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Abstract

Let P be a property of graphs. An ϵ-test for P is a randomized algorithm which, given the

ability to make queries whether a desired pair of vertices of an input graph G with n vertices

are adjacent or not, distinguishes, with high probability, between the case of G satisfying P and

the case that it has to be modified by adding and removing more than ϵ
(
n
2

)
edges to make it

satisfy P . The property P is called testable, if for every ϵ there exists an ϵ-test for P whose total

number of queries is independent of the size of the input graph. Goldreich, Goldwasser and Ron

[12] showed that certain graph properties, like k-colorability, admit an ϵ-test. In [2] a first step

towards a logical characterization of the testable graph properties was made by proving that all

first order properties of type “∃∀” are testable while there exist first order graph properties of

type “∀∃” which are not testable. For proving the positive part, it was shown that all properties

describable by a very general type of coloring problem are testable.

While this result is tight from the standpoint of first order expressions, further steps towards

the characterization of the testable graph properties can be taken by considering the coloring

problem instead. It is proven here that other classes of graph properties, describable by various

generalizations of the coloring notion used in [2], are testable, showing that this approach can

broaden the understanding of the nature of the testable graph properties. The proof combines

some generalizations of the methods used in [2] with additional methods.

Keywords: property testing, graph coloring, regularity lemma.

1 Introduction

In all places where it is not stated otherwise, all graphs considered are finite, undirected, and

have neither loops nor parallel edges. We also assume that all such graphs (as well as the other
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combinatorial structures discussed in the following) have a labeled set of vertices. In what follows,

we use the notation of [5] except where stated otherwise.

Let P be a property of graphs. A graph G with n vertices is called ϵ-far from satisfying P if

no graph G̃ with the same vertex set, which differs from G in no more than ϵ
(n
2

)
places (i.e. can be

constructed from G by adding and removing no more than ϵ
(n
2

)
edges), satisfies P . An ϵ-test for

P is a randomized algorithm which, given the quantity n and the ability to make queries whether

a desired pair of vertices of an input graph G with n vertices are adjacent or not, distinguishes

with probability at least 2
3 between the case of G satisfying P and the case of G being ϵ-far from

satisfying P . The property P is called testable, if for every fixed ϵ > 0 there exists an ϵ-test for P

whose total number of queries is bounded by a function of ϵ (and is independent of the size of the

input graph).

As to be expected, all properties discussed here are invariant with regard to graph isomorphisms.

Since we restrict ourselves to tests with a constant number of queries, by [13] this allows us to

assume without loss of generality that a given ϵ-test actually chooses a uniformly random constant

size subset of the vertices of the input graph, queries about all vertex pairs in it, and gives the

output based on the (queried upon) subgraph induced by the chosen vertex set.

The general notion of property testing was first formulated by Rubinfeld and Sudan [19], who

were motivated mainly by its connection to the study of program checking. The study of this notion

for combinatorial objects, and mainly for labeled graphs, was introduced by Goldreich, Goldwasser

and Ron [12], who showed that several interesting graph properties, like k-colorability, are testable.

The fact that k-colorability is testable was, in fact, already proven implicitly in [17] (see also [1]),

using the Regularity Lemma of Szemerédi [20], but in the context of property testing it was first

studied in [12]. Since then the subject of property testing in graphs and other combinatorial objects

has rapidly progressed; see for example the surveys [8] and [18]. In [2] a first step in the direction

of a logical characterization of the testable graph properties was taken, by proving the following.

Theorem 1.1 ([2]) All first order properties of type “∃∀” are testable. On the other hand, there

exists a first order property of type “∀∃” which is not testable.

The definition of first order properties is explained in detail in [2]. Briefly, these are properties

that can be formulated by first order expressions about graphs, that is, expressions that contain

quantifiers (over vertices), Boolean connectives, equality and adjacency. The topic of logical char-

acterizations of testable properties has been investigated also for other combinatorial objects, e.g.

in [3], [16] and [10] for properties of Boolean strings and in [9] for properties of matrices.
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In order to prove the positive part of Theorem 1.1 the following notion of (vertex) colorability

was defined. Note that this is a generalization of the previously investigated notion of proper

k-colorability.

Definition 1 A c-coloring of a graph G with a vertex set V is a function from V to {1, . . . , c}.

Given a finite family (with repetitions) F of graphs, each provided with a c-coloring, an F-coloring

of G is a c-coloring C of G for which no member of F appears as an induced subgraph with the

colors assigned to its vertices being identical to those assigned by C. G is called F-colorable if it

admits an F-coloring.

This class of properties, which captures the essence (with regards to property testing) of the

first order graph properties of type “∃∀”, was shown in [2] to be testable, and a technique for using

the Regularity Lemma of Szemerédi for obtaining results in the context of induced subgraphs was

developed for this purpose.

While Theorem 1.1 seems tight from the point of view of first order expressions, many impor-

tant testable graph properties are not expressible as instances of the first order expressions which

were proven there to be testable. If the point of view of colorability is considered, further steps

towards the understanding of the testable graph properties can be taken by considering further

generalizations of the colorability notion defined above.

In the following, graph properties belonging to more general classes are shown to be testable,

by combining some of the general methods of [2] with additional methods and arguments. It is

also explained in the following how the results regarding testability (positive and negative) can be

generalized to some other graph-related combinatorial structures.

Section 2 presents some definitions and lemmas regarding regular pairs, including the Regu-

larity Lemma of Szemerédi, which are relevant to the proofs here, and Section 3 presents some of

the general methods underlying these proofs. Section 4 shows the testability of graph properties

belonging to the following class, which combines colorability with counting.

Definition 2 Given a finite family F of c-colored graphs and a sequence α = (α1, . . . , αc) of

numbers satisfying 0 ≤ αi ≤ 1 and
∑c

i=1 αi = 1, we call a graph G with n vertices (α,F)-colorable

if G admits an F-coloring with the additional property that for every i the number of vertices of G

which are colored with i is in {⌊αin⌋, ⌈αin⌉}.

This testability of (α,F)-colorability (for every fixed, given, α and F) implies the testability of

some graph properties which are not expressible by colorability notions alone. An example of such
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a property is that of a graph G with n vertices having a clique with ⌊12n⌋ vertices (this particular

property as well as some other properties involving vertex or edge count were actually proven

already in [12] to be testable; the idea here is to find a common generalization of as many previous

results as possible).

Since, unlike F-colorability, (α,F)-colorability is not a property which is inherited by induced

subgraphs, special arguments which apply directly to most subgraphs of a given graph have to be

used in conjunction with methods similar to those of [2].

One could argue that (α,F)-colorability is not a generalization of F-colorability, because in this

property the ratio of the number of vertices colored with each color must be specified. We note

here that with the methods of Section 4 it is also possible to show the testability of a property in

which the ratio of the number of vertices colored with each color is in a specified range, rather than

being up to rounding at a specified point. We concentrate on the latter case because proving the

more general one would add verbiage without contributing additional insights.

Section 5 introduces some more definitions and lemmas, mostly dealing with a certain combina-

torial structure related to graphs. These are used in Section 6 to prove the testability of all graph

properties belonging to the following class.

Definition 3 A c-pair-coloring of a graph G with a vertex set V is a function from [V ]2, the set

of all (unordered) pairs of vertices of G, to {1, . . . , c}. Given a finite family (with repetitions) F of

c-pair-colored graphs, an F-pair-coloring of G is a c-pair-coloring C of G for which no member

of F appears as an induced subgraph with the colors assigned to its vertex pairs being identical to

those assigned by C. G is called F-pair-colorable if it admits an F-pair-coloring.

This is clearly a generalization of the usual notion of edge-colorability, but every property

expressible in terms of the above defined (vertex) F-colorability is expressible in terms of this new

notion as well. A vertex c-coloring is transformed into a
(c+1

2

)
-pair-coloring by coloring each pair

with the union of the colors assigned to its vertex members; it is not hard to ensure in this context

(by forbidding a constant number of pair-colored graphs) that the allowable pair-colorings have

corresponding vertex c-colorings.

Although the result of Section 6 applies to graphs, its proof requires additional arguments

pertaining to the combinatorial structure defined in Section 5.

Finally, Section 7 summarizes some of what is known and what is not yet known regarding

testing of graphs and related structures.
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It should be noted that the dependence of the constants given here on ϵ is impractical, as a

result of making use of the Regularity Lemma. This could be unavoidable, as there is presently no

known testability proof even for the property of being triangle free, but the one making use of this

lemma.

2 Regular pairs and equipartitions

For every two nonempty disjoint vertex sets A and B of a graph G, we define e(A,B) to be the

number of edges of G between A and B. The edge density of the pair is defined by d(A,B) = e(A,B)
|A||B| .

We say that the pair A,B is γ-regular, if for any two subsets A′ of A and B′ of B, satisfying

|A′| ≥ γ|A| and |B′| ≥ γ|B|, their edge density satisfies |d(A′, B′)− d(A,B)| < γ.

One simple yet useful property of regularity is that it is somewhat preserved when moving to

subsets, as the following trivial lemma shows.

Lemma 2.1 If A,B is a γ-regular pair with density δ, and A′ ⊂ A and B′ ⊂ B satisfy |A′| ≥ ϵ|A|

and |B′| ≥ ϵ|B| for some ϵ ≥ γ, then A′, B′ is a γ ·max{2, ϵ−1}-regular pair with density at least

δ − γ and at most δ + γ. 2

The following lemma shows how the existence of regular pairs implies the existence of many

induced subgraphs of a fixed type. Many similar lemmas have been proven in previous works; for

a complete proof of this one see [2].

Lemma 2.2 For every 0 < η < 1 and k there exist γ = γ2.2(η, k) and δ = δ2.2(η, k) with the

following property.

Suppose that H is a graph with vertices v1, . . . , vk, and that V1, . . . , Vk is a k-tuple of disjoint

vertex sets of G such that for every 1 ≤ i < i′ ≤ k the pair Vi, Vi′ is γ-regular, with density at least

η if vivi′ is an edge of H, and with density at most 1− η if vivi′ is not an edge of H. Then, at least

δ
∏k

i=1 |Vi| of the k-tuples w1 ∈ V1, . . . , wk ∈ Vk span (induced) copies of H where each wi plays the

role of vi.

γ2.2(η, k) and δ2.2(η, k) may and are assumed to be monotone nondecreasing in η and mono-

tone nonincreasing in k. We also assume similar monotonicity properties for the other functions

appearing in following lemmas.

We need to use the fact that most subpairs of a given regular pair are also regular to some

extent. In order to prove such a lemma, we use the following alternative definition of regularity.
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Definition 4 For a pair U,W of vertex sets with density η, a vertex u ∈ U is said to ϵ-agree with

the pair if it has between (η − ϵ)|W | and (η + ϵ)|W | neighbors in W , and in addition all but at

most ϵ|U | of the vertices u′ ∈ |U | are such that the number of mutual neighbors of u and u′ in W

is between (η2 − ϵ)|W | and (η2 + ϵ)|W |. We define in an analogous manner the instance where a

vertex w ∈ W is said to ϵ-agree with the pair.

The pair U,W is called ϵ-locally-regular if all but at most ϵ|U | of the vertices of U and all

but at most ϵ|W | of the vertices of W do ϵ-agree with the pair.

It was proven in [1] that this notion of regularity is equivalent in a sense to the usual notion of

regularity.

Lemma 2.3 ([1]) For every ϵ > 0 there exists γ = γ2.3(ϵ) > 0 such that every γ-locally-regular

pair is also ϵ-regular, and every γ-regular pair is also ϵ-locally-regular.

The following corollary shows that the regularity property is inherited by most subpairs, with

any given size larger than a constant, of a given regular pair. It follows directly from lemma 2.3 by

combining it with large deviation inequalities (see e.g. [4], Appendix A).

Corollary 2.4 For every ϵ there exists γ = γ2.4(ϵ), such that for every δ there exists s = s2.4(ϵ, δ)

satisfying the following. If U,W is a γ-regular pair with density η, then for every r > s and t > s,

at least 1− δ of the possible choices of U ′ ⊂ U and W ′ ⊂ W with |U ′| = r and |W ′| = t satisfy that

U ′,W ′ is an ϵ-regular pair whose density is between η − δ and η + δ.

Proof sketch: We set γ = γ2.3(
1
2γ2.3(ϵ)), and set s large enough to ensure that if U,W is a

1
2γ2.3(ϵ)-locally-regular pair with density η, then for all but at most δ of the possible choices of U ′

and W ′ as above the pair U ′,W ′ is γ2.3(ϵ)-locally-regular and with density between η− δ and η+ δ.

2

A partition A = {Vi|1 ≤ i ≤ k} of the vertex set of a graph is called an equipartition if |Vi| and

|Vi′ | differ by no more than 1 for all 1 ≤ i < i′ ≤ k (so in particular each Vi has one of two possible

sizes). The order of such an equipartition A is the number of its sets (k in the above notation). A

refinement of such an equipartition A is an equipartition of the form B = {Vi,j |1 ≤ i ≤ k, 1 ≤ j ≤ l}

such that Vi,j is a subset of Vi for every 1 ≤ i ≤ k and 1 ≤ j ≤ l.

In view of the above properties of regular pairs, it is useful to our purpose to ensure the existence

of regular pairs in a way that nearly classifies a given input graph G. This is best done by ensuring

the existence of a certain equipartition, using the Regularity Lemma of Szemerédi [20].
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Lemma 2.5 (The Regularity Lemma [20]) For every m and ϵ > 0 there exists T = T2.5(m, ϵ)

with the following property.

If G is a graph with n ≥ T vertices, and A is an equipartition of the vertex set of G with an

order not exceeding m, then there exists a refinement B of A with order k, where m ≤ k ≤ T , for

which all pairs of sets but at most ϵ
(k
2

)
of them are ϵ-regular.

In the following, we assume that the number of vertices of the graph G, which appears in some

of the formulations, is large enough (as a function of the other parameters) even when this is not

mentioned explicitly.

The following corollary, many versions of which appear in various papers applying the Regularity

Lemma, is useful in what follows. It is proven by combining Lemma 2.5 with Turán’s Theorem and

Ramsey’s Theorem (see [5] for their formulation). See [2] for the full details.

Corollary 2.6 For every h and γ there exists δ = δ2.6(h, γ) such that for every graph G with

n ≥ δ−1 vertices there exist disjoint vertex sets W1, . . . ,Wh satisfying:

• |Wi| ≥ δn.

• All
(h
2

)
pairs are γ-regular.

• Either all pairs are with densities at least 1
2 , or all pairs are with densities less than 1

2 .

In order to deal with non-monotone graph properties as well as monotone ones, the following

variant of Lemma 2.5 from [2], which is suited for finding certain induced subgraphs in G, is used.

Lemma 2.7 ([2]) For every integer m and function 0 < E(r) < 1 there exists S = S2.7(m, E) with

the following property.

If G is a graph with n ≥ S vertices, then there exists an equipartition A = {Vi|1 ≤ i ≤ k} and

a refinement B = {Vi,j |1 ≤ i ≤ k, 1 ≤ j ≤ l} of A that satisfy:

• |A| = k ≥ m but |B| = kl ≤ S.

• For all 1 ≤ i < i′ ≤ k but at most E(0)
(k
2

)
of them the pair Vi, Vi′ is E(0)-regular.

• For all 1 ≤ i < i′ ≤ k, for all 1 ≤ j, j′ ≤ l but at most E(k)l2 of them the pair Vi,j , Vi′,j′ is

E(k)-regular.

• All 1 ≤ i < i′ ≤ k but at most E(0)
(k
2

)
of them are such that for all 1 ≤ j, j′ ≤ l but at most

E(0)l2 of them |d(Vi, Vi′)− d(Vi,j , Vi′,j′)| < E(0) holds.
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For many proofs regarding testability, including those in Section 6, but excluding those in

Section 4, it is enough to use the following corollary.

Corollary 2.8 ([2]) For every m and 0 < E(r) < 1 there exist S = S2.8(m, E) and δ = δ2.8(m, E)

with the following property.

If G is a graph with n ≥ S vertices then there exist an equipartition A = {Vi|1 ≤ i ≤ k} of G

and an induced subgraph G′ of G, with an equipartition A′ = {V ′
i |1 ≤ i ≤ k} of the vertices of G′,

that satisfy:

• S ≥ k ≥ m.

• V ′
i ⊂ Vi for all i ≥ 1, and |V ′

i | ≥ δn.

• In the equipartition A′, all pairs are E(k)-regular.

• All but at most E(0)
(k
2

)
of the pairs 1 ≤ i < i′ ≤ k are such that |d(Vi, Vi′)−d(V ′

i , V
′
i′)| < E(0).

3 Small models for large graphs

Given a large graph with a partition of its vertex set, a possibly much smaller graph can capture

many of its properties (at least with respect to worst cases) by having the regularity property. The

following somewhat lengthy definition gives the properties required of this smaller graph.

Definition 5 Given a graph G̃ and a partition A = {Vi|1 ≤ i ≤ k} of its vertices, a graph M is an

(h, s, t)-based (η, ϵ)-model for G̃ over A if there is a partition M = {Wi,j |1 ≤ i ≤ k, 1 ≤ j ≤ h}

of its vertex set satisfying the following.

• s ≤ |Wi,j | ≤ t for all 1 ≤ i ≤ k and 1 ≤ j ≤ h.

• If h > 1, then for every fixed 1 ≤ i ≤ k, all pairs Wi,j ,Wi,j′ for 1 ≤ j < j′ ≤ h are ϵ-regular.

Moreover, if h > 1, then either all these pairs have densities at least 1
2 , in which case the

subgraph of G̃ spanned by Vi is a clique, or all these pairs have densities less than 1
2 , in which

case the subgraph of G̃ spanned by Vi is an edgeless graph.

• For every 1 ≤ i < i′ ≤ k and 1 ≤ j, j′ ≤ h, the pair Wi,j ,Wi′,j′ is an ϵ-regular pair. Moreover,

for every fixed 1 ≤ i < i′ ≤ k, one of the following three cases occurs. Either the densities of

all the pairs Wi,j ,Wi′,j′ (where j and j′ vary over {1, . . . , h}) are between η and 1− η; or G̃
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contains all possible edges between Vi and Vi′, and the densities of all these pairs are at least

η; or G̃ contains no edge between Vi and Vi′, and the densities of all these pairs are at most

1− η.

In [2] it is proven implicitly that there exist certain induced subgraphs of G, which model a

graph G̃ which has the same vertex set as G and an edge set similar to that of G. Let us review

these proofs.

Existence in G of a fairly large induced subgraph, modeling a graph G̃ which is similar to G,

follows readily from Corollary 2.8.

Lemma 3.1 (see [2]) For every m, h and 0 < E(r) < 1 there exist S = S3.1(m,h, E) and

δ = δ3.1(m,h, E), such that for every graph G there exists an equipartition A = {Vi|1 ≤ i ≤ k}

with m ≤ k ≤ S, a graph G̃ with the same vertex set as G which differs from G in less than E(0)
(n
2

)
places, and an (h, δn, n)-based (16E(0), E(k))-model for G̃ over A which is an induced subgraph of

G.

Proof: We may assume that E(r) is monotone nonincreasing with r. For convenience, set ϵ = E(0).

We set

S = S2.8(max{m, 7ϵ−1}, E ′)

using

E ′(r) = min{1
6
ϵ, δ2.6(h, E(r))E(r)},

and set

δ = δ2.6(h, E(S))δ2.8(max{m, 7ϵ−1}, E ′).

We apply Corollary 2.8 to G, to find A = {Vi|1 ≤ i ≤ k}, G′ and A′ = {V ′
i |1 ≤ i ≤ k}, that

satisfy max{m, 7ϵ−1} ≤ k ≤ S2.8(max{m, 7ϵ−1}, E ′) and |V ′
i | ≥ δ2.8(max{m, 7ϵ−1}, E ′)n, and the

regularity and density properties guaranteed by the corollary with regards to E ′(r).

We use Corollary 2.6 on the subgraph of G induced by each V ′
i to obtain Wi,1, . . . ,Wi,h, with

all pairs being E(k)-regular, and either all of the densities being at least 1
2 or all of them being less

than 1
2 . Note that now all pairs Wi,j ,Wi′,j′ are E(k)-regular, and that their densities do not differ

from those of V ′
i , V

′
i′ by more than 1

6ϵ.

G̃ is defined to be the graph obtained from G by adding and removing edges according to what

follows.
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• For 1 ≤ i < i′ ≤ k such that |d(Vi, Vi′)−d(V ′
i , V

′
i′)| >

1
6ϵ, for all v ∈ Vi and v′ ∈ Vi′ the pair vv

′

becomes an edge if d(V ′
i , V

′
i′) ≥

1
2 , and becomes a non-edge otherwise. This changes less than

2
6ϵ
(n
2

)
edges (for n large enough) because there are no more than 1

6ϵ
(k
2

)
such 1 ≤ i < i′ ≤ k.

• For 1 ≤ i < i′ ≤ k such that d(V ′
i , V

′
i′) <

2
6ϵ, all edges between Vi and Vi′ are removed. For

all 1 ≤ i < i′ ≤ k such that d(V ′
i , V

′
i′) > 1 − 2

6ϵ, all non-edges between Vi and Vi′ become

edges. This changes no more than 3
6ϵ
(n
2

)
edges in addition to those changed by the previous

operation.

• For 1 ≤ i < i′ ≤ k such that none of the above holds, the edges of G̃ between Vi and Vi′

remain exactly those of G.

• If h > 1 we perform the following. If for a fixed i all densities of pairs from Wi,1, . . . ,Wi,h are

less than 1
2 , all edges within the vertices of Vi are removed. Otherwise, all the abovementioned

densities are at least 1
2 , in which case all non-edges within Vi become edges. This changes

less than 1
6ϵ
(n
2

)
edges, because k ≥ 7ϵ−1.

G′ is clearly a model graph for G̃ as in the formulation of this lemma, and according to the

calculation above G̃ differs from G in less than ϵ
(n
2

)
places, as required. 2

By combining this with Lemma 2.2 the following corollary is immediate (a detailed proof of a

similar one is implied in [2]).

Corollary 3.2 (see [2]) For every m, h, S(r) and 0 < E(r) < 1 there exist S = S3.2(m,h,S, E),

t = t3.2(m,h,S, E) and δ = δ3.2(m,h,S, E), such that for every graph G with n > S vertices there

exists an equipartition A = {Vi|1 ≤ i ≤ k} with m ≤ k ≤ S, and a graph G̃ with the same vertex

set as G which differs from G in less than E(0)
(n
2

)
places, such that at least δ

(n
t

)
of the induced

subgraphs of G with t vertices are (h,S(k), t)-based (13 , E(k))-models for G̃ over A.

Proof sketch: We may assume that S(r) is monotone nondecreasing. We construct G̃ and A, and

then describe the required model graphs. Apply Lemma 3.1 (using appropriate m′ and E ′(r)) to G,

to obtain A, G̃ and G′ which satisfy the conditions in its formulation. We now consider any graph

H with t vertices and an equipartition {W ′
i,j |1 ≤ i ≤ k, 1 ≤ j ≤ h} which satisfies the following,

where t ≥ (S(S) + 1)S is chosen to be large enough for the construction below to be possible.

• For every 1 ≤ i ≤ k if h > 1, if the restriction of G̃ to Vi is a clique, then H contains all

possible edges between W ′
i,j and W ′

i,j′ for any 1 ≤ j < j′ ≤ h; otherwise the restriction of G̃

to Vi is edgeless, in which case H contains no edges between W ′
i,j and W ′

i,j′ .
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• For every 1 ≤ i < i′ ≤ k, if G̃ contains all edges between Vi and Vi′ , then H contains all

edges between Wi,j and Wi′,j′ for any 1 ≤ j, j′ ≤ h; if G̃ contains no edges between Vi and

Vi′ , then H contains no edges between Wi,j and Wi′,j′ ; and if non of the above occurs, then

Wi,j ,Wi′,j′ is some fixed E(k)-regular pair whose density is between 1
3 and 2

3 (a fixed regular

pair satisfying these requirements exists if t is chosen to make ⌊ t
k⌋ ≥ ⌊ t

S ⌋ large enough).

It follows readily that any such H is a model graph for G̃, and Lemma 2.2 ensures that enough of

the induced subgraphs of G′ satisfy the above for the statement of the proposition to hold for an

appropriately chosen δ. 2

The above corollary is sufficient for many proofs of testability of colorability properties, because

it guarantees that most large enough random induced subgraphs of G contain an induced model

graph for an appropriate G̃, and this model can in turn be shown to be colorable only if G̃ is.

However, in the case where the number of appearances of each color is also important, a more

refined mean of obtaining model graphs must be used.

To shorten notation, in the following we call a c-coloring an α-coloring if it is an (α,F)-coloring

for some F , e.g. F = ∅. We also use some vector notation regarding α. For example, |α − α′|∞ is

the largest difference between a component of α and the corresponding component of α′.

Given a model graph M (for some G̃ over some partition A of its vertices), and a partition

M = {Wi,j |1 ≤ i ≤ k, 1 ≤ j ≤ h} of the vertices of M as in the notation of the above definition

of model graphs, we say that a c-coloring of M is α-modeling if its restriction to
⋃h

j=1Wi,j is

monochromatic for every fixed 1 ≤ i ≤ k, and, denoting the common color of the above set by ci,

satisfies also that |{i|ci = g}| = αgk for every fixed 1 ≤ g ≤ c. We are now ready to formulate

the lemma regarding existence of model graphs which is required for proving the testability of

(α,F)-colorability properties.

Lemma 3.3 For every h, c and function E(r) there exist S = S3.3(h, c, E), δ = δ3.3(h, c, E) and

s = s3.3(h, c, E), such that for every graph G with n > s vertices there exists an equipartition

A = {Vi|1 ≤ i ≤ k} with k ≤ S, satisfying that for every t ≥ s, at least (1−E(0))
(n
t

)
of the induced

subgraphs G′ of G with t vertices satisfy the following.

For every α-coloring of G′ (for any α = (α1, . . . , αc) satisfying αi ≥ 0 and
∑c

i=1 αi = 1), there

exists an induced subgraph G′′ of G′, which is an (h, δt, t)-based (16E(0), E(k))-model over A for a

graph G̃ which differs from G in less than E(0)
(n
2

)
places, so that the restriction of the given coloring

of G′ to G′′ is α′-modeling for some α′ satisfying |α− α′|∞ ≤ E(0).

11



Proof: We may assume E(r) ≤ E(0), and set ϵ = E(0). Define E ′ by

E ′(r) = min

γ2.4

(
min{ 1

4cr
δ2.6 (h, E(r)) E(r),

1

6
ϵ}
)
,

1

192
ϵ,

1

16

(
r + 2

2

)−1
 ,

set

S = S2.7(max{m, 7ϵ−1}, E ′)

with m to be chosen later, and set

δ =
1

6cS2
δ2.6(h, E(S)).

Use Lemma 2.7 on G, to find the partitions A = {Vi|1 ≤ i ≤ k} and B = {Vi,j |1 ≤ i ≤ k, 1 ≤ j ≤ l}

which satisfy the density and regularity properties in its formulation; the partition A will also play

the role of the one appearing in the formulation here.

We choose

s = max

2Ss2.4

min{ 1

4cS
δ2.6 (h, E(S)) E(S),

1

6
ϵ},min{ 1

12
ϵ,
1

2
ϵ

(
S

2

)−1

}

 , s0

 ,

where s0 is chosen so that with probability at least 1− 1
2ϵ a random subgraph G′ with t ≥ s vertices

contains between 2t
3kl and

4t
3kl vertices from each Vi,j . Thus, denoting by V ′

i,j the set of vertices of

G′ belonging to Vi,j , by Corollary 2.4 the following properties hold in particular with probability

at least 1− ϵ (these properties are similar to those of the equipartition B).

• 2t
3kl ≤ |V ′

i,j | ≤ 4t
3kl

• For all 1 ≤ i < i′ ≤ k, for all 1 ≤ j, j′ ≤ l but at most 1
16

(k
2

)−1
l2 of them the pair V ′

i,j , V
′
i′,j′ is

min{ 1
4ckδ2.6(h, E(k))E(k),

1
6ϵ}-regular.

• All 1 ≤ i < i′ ≤ k but at most 1
192ϵ

(k
2

)
< 1

12ϵ
(k
2

)
of them are such that for all 1 ≤ j, j′ ≤ l but

at most 1
192ϵl

2 of them |d(Vi, Vi′)− d(V ′
i,j , V

′
i′,j′)| ≤ ( 1

192 + 1
12)ϵ <

1
6ϵ holds.

We now show that such a graph G′ has the properties described in the formulation of this

lemma. Given an α-coloring C of G′, choose independently, uniformly, and randomly, a vertex

vi ∈
⋃l

j=1 V
′
i,j for every 1 ≤ i ≤ k. Choose m to be large enough to ensure (by large deviation

inequalities) that with probability more than 3
4 , the restriction of C to the subgraph induced by

v1, . . . , vk is an α′-coloring for some α′ satisfying |α − α′|∞ ≤ ϵ (this choice depends only on ϵ).

Denoting by ji the index for which vi ∈ V ′
i,ji

, with probability at least 3
4 the number of vertices

12



in V ′
i,ji

which have the same color as vi is at least
1

4ck |V
′
i,j | (because for every fixed 1 ≤ i ≤ k and

1 ≤ g ≤ c, the probability of vi to be colored g while the number of the other vertices of V ′
i,ji

so colored is less than 1
4ck |V

′
i,ji

|, is bounded by 1
4ck ). Finally, because for every fixed i and j the

probability that ji = j is no more than 2
l , each of the following properties holds with probability

at least 3
4 .

• Within the family {V ′
1,j1

, . . . , V ′
k,jk

}, all pairs are min{ 1
4ckδ2.6(h, E(k))E(k),

1
6ϵ}-regular; this

happens with probability at least 3
4 because for every fixed 1 ≤ i < i′ ≤ k the probability of

the pair V ′
i,ji

, V ′
i′,ji′

to be otherwise is no more than 1
4

(k
2

)−1
.

• All 1 ≤ i < i′ ≤ k but at most 1
6ϵ
(k
2

)
of them satisfy |d(V ′

i,ji
, V ′

i′,ji′
) − d(Vi, Vi′)| < 1

6ϵ. This

happens with probability at least 3
4 because the average number of pairs 1 ≤ i < i′ ≤ k that

do not satisfy |d(V ′
i,ji

, V ′
i′,ji′

) − d(Vi, Vi′)| < 1
6ϵ, but do satisfy |d(Vi, Vi′) − d(V ′

i,j , V
′
i′,j′)| <

1
6ϵ

for all but at most 1
192ϵl

2 of the possible 1 ≤ j, j′ ≤ l, is no more than 1
48ϵ
(k
2

)
; thus with

probability at least 3
4 there are no more than 1

12ϵ
(k
2

)
such 1 ≤ i < i′ ≤ k.

In particular, there exists a choice of v1, . . . , vk, with the appropriate j1, . . . , jk, for which all of

the above properties hold. We fix one such choice. Now, for every 1 ≤ i ≤ k, we apply Corollary 2.6

to the subgraph induced by the set of all vertices in V ′
i,ji

which are colored by C with the same

color as vi, thus obtaining sets Wi,1, . . . ,Wi,h such that all their members share the same color, all

pairs are E(k)-regular, and their densities are either all at least 1
2 or all less than 1

2 . Note that also

all the pairs Wi,j ,Wi′,j′ are E(k)-regular.

The subgraph G′′ is defined as that spanned by the union of {Wi,j |1 ≤ i ≤ k, 1 ≤ j ≤ h}. By

constructing G̃ now in a manner completely analogous to the construction in the proof of Lemma

3.1, G′′ is proven to be the required subgraph. 2

4 Vertex-colorability with restrictions

This section contains a proof that graph properties defined in terms of (vertex) (α,F)-colorability

are testable. For convenience, an h-based (η, ϵ)-model graph refers to an (h, s, t)-based (η, ϵ)-model

graph for any 1 ≤ s ≤ t, e.g. s = 1 and t = ∞ (the parameters s and t play a lesser role in this

particular section). The main combinatorial result follows from the following lemma about the

impossibility that a graph far from being colorable has a model graph with a modeling coloring, by

combining it with Lemma 3.3 about the existence of such a setting.
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Lemma 4.1 For every ϵ > 0 and α = (α1, . . . , αc) satisfying 0 ≤ αi ≤ 1 and
∑c

i=1 αi = 1 there

exist β = β4.1(ϵ, α), such that for every η > 0 and family F of c-colored graphs with up to h vertices

in each member, there exists γ = γ4.1(η,F) satisfying the following.

If an h-based (η, γ)-model for G̃ over A = {Vi|1 ≤ i ≤ k} has an α′-modeling F-coloring for

any α′ satisfying |α−α′|∞ < β, then there exists an (α,F)-colorable graph Ĝ which differs from G̃

in no more than ϵ
(n
2

)
places, where n is the number of vertices of G̃.

Proof: Without loss of generality, assume that α1 is the smallest non-zero coordinate of α. We

choose

β = min{1
2
α1,

1

2c
ϵ}

and

γ = γ2.2(η, h).

Given G̃, the model graph H with its partition {Wi,j |1 ≤ i ≤ k, 1 ≤ j ≤ h}, and an α′-modeling

F-coloring C of H satisfying the above, we generate Ĝ, its partition Â = {V̂i|1 ≤ i ≤ k} and its

(α,F)-coloring D as follows.

Since |α − α′|∞ < α1, for every 1 ≤ g ≤ c either αg = 0 or α′
g > 0. In the latter case, let ig

denote one index such that the vertices of
⋃h

j=1Wig ,j are all colored g. Now color as many vertices

of G̃ as possible, under the following restrictions. For every i, every vertex of Vi is either colored

the same as
⋃h

j=1Wi,j , or remains uncolored; and for every 1 ≤ g ≤ c, no more than ⌊αn⌋ vertices

of G̃ are colored g. In the following construction of Â, for every i the set V̂i holds the vertices of

Vi which are colored in this stage, and may hold other vertices as follows. Since |α − α′|∞ ≤ 1
2cϵ,

no more than 1
2ϵn vertices remain uncolored. To complete the construction of the coloring D, for

every uncolored vertex v, a color 1 ≤ g ≤ c is chosen such that the final coloring D is an α-coloring;

to complete the construction of Â and Ĝ, such a v is placed in V̂ig , and all its incident edges are

modified so that H is also a model for Ĝ over Â.

It remains to prove that D is an F-coloring. Supposing otherwise, assume that v1, . . . , vh span

a graph which appears in F with the same colors as D. For every 1 ≤ j ≤ h, let ı̂j denote the index

for which vj ∈ V̂ı̂j . Now, considering the sets Wı̂1,1, . . . ,Wı̂h,h, Lemma 2.2 ensures the existence of

w1 ∈ Wı̂1,1, . . . , wh ∈ Wı̂h,h that span a graph which appears in F with the same colors as C, but

this is a contradiction as C is an F-coloring of H. 2

Theorem 4.2 For every ϵ, F , and α = (α1, . . . , αc) satisfying 0 ≤ αi ≤ 1 and
∑c

i=1 αi = 1, there

exist s = s(ϵ, α,F) and β = β(ϵ, α,F), such that for every graph G with n vertices which is ϵ-far
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from being (α,F)-colorable, and for every t ≥ s, at least (1− ϵ)
(n
t

)
of the sets with t vertices of G

span graphs which are not (α′,F)-colorable for any α′ satisfying |α− α′|∞ < β.

Proof: We set β = 1
2β4.1(

1
2ϵ, α). We define E , by setting

E(0) = min{1
2
ϵ, β},

and for every r > 0 setting

E(r) = γ = γ4.1(
1

6
E(0),F).

Finally, we set s = s3.3(h, c, E), where c is the number of colors, and h is the maximal number of

vertices in a member of F .

If G is ϵ-far from being (α,F)-colorable, then more than (1−ϵ)
(n
t

)
of the induced subgraphs of G

with t vertices (for any fixed t ≥ s) have the property given in the formulation of Lemma 3.3. If any

of these is (α′,F)-colorable for some α′ satisfying |α−α′|∞ < β, then it contains a (16E(0), γ)-model

graph for a graph G̃ which differs from G in less than 1
2ϵ
(n
2

)
places, with an α′′-modeling F-coloring

for some α′′ which satisfies |α−α′′|∞ < 2β. But then Lemma 4.1 ensures the existence of Ĝ which

differs from G in less than ϵ
(n
2

)
places and is also (α,F)-colorable, which is a contradiction. 2

Corollary 4.3 For every fixed α and F , the property of a graph being (α,F)-colorable is testable.

Proof: Given ϵ, an ϵ-test for this property is constructed as follows. Let β = β(min{1
3 , ϵ}, α,F)

be as in Theorem 4.2, and let t ≥ s(min{1
3 , ϵ}, α,F) be large enough to ensure also that given an

α-coloring of any graph G with n vertices, at least 2
3

(n
t

)
of its restrictions to sets of t vertices of G

are α′-colorings for some α′ satisfying |α−α′|∞ < β (such a t independent of n can be found using

large deviation inequalities).

The test is as follows: A uniformly random set of t vertices of G is chosen, and all pairs of this

sets are queried. The algorithm accepts G if and only if the subgraph of G induced by this set is

(α′,F)-colorable for any α′ satisfying |α−α′|∞ < β (this can be checked by an exhaustive search of

all possible c-colorings of this subgraph). If G is (α,F)-colorable, the existence of such a coloring

ensures, by the choice of t, that with probability at least 2
3 the algorithm accepts. If G is ϵ-far from

being (α,F)-colorable, Theorem 4.2 ensures that with probability at least 2
3 the algorithm rejects.

2
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5 Regularity and charts

This section deals with a combinatorial structure which is a generalization of a graph. It turns out

that this structure is useful for proving testability of graph properties which are defined in terms

of edge or pair colorings. In the following, recall that [V ]2 denotes the set of the unordered pairs

of members of V .

Definition 6 A g-chart is an ordered pair C = (V, P ) consisting of a set of vertices V and a

function P : [V ]2 → {1 . . . g}, which is called the pair function of C.

In particular, a graph may be regarded as an instance of a 2-chart, and a c-pair-colored graph

may be regarded as an instance of a 2c-chart. The notion of a subchart induced by a subset of the

vertex set of the chart is defined in an analogous manner to the notion of an induced subgraph.

The preimage graphs C1, . . . , Cg of a g-chart C are defined as the graphs having the same vertex

set as C, with the edges of each Cj being exactly the pairs of C for which its pair function gives

the value j.

For 1 ≤ j ≤ g we define the j-density of a pair A,B of vertex sets of a g-chart C as its density

when considered as a pair of vertex sets of the preimage graph Cj of C. We call such a pair γ-regular

if it is γ-regular considered as a pair of vertex sets of each of the preimage graphs C1, . . . , Cg of

C. Most of the results related to regularity in graphs have counterparts for charts. Many similar

lemmas have been proven in previous works, but for completeness we give some of the proofs here.

Lemma 5.1 If A,B is a γ-regular pair in a chart, and A′ ⊂ A and B′ ⊂ B satisfy |A′| ≥ ϵ|A| and

|B′| ≥ ϵ|B| for some ϵ ≥ γ, then A′, B′ is a γ ·max{2, ϵ−1}-regular pair.

Proof: We consider the preimage graphs C1, . . . , Cg of our chart C. The γ-regularity of A,B

implies that it is also a γ-regular pair with respect to each of the preimage graphs, and so by

Lemma 2.1 the pair A′, B′ is γ · max{2, ϵ−1}-regular with respect of each of C1, . . . , Cg. But this

means that it is also γ ·max{2, ϵ−1}-regular with respect to the chart C. 2

Lemma 5.2 (Chart version of Lemma 2.2) For every η > 0 and h there exist γ = γ5.2(η, h)

and δ = δ5.2(η, h) with the following property.

Suppose that C and D = ({v1, . . . , vh}, P ) are charts, and that V1, . . . , Vh are disjoint vertex

sets of C such that for every 1 ≤ i < i′ ≤ h the pair Vi, Vi′ is γ-regular and its P (vivi′)-density is

at least η. Then, at least δ
∏h

i=1 |Vi| of the h-tuples w1 ∈ V1, . . . , wh ∈ Vh span copies of D where

each wi plays the role of vi.
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Proof: We construct a graph with the vertex set V1, . . . , Vh as follows: There are no edges between

any w and w′ that belong to the same Vi; for every i < i′ there is an edge between w ∈ Vi and

w′ ∈ Vi′ if and only if the pair function of C assigns to w,w′ the value P (vi, vi′).

We now note that if all the pairs were γ2.2(h, η) regular in the original chart, then the constructed

graph satisfies the conditions of Lemma 2.2 for the existence of δ2.2
∏h

i=1 |Vi| copies of the clique

with h vertices; each such copy corresponds to an h-tuple w1 ∈ V1, . . . , wh ∈ Vh as in the assertion

of our lemma, concluding the proof. 2.

Lemma 5.3 (Regularity Lemma for charts) For every g, m and ϵ > 0 there exists a number

T = T5.3(g,m, ϵ) with the following property.

If C is a g-chart with n ≥ T vertices, and A is an equipartition of the vertex set of C with an

order not exceeding m, then there exists a refinement B of A of order k, where m ≤ k ≤ T , for

which all pairs of sets but at most ϵ
(k
2

)
of them are ϵ-regular.

Proof sketch: The proof of the Regularity Lemma on graphs depends on the construction of an

index function for vertex partitions of the graph. The proof then proceeds by a lemma that states

that if a partition is not ϵ-regular, then there exists a refinement of this partition, whose order is

a function of the order of the original partition, and whose index is higher by a constant amount

(depending on ϵ). As the index of a partition is always between 0 and 1, the proof follows.

For the case of charts we look for every 1 ≤ j ≤ g at the index of the partition with respect of

Cj . We can then define the index of the partition with respect to the chart to be the sum of these

functions (its value is always between 0 and g), and then repeat almost word for word the proof

that is used for the case of graphs. 2

By using this in conjunction with Turán’s Theorem and a chart version of Ramsey’s Theorem,

we arrive at the following chart version of Corollary 2.6.

Corollary 5.4 (Chart version of Corollary 2.6) For every g, h and γ there exists a quantity

δ = δ5.4(g, h, γ) such that for every g-chart C with n ≥ δ−1 vertices there exist disjoint vertex sets

W1, . . . ,Wh satisfying:

• |Wi| ≥ δn.

• All
(h
2

)
pairs are γ-regular.

• There exists some 1 ≤ j ≤ g such that the j-density of every pair is at least 1
g .
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Proof sketch: We let r be such that any g-chart with r vertices has a subchart with h vertices

whose pair function is constant (the existence of such an r is a consequence of Ramsey’s Theorem).

By use of the chart version of the Regularity Lemma in conjunction with Turán’s Theorem (see

e.g. the proof that appears in [2] for the above Corollary 2.6) we find in C vertex subsets V1, . . . , Vr

such that |Vj | ≥ δn for every j and for which all pairs are γ-regular.

We now construct a chart D = (v1, . . . , vr, P ) for which P satisfies that the P (vk, vk′)-density

of Vk, Vk′ in C is at least 1
g for every k < k′. Denoting by vk1 , . . . , vkh the subchart of D whose

pair function is constant, and letting j (as in the formulation of the corollary) be this constant, we

define Wi = Vki for every 1 ≤ i ≤ h. 2

We also need the following simple lemma about charts (it is simpler than Corollary 2.8 because

nothing is claimed about the densities of the regular pairs it obtains).

Lemma 5.5 For every g, k and γ there exists δ = δ5.5(g, k, γ) such that for every g-chart C with

n > δ−1 vertices, and every equipartition A = {Vi|1 ≤ i ≤ k} of its vertices, there exist V ′
i ⊂ Vi

such that |V ′
i | ≥ δn for every 1 ≤ i ≤ k and V ′

i , V
′
i′ is γ-regular for every 1 ≤ i < i′ ≤ k.

Proof: We set δ = 1
2(T5.3(g, k,min{γ, 12

(k
2

)−1}))−1. We apply Lemma 5.3 to find a refinement

B = {Vi,j |1 ≤ i ≤ k, 1 ≤ j ≤ l} of A with all but at most 1
2

(k
2

)−1(kl
2

)
of its pairs being γ-regular.

Choose randomly, independently and uniformly 1 ≤ ji ≤ l for each 1 ≤ i ≤ k. Clearly, with

probability at least 1
2 , all the pairs Vi,ji , Vi′,ji′

are γ-regular. Fixing one such choice of j1, . . . , jk,

we set V ′
i = Vi,ji to obtain the required result. 2

6 Pair-colorability

In this section we prove that graph properties defined in terms of F-pair-colorability are testable.

The main combinatorial result follows from the following lemma about the possible colorability of

a model graph, by combining it with Corollary 3.2 about the existence of such model graphs.

Lemma 6.1 For every k and family F of c-pair-colored graphs there exist γ = γ6.1(k,F) and

s = s6.1(k,F), such that if a (1, s, n)-based (13 , ϵ)-model graph M for a graph G̃ over a partition

A = {Vi|1 ≤ i ≤ k} is F-pair-colorable, then there exists a graph Ĝ which may differ from G̃ only

on the pairs
⋃k

i=1[Vi]
2 and is F-pair-colorable.
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Proof: Let h denote the maximum number of vertices in a member of F . We choose

γ = min

{
1

9
, δ5.5

(
2c, k,min{ 1

9c
, δ5.4

(
2c, h, γ5.2(

1

9c
, h)

)
γ5.2(

1

9c
, h)}

)}
and

s = (δ5.5

(
2c, k,min{ 1

9c
, δ5.4

(
2c, h, γ5.2(

1

9c
, h)

)
γ5.2(

1

9c
, h)}

)
δ5.4

(
2c, h, γ5.2(

1

9c
, h)

)
)−1.

Assume that {Ui|1 ≤ i ≤ k} is the partition of M corresponding to the partition A of G̃ (so

Ui plays the role of W1,i in the notation of the definition of model graphs). Assuming that C is an

F-pair-coloring of M , we show how to construct Ĝ and an F-pair-coloring D of Ĝ. We consider

M with its coloring C as a 2c-chart, and use Lemma 5.5 to find U ′
i ⊂ Ui such that all pairs of

A′ = {U ′
i |1 ≤ i ≤ k} are min{ 1

9c , δ5.4(2c, h, γ5.2(
1
9c , h))γ5.2(

1
9c , h)}-regular as pairs of a 2c-chart.

To each U ′
i we apply Corollary 5.4 to obtain {U ′

i,j |1 ≤ i ≤ k, 1 ≤ j ≤ h}, with all pairs being

γ5.2(
1
9c , h)-regular. Ĝ is constructed from G̃ as follows.

For every fixed i, if there is a color such that the density of the edges colored with this color is

at least 1
2c > 1

9c in all the pairs of {U ′
i,j |1 ≤ j ≤ h}, we denote it by ki and add to Ĝ the all possible

edges in [Vi]
2. Otherwise there exists a color such that the density of the non-edges colored with

this color is at least 1
2c > 1

9c in all pairs of {U ′
i,j |1 ≤ j ≤ h}, in which case we denote this color by

ki and remove from Ĝ all edges in [Vi]
2.

Note that for each i < i′ such that Ĝ has both edges and non-edges between Vi and Vi′ , the

density of the pair Ui, Ui′ (in M) is between 1
3 and 2

3 , and so the regularity of this pair ensures

that the density of U ′
i , U

′
i′ is between 2

9 and 7
9 . Thus there exist two colors ki,i′ , k

′
i,i′ such that

between U ′
i,j and U ′

i′,j′ the density of the edges between them which are colored with ki,i′ , as well

as the density of the non-edges between them which are colored with k′i,i′ , is at least 1
9c (due to

the regularity of Ui, Ui′ as a pair of vertex sets of the 2c-chart defined above, we can choose ki,i′

and k′i,i′ which satisfy that the density of the edges colored with ki,i′ as well as the density of the

non-edges colored with k′i,i′ is at least
2
9c between U ′

i and U ′
i′). Also, if the subgraph of Ĝ between

Vi and Vi′ is a complete bipartite graph then ki,i′ as above exists (as the density of Ui, Ui′ is at

least 1
3 and so the density of U ′

i , U
′
i′ is at least

2
9), and if it is an edgeless bipartite graph then k′i,i′

as above exists.

The coloring D of Ĝ is constructed as follows. For a pair v, v′ of vertices, we find i, i′ such that

v ∈ Vi and v′ ∈ Vi′ . If i = i′, we color the pair by ki. Otherwise, assume without loss of generality

that i < i′. In this case, the pair is colored by ki,i′ if it is an edge of Ĝ, and by k′i,i′ if it is not an
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edge of Ĝ (since M is a model for G̃, and thus also for Ĝ, only the values of ki,i′ and k′i,i′ which

were defined above are used).

If a member K of F with h vertices appears in Ĝ with identical colors according to D, let

{v1, . . . , vh} be the vertices of Ĝ that span it, and let {i1, . . . , ih} be such that vj ∈ Vij for 1 ≤ j ≤ h.

Lemma 5.2 now guarantees the existence of uj ∈ U ′
ij ,j

such that the subgraph of M induced by

{u1, . . . , uh} is identical to K and also has identical colors according to C, which contradicts the

assumption that C is an F-pair-coloring of M . Thus, D is an F-pair-coloring of Ĝ. 2

Theorem 6.2 For every ϵ > 0 and every family of pair-colored graphs F there exist δ = δ(ϵ,F) and

t = t(ϵ,F), such that for every graph G with n vertices which is ϵ-far from being F-pair-colorable,

at least δ
(n
t

)
of the sets of t vertices of G span induced subgraphs which are not F-pair-colorable.

Proof: We define E by E(0) = 1
2ϵ and E(r) = γ6.1(r,F) for r > 0; we define a function S by

S(r) = s6.1(r,F). We set

δ = δ3.2(3ϵ
−1, 1,S, E)

and

t = t3.2(3ϵ
−1, 1,S, E).

Given a graph G with n vertices which is ϵ-far from being F-pair-colorable, we use Lemma 3.2

to find G̃ which differs from G in less than 1
2ϵ
(n
2

)
places, and an equipartition A = {Vi|1 ≤ i ≤ k}

where 3ϵ−1 ≤ k ≤ S3.2(3ϵ
−1, 1,S, E), such that at least δ

(n
t

)
of the induced subgraphs of G are

models for G̃ as in the formulation of this lemma.

Since G is ϵ-far from being F-pair-colorable, and because k ≥ 3ϵ−1, there exist no graph Ĝ

which differs from G̃ only on
⋃k

i=1[Vi]
2 and is F-pair-colorable (as such a graph would differ from

G in less than ϵ
(n
2

)
places), and so Lemma 6.1 ensures that all the above induced subgraphs are

not F-pair-colorable. 2

Corollary 6.3 For any fixed family F of c-pair-colored subgraphs, the property of a graph being

F-pair-colorable is testable.

Proof: Let δ(ϵ,F) and t(ϵ,F) be as in Theorem 6.2. Consider now the algorithm which queries

about all pairs of a uniformly random set of t′ vertices of the input graph G, with t′ chosen so

that (1 − δ)t
′/t ≤ 1

3 , and accepts if and only if the subgraph of G induced by this random set is

F-pair-colorable. It is not hard to see that an F-pair-colorable graph is always accepted, while a

graph which is ϵ-far from being F-pair-colorable is rejected with probability at least 2
3 . 2
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7 Concluding remarks

Testability for other combinatorial objects

Using appropriate versions of the Regularity Lemma, testability of certain properties can be proven

for other combinatorial structures related to graphs. For example, testability of first order properties

of type “∃∀” can be proven in the context of digraphs and in the context of g-charts for a fixed g > 1

as well, using arguments similar to those found in [2] and variants of the Regularity Lemma suitable

for directed graphs, starting with that of [7]. The version of this paper that appears as the ECCC

technical report TR00-083 (2000) also includes a sketch of how to extend both the positive and the

negative results of [2] to tournaments (these results do not appear here because the amount of space

that their full proof would have required does not merit their inclusion). Testability of other, more

generalized, coloring properties for these structures can be proven as well using methods analogous

to those of Section 4 and Section 6.

The definition of the model structures (as in model graphs) has to be modified in each case; as

an example, consider the following definition for tournaments. In this context d(A,B) denotes the

number of edges directed from a vertex of A to a vertex of B divided by |A||B|, and a pair A,B

of vertex sets is called regular with respect to the tournament if it is regular with respect to the

graph whose vertex set is A∪B and whose edge set consists of all the tournament edges that point

from A to B.

Definition 7 (Model tournaments) Given a tournament T̃ and a partition A = {Vi|1 ≤ i ≤ k}

of its vertices, an (h, s, t)-based (η, ϵ)-model for T over A is a tournament M with a partition

M = {Wi,j |1 ≤ i ≤ k, 1 ≤ j ≤ h} of its vertex set, satisfying the following.

• s ≤ |Wi,j | ≤ t for all 1 ≤ i ≤ k and 1 ≤ j ≤ h.

• If h > 1, then for every fixed 1 ≤ i ≤ k, all pairs Wi,j ,Wi,j′ for 1 ≤ j < j′ ≤ h are ϵ-regular.

Moreover, if h > 1, then for every 1 ≤ j < j′ ≤ h the density of the edges pointing from Wi,j

to Wi,j′ is at least 1
2 , and the subtournament of T spanned by Vi is transitive.

• For every 1 ≤ i < i′ ≤ k and 1 ≤ j, j′ ≤ h, the pair Wi,j ,Wi′,j′ is an ϵ-regular pair. Moreover,

for every fixed 1 ≤ i < i′ ≤ k, one of the following three cases occurs. Either all the pairs

Wi,j ,Wi′,j′ (where j and j′ vary over {1, . . . , h}) satisfy η ≤ d(Wi,j ,Wi′,j′) ≤ 1 − η; or all

edges of T̃ between Vi and Vi′ point from Vi to Vi′, and η ≤ d(Wi,j ,Wi′,j′) for all j, j′; or all

edges of T̃ between Vi and Vi′ point from Vi′ to Vi, and η ≤ d(Wi′,j′ ,Wi,j) for all j, j′.
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It would be interesting to investigate the testability of first order properties of type “∃∀” of

vertex ordered graphs; properties which use the order relation over vertices but not the “sequel”

function seem more accessible in that respect.

The situation is also far from clear in the context of first order hypergraphs properties, since

an appropriate hypergraph version of the Regularity Lemma is not known at the present. This

presents yet another motivation for finding such a version.

A little more about vertex coloring with restrictions

Section 4 proves testability of a rather restrictive notion of vertex coloring with restrictions. With

a little more work, testability of being (α,F)-colorable for any α = (α1, . . . , αc) satisfying a given

set of weak linear inequalities can be proven. For certain strong inequalities, such as “α1 > 0”, a

reduction to another colorability problem (with a larger set of colors) can be performed, in a similar

manner to the reduction in [2] of first order properties of type “∃∀” to colorability properties. It

seems that a rather wide notion of colorability with restrictions can be proven to be testable.

Coloring pairs with restrictions and beyond

Even simple properties, such as the property of a graph G with n vertices having at least α
(n
2

)
edges (for a fixed α), cannot be described in terms of coloring notions without explicitly introducing

restrictions on the number of appearances of each color. It is not surprising that coloring notions

by themselves do not capture the essence of all testable graph properties, because many testable

properties do not have one-sided tests, as proven in [12], while colorability notions seem to have

such tests, as is the case with F-pair-colorability. Note however that the tests constructed for

(vertex) (α,F)-colorability are not, and cannot be, one-sided.

If we define (α,F)-pair-colorings and define appropriately a notion of pair-colorability with

restrictions, all graph properties proven in [12] to be testable become instances of this definition.

It seems that some approximation of the testability of (α,F)-pair-colorability may be provable.

However, such a proof using (some extension of) the current methods would be very involved.

Since the proof in [12] gives much better bounds on the dependence of the number of queries

an ϵ-test makes as a function of ϵ, a proof of the testability of pair-colorability with restrictions

is significant only if it brings one closer to a full characterization of all testable graph properties.

However, it is not clear whether this notion even captures the simple property of a graph G with

n vertices containing at least α
(n
3

)
distinct triangles (for a fixed α), which seems to be testable.
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In fact, even an “upper bound” proof that all the “natural” testable properties are expressible by

some notion of F-(l-tuple)-colorability with restrictions would be welcome, despite the fact that

testability of all such properties is currently far from certain.

A little more about non-testable properties

The non-testable first order tournament property here and the non-testable graph property de-

scribed in [2] are based on the idea that existence of a global isomorphism is hard to test locally.

Specificly, the property I ′ stating that a graph G with n vertices consists of two disjoint copies of

the same graph is essentially proven in [2] to be non-testable even if o(
√
log n) queries are allowed.

It is provable that also querying about all pairs of a randomly chosen set of o(
√
n) vertices is

not enough, using the theorem from [13] about canonical testers together with Yao’s method for

proving lower bounds (rather than the counting argument used in [2]). It would be interesting to

find out the size of the random set of vertices which allows a construction of a test of I ′ in this

extended sense, and also how many queries it takes to test for I ′ by an adaptive algorithm, whose

queries are not restricted to the pairs of a pre-chosen random vertex set.

Finally, it would be interesting to find natural non-testable graph properties other than those

based on graph isomorphism. It would also be interesting to find out more about the expressive

power of all first order properties in the context of property testing and indistinguishability, e.g.

which “natural” (say, definable by Second Order Logic) graph properties are not indistinguishable

from any first order property.
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[1] N. Alon, R. A. Duke, H. Lefmann, V. Rödl and R. Yuster, The algorithmic aspects of the

Regularity Lemma, Journal of Algorithms 16 (1994), 80–109.

[2] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Efficient testing of large graphs, Combi-

natorica 20 (2000), 451–476.

[3] N. Alon, M. Krivelevich, I. Newman and M. Szegedy, Regular languages are testable with a

constant number of queries, SIAM Journal on Computing 30 (2001), 1842–1862.

[4] N. Alon and J. Spencer, The Probabilistic Method, Wiley (1992).

[5] B. Bollobás, Extremal Graph Theory, Academic Press, New York (1978).

23



[6] A. Czumaj and C. Sohler, Abstract combinatorial programs and efficient property testers,

Proceedings of the 43rd IEEE FOCS (2002), to appear.
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