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Abstract

The original Specker-Blatter Theorem (1983) was formulated for classes of structures C of
one or several binary relations definable in Monadic Second Order Logic MSOL. It states that
the number of such structures on the set [n] is modularly C-finite (MC-finite). In previous
work we extended this to structures definable in CMSOL, MSOL extended with modular
counting quantifiers. The first author also showed that the Specker-Blatter Theorem does
not hold for one quaternary relation (2003).

If the vocabulary allows a constant symbol ¢, there are n possible interpretations on [n]
for ¢. We say that a constant c is hard-wired if c is always interpreted by the same element
J € [n]. In this paper we show:

(i) The Specker-Blatter Theorem also holds for CMSOL when hard-wired constants are
allowed. The proof method of Specker and Blatter does not work in this case.

(ii) The Specker-Blatter Theorem does not hold already for C with one ternary relation
definable in First Order Logic FOL. This was left open since 1983.

Using hard-wired constants allows us to show MC-finiteness of counting functions of
various restricted partition functions which were not known to be MC-finite till now. Among
them we have the restricted Bell numbers B, 4, restricted Stirling numbers of the second
kind S, 4 or restricted Lah-numbers L, 4. Here r is a non-negative integer and A is an
ultimately periodic set of non-negative integers.
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1 Introduction

A sequence of natural numbers s(n) is C-finite if it satisfies a linear recurrence relation with
constant coefficients. s(n) is MC-finite if it satisfies a linear recurrence relation with constant
coefficients modulo m, for each m separately. A C-finite sequence s(n) must have limited
growth: s(n) < 2" for some constant c¢. No such bound exists for MC-finite sequences: for
every monotone increasing sequence s(n) the sequence s'(n) = nls(n) is MC-finite.

A typical example of a C-finite sequence is the sequence f(n) of Fibonacci numbers. A
typical example of an MC-finite sequence which is not C-finite is the sequence B(n) of Bell
numbers. The Bell number B(n) counts the number of partitions of the set [n] of the numbers
{1,2,...,n}. Let Eq(n) be the number of equivalence relations over [n]. Clearly, B(n) = Eq(n).
Let Eqa2(n) be the number of equivalence relations on [n] with exactly two equivalence classes
of the same size. Ega(n) is not MC-finite since the value of Ega2(n) is odd iff n is an even power
of 2, see [3].

In [24] G. Pfeiffer discusses counting other transitive relations besides Fq(n), in particular,
partial orders PO(n), quasi-orders (aka preorders) QO(n) and just transitive relations T'r(n).
Using a growth argument one can see that none of these functions is C-finite. It follows directly
from the Specker-Blatter Theorem stated below, see Corollary 4.2, that PO(n), QO(n) and
Tr(n) are MC-finite. However, to the best of our knowledge, this has not been stated in the
literature. This may be due to the fact that no explicit formulas for these functions are known.
The Specker-Blatter Theorem establishes MC-finiteness even in the absence of explicit formulas.
It derives MC-finiteness solely from the assumption that C is definable in Monadic Second Order
Logic (MSOL), or in MSOL augmented by modular counting quantifiers (CMSOL).

The present paper grew out of our study of modular recurrence relations for restricted
partition functions, [12]. We provide a short review of the Specker-Blatter Theorem, and show
how to extend its applicability by extending the allowed vocabulary to include constants with
a fixed interpretation (“hard-wired”). The reduction allowing this extension can be made to
work in the other direction. Using it we also close the gap between the Specker-Blatter Theorem
and its known limits, left open in [13], by constructing an FOL statement over a single ternary
relation for which the theorem does not hold.

Formal definitions about C-finite and MC-finite sequences are given in Section 3, and more
examples and details are given in in Section 13.
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Part 1
The Specker-Blatter Theorem

2 Background in logic

We generally follow the notation of [9], and assume basic knowledge of model theory as well as
the logics FOL, MSOL and SOL. Our vocabularies will contain no function symbols (but recall
that a k-ary function can generally be simulated by a (k + 1)-ary relation). Standard texts for
Finite Model Theory are [9, 22]. In the following, we always refer to a set R = {Ry,..., Ry}

of distinct binary relation symbols, a set a = {a1,...,as, } of distinct constant symbols, and so
on. By a € a we mean that there exists 1 < i < f; for which a = a;. We also use the shorthand
[n] ={1,...,n}.

Let 7 = R U a be a vocabulary, i.e., a set of non-logical constants. We denote by FOL(7)
the set of first order formulas with its non-logical constants in 7. If 7 is clear from the context,
we omit it. We denote by MSOL(7) the set of Monadic Second Order formulas, obtained from
FOL(7) by allowing unary relation variables and quantification over them. The logic CMSOL is
obtained from MSOL by allowing also quantification of the form C;" ¢(x), which are interpreted
by

AECI(x) iff [{a€ A: ¢(a)}| =r modm

In the following we will be interested in the set of models of a logic sentence ¢ over a
vocabulary 7 whose universe is [n] for any natural number n. We denote this set by

Co=1{M=([n],A1,...,Ap) :n €N, A; € [n]), M = ¢}

3 Definition of C-finite and MC-finite sequences of integers

A sequence of integers s(n) is C-finite! if there are constants p,q € Nand ¢; € Z, 0<i<p—1
such that for all n > ¢ the linear recurrence relation below holds for s(n).

p—1
s(n+p) = cis(n+1)
=0

A sequence of integers s(n) is modular C-finite, abbreviated as MC-finite, if for every m € N
there are constants p,,, ¢ € NT such that for every n > ¢, there is a linear recurrence relation
pm—1
s(n+pm) = Z ¢imS(n + 1) mod m
i=0
with constant coefficients ¢; ,, € Z.
We denote by s™(n) the sequence s(n) mod m. Note that the coefficients ¢; ,, and both p,,
and ¢, generally do depend on m.

Proposition 3.1 The sequence s(n) is MC-finite iff s™(n) is ultimately periodic for every m.

Proof: MC-finiteness implies ultimate periodicity, since there is a finite number of possible
sequences s(n) (mod m),...,s(n+ pmy —1) (mod m). The converse is from [25]. O

Clearly, if a sequence s(n) is C-finite then it is also MC-finite with r,,, = r and ¢; , = ¢; for
all m. The converse is not true, see Section 13 below.

!These are also called constant-recursive sequences or linear-recursive sequences in the literature.



4 The original Specker-Blatter Theorem

Let ¢ be the formula in First Order Logic (FOL) which says that E(x,y) is an equivalence
relation. Eq(n) can be written as

Eq(n) = |{E C [n]”: ([n]. E) F ¢£}|-

PO(n), QO(n) and Tr(n) can be written in a similar way.

The original Specker-Blatter Theorem from 1981, [1, 2, 3, 26|, gives a general criterion for
certain integer sequences to be MC-finite. Let R = {Ry,.. s Ry} be a finite set of relation
symbols of arities p1,. .., pe, respectively, and ¢ be a formula of Monadic Second Order Logic
(MSOL) using relation symbols from R without free variables.

Let f4(n) be the number of ways we can interpret the relation symbols in R on [n] such that
the resulting structures where A; is the interpretation of R; satisfies ¢. Formally

fon) = {Ai C [n]*, i <m:([n], Av....., Am) = 0}

Theorem 4.1 (Specker-Blatter) Let R be a finite set of binary relations and ¢ be a formula
of MSOL(R) using relation symbols in R. Then the sequence fy(n) is MC-finite.

Corollary 4.2 The sequences counting the number of partial orders PO(n), quasi-orders QO(n),
and transitive relations Tr(n) on [n], are MC-finite.

The idea behind the proof of the Specker-Blatter theorem consists of two parts, both of
which use the assertion that 7 = R contains only binary relation symbols. Unary symbols can
also be incorporated, since these can be simulated with binary symbols in a way that preserves
the number of satisfying models.

The first part is combinatorial and applies to any family C of structures over the vocabulary
7 satisfying a property that we outline below. For such a family, we let f¢(n) be the number of
members of C whose universe is [n]. In particular, fy(n) is just a shorthand for fc,(n).

A pointed R-structure is an R-structure A = ([n], A1,..., A, a) with an additional distin-
guished point a € [n]. Given a pointed R-structure 20; with universe [n1] and an R-structure
2y with universe [ng2] we define A = Subst(1, a,2As) as follows:

(i) The universe A of 2 is the disjoint union of A; and Ay with the point a removed. It can
be assumed to be the set [n; + ng — 1].

(ii) The binary relations are defined such that 20y is a module in 2: for u € A; \ {a} and
v € Ay and R € R, the relation R(u,v) holds in 2 = Subst(1,a,2As) iff R(u,a) holds
in 2. For u,v € Ay \ {a} (respectively u,v € As), R(u,v) holds in 2 iff it holds in 244
(respectively a).

By using an arbitrary enumeration of all possible pointed R-structures and all possible (non-
pointed) R-structures, we construct an N x N matrix M over {0, 1}, by setting for every i and
j the value Mc¢(i,7) to be the indicator as to whether the substitution of the j’th structure in
the i’th pointed structure results in a member of C.

The substitution rank of C is the rank of the matrix M¢. This is well-defined however only
with respect to a specific field F. In our case, we are only interested in whether this rank is
finite or infinite. Also, in our case M¢ always takes values in {0,1}, and we are only interested
in finite fields (to be more precise, in finite fields and finite commutative rings). Having a finite



rank in this case is characterized by having a finite number of distinct rows?, which we codify
in the following definition.

Definition 4.3 A family C of structures over a set of binary relations R is said to have finite
rank if its related matriz Mc has only a finite number of distinct rows (or equivalently, a finite
number of distinct columns).

The main combinatorial part of the Specker-Blatter theorem is the following.

Theorem 4.4 (Specker-Blatter, combinatorial version) Let R be a finite set of binary
relations and C be a class of finite R-structures whose substitution rank is finite. Then the
sequence fc(n) is MC-finite.

The above applies to an uncountable number of families C. Theorem 4.1 follows from it by
the following proposition, which forms the second part of the original proof:

Proposition 4.5 Let R be a finite set of binary relations and C be a finite class of R-structures
defined by an R-sentences ¢ in MSOL. Then the substitution rank of C is finite.

The original proof used Ehrenfeucht-Fraissé games for MSOL. Alternatively, one could use the
Feferman-Vaught Theorem for MSOL. Courcelle, [5, 23], proved an analogue of the Feferman-
Vaught Theorem for CMSOL. In [14, Section 14] it is shown that the Proposition 4.6 still holds
if MSOL is replaced by CMSOL.

Proposition 4.6 Let R be a finite set of binary relations and C be a class of finite R-structures
defined by an R-sentence ¢ in MSOL. Then the substitution rank of C is finite.

When considering relations of arity higher than 2, the substitution operation is no longer
well-defined as it is written here. As it later turned out, this is not merely a technical limitation,
but an essential one.

Also, it is not clear how to handle hard-wired constants in the definition of the substitution
operation. In this paper, instead of incorporating the hard-wired constants directly into the
original mechanism, we show a reduction from the question of the original count to a sum of
counts over other sentences that do not involve the constants. This approach turns out to be
useful also in the other direction, of proving a new limit on the Specker-Blatter theorem, see
Theorem 7.3.

5 Previous limitations and extensions

Limitations and extensions of the Specker-Blatter Theorem have been previously discussed in
[16, 14].

It is well known that Eulerian graphs and regular graphs of even degree are not definable in
MSOL, but they are definable in CMSOL. In [16], the Specker-Blatter Theorem was shown to
hold also for CMSOL, as per the discussion following the statement of Proposition 4.6. Here is
its statement.

In fact this also holds for infinite fields, and can be shown by taking a maximal (finite) set of linearly
independent rows and considering their reduced row echelon form. Then, note that all possible linear combinations
of the resulting rows which additionally take values only in {0, 1} must have their coefficients in {0,1}, making
their number finite.



Theorem 5.1 (extended Specker-Blatter) Let R be a finite set of binary relations and ¢
be a formula of CMSOL(R) using relation symbols in R. Then the sequence fs(n) is MC-finite.

It follows in particular that Eul(n), which counts the number of Eulerian graphs over [n]
(i.e. connected graphs all of whose degrees are even), is also MC-finite.

In [13] the first author showed that the Specker-Blatter Theorem does not hold for quaternary
relations:

Theorem 5.2 (E. Fischer, 2002) There is an FOL-sentence with only one quaternary rela-
tion symbol ¢, such that fs(n) is not an MC-sequence.

The question of whether the Specker-Blatter Theorem holds in the presence of ternary
relation symbols remained open.

6 Relations of bounded degree

Definition 6.1 Let A = (A, R) be a T-structure, where the arity of the relations is not restricted

to be binary. We define a symmetric relation E4 on A, and call (A, E4) the Gaifman-graph of
A.

(i) Let a,b € A. (a,b) € Ex iff there exists a relation R € R and some @ € R such that both
a and b appear in a (possibly with other elements of A as well).

(i) For any element a € A, the degree of a is the number of elements b # a for which
(a, b) € FEy.

(iii) A is of bounded degree d if every a € A has degree at most d.
(iv) We say that A is connected if its Gaifman-graph is connected.

(v) For a class of structures P we say it is of bounded degree d (resp. connected) iff all its
structures are of bounded degree d (resp. connected).

The following theorem is from [16]. Its full proof appears in [15].

Theorem 6.2 Let ¢ € CMSOL for R where the arity of the relations is not restricted to be
binary, and all the finite models of ¢ are of bounded degree d. Then

(i) the sequence fy(n) is MC-finite.

(ii) Furthermore, if additionally all the models in ¢ are connected, then there exists ¢ € N such
that for all n > q the sequence fs(n) =0 (mod m) for all m.

Recall that the substitution rank is not well defined for classes of structures with with relations
of arity three or more. Therefore, Theorem 4.4 cannot be applied to prove Theorem 6.2. Instead
one uses an analogue of Theorem 4.4 where substitution is replaced by disjoint union.

Theorem 6.2 show that the limitation on the arity of the relations, as stated in Theorem
5.2, does not apply if the models of ¢ have bounded degree.



7 Main new results

The Bell number B(n) denotes the number of possible partitions of [n] (or alternatively the
number of possible equivalence relations over [n]), and the Stirling number of the second kind
Sk(n) denotes the number of possible partitions of [n] into exactly k sets. In particular B(n) =
> rey Sk(n). Both B(n) and Si(n) (for every fixed k) can be shown to be MC-finite using the
Specker-Blatter Theorem.

A. Broder in 1984, [4], introduced the restricted Bell numbers B,(n) and the restricted
Stirling numbers of the second kind Sj, (n), for any fixed natural number r. Here B, (n) denotes
the number of possible partitions of [n+ | where all members of [r] are in different parts, while
correspondingly Sk »(n) denotes the number of possible partitions of [n+ 7| into exactly k parts
where all members of [r] are in different parts (it is in particular non-zero only if £ < r). In
particular B,.(n) = S 747 Sy,(n). For both of these, the objects to be counted are definable
in FOL with one binary relation and r hard-wired constants, but the Specker-Blatter theorem
does not directly apply to these.

In [12] it was shown, in an ad-hoc way, how to circumvent this obstacle in the case of one
equivalence relation. It followed that both Sy ,(n) and B,(n) are MC-finite. In this paper we
prove a more general theorem, applicable to all situations involving CMSOL sentences over
binary relations and hard-wired constants:

Theorem 7.1 (Elimination of hard-wired constants)

(i) Let T consist of a finite set of constant symbols a, unary relations symbols U, and binary
relation symbols R. For every class C of T-structures there exist classes Cy,...,Cp of T'-
structures, where 7'-contains only a finite number r(a,U, R) of unary and binary relation
symbols, such that

fC(n) = chz(n)
i=1
Equality here is not modular.
(ii) Furthermore, if C is FOL-definable (MSOL-definable, CMSOL-definable), so are the C;.

The introduction of unary predicates is not a big change, because a unary predicate U can
be easily simulateda by a binary predicate Ry in the following manner: Given a sentence ¢, use
the conjunction ¢ AV, .(Ru(x,y) <> Ry(z, z)), and then in ¢ replace every occurrence “U(x)”
with “3y(Ry(z,y))”. This allows to remove U from the vocabulary, replacing it with Ry, while
preserving the number of satisfying models.

The above, in conjunction with Theorem 5.1, immediately provides the following corollary.

Corollary 7.2 Let T be a vocabulary consisting of a finite set of constant symbols a, unary
relations symbols U and binary relation symbols R. For every class C of finite T-structures
definable in CMSOL(7), the sequence fc(n) is MC-finite.

The proof of Theorem 7.1 is given in Part II Section 8. The rest of Part II is devoted to
extending this theorem. Section 9 contains a “many-one” version of Theorem 7.1 that uses
so-called nullary (or arity zero) relations instead of a sum. This version is more “streamlined”
mathematically at the cost of some conceptual opaqueness. This in turn sets the stage for
Section 10, that extends Theorem 7.1 to higher arities and other logics. It is stated there as
Theorem 10.1.

We have seen in Theorem 5.2 that the Specker-Blatter Theorem does not hold for a single
quaternary relation. The question of whether the Specker-Blatter Theorem holds in the presence



of a single ternary relation symbol remained open. Our second main result here answers this
question. The proof is given in Part 111

Theorem 7.3 (Ternary Counter-Example) There exists an FOL-sentence ¢ with only one
ternary relation symbol, such that fy(n) is not an MC-sequence.

The proof of Theorem 7.3 first produces a sentence 1 which also uses one symbol for a
hard-wired constant. This will be shown in Section 11. To construct ¢ we need a way to
eliminate hard-wired constant symbols. For this we use the above mentioned Theorem 10.1,
which converts 1 to a sentence with a single ternary relation and a constant number of lower
arity relations. In Section 12 we show how for this particular sentence we can then get rid of
the added relations, leaving us with only the ternary relation.

We conclude the paper with Part IV, containing an addendum with more information about
C-finite and MC-finite sequences, Section 13, and a summary with open problems in the final
Section 14.

Part 11
The ephemeral role of hard-coded constants

8 Proving the reduction

In this section we prove Theorem 7.1. For convenience we state it again as Theorem 8.1, and
explicitly allow unary relations. While unary relations can be simulated by binary relations,
explicitly allowing them streamlines the proof.

Theorem 8.1 (Reducing model counts to the case without constants) For any classC
defined by an FOL (resp. MSOL, CMSOL) sentence involving a set of constant symbols a, unary
symbols U and binary symbols R, there exist classes Cy,...,C, (where r depends on the original
language), definable by FOL (resp. MSOL, CMSOL) sentences involving U’ (which contains U ),
R and no constants, satisfying fe(n) ="', fe,(n) for alln € N.

Later on, following similar lines, we streamline this theorem to use a single target class (a
many-one reduction), and then extend to classes involving higher rank relations. The following
is the immediate corollary it produces for the Specker-Blatter Theorem, which is a restatement
of Corollary 7.2.

Corollary 8.2 (Extended Specker-Blatter Theorem) For a class C definable in CMSOL
with (hard-wired) constants, unary and binary relation symbols only, the function fe is MC-
finite.

Theorem 8.1 is proved by induction over the number of constants. The basis, 7 = 0, is
trivial (with U’ = U, r = 1 and C; = C). The induction step is provided by the following.

Lemma 8.3 (Removing a single constant) For any class C defined by an FOL (resp. MSOL,
CMSOL) sentence involving a set of constant symbols @ with £z > 0, unary symbols U and binary
symbols R, there exist classes C1,...,C, (where r depends on the original language), definable
by FOL (resp. MSOL, CMSOL) sentences over the language (a',U’, R'), where @' = a \ {ay,},
U =UUIUO where ;=5 =Ly, and R’ = R, satisfying fe(n) = >\, fe,(n) for alln € N.



The main idea in the proof of this lemma is to encode the “interaction” of the constant ay,
with the rest of the universe using the additional unary relations. For every i € [(z], we will
use the new relation I; to hold every = # ay, for which (z,a) was in R;, and the relation O; to
hold every x # ay, for which (a,z) was in R;.

We cannot directly keep track whether (a,a) was in R;, or whether a was in U; for i € [(7],
so we count the number of models for each of these options separately. This sets r = 2fvH¢r,
Instead of a running index, we index each such option with a set & C [¢7] denoting which of
the relations in U include the constant to be removed a = ay,, and a set R C [(3] denoting
which of the relations in R include (a,a). Using these we can define the case where a model N
over the language (@, U’, R) with universe [n + £z — 1] corresponds (along with 4l and R) to an
“original model” 9t with universe [n + ¢3] over the original language.

Definition 8.4 Given a model 9 over the language (a,U, R) with universe [n+{z], a model N
over the language (@',U’, R) with universe [n + €z — 1], and sets 3 C [{g] and R C [{z], where
(as always) in both models every constant a; is interpreted to be n + i, we say that (M, L, R)
correspond to M if the following hold.

e For every U € U and z € [n + 5 — 1], we have N |= U(z) if and only if M = U(x).
e For every i € [{g], we have i € L if and only if M |= Uj(a).

For every R € R and z,y € [n+ {5 — 1], we have N = R(z,y) if and only if M = R(x,y).

For every i € [(g] and x € [n+ {5 — 1], we have N |= I;(x) if and only if M = Ri(x,a).

For every i € [{g] and x € [n+ {5 — 1], we have N |= O;(z) if and only if M |= R;(a, ).
e For every i € [{g]|, we have i € R if and only if M = R;(a,a).
It is important to note, for the purpose of counting, the following observation.

Observation 8.5 Definition 8.4 provides a bijection between the set of possible models 9 over
the universe [n + 3] (where the constants are interpreted as in Definition 8.4), and the set of
possible triples (N, U, R) where N is a model over [n+Lg—1] (where the constants are interpreted
as in Definition 8.4) and 4 C [{g] and R C [(g].

Suppose we are given an expression ¢(Z) where Z = {z1,..., 2, } is a set of variable symbols
over the language (a,U, R), as well as a set 4 C [/7] and a set R C [¢5]. We will construct, by
induction over the structure of ¢, several expressions, where one of them will be an expression
QSil,m(a?) over the language (a’, U’, R). It will be constructed so that for any 9t over the language
(a,U, R) with universe [n + ¢;] and D over the language (a’,U’, R) with universe [n + ¢z — 1],
where (0, U, R) correspond to M, and any fixing of x1,..., 24, € [n + lz — 1], we will have
M = ¢(z) if and only if N = ¢ x(Z).

Lemma 8.3 then immediatefy follows from the case ¢z = 0 (i.e. where ¢ is a sentence).
To be precise, for a class C defined by a sentence ¢ over the language (a,U, R), we obtain
fe(n) = Zug[eg],%g[éé} fey s (n), where Cy gt is the class respectively defined by ¢ 5(Z) over the
language (a’,U’, R).

To sustain the induction, the above will not be enough. This is because we need to account
under the model N also for the case where some variables are “assigned the value a = a;,”, a
value which does not exist in its universe (it exists only in that of 9t). We henceforth consider
also a set X C [¢z], and denote the set of variable symbols xx = {z; : i € X}. In our induction
we will construct the expressions ¢ (T \ 2x), where ¢ 52(Z) is just the special case ¢ ().

10



With models 9t and 9 as above and a fixing of the variables in Z \ xx, denote by Zx_,, the
completion of this fixing to all of Z that is obtained by fixing x; to be equal to a for all 7 € X.
We will then have M |= ¢(Zx—q) if and only if N = @ (T \ zx).

The rest of this section is concerned with the recursive definition of Py (T \ zx). There
is a subsection for the base cases, a subsection for Boolean connectives, and a subsection for
each class of quantifiers (first order quantifiers, counting quantifiers, and monadic second order
quantifiers). In every construction we argue (at times trivially) that we keep the correspondence
invariant, namely that M = ¢(Zx—q) if and only if N |= ¢ (T \7x) whenever M and (N, L, R)
satisfy the correspondence condition of Definition 8.4.

8.1 The base constructions

We use the Boolean “true” and “false” statements in the following, so for formality’s sake they
are also considered as atomic statements here. Clearly, if ¢(Z) is simply the “true” statement T
(respectively the “false” statement L), then setting ¢% (T \ zx) to T (respectively L) gives
us the equivalent statement satisfying the correspondericé invariant.

For i € [{7] and j € [lz], let us now consider the expression ¢(z) = U;(x;). To produce
¢g€,u,m(j \ zx), we partition to cases according to whether j € X. In the case where j ¢ X, we
simply set ¢% (% \ ¥x) = Ui(x;) as well, which clearly satisfies the invariant for any triple
(91, 44, R) that is correlated with 91 (recall that the “if and only if” condition in this case should
hold when the value of z; is in [n + ¢ — 1]).

Similarly, for i € [{7] and j € [z — 1], for the expression ¢(Z) = U;(a;), we produce
P% .y (@ \ 2x) = Ui(a;), noting that in our setting the value of a; is guaranteed to be equal to
n+je€n+lz—1].

Now consider the expression ¢(Z) = U;(x;) for the case where j € X. Recall that in this case
qb’x%m(f \ zx) should not depend on z;. Moreover, to preserve the invariant for corresponding
sets and models, ¢’ (7 \ zx) should hold if and only if U;(a) holds (recall that we use the
shorthand a = ag, throughout). We hence define ¢ ¢ 2(Z \ zx) to be T (“true”) if i € U, and
define it to be L (“false”) if i ¢ $l. 7

The remaining case for a unary relation is the expression ¢(z) = U;(a). Again, we define
Pxum(® \ 7x) to be T if 7 € &, and define it to be L if i ¢ SL.

We now move on to handle the atomic expressions involving a binary relation R; where
i € [€g]. The first case here is the one analogous to the first case we discussed involving a unary
relation. Namely, it is the case where ¢(Z) = R;(z;, ;) where both j ¢ X and k ¢ X. In this
case we set ¢ (T \zx) = Ri(7;, 7x), and argue the same argument as above about satisfying
the correspondence invariant.

Dealing with constants outside a is similar. For j ¢ X, k € [{g — 1] where ¢(Z) = R;(xj, ax)
we set ¢y q (T \ 2x) = Ri(xj,ax), for j € [l — 1], k ¢ X where ¢(Z) = Ri(aj, k) we set
P um(@ \ zx) = Ri(aj,xx), and finally for j,k € [fz — 1] where ¢(z) = R;(a;,ax) we set
(bgg,u,m(j \ zx) = Ri(aj, ay).

The next four cases we discuss resemble the last two cases we discussed about a unary
relation. Namely, these are the cases where ¢(z) = R;(z;, ;) with j,k € X, ¢(Z) = Ri(z;,a)
or ¢(Z) = Ri(a,z;) with j € X, and ¢(z) = Ri(a,a). In all these cases the resulting expression
should reflect on whether MM = R;(a,a), which for the corresponding (1,4, 2R) is handled by
the set . We hence set ¢y ( (T \ zx) = T if i € R, and set ¢ (T \ zx) = Lif i ¢ R

Next we handle the cases where ¢(Z) = Ri(zj;,zx) with j ¢ X and k € X, and ¢(z) =
Ri(xj,a) with j ¢ X. For both these cases, for the correspondence invariant to follow we need
to look at whether 9 |= R;(xj, a), where the value of z; is in [n+ {5 — 1]. For the corresponding
(91,4, R) this occurs if and only if 9 = I;(x;), where we recall that ; is a relation from U’ \ U.
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We therefor set ¢  51(Z \ %) = I;(x;) in these cases. Similarly, for the cases ¢(z) = R;(a;, k)
and ¢(Z) = Ri(aj, 7a)’, where j € [{; — 1] and k € X, we set ¢ o »(7 \ 7x) = Li(a;).

Moving on to the remaining cases for a binary relation, we consider ¢(z) = R;(xy, z;) with
j¢ Xandk € X, and ¢(Z) = R;i(a, ;) with j ¢ X. These are analogous to the cases handled in
the last paragraph, only here we use O; instead of I;. We set ¢% ¢ (7 \ zx) = Oi(z;) in these
two cases. Finally, for the cases ¢(Z) = R;(xy,a;) and ¢(Z) = R;(a,aj), where j € [(z — 1] and
k€ X, we set ¢y o »(7\ 2x) = Oi(ay).

The final atomic formula to consider is the “builtin relation” of equality. We skip all cases
involving only constants (e.g. a; = a;), since these are equivalent to T or L. We also skip cases
that are equivalent by the symmetry of the equality relation to those that we discuss.

First, if ¢(z) is o; = x; or x; = ay, for i,j ¢ X and k € [¢z — 1], then since we are dealing
with values that are guaranteed to be in [n 4 g — 1] (the universe of M), we set ¢ ( (T \ zx)
respectively to x; = z; or x; = ay, as well (so it is “unaltered” from ¢(Z)). o

On the other hand, if ¢(z) is x; = z; or x; = a for 4,j € X, then for the correspondence
principle to hold, we need M = ¢ ¢ (7 \ 7x) to hold if M |= (a = a). In other words, we have
to set ¢% (T \ 2x) = T here.

The final cases are those where ¢(z) is x; = x; or x; = a for i ¢ X and j € X. For the
correspondence principle to hold, we need 0 |= ¢ | (7\zx) to hold if and only if M = (2; = a).
However, we make here the subtle yet important observation that this should occur for any
value that z; can take from the universe of 91, which does not include a. Therefore, we can
(and should) set ¢% ¢ (7 \ 2x) = L in these cases.

8.2 Boolean connectives

Handling Boolean connectives is the most straightforward part of this construction. For exam-
ple, suppose that we have ¢(Z) = —)(Z) for some expression ¥ (), for which we have already
established (by the induction hypothesis) that M = 9 (Zx—4) if and only if N = ¥y 1 (7 \ 2x)
whenever 9t and (91, 4, R) correspond. Here we can clearly set ¢ ¢ 2 (Z\2x) = 0% (T \ %),
and obtain that M | ¢(Tx-,) if and only if N | ¢ ¢ »(T \ mgé)7whenever M and (1,41, R)
correspond.

The same idea and analysis follow for all other Boolean connectives. For example, for the

expression §(F) = 11 (%) A (Z), we set @y (7 \ ) = ¥ (T \ 22) A gy n (T \ 23).

8.3 First order quantifiers

To deal with quantifiers over variables, we make some assumptions on the structure of our
expressions that can easily be justified by the appropriate variable substitutions. Namely, we
require that every quantified variable is quantified only once in the expression, and is not used
at all outside the scope of the quantification. In particular, this means that the set X that
appears in the subscript of our expression cannot contain a reference to the quantified variable.

For notational convenience, when ¢(z) is our formula, we denote by x = xy_ 1 the quantified
variable (which is not a member of Z, the unquantified variables of this formula). So the two
cases that we consider in this subsection are the existential quantification ¢(z) = 3,9 (z U {x})
and the universal quantification ¢(z) = Vz¢(z U {z}), and for both of them we would like to
construct a corresponding ¢ (7 \ 7x) where X C [¢z].

In the existential case, we want M = ¢4 51 (Z \ zx) to occur whenever there is at least one
value of z for which 9t = ¢ (z U {x}). For the values of z within [n + ¢z — 1], by the induction
hypothesis, this is covered by the expression J,¢% ¢ (Z U {z} \ zx). However, there is one
possible value of z not covered in this way, and that is the value n + £z, which we identify with
the constant a. But by the induction hypothesis, MM = ¢(z U {z}) for z = a if and only if

12



N = Yy (Cs+1}.40 o (Z\ 7x). The combined expression that satisfies the correspondence invariant
is hence leagu,m(f \zx) = Elxwggu,m(i‘ U{z}\zz) Vv ¢;€U{gi+1}7u,m(j \ zx).

The universal case follows an analogous argument, only here 9t = ¢(Z U {x}) needs to hold
for all values of z, those in [n + ¢z — 1] as well as the value of a. The combined expression is

Prum(@\ 2x) = Vol y (@ U {2} \ 22) AV, 1y 0 (@ \ 2)-

8.4 Modular counting quantifiers

We briefly recall the definition of a modular counting quantifier. Given ¢(z) = C;"(z U {x}),
this expression is said to hold in 991 for a specific assignment to the variable of Z, if the size of
the set {x : M = (T U {x})} is congruent to r modulo m. As with the previous subsection,
we assume that the quantified variable is not used outside the quantification scope, and that no
variable is quantified more than once. We again denote for notational convenience the quantified
variable by x = xy_1, and note that X C [¢z] cannot include a reference to x.

When working with (91, 4, R) that corresponds to 91, to obtain the original modular count,
we have to count the set (satisfying the induction hypothesis) {z : 0 |5 ¢} ¢ w(FU{z}\2x)}, as
well as check whether 0 |= 1 | (e +1},u,9f{(i“ \ zx) (which if true adds 1 to the count). This gives

(Co "W (BN AV, 41y 0o (@) (CE W (@ D) A, 41y o (2 \0))
as the combined expression for ¢ ¢ (% \ zx).

8.5 Monadic second order quantifiers

Here we deal with quantifiers over unary relations. The cases we cover are the existential
quantification ¢(Z) = Jy(Z) and the universal quantification ¢(z) = Yy (z), where U is a
new unary relation that does not appear in the language (a,U, R) of ¢(), while being part of
the language of ¢(z). As before, we assume that the quantified relation symbol U appears only
in the scope of this quantification, and is not quantified anywhere else, and again denote for
convenience U = Uy, 11. In particular, when analyzing expressions of the type ¢%7H,7m(£ \ zx),
we may allow 4l to contain [(7 + 1] (the same is not allowed for the expression ¢% ( (% \ zx),
whose language does not contain U). o

Consider now the family of possible models 9 that extend 9t with an interpretation of the
relation U. Now consider (97,4, R’) which correspond to 9V, in relation to (M, LU, R) which
correspond to 9. Referring to Definition 8.4, every relation already appearing in U will have
the same interpretation in 91 and 9. Also, R’ = R, since the binary relations are the same in
the languages of both models. Additionally, from the definition, the interpretation of U = Uy, 11
in M is the restriction of its interpretation in M’ to [n + €z — 1]. As for the final ingredient U/,
for every i € [{7], the condition on whether it is in & or in Y’ is the same. However, ' may
also include ¢ + 1 according to whether 9’ |= U(a). So considering all possible models 9, we
have two possibilities. Either {' = 8l or ' = U {{7 + 1}.

We can now construct our expression that corresponds to all models extending 9. For the
existential case we have ¢% (7 \ 2x) = Py g 1(T \ 7x) V HUw/X,LIU{EUJrl},ER(i‘ \ zx), and for
the universal one we have ¢% ¢ (% \ 2x) = Yoy y 1 (T \ 7x) A valf,LIU{EUJrI},D%('T \ zx).

9 Nullary relations and a many-one version of the reduction

Nullary relations are relations of arity zero. Formally, for a nullary relation Z, the corresponding
atomic formula is Z(), and a model 9t over a language that includes Z interprets this formula
as either true or false, that is, either MM = Z() or M = —Z().

13



Note that nullary relations can be simulated using higher arity relations. To replace a
nullary relation Z in the language with a unary relation U (while preserving the model count),
the logical expression under discussion should be conjuncted with “V,V,(U(x) < U(y))”, and
then every instance of “Z()” in the formula should be replaced with “3,U(x)”.

For convenience, in the following we use explicit nullary relations in our formalism. We
prove in this section a “many-one” reduction of counting with hard-wired constants to counting
without them, that is, a reduction of the counting function to another counting function based
on a single class, rather than a reduction to the sum of several such functions.

Theorem 9.1 (Many-one reduction to the case without constants) For any classC de-
fined by an FOL (resp. MSOL, CMSOL) sentence involving a set of constant symbols a, nullary
symbols Z, unary symbols U and binary symbols R, there exists a class C' definable by an FOL
(resp. MSOL, CMSOL) sentence involving Z', U’ (which contain Z and U respectively), R and
no constants, satisfying fe(n) = fer(n) for alln € N.

Also here, the theorem follows from a single constant removal lemma, which is used for an
inductive argument over {5.

Lemma 9.2 (Removing a single constant in a many-one manner) For any class C de-
fined by an FOL (resp. MSOL, CMSOL) sentence involving a set of constant symbols a with
0z > 0, nullary symbols Z, unary symbols U and binary symbols R, there erists a class C',
definable by an FOL (resp. MSOL, CMSOL) sentence over the language (@', Z',U’, R'), where
a =a\{ap,}, Z' = ZUSUD where lg = {7 and by = lg, U = UUTUO where {; =Ly = Lp,
and R' = R, satisfying fec(n) = fer(n) for all n € N.

The main new idea in the proof of this version is to use new nullary relations to hold the
information as to whether R(a,a) holds for a binary relation R, or whether U(a) holds for a
unary relation U, while in the original version we constructed different expressions for each of
these options. So, given ¢(z), our inductive construction will produce the expression ¢%(Z \ zx)
for every possible X C [¢z], without referring to the sets {l and PR that appeared in the proof of
Lemma 8.3 and held the information about which relations contain a or (a, a).

The definition of correspondence is adapted to use the new nullary relations in the language,
instead of referring to prescribed sets, in the following way.

Definition 9.3 Given a model_fm_ovef the language (a, Z,U, R) with universe [n + £5], and a
model M over the language (a', Z',U’, R) with universe [n + £z — 1], where in both models every
constant a; is interpreted to be n + i, we say that N corresponds to M if the following hold.

o For every Z € Z, we have N |= Z() if and only if M = Z().

e For every U € U and x € [n + g — 1], we have N |= U(x) if and only if M = U(x).

e For every i € [{g], we have N |= S;() if and only if M = Ui(a).

e For every R € R and x,y € [n+ {5 — 1], we have N |= R(x,y) if and only if M = R(z,vy).
e For every i € [{g] and x € [n+ {5 — 1], we have N |= I;(z) if and only if M = Ri(x, a).
e For every i € [{g] and x € [n+ {z — 1], we have N |= O;(x) if and only if M | R;(a, ).
o For every i € [{g], we have N = D;() if and only if M = Ri(a,a).

As expected we have the immediate counterpart to Observation 8.5.
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Observation 9.4 Definition 9.3 provides a bijection between the set of possible models 9 over
the lgng_uag_e (@, Z,U, R) with universe [n+{z], and the set of possible models N over the language
(@,Z' U, R) with universe [n+{z—1] (where all constants are interpreted as in Definition 9.3).

The rest of this section is concerned with the recursive definition of ¢%(Z \ zx) given ¢(z),
satisfying the following correspondence invariant: If 9t and 91 correspond according to Definition
9.3, then for any fixing of the variables Z\zx, we have M (= ¢(Zx—q) if and only if N = ¢ (T\zx)
(we refer to the Section 8 for the definitions of z \ zx and Zx_,,). The main differences between
this construction and the one of Section 8 are in the handling of atomic formulas and of monadic
second order quantifiers.

9.1 The base constructions

For the Boolean “true” and “false” statements, just as with Subsection 8.1, if ¢(z) is T (re-
spectively L), then we also set ¢ (Z \ zx) to T (respectively L).

For the statement ¢(z) = Z;() where i € [¢;], relating to a nullary relation that was already
present in the language of M, we simply set @3 (T \ zx) = Z;() as well.

For the expression ¢(z) = U;(x;) where i € [{gz] and j € [{3], to produce ¢4 (T \ zx), we
again partition to cases according to whether j € X. In the case where j ¢ X, we again simply
set ¢%(Z \ xx) = Uj(x;) to satisfy the correspondence invariant (recall that the “if and only if”
condition in this case should hold when the value of z; is in [n + ¢z — 1]).

Similarly, for i € [¢g] and j € [lz — 1], for ¢(z) = Ui(a;) we set ¢%(z \ zx) = U;(a;), noting
that in our setting the value of a; is guaranteed to equal n + j € [n + g — 1].

Returning to the expression ¢(z) = Uj(x;), for the case where j € X, recall that here
¢%(z\ zx) should not depend on x;, but should rather express (for the correspondence invariant
to hold) whether 9 = U;(a). For the corresponding model DN this information is kept by the
nullary relation S;. Therefore, for the invariant to hold, we set ¢%(Z \ zx) to S;().

The remaining case for a unary relation is the expression ¢(z) = U;(a). Also here we set
¢e(@ \ 2x) to Si().

Moving on to the atomic expressions involving a binary relation R; where ¢ € [(3], the
partition to cases is analogous to that of Subsection 8.1. The first case is where ¢(z) = R;(x;, x1)
where both j ¢ X and k ¢ X, for which as expected we set ¢%(Z \ zx) = R;(xj, ), using very
much the same argument.

Handling constants outside a is similar. For j ¢ X, k € [{5 — 1] where ¢(Z) = R;(xj, ax)
we again set ¢4 (Z \ zx) = Ri(xj,ax), for j € [l — 1], k ¢ X where ¢(T) = R;(aj, zi) we
set ¢%(Z \ zx) = Ri(aj,xy), and finally for j, k € [l — 1] where ¢(z) = R;(aj,ar) we set
% (T \ zx) = Ri(ay, ay).

The next four cases are those that resemble the last two cases that we discussed about a unary
relation. Namely, these are the cases where ¢(z) = R;(z;, ;) with j,k € X, ¢(Z) = Ri(z;,a)
or ¢(Z) = Ri(a,z;) with j € X, and ¢(z) = Ri(a,a). In all these cases the resulting expression
should reflect on whether 9 = R;(a, a), which for the corresponding 91 is handled by the nullary
relation D;. We hence set ¢ (Z \ zx) = D;().

The remaining cases are handled identically to Subsection 8.1. For the case ¢(Z) = R;i(z;, zk)
where j ¢ X and k € X, and the case ¢(Z) = R;(z;,a) where j ¢ X, for the correspondence
invariant to follow we set ¢%(z \ x) = Ii(xz;). For the similar cases ¢(Z) = R;(a;,z;) and
#(z) = Ri(aj,a), where j € [l — 1] and k € X, we set ¢%(Z \ zx) = Ii(a;). For the case
&(T) = Ri(zk,x;) where j ¢ X and k € X, and the case ¢(Z) = R;(a,z;) where j ¢ X, we
set ¢%(Z \ zx) = Oj(x;). Finally, for the cases ¢(Z) = R;(xy,a;) and ¢(Z) = R;(a,a;) where
J€la—1] and k € X, we set ¢4 (z \ zx) = O;(ay).
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The conversion of atomic expressions using the equality relation is completely identical to
that of Section 8.1.

9.2 Boolean connectives

The handling of Boolean connectives is completely identical to that of Subsection 8.2, including
the same straightforward arguments. For example, for the expression ¢(Z) = ¥1(Z) A P2(T) we

set @y (2 \ wx) = ¥ (2 \ 2x) AW (2 \ 7).

9.3 Quantifiers over variables

The handling of first order quantifiers, as well as modular counting quantifiers, is pretty much
the same as that of the respective Subsection 8.3 and Subsection 8.4. In particular, we again
require that every quantified variable is quantified only once in the expression, and is not used at
all outside the scope of the quantification, meaning in particular that the set X cannot contain
a reference to the quantified variable.

For notational convenience, when ¢(z) is our formula, we again denote by = = xy_; the
quantified variable, so for example the existential quantification case is ¢(z) = 3,9 (z U {z}).
For each case we will construct a corresponding ¢%(z \ xx) where X C [(3].

In the existential case, we want N |= ¢/ (Z\zx) to occur whenever there is at least one value of
x for which M = ¢ (zU{x}). If this occurs for a value of x within [n+¢;—1], then by the induction
hypothesis this is covered by the expression 3,95 (ZU{x}\ zx), and if the above occurs in 9 for
x = a, then this is covered by the expression d’;eu (s H}(i‘ \ 2x). The combined expression that
satisfies the correspondence invariant is hence ¢% (z\zx) = 3m¢§g(fU{$}\$x)\/%EU{%H}(J_U\%E)-

The universal case follows an analogous argument, only here 9 |= ¢ (z U {z}) needs to hold
for all values of x, those in [n+ ¢z — 1] as well as the value a. The combined expression is hence
e\ ) = Vot (7 U 0} \ ) A 0y (7 ).

We now handle the modular counting quantifier case ¢(z) = Cy"(z U {z}). To obtain
the original modular count for 9t when working with the corresponding 9%, we have to count
the set (satisfying the induction hypothesis) {z : M = ¥ (z U {z} \ zx)}, as well as check
whether 0N = ¢4, | (s +1}(f\$x). For the complete combined expression for ¢%(Z \ zx) we obtain

(CE 1"y (2 U ) \ ) A g,y (B \ 22)) V (CE™ 04 (2 U {2} \ ) A4y (2 \ 22)-

9.4 Monadic second order quantifiers

We now deal with the cases of existential quantification ¢(Z) = Jy¢(Z) and universal quantifi-
cation ¢(Z) = Yy (), where U is a new unary relation that does not appear in the language
(@, Z,U,R) of ¢(z), while being part of the language of ¥(Z). As before, we assume that
the quantified relation symbol U appears only in the scope of this quantification, and is not
quantified anywhere else, and denote for convenience U = Uy 1.

When preparing to analyze expressions of the type 1} (Z\zx), as per the induction hypothesis
for the construction of ¢% (7 \zx), we note that just as Uy, ..., Uy, have their counterpart nullary
relations 51, ..., S¢;, we also need a new counterpart S = Sy, 1 to U = Uy, +1. When analyzing
a model 9 for ¥(z), which (unlike 91) interprets U as well, we note that the corresponding O
must interpret both U and S, where in particular 9 = S() if and only if 9 | U(a). When
constructing ¢%(Z \ x), we will need to quantify both U and S. Quantifying over S as well as
U makes sure that our quantification encompasses, for the tests against the original 1 (Z), both
U for which U(a) holds and U for which U(a) does not hold. Since nullary relations can be
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simulated by unary relations, utilizing the notion of quantification over nullary relations does
not move us outside the realm of monadic second order logic.

Having discussed the role of the new relation, constructing the expressions that relate to
all models corresponding to those extending 9% is now simple. For the existential case we set
% (Z \ zx) = FuIsy(Z \ 2x), and for the universal case we set ¢4 (T \ zx) = VuVsh(Z \ zx).

10 Higher arity relations

We prove in this section an extension of Theorem 9.1 to higher arity relations, and to other
logics. The less common GSOL (Guarded Second Order Logic) that appears in this statement
is explained in Subsection 10.2.

Theorem 10.1 (Many-one reduction allowing higher arity) For any class C defined by
an FOL (resp. MSOL, CMSOL, GSOL, SOL) sentence involving a set of constant symbols a,
and relation symbols R of arbitrary arities, there exists a class C' definable by an FOL (resp.

MSOL, QMSOL, GSOL, SOL) sentence involving R, which contains R, has the same mazimum
arity as R, and has no new relations of mazximum arity, satisfying fe(n) = fer(n) for alln € N.

Also here, this follows by induction of the following lemma, extending Lemma 9.2.

Lemma 10.2 (Removing a single constant with higher arities) For any class C defined
by an FOL (resp. MSOL, CMSOL, GSOL, SOL) sentence involving a set of constant symbols
a, and relation symbols R of arbitrary arities, there exists a class C', definable by an FOL (resp.
MSOL, CMSOL, GSOL, SOL) sentence over the language (@', R'), where @’ = a \ {as,}, R’
contains R, has the same mazimum arity as R, and has no new relations of mazimum arity,
satisfying fe(n) = fer(n) for alln € N.

The construction is very similar to that of Section 9, and we only highlight here the differ-
ences, which are mainly in the definition of the corresponding models and the transformation
of atomic relational formulas.

We first set up the language: We assume that R = {Ry,... ,RgR} are relation symbols
whose arities are p = {p1,..., p¢, } respectively. To construct R/, first every relation R; € R is
replaced with 27 relation symbols R; = (R; 4 : A C [p;]), where each relation R; 4 is of arity
pi — |A]l. Note that in particular R; is identified with the original R;, and that R, |, is a

nullary relation. Finally, R’ is the union of these sets, R’ = Uf£1 R;.

For some intuition of why this language is a straightforward extension of the one defined in
conjunction with Definition 9.3 in Section 9, consider the case of a binary relation R;. In this
case, I; (1) is the same as O; in Section 9, R; (9} is the same as I; there, and R; (1 9) is the same
as D; there. The following is a generalization of Definition 9.3.

l’[pz

Definition 10.3 Given a model M over the language (@, R) with universe [n+{5], and a model
N over the language (@', R") with universe [n + g — 1], where in both models every constant a;
1s interpreted to be n + i, we say that I corresponds to M if the following holds.

e For every R; € R and every T = x1,...,1,, € [n+{s], denoting by A the set of indexes of
the variables for which x = a = ay,, that is A = {i : x; = a}, we have M |= R(x1,...,x,,)
if and only if M }= R; o(Z \ xa), where as before we let T\ x4 denote the subsequence of
variables whose indexes are not in A.

The exact analog to Observation 9.4 also holds, and we define the same correspondence
invariant with respect to logic expressions. The rest of this section is concerned with the
recursive definition of ¢ (Z\zx) given ¢(z) and X C [¢z], satisfying the correspondence invariant.

17



10.1 FOL expressions and counting quantifiers

The only difference between this section and Subsections 9.1, 9.2 and 9.3 is in the construction
of ¢%(Z \ zx) where ¢(Z) = R;i(y1,...,¥p;), and each y; is either some variable x;; or some
constant a;;.

For this construction, we let the set A denote the indexes of all j for which y; is either
some z; for i € X, or the constant a (but not any constant a;, for i; < ¢z). We denote
by 7 \ ya the subsequence of § = y1,...,y,, after excluding all y; with j € A, and define
Bz \ wx) = Ria(f\ ya).

All other base constructions, as well as the recursive constructions for Boolean connective
and quantification over variables, are identical to those of Section 9.

10.2 Second order quantifiers

We first look at the case of existential quantification ¢(z) = Ir1(Z), where R is a new relation
that does not appear in the language (@, R) of ¢(Z), while being part of the language of v(z).
Again we assume that R appears only in the scope of this quantification, and is not quantified
anywhere else, and denote for convenience R = Ry, 1. We also denote by p = py. 11 the arity
of R.

To construct ¢%(z \ zx), just as we expanded each R; to 27 relations for 1 < i < (5, we
expand the quantified relation R to a sequence of 2° relations (R4 : A C [p]), where each R4 is
of arity p—|A| (R4 is not part of the relations of the language of ¢’ (z\ zx), but identified with
Ry, 41,4 it is part of the language of 1% (Z \ xx) that is constructed by induction from (z)).

The quantification will be over all new relations, that is ¢% (7 \ zx) = J(r,.ac(p) V% (T \ Tx).
Note that in particular for an MSOL quantification, that is when R is of arity 1, we will have
a quantification over a unary relation Ry and over a nullary relation Ry, just as with the
construction in Subsection 9.4.

For the case of universal quantification ¢(z) = Vry(Z) we again define (R4 : A C [p]), and
analogously set ¢% (7 \ zx) = V(g ,.ac[p)¥% (T \ %)

Finally, we briefly explain how to deal with guarded second order (GSOL) quantifiers. These
are quantifiers over a new relation R whose arity is identical to that of an existing relation R;,
where we look only at the possibilities for R that make it a subset of R;. The existential case
is written ¢(Z) = pcr,¥(Z), and the universal case is written ¢(Z) = Vrcr, ¥ (Z).

We construct the relations (R4 : A C [p]), where the arity p; — | A| of R4 is identical to that
of R; 4 in the language of ¢/.(Z \ zx). We simply quantify every R4 as a subset of its respective
R; 4, so for the existential case we have ¢%(Z \ xx) = J(r,cRr, 4:ac)p)¥x(T \ 2x), and for the
universal case we have ¢%(Z \ Tx) = V(r,cr, 1:4C[p) V2 (T \ Tx).

Part II1
Ternary relations

11 An FOL-definable class C where f¢(n) is not MC-finite

In this part we negatively settle the question of whether the Specker-Blatter theorem holds for
classes whose language contains only one ternary relation.
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11.1 Using one hard-wired constant

We first construct a class whose language includes a single ternary relation and a single hard-
wired constant. Our counterexample builds on ideas used in [13].

Theorem 11.1 (Ternary relation counterexample with a constant) There exists an FOL
sentence ¢ over the language (a, R), where a is a single (hard-wired) constant and R is a sin-
gle relation of arity 3, so that the corresponding class C satisfies fe(n—1) =0 for any n that is
not a power of 2, and fe(n —1) =1 (mod 2) for n = 2" for every m € N. In particular, fc is
not ultimately periodic modulo 2.

The statement uses f¢(n — 1) instead of fe¢(n), but recalling the definition of f¢, this refers
to the universe [n — 1] U {a} whose size is n. We explain later how to modify this class to
produce a counterexample modulo other prime numbers p instead of 2.

By Theorem 10.1, we have the following immediate corollary that does away with the con-
stant, at the price of adding some additional smaller arity relations.

Corollary 11.2 (Ternary counterexample without constants) There exists an FOL sen-
tence ¢y, over the language (R), where R includes one relation of arity 3 and other relations of
lower arities, so that the corresponding class C satisfies fc(n) = 0 for every n for which n + 1
is not a power of 2, and fc(n) =1 (mod 2) for n = 2™ — 1 for every m € N. In particular, fc
18 not ultimately periodic modulo 2.

In Section 12 we show how to further reduce the language so that it includes only one ternary
relation and no lower arity relations, to provide Theorem 7.3.
11.2 The first construction

The starting point of the construction is a structure that is defined over a non-constant length
sequence (and hence not yet expressible in FOL) of unordered graphs. This definition follows
the streamlining by Specker [27] of the original construction from [13].

Definition 11.3 (Iterated matching sequence) Given a set V' of vertices, An iterated match-
ing sequence is a sequence of graphs over V, identified by their edge sets £ = Ey, ..., Ey,
satisfying the following for every 1 < i < /lg.

e The connected components of E; are (vertez-disjoint) complete bipartite graphs.

o The two vertex classes of every complete bipartite graph in E; as above are two connected
components of U;;ll E; (fori=1 this means that E; is a matching).

e Fuvery connected component of U;;ll E; is a vertex class of some bipartite graph of E; (so
in particular Eq is a perfect matching).

An iterated matching sequence E is full if every vertex pair u,v € V. (where u # v) appears in
some E;.

The following properties of iterated matching sequences are easily provable by induction.

Observation 11.4 For an ilerated matching E, every E; corresponds to a perfect matching
over the set of connected components of U;;ll E;. Additionally, every connected component of

U;":1 E; is a clique with ezactly 2¢ vertices.
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The above implies that there can be a full iterated matching sequence over [n] if and only
if n is a power of 2, in which case {5 = logy(n). Denoting the number of possible full iterated
matching sequences over [n] by faq(n), note the following lemma.

Lemma 11.5 (see [27]) For every n which is not a power of 2 we have fap(n) = 0, while
fm(n) =1 (mod 2) forn = 2" for every m € N.

The rest of this section concerns the construction of a sentence ¢4 over a language with one
constant and one ternary relation, so that the corresponding class C satisfies fe(n—1) = faq(n).
In the original construction utilizing a quaternary relation @, essentially we had (u,v,z,y) € Q
if (u,v) € E; and (z,y) € E;—1 for some 1 < i < {z, or (u,v) € E; and z = y. For the
construction here, we only have a ternary relation R, and we encode the placement of (u,v)
within E by the set {w : (u,v,w) € R}. We will have to utilize the hard-wired constant a to
make sure that there is exactly one way to encode every full iterated matching sequence.

11.3 Setting up and referring to an order over the vertex pairs

We simulate the structure of a full iterated matching sequence over [n] (where n € [n] is
identified with the constant a) by assigning “ranks” to pairs of members of [n], which we
consider as vertices, where each pair (z,y) is assigned the set r,, = {2z : (z,y,2) € R}. First
we need to make sure that “graphness” is satisfied, which means that r, , is symmetric and is
empty for loops.

gbgraph = \V/x,y,Z(R(:E’ Y, Z) — (l’ 7& Yy A R(ya Z, Z)))

Next we make sure that every two vertex pairs have ranks that are comparable by contain-
ment. This means that for every (z1,y1) and (z2,y2) either ry, 41 C ruyyy OF Tuy g C Ty gy -

¢00mp - V$17y1,£2,y2_‘321,22 (R(xla U1, Zl) A —|R(1‘2, Y2, Zl) A R(l’g, Y2, '22) A _‘R(ml? Y1, 22))

Finally, we want every non-loop vertex pair to have a non-empty rank, and moreover for it
to include the constant a. This is crucial, because a will eventually serve as an “anchor” making
sure that there is only one way to assign ranks when encoding a full iterated matching sequence
using the ternary relation R.

¢full = vac,y((a: 7& y) — R(:IZ, Y, a))

It is a good time to sum up the full statement that sets up our pair ranks.

¢rank = ngraph A chomp A QZ)full

Whenever this statement is satisfied, we can use it to construct expressions that compare
ranks. We will use the following expressions, which compare the ranks of (z1,y1) and (z2,y2),
when we formulate further conditions on R that will eventually force it to conform to a full
iterated matching sequence. Note that conveniently, these comparison expression also work
against loops (whose “rank”, the empty set, is considered to be the lowest).

¢=(21,91,72,92) = Va(R(w1,91,2) < R(22,92,2))
p<(1,91,72,92) = Va(R(w1,91,2) = R(22,92,2))
¢<<3717y17$2:y2) = (bf(xlvyluxQuy?) /\_'¢:($17y17x27y2)
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11.4 Making the ordered pairs correspond to an iterated matching

In this subsection we consider a ternary relation R that is known to satisfy ¢,ani as defined in
Subsection 11.3, and impose further conditions that will force it to correspond to an iterated
matching sequence (which will also be full by virtue of every pair having a rank).

For every rank appearing in R, that is for every set A which is equal to 7, for some
x,y € [n], we refer to the set of vertex pairs having this rank as E;, where ¢ is the number of
ranks that appear in R (including the empty set, which is the “rank” of loops) and are strictly
contained in A. So in particular Ey = {(z,x) : « € [n]}, and E; for example would be the set
of vertex pairs that have the smallest non-empty set as their ranks. ‘

We first impose the restriction that for any ¢, the graph defined by U;Zl Ej is a transitive
graph, that is a disjoint union of cliques. By Observation 11.4 this is a necessary condition for
E to be an iterated matching sequence (note that allowing also the 0-ranked loops does not
change the condition). This is the same as saying that for any three vertices z,y, 2z, it cannot
be the case that the rank of (z, z) is larger than the maximum ranks of (z,y) and (y, 2).

Dtrans = vx,y,z(ﬁbg(xa Z, -Tv?/) \ d’ﬁ(l'a ZY, Z))

Whenever R satisfies the above, it is not hard to add the restriction that F; consists of
disjoint complete bipartite graphs such that each of them connects exactly two components of
U;;ll E;, with all such components being covered. First we state that if some rank A exists,
that is, there exists some (z,y) for which A = r, ,, then every vertex z is a part of an edge with
such rank.

¢cover = vx,yvza’wqb: (337 Y, z, w)

Then, using the prior knowledge that all connected components of both U;;ll Ej and U;-:l E;
are cliques, to make sure that every connected component of E; is exactly a bipartite graph
encompassing two components of U;;ll Ej, it is enough to state that it contains no triangles,
excluding of course “triangles” of the type (x,z, x).

¢part = vx,y,z((m 7& y) - ﬁ(d):(x,y, Y, Z) A cb:(x,y, xz, Z)))

All of the above is sufficient to guarantee that the relation R corresponds to a full iterated
matching sequence. However, as things stand now there can be many relations that correspond
to the same iterated matching. This occurs because we still have unwanted freedom in choosing
the sets that correspond to the possible ranks. To remove this freedom, we will now require
that the rank of every pair (z,y) for x # y consists of exactly one connected component of the
union of all lower ranked pairs. This will be sufficient, because by ¢gq, which in particular
states that for every x # y the rank of (x,y) contains the constant a, the only option would
then be the one connected component that contains a.

Noting that by ¢trans these components are cliques, it is enough to require that every member
of r; 4 is connected via a lower rank edge to a, while every vertex that is connected to a member
of 754 via a lower rank edge is also a member of 7, ,. We obtain the following statement.

Ganchor = vm,y,z(R(xa y,z) — (¢5<(Z, a,m,y) A Vw(¢<(z,w,$,y) — R(‘r?va))))

The final statement that counts the number of full iterated matching sequences, and hence
provides the example proving Theorem 11.1, is the following.

(ZSM = ¢rank A ¢trans A ¢cover A (Zspart A ¢anchor
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11.5 Adapting the example to other primes

We show here how to adapt the FOL sentence from Theorem 11.1 to provide a sequence that is
not ultimately periodic modulo p for any prime number p > 2. The analogous corollary about
removing the constant also follows.

Theorem 11.6 (Ternary relation counterexample for p > 2) For any prime number p,
there exists an FOL sentence ¢, over the language (a, R), where a is a (hard-wired) constant
and R is a relation of arity 3, so that the corresponding class Cp, satisfies fe,(n — 1) = 0 for
every n that is not a power of p, and fc,(n —1) =1 (mod p) for n = p™ for every m € N. In
particular, fc, is not ultimately periodic modulo p.

The construction follows the same lines as the extension from p = 2 to p > 2 in previous
works. For completeness we give some details on how it works with respect to the version of
[27]. The basic idea is to use a “matching” of p-tuples instead of pairs.

Definition 11.7 A p-matching over the vertex set [n] is a spanning graph, each of whose con-
nected components is either a clique with p vertices or a single vertex. A perfect p-matching is
a p-matching in which there are no single vertex components (in other words, it is a partition
of [n] into sets of size p).

The following is not hard to prove.

Lemma 11.8 There are no perfect p-matchings over [n| unless n is a multiple of p, in which
case their number is congruent to 1 modulo p.

Proof: The case where n is not a multiple of p is trivial. Otherwise, consider the number of
possible partitions of the set [p] into a sequence of subsets of sizes i1, ..., 4,, where > _, i = p.
Note that unless i1 = p (and hence r = 1), the number of such partitions is divisible by (fi ),
which is divisible by p (since p is a prime).

Denoting by far,(n) the number of perfect p-matchings over [n], we consider for any p-
matching, its restriction to [p] (which corresponds to a partition of [p] — the reason we need to
consider the partitions as sequences rather than as unordered families of sets is that we need
to consider which sets in the restriction of the p-matching over [n] \ [p] they are “attached”
to). This implies that far,(n) = fu,(n —p) (mod p) for every n > p, allowing us to prove by
induction that fus,(n) =1 (mod p) if p divides n. O

The definition of an iterated p-matching sequence is what one would expect.

Definition 11.9 (Iterated p-matching sequence) Given a set V of vertices, An iterated p-
matching sequence is a sequence of graphs over V, identified by their edge sets E = Eu, ..., Ey,
satisfying the following for every 1 <1 < /lg.

e The connected components of E; are (vertez-disjoint) complete p-partite graphs.

e The p vertex classes of every complete p-partite graph in E; as above are p connected
components of U;;ll E; (for i =1 this means that Ey is a p-matching).

e Fuvery connected component of U;;ll E; is a vertex class of some p-partite graph of E; (so
in particular Eq is a perfect p-matching).

An iterated matching sequence E is full if every vertez pair u,v € V (where u # v) appears in
some F;.
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Again we have the following properties, analogous to those of iterated matching sequences.

Observation 11.10 For an iterated p-matching E, every E; corresponds to a perfect p-matching
over the set of connected components of U;;ll E;. Additionally, every connected component of

U§:1 E; is a clique with ezactly p* vertices.

The above implies that there can be a full iterated matching sequence over [n] if and only
if n is a power of p, in which case {5 = log,(n). Denoting the number of possible full iterated
matching sequences over [n] by faq,(n), note the following lemma.

Lemma 11.11 For every n that is not a power of p we have frq(n) = 0, while for n = p™ for
every m € N we have fa,(n) =1 (mod p).

Proof: The case where n is not a power of p was already discussed above. The case n = p™ is

proved by induction over m using Lemma 11.8. O

The construction of ¢4, is identical to that of ¢pq in Subsection 11.3 and Subsection 11.4,
with the only exceptions being the replacements for ¢cover and @pars.

To construct ¢cover,, We need to state that for every existing rank, each vertex is a part of
a size p clique consisting of edges from this rank.

(bcoverp = vac,yvz1 322,...,2’,, /\ ¢: (.’L‘, Y, Zi, Zj)

1<i<j<p

To construct ¢pare,, we need to state that no E; may contain a clique with p + 1 vertices.

Gpart, = Vo (21 £ 22) = 20\ 6=(21,22, 21, 7))

1<i<j<p+1

The final expression is the following.

¢Mp = Qrank N Ptrans N ¢c0verp A ¢partp A @anchor

12 A class with only one ternary relation which is not M C-finite

Starting with Theorem 11.1, to remove the hard-coded constant (and arrive at Corollary 11.2)
we only need to use a single invocation of Lemma 10.2. Since we started out with a single
ternary relation R in the language of ¢4, this leaves us with a statement ¢',, utilizing the
eight relations Ry, Ry1y, Ry, Ry3y, Ry1 2y, Ry2.3), Ry13), By1,2,3)- In the following we show how
to remove all of these relations except the relation Ry from the language, while keeping the
model counts, which leaves us with a single ternary relation. We note that the exact same
treatment will also work for the modulo p version ¢Z\4p-

For convenience, we let ¢aqs denote ¢, (, where “8” is the number of relations in the lan-
guage. Each time we will define an expression with a smaller number of relations, and claim
that the number of satisfying models is preserved.

All throughout, we assume that 9t is a model for which 9 = ¢ over the language
(a, M) and the universe [n] (where the constant a is hard-coded to refer to n), and that N
is its corresponding model over the language of the expression ¢,q; under discussion and the
universe [n — 1] (which does not include a).

Referring to ¢graph, which is a component of ¢, our first observation is a very easy one.
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Observation 12.1 It is never the case that M = Ry 233(), since by M = dgraph it is never the
case that M = R(a,a,a). Similarly, it is never the case that M = Ryy 9y(x) for any x € [n — 1]
(the universe of M), since it is never the case that that M = R(a,a, x).

This allows us to get rid of the nullary relation Ry 23y and the unary relation Ry 9y.

Definition 12.2 To construct ¢p6 while preserving the model count, we replace all atomic
formulas “Ryy 23y()” and “Ryy0y(x)” (for any variable x) in ¢rpg with the Boolean “false”
statement L, and remove the symbols Ry 33y and Ry 9y from the language of g 6-

We next deal with the other two unary relations, Ry 3y and Rys 3y. Here it is very important
to note that the universe of 9 does not include n, so in particular 9N |= Ry 33(x) if and only if
M = R(a,z,a), where x is guaranteed to be unequal to a.

Observation 12.3 [t is always the case that N = Ry 33(x) and N = Ry 33(x) for any x in the
universe of M, since by M |= ¢ppa it is always the case that M = R(a,z,a) and M = R(x,a,a).

This allows us to get rid of the two remaining unary relations.

Definition 12.4 To construct ¢4 while preserving the model count, we replace all atomic
formulas “R13,(x)” and “Ryg31(x)” (for any variable x) in ¢ with the Boolean “true”
statement T, and remove the symbols Ry, 3y and Rys 3y from the language of ¢4

We next consider the binary relation Rysy. While the truth value of Ry3)(z,y) in 9 depends
on the actual values of x and y, it is still fully determined by 1 satisfying ¢ a4,4, or equivalently,
by 9 satisfying ¢, because it corresponds to the truth value of R(x,y,a) in 9.

Observation 12.5 By M |= ¢ and M = dgraph, it is always the case that N = Ryzy(v,y) if
and only if x # y.

This allows us to remove R(3y and replace it with the equivalent expression.

Definition 12.6 To construct ¢p,3 while preserving the model count, we replace all atomic
formulas “Ryzy(w,y)” (for any variables v and y) in ¢4 with the expression “(x # y)”, and
remove the symbol Ry3y from the language of ¢r,3.

We now consider the two remaining binary relations, Ry and Rysy. Their interpretation
by 91 can vary among different models satisfying ¢ 3. However, we note that 91 = R{l}(x, Y)
if and only if MM = R(a,,y), and similarly N = Rgy(7,y) if and only if M = R(z,a,y). This
means that Ryjy and Ryoy have identical interpretations.

Observation 12.7 By M = Pgraph, it is always the case that N = Ry (x,y) if and only if
N | Rygy(w,y) for every x and y.

This means that we can at least get rid of Rygy.
Definition 12.8 To construct ¢p,2 while preserving the model count, we replace all atomic

formulas “Ryoy(x,y)” (for any variables x and y) in ¢z with “Ryy(z,y)”, and remove the
symbol Rygy from the language of g 2.
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For the final step we cannot replace instances of Ry with a fixed expression. However,
we can “repurpose” part of Ry to hold the information currently held by Ryy;, allowing us to
create an expression over a language containing only this one ternary relation.

For this we first note (by ¢grapn) that it is never the case that MM = R(x,z,y) for any
x,y € [n— 1], and hence it is never the case that M = Ry(z, z,y) whenever N |= ¢ 2. For our
final transformation, we need to simulate the “old” Ry using only the truth values of Ry(z,vy, 2)
for z # y, and then we can replace instances of Ry by the truth values of Ry(x,y, z) for z = y.

This leads us to the following definition.

Definition 12.9 To construct the final paq,1 while preserving the model count, we replace all
atomic formulas “Ry(x,y,z)” (for any variables x,y, z) in g2 with “((x # y) A Ry(x,y,2))”,
replace all atomic formulas “Ryyy(z,y)” in a2 with “Ry(z,z,y)”, and remove the symbol Ry,
from the language of daq,1-

The expression ¢ 4,1, over the language containing only Ry, yields the following restatement
of Theorem 7.3. It is formulated modulo 2, although as noted above it can be extended to any
prime p > 2.

Theorem 12.10 (A sentence with a single relation) There exists an FOL-sentence ¢aq,1
over a language consisting of a single relation of arity 3, so that for the class C corresponding
to o1, its counting function fc(n) is not not ultimately periodic modulo 2.

Part IV
Epilogue

13 More details about C-finite and MC-finite sequences

Here are some examples for integer sequences that are C-finite, MC-finite, or neither.
Example 13.1
(i) The Fibonacci sequence is C-finite.

(ii) If s(n) is C-finite then it has at most simple exponential growth. There is ¢ € NT such
that s(n) < 2 for alln € N, see e.g. [10, 20].

(iii) The Bell numbers B(n) are not C-finite, but are MC-finite.

(iv) Let f(n) be any integer sequence. The sequence s1(n) = 2 - f(n) is ultimately periodic
modulo 2, but not necessarily MC-finite.

(v) Let g(n) be any integer sequence which is not almost everywhere zero. The sequence
s2(n) =nl- g(n) is MC-finite but not C-finite due to its growth.

(vi) The sequence s3(n) = %(2:) is not MC-finite: s3(n) is odd if and only if n is a power of

2 (Lucas, 1878). A proof may be found in [19, Ezxercise 5.61] or in [26].

(vit) The Catalan numbers C(n) = %_H(Q:) are not MC-finite, since C(n) is odd iff n is a

Mersenne number, i.e., n = 2" — 1 for some m, see [21, Chapter 13].
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(viii) Let p be a prime and f(n) be monotone increasing. The sequence s(n) = p- f(n) + z(n),
where z(n) is defined to equal 1 if n is a power of p and to equal O for any other n, is
monotone increasing but not ultimately periodic modulo p, hence not MC-finite.

There are uncountably many MC-finite sequences, but only countably many C-finite se-
quences with integer coeflicients, see the following Proposition 13.2.

Proposition 13.2 (i) There are countably many C-finite sequences.

(i) There are uncountably many monotone increasing sequences which are MC-finite, and
uncountably many which are not MC-finite.

(iii) Almost all integer sequences (under a suitable measure) are not MC-finite.

Proof: (i) follows from every C-finite sequence being completely determined by the integer r,
the coefficients my, ..., m, in its recurrence formula, and its initial values s(1),..., s(r). Hence
every such sequence is determined by a finite sequence of integers, and there are countably
many such sequences. (ii) follows from Example 13.1 (v) and (viii). For (iii) see the discussion
below. O

For analyzing the notion of “almost all integer sequences”, let us first recall the definition
of absolutely normal sequence.

Definition 13.3 Given a sequence r(1),7(2),... of members of Z,, for every a and n, let us
define a distribution jiq n over (Zm)® that results from drawing i € [n] uniformly and then taking
the subsequence r(i),...,r(i +a—1). The sequence r is called normal if for every a the limit
limy,—yo0 flan ezists and is equal to the uniform distribution over (Zm)®.

A sequence of integers s(1),s(2), ... is called absolutely normal if for every m, the sequence
defined by r(n) = s(n) (mod m) is normal.

The sequence s°(n) = s(n) mod b can be viewed as a real number 7, written in base b. A
classical theorem from 1922 by E. Borel says that almost all reals are absolutely normal, [10].
Also note that absolutely normal sequences cannot be MC-finite, and in fact the opposite is
true.

Observation 13.4 If s(n) is absolutely normal, then in particular for every m, a and i there
exist j > i for which s(j) =0 (mod m) and s(j +a) =1 (mod m), meaning that s(n) is not
ultimately periodic modulo m (and hence not MC-finite).

Things are less clear if we want to refer to sequences of integers since there is no “uniform
over the integers” probability space. However, we can prove that if we use any “reasonable
sequence of probabilities” to draw out an integer sequence it will almost always be normal.

Proposition 13.5 Suppose that pq, po, ... is a sequence of probability spaces over N, so that
for every r and m, the probability of u, to draw a number equivalent to r modulo m converges to
1/m when n goes to infinity. Then, an integer sequence that results from independently drawing
s(n) using p, for every n € N will be normal with probability 1.

Proof: Using the notation of Definition 13.3, for fixed m and a we set r(n) = s(n) (mod m) for
n € N, and consider the distributions pi, , over (Z,,)*. To conclude, we need to show that for
every e there exists n; so that the distance of yq,, from the uniform distribution is at most € (in
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the variation distance®) for every n > ny. To prove this, let ny be such that for every n > na,
the probability of u,, to draw a number equivalent to 7 modulo m is in the range 1/m +¢€/2am.

This in particular implies that for n > ng, the distribution of (r(n),...,r(n +a — 1)) from the
uniform distribution over (Z,,)® is at most €¢/2. From this it is not hard to show the existence
of ny using a concentration inequality argument. O

14 Conclusions and open problems

In this work we have extended the Specker-Blatter Theorem to classes of 7-structures definable
in CMSOL for vocabularies 7 which contain a finite number of hard-wired constants, unary
and binary relation symbols, Corollary 7.2. We have also shown that it does not hold already
when 7 consists of only one ternary relation symbol, Theorem 7.3. We note that in [16, 14] we
have shown that for C definable in CMSOL such that all structures have degree bounded by a
constant d, Sc(n) is always MC-finite. The degree of a structure A is defined via the Gaifman
graph of A. With this the MC-finiteness of S¢(n) for CMSOL-definable classes of 7-structures
as a function of 7 is thoroughly understood.

Recall that a sequence of integers s(n) is MC-finite if for every m € N there are constants
Pm, ¢m € NT such that for every n > ¢, there is a linear recurrence relation

Pm—1
s(n+pm) = Z ¢ims(n + 1) mod m

i=0
with constant coefficients ¢; ,, € Z. However, the Specker-Blatter Theorem gives little informa-
tion on the constants p,,, ¢, or the coefficients cg y, ..., ¢p,,—1,m- These in particular depend
on the substitution rank of the class C. In fact Theorem 4.4 gives a very bad estimate of the
substitution rank in the case of binary relation symbols. The constants are computable, but
it is not known whether they are always computable in feasible time or whether their size is
bounded by an elementary function. In the presence of constants the substitution rank is not
defined. Our main Theorem 8.1 allows to eliminate the constants, and therefore gives a formula
for which the substitution rank is defined. However, due to the increased complexity of the
resulting formula, the estimate of the substitution rank will be even worse.

Problem 14.1 Given a sentence ¢ in CMSOL(T) where T consists only of constants, unary
and binary relation symbols,

(i) what is the time complexity of computing pm, g¢m and com, . .-, Cp—1,m ?
(ii) what can we say about the size of py, and g, ?

The proof of Theorem 4.4 depends on the Feferman-Vaught Theorem which also holds for
CMSOL(7) for any finite relational 7, [11, 23]. In our context, the Feferman-Vaught Theorem
allows to check whether a formula of CMSOL(7) holds in Subst(21,a,%2) by checking a se-
quence of CMSOL(7)-formulas in 2(; and 2(; independently. This sequence is called a reduction
sequence, cf. [14]. In [7] it is shown that even for FOL(7) the size of the reduction sequences
for the Feferman-Vaught Theorem cannot, in general, be bounded by an elementary function.

The next problem essentially asks whether there is a way to prove Theorem 7.1 (or even a
somewhat weaker statement in this vein) in a way the bypasses the use of the Feferman-Vaught
Theorem, and thus avoids the toll it takes on the recursion parameters.

3since we are dealing with finite probability spaces, any other reasonable distance measure over R*™ would
do just as well.
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Problem 14.2 Does there exist an elementary function F(k), so that for any sentence ¢ in
CMSOL(7) where T consists only of constants, unary and binary relation symbols, the size of
the constants py, and g, is bounded by F(max{|¢|,m})? What if we restrict ourselves only to
FOL(7) instead of CMSOL(T) ?

The Specker-Blatter Theorem also applies to hereditary, monotone and minor-closed graph
classes, provided they are definable using a finite set of forbidden (induced) subgraphs or mi-
nors. In the first two cases such a class is FOL-definable. In the case of a minor-closed class, B.
Courcelle showed that it is MSOL-definable, see [6]. By the celebrated theorem of N. Robertson
and P. Seymour, [8], every minor-closed class of graphs is definable by a finite set of forbid-
den minors. However, there are monotone (hereditary) classes of graphs where a finite set of
forbidden (induced) subgraphs does not suffice.

Problem 14.3 Are there hereditary or monotone classes of graphs C such that fc(n) is not
MC-finite?

An analogue question arises when we replace graphs by finite relational 7-structures. In this
case one speaks of classes of T-structures closed under substructures. Every class of finite 7-
structures C closed under substructures can be characterized by a set of forbidden substructures.
If this set is finite, C is again FOL-definable, and the Specker-Blatter Theorem applies.

Problem 14.4 (i) Let T be a relational vocabulary. Are there substructure closed classes C
of T-structures such that fc(n) is not MC-finite?

(ii) Same question when all the relations are at most binary?
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