ϕx(A) otherwise

∣∣∣∣∣A ∈
(
S \ {κ(x)}

k − 1

)〉

The distribution h(P ) does not necessarily belong to Park, but it is δ-close to it: if we delete all
elements whose key is not in S̃ (and transfer their probabilities to other elements arbitrarily), the
result distribution does belong to Park.

For every A ∈
(
S
k

)
, let BA be the event of catching parity-invalidity in A. Based on this notation
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and the last bound,

d(P, h(P )) ≤
∑
a∈S

Pr
P
[a] E

x∼P
[d(x, h(x))|κ(x) = a]

≤ 1

2
Kk(P ) +

1

2

∑
a∈S̃

Pr
P
[a] E

x∼P
[d(⟨xn+1, . . . , x2n⟩ , ⟨hn+1(x), . . . , h2n(x)⟩)|κ(x) = a]

≤ 1

2
Kk(P ) +

∑
A∈(S̃k)

cA

≤
(∗)

1

2
Kk(P ) +

∑
A∈(S̃k)

2
∑

a∈A PrP [a]

2k!n
∏

a∈A PrP [a]
Pr [BA]

≤
(∗∗)

1

2
Kk(P ) +

∑
A∈(S̃k)

2δ1−k Pr [BA]

=
1

2
Kk(P ) + 2δ1−k

∑
A∈(S̃k)

Pr [BA]

≤ 1

2
Kk(P ) + 2δk−1Ik(P ).

The first transition is correct because we can use a transfer distribution that maps every x to its
h(x), and the rightmost sum only considers keys in S̃ because h does not modify values of samples
with rare keys. The starred transition is correct because of Lemma 8.32, and the doubly-starred
transition is implied by the technical bound Lemma 8.33 since Pr[a] ≥ δ

m for all a ∈ A and m > 2k2.

Hence d(P,Park) ≤ δ + d(P, h(P )) ≤ δ + 1
2Kk(P ) + 2δ1−kIk(P ).
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A Calculations

Observation A.1. For k ≥ 2 and m > ak2, mk−1 < e1/a (m−1)!
(m−k)!

Proof. This follows from the following calculation:

(m− 1)!

(m− k)!
≥ (m− k)k−1 = mk−1

(
1− k

m

)k−1

≥ mk−1

(
1− 1

ak

)k−1

> e−1/amk−1

Observation A.2. For n =
(
m−1
k−1

)
and m ≥ 2k2 and k ≥ 2, ⌈log2m⌉ ≤ 1

k−1 log2 n+ log2 k + 1.

Proof. This is implied from Observation A.1 using a = 2:

mk−1 < 2(k − 1)!n

m ≤ (2(k − 1)!)1/(k−1)n1/(k−1) ≤ kn1/(k−1)

log2m <
1

k − 1
log2 n+ log2 k

The conclusion ⌈log2m⌉ < 1
k−1 log2 n+ log2 k + 1 is now immediate.

Observation A.3. For n =
(
m−1
k−1

)
and m ≥ k2, k log2 k ≤ log2 n.

Proof. Noting that

n =

(
m− 1

k − 1

)
≥
(
2k2 − 1

k − 1

)
≥ (2k2 − k)k−1

(k − 1)!
≥ (2k)k−1(k − 1)k−1

(k − 1)k−1
= (2k)k−1 ≥ kk

It follows that
log2 n ≥ k log2 k

Observation A.4. For every 0 ≤ h ≤ q < n, (n/(n− q))h < eq
2/(n−q).

Proof. Follows from the following:(
n

n− q

)h

≤
(

n

n− q

)q

=

(
1 +

q

n− q

)q

< e q
2/(n−q)
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