~

[1"200nN TECHNION
219120 (19N u Israel Institute
TN of Technology

4 A

[1'1200 NIM90
The Technion Libraries

017" XIAI ['1NX "V D'D>NOoIN 'TIN'?77 1901 N'a
Irwin and Joan Jacobs Graduate School

\

©
All rights reserved to the author

This work, in whole or in part, may not be copied (in any media), printed,
translated, stored in a retrieval system, transmitted via the internet or
other electronic means, except for "fair use" of brief quotations for
academic instruction, criticism, or research purposes only.
Commercial use of this material is completely prohibited.

©
n/nann? nnme nrpTm 7

IX N7 112'N ,01702°X2 Y'ON7 ,UT'1 1AXNA [ONX7 ,01IN7 ,0'9TN7 ,('"NW7d N'TN1) 7'NYN7 |'X
IX N7 ,NXIN ,TIA'YZ NN0AY 112NN [N DIX7 D'WOZA "an win'w" oyn? ,11nn j77n 72
.07nNN2a 1IoX AT AN 71750 AN "Non wIN'Y 7NN



Algorithms for property testing and
related problems

Yonatan Goldhirsh



Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G



Algorithms for property testing and
related problems

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Yonatan Goldhirsh

Submitted to the Senate
of the Technion — Israel Institute of Technology
Iyar 5775 Haifa April 2015



Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G



This research was carried out under the supervision of Prof. Eldar Fischer, in the Faculty of

Computer Science.

Some results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s doctoral research

period, the most up-to-date versions of which being;:

Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Matsliah. On the power of conditional
samples in distribution testing. In Robert D. Kleinberg, editor, ITCS, pages 561-580. ACM, 2013.

Eldar Fischer, Yonatan Goldhirsh, and Oded Lachish. Testing formula satisfaction. In Fedor V. Fomin
and Petteri Kaski, editors, SWAT, volume 7357 of Lecture Notes in Computer Science, pages 376-387.
Springer, 2012.

Eldar Fischer, Yonatan Goldhirsh, and Oded Lachish. Partial tests, universal tests and decomposability.
In Moni Naor, editor, ITCS, pages 483-500. ACM, 2014.

Acknowledgements

I would like to thank Prof. Eldar Fischer, my advisor, for his encouragement and support
throughout the years of my work. It was an exciting and rewarding period, and I had the good
fortune of having Eldar as my guide to the world of research. I am also deeply indebted to my
friend Ami Paz, who played a crucial role in getting me to actually write this thesis. Ami picked
me up when I was down and helped me transform the thesis from an insurmountable obstacle to
a done project.

This work is dedicated to my beloved wife, Sarit, who is always there for support during

hard times, and for sharing the joys of success.

The Technion’s funding of this research is hereby acknowledged.



Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G



Contents

Abstract

1 Introduction

1.1
1.2

Property testing . . . . . . . L L
Summary of results . . . . . . ...
1.2.1 Testing formula satisfaction . . . . . . ... ... ... ... ... ....
1.2.2 Testing tree coloring properties . . . . . . . . . . . ... ... ... .. ..
1.2.3 Partial property testing . . . . . . .. ... oL

1.2.4 Distribution testing with conditional samples . . . . .. ... .. ... ..

2 Preliminaries

2.1

Directed ordered trees . . . . . . . ..

3 Testing Formula Satisfaction

3.1
3.2

3.3
3.4
3.5

3.6
3.7

Introduction . . . . . . .. L
Preliminaries . . . . . . . Lo
3.2.1 Formulas, evaluations and testing . . . . . . .. ... ... L.
3.2.2 Basic formula simplification and handling . . . . .. .. ... ... .. ..
3.2.3 Observations about subformulas and distance . . . . . .. ... ... ...
3.2.4 Heavy and light children in general gates . . . . .. .. ... ... ....
Upper bound for general bounded arity formula . . . . . . ... ... ... ....
Estimator for monotone formula of bounded arity . . . . . . ... ... ... ...
Quasi-polynomial upper bound for basic-formulas . . . . . .. ... ... ... ..
3.5.1 Critical and important . . . . . . ... ..o oo
3.5.2 Algorithm . . . . . . . . ...
The computational complexity of the testers and estimator . . ... ... .. ..
The untestable formulas . . . . . . ... ... o oo
3.7.1 The 4-valued formula . . . . . . ... ... oo
3.7.2 Two distributions . . . . . . ...
3.7.3 Proving non-testability . . . . . . ... oo

3.7.4 An untestable 5-valued monotone formula . . . . . . . ... .. ... ...

11
13



4 Testing Tree Coloring Properties 41

4.1 Introduction . . . . . . . . . . e 41
4.1.1 Topological subtrees . . . . . . . . ... .. .. ... .. 42
4.2 Preliminaries and statement of main result . . . . .. .. .. ... 000, 43
4.3 OVErview . . . . .. e e 44
4.4  Testing for a family of forbidden topological subtrees in bounded degree trees . . 46
4.4.1 AllColors . . . . . o 47
4.4.2 MissingColor . . . . . . .. 50
4.4.3 Query complexity . . . . ... 52
4.4.4 Reduction from a general tree to a full tree . . . . . . . ... ... .. .. 53
4.4.5 Extending AllColors to trees with unsorted children . . . . ... ... .. 54

4.5 A lower bound for testing against a family of forbidden induced subtrees in a
balanced binary tree . . . . . ... oo 55
5 Partial Property Testing 57
5.1 Introduction . . . . . . . . .. L 57
5.1.1 Related work . . . . . . . . 61
5.2 General themes . . . . . . . . L 63
5.2.1 Proving a bound against non-adaptive algorithms . . . . . . .. .. .. .. 63
5.2.2 Proving a bound against adaptive algorithms . . . . . . .. ... ... .. 64
5.2.3 Testing decomposable properties through universal testing . . . . . . . .. 65
5.2.4 A non-testable property that is decomposable to testable ones . . . . .. 66
5.3 Preliminaries . . . . . . . . L 66
5.4 Nonadaptive lower bound . . . . . . .. .. oo 68
5.5 Adaptive lower bound . . . . . ... 71
5.6 Properties with a proximity oblivious 2-test decomposition. . . . . . . . ... .. 76
5.7 Properties with a proximity oblivious ¢-test decomposition. . . . . . . . ... .. 80
5.8 Highly decomposable properties . . . . . . . . . . ... oL 85
6 Distribution Testing with Conditional Samples 89
6.1 Introduction . . . . . . . . . . . . . e 89
6.1.1 Some motivating examples . . . . .. ..o 90
6.1.2 Informal description of results . . . . . . . . .. ... 91
6.1.3 Related work . . . . . . .. 93
6.2 Preliminaries . . . . . . . . .. 95
6.2.1 The conditional distribution testing model . . . . . . . . .. ... ... .. 95
6.2.2 Tools from previous works . . . . . . ..o Lo oo 96
6.3 Adaptive testing for uniformity and identity . . . . . . . ... ..o 97
6.3.1 Testing uniformity . . . . . . . . ... 97
6.3.2 Testing identity to a known distribution . . . . . .. .. .. ..o 99

6.4 Non-adaptive testing for uniformity and identity . . . . ... ... ... ... .. 102



6.4.1 Testing uniformity . . . . . . . . ... Lo 102

6.4.2 Testing identity to a known distribution . . . . . . .. ... ... 104

6.5 Explicit persistent samplers . . . . . . . ... L o 105
6.5.1 Ratio trees and reconstituted distributions. . . . . . . ... ... 105
6.5.2 Distribution samplers and learning . . . . . . .. ... o000 107

6.6 Testing any label-invariant property . . . . . . . .. ... oo 108
6.6.1 Bucketing and approximations . . . . ... .. ... ... L. 109
6.6.2 From bucketing to learning . . . . . . ... ..o 111

6.7 Lower bounds for label invariant properties . . . . . . ... ... ... ... ... 113
6.7.1 Preliminary definitions . . . . . . .. . ... oL oo 113
6.7.2 Uniformity has no constant sample non-adaptive test . . . . . . . ... .. 116
6.7.3 A label-invariant property with no constant sample adaptive test . . . . . 119

6.8 A lower bound for testing general properties of distributions . . . . . . ... ... 124
6.8.1 The reduction lemma, . . . . . . ... ... ... 124

7 Open Questions 127
7.1 Testing formula satisfaction . . . . . . . . . .. ... L 127
7.2 Partial property testing . . . . . . ... 127
7.3 Distribution testing with conditional samples . . . . . . . ... ... ... .... 128

Hebrew Abstract i



Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G



Abstract

In this thesis we study property testers from an algorithmic point of view. Namely, property
testers with a substantial algorithmic component, and the power of algorithmic approaches to
property testing problems.

First we study property testing in the massively parametrized model. The first problem
we study in this model is testing read once formula satisfaction, in several flavors. For general
formulas with gates of bounded arity we give a constant query property tester. For formulas with
monotone gates of bounded arity we give a constant query complexity distance estimator. Finally,
for and/or formulas we give a property tester with query complexity which is quasi-polynomial
in the distance parameter. On the lower bound front, lower bounds against testing read once
formula satisfaction over an alphabet of size 4, and against testing read once formula satisfaction
for formulas with monotone gates over an alphabet of size 5. We proceed to study tree coloring
properties, specifically those defined by freeness from a forbidden family of colored topological
subtrees. We give constant query complexity algorithms for this problem, as well as a super
constant lower bound for the case of freeness from a forbidden family of colored induced subtrees.

Then we introduce the notion of partial property testing, and the decomposition of a property
into partially testable subproperties. A property P is P’-partially testable if there is a property
tester that accepts inputs in P’ and rejects inputs far from P. We show that there exists a
property which is untestable, but has a decomposition into a few subproperties, for each it is
partially testable. On the other hand we show that there exist untestable properties for which
any decomposition into partially testable subproperties has an exponential number of sets. For
this we develop new, entropy based techniques for proving property testing lower bounds. To
complete the picture, we show that if we have a decomposition into a few subsets for which we
have proximity oblivious testers then we can obtain a sublinear query complexity tester for the
entire property. We do this by developing a “universal tester” and prove it tests such properties.
This also resolves an open question regarding “sample based testers” posed by Goldreich and
Ron [GR13].

Distribution testers are always non-adaptive, since all samples are obtained in the same
manner and there is no place for an algorithmic decision. This is changed by introducing the
model of distribution testing with conditional samples. In this model, the testing algorithm may
obtain samples conditioned on any subset of the universe. This creates a much richer model, and
in particular enables adaptive algorithms. We show that many problems are easier to test with

conditional samples, such as uniformity, testing closeness to a known distribution, and any label



invariant property of distributions. On the other hand, we show that there still exist problems in
this model which require a linear number of samples. Finally, we also show a separation between

adaptive and non-adaptive distribution testing algorithms with conditional samples.



Chapter 1

Introduction

Classic algorithmic theory considers run time as the most important measure of algorithmic
efficiency. An algorithm is considered efficient if its run time, or time complexity, grows at most
polynomially, as was first suggested in the seminal work of Edmonds [Edm65]. In recent decades,
the amount of data that algorithms are required to process is growing in a breathtaking pace.
Google announced in 2012 that its Gmail service has 425 million active users [Gmaa]. Keeping in
mind that every user is currently allocated at least 15GB of storage [Gmab], one can quickly see
that any polynomial time computation over this dataset is infeasible. In fact, any computation
that attempts to read this entire dataset in a straightforward manner is beyond our reach.

These developments have lead to research of algorithms for massive data sets. Many frame-
works and approaches have been suggested and implemented: A streaming algorithm [Mut05]
only reads the data set once, in some simple order, and only maintains a very small memory
footprint throughout the computation. The Map-Reduce framework [DGO08] is based on creating
very localized computations that lend themselves to extreme parallelism. Sublinear time algo-
rithms, which include most property testing algorithms, take a formalistic approach to the issue
— if the data sets are so big, let us design algorithms with time complexity that increases less
than linearly in the size of the input.

This approach does face a significant challenge compared to the other approaches: if
computation time increases more slowly than the size of the input, then the computation cannot
expect to read the entire input. This is where the terms “sublinear algorithms” and “property
testing” diverge. While sublinear algorithms are concerned with sublinear time complexity,
property testing focuses on the problem of decision making when reading only a negligible
portion of the input.

When restricting our attention to algorithms that cannot read the entire input, we are quickly
faced with some deep issues of problem definition. Suppose that our input is a binary string, and
we want an algorithm that accepts the string if and only if it is the all-1 string. An algorithm
that does not read the entire input can never be guaranteed to answer correctly, and so we must
introduce a notion of approximation. This notion will be tied to an approximation parameter
1> € > 0, and we will only require that the algorithm rejects a string if at least an e fraction of

its inputs must be changed for it to be in the set of allowed strings (in our example, this set is



the singleton set comprised of the all-1 string). But even if we allow such an approximation,
we still have a problem. We expect a property testing algorithm to read a negligible portion
of the input. This means that if an adversary knows which bits will be read, it can cause the
algorithm to accept inputs it should reject. For this reason property testing algorithms must be
probabilistic, and their output will only be required to be correct with high probability.

To reiterate, we have some universe of objects U, each of size n, and a property that some
of these objects posses P C U. In the example above, if we choose some n, then U = {0, 1}"
and P = {1111...1}. We also have some notion of distance over objects in U, where a fitting
choice for the example above is the normalized hamming distance, and a notion of query into the
objects in U, where in the example above it would just be reading a requested bit. A randomized
algorithm A is an e-property tester for P with query complexity q if given an input z, it performs
at most ¢ queries into z, and then accepts with probability at least 2/3 if z € P, and rejects
with probability at least 2/3 if the distance between x and any member of P is at least e.

We will make several distinctions between different property testing algorithms. An algorithm
will be one-sided if it accepts all inputs x € P with probability 1, and otherwise it will be
two-sided. An algorithm will be non-adaptive if the set of queries it makes only depends on the
input size and its internal randomness (and not on the answers to previous queries), and it will

be adaptive otherwise.

1.1 Property testing

A large part of property testing research concerns itself with algorithms of constant query
complexity, that is, query complexity that only depends on the parameter e. Therefore, when
we use terms such as “testable” or “has a property tester”, we implicitly mean “with constant
query complexity”.

The notion of property testing was first defined by Rubinfeld and Sudan [RS96] in an algebraic
setting, though similar problems were addressed by Blum, Luby and Rubinfeld [BLR93]. They
concerned themselves with questions like “is a given function f : F* — F linear?” or more
generally “is it a low degree polynomial?”. Such questions have many applications for error
correcting codes. The original application that Rubinfeld and Sudan had in mind was quick
testing of program correctness. The overarching theme in this work was showing that a property
has a robust local characterization, meaning that if we have a function f : {0,1}" — {0, 1}
such that with high probability when picking x € {0,1}" and y € {0,1}", we have that
f(@)+ f(y) = f(xz +y), then this function cannot be far from a linear function. This naturally
lends itself to a one-sided, nonadaptive property testing algorithm. Moreover, this algorithm
is extremely simple, just sampling and checking instances of this local characterization of the
property. The generality of this approach was expanded upon in later works on the role of
invariance in algebraic property testing [KS08, Sud11, BGS13, BFH"13]

Later, Goldreich, Goldwasser and Ron [GGR98| introduced the notion of combinatorial
property testing, that is, property testing for combinatorial objects, chiefly graphs. Goldreich,

Goldwasser and Ron introduced the dense graph model, where we see a graph as being represented



by its adjacency matrix. The possible queries to make are of the sort “are the vertices u and v
adjacent?”, and the distance between two graphs is simply the normalized hamming distance
between their respective adjacency matrices. Note that in this model, any two graphs with
o(V?) edges are always close to one another, and for this reason this model is only useful
for discussing dense graphs. Goldreich, Goldwasser and Ron studied properties such as being
bipartite, k-colorable or having a p-clique. They also noted that algorithms for all of the problems
considered in their paper can be derived from a general algorithm for testing whether a graph
has a partition of the vertices into sets of certain size range with lower and upper bounds on the
number of edges between them. This journey culminated in the papers of Alon et. al. [AFNS09]
and Borgs et. al. [BCLT06] which proved that in fact, testable dense graph properties can be

characterized by the existence of regular partitions.

Algebraic property testing and property testing in the dense graph model use the symmetry
of the underlying models to craft concise and elegant testing algorithms. Other models for
property testing problems require a “messier”, more algorithmic approach. A prime examples
is the bounded-degree graph model. In this model, introduced by Goldreich and Ron [GR97],
we again test properties of graphs, but this time a graph of n vertices and maximal degree
d is represented by an n x d array, where the (v,7) entry is the ith neighbor of the vertex v.
This models lends itself to queries such as “who is the ith neighbor of v”, but usually also
allows queries of the form “how many neighbors does v have?”. Usually d is seen as a constant.
This model has seen a lot of fruitful research, including algorithms for bipartiteness [GR99],
expansion [CS10] and other problems. Unlike the dense graph model, most of the algorithms in
the bounded-degree model have query complexity sublinear in n, but not constant. Also, there
is little use for the approach of sampling a set of vertices and considering the induced subgraph,
as it is most likely empty. Therefore, most algorithms take a more algorithmic approach using
various graph searching algorithms, from BFS and DFS through random walks to other ad-hoc

approaches.

The property testing approaches described above assume that the algorithm is completely
ignorant of the input and its structure. In many scenarios this is not the case. Consider a driving
directions server — it has full knowledge of the road network, which is essentially immutable.
On the other hand, it cannot expect to have full knowledge of traffic congestion in every road,
since this data changes with high frequency. Another example is a hardware verification program.
It has full knowledge of the structure of the verified hardware, but given a very large input, it
might not want to run all of it through the hardware, and only extract small interesting bits
out of it. The massively parametrized model gives a framework to describe property testing
approaches to such problems. In this model, there is an underlying combinatorial structure 5,
and the universe is actually a universe of functions f : S — D. This means that the properties

discussed are properties of such functions.

The first work to consider the massively parameterized model, albeit implicitly, is that of
Newman [New02], which proved testability of properties defined by bounded-width read-once

branching programs. Note that for an input of n bits, a branching program of width w has



O(wn) states and transitions. The algorithm given by Newman is given a branching program
for a property P, and uses it in a testing algorithm for the property of being accepted by the
program. That is, the algorithm has full knowledge of an object as big as the input. Another
work where the concept of a massively parametrized model was used implicitly was that of
Fischer et. al. [FLNT02] which studied monotonicity over general posets. Here the algorithm
is given a representation of the poset as a DAG, and has to decide using queries whether a
given function is monotone relative to this poset. Again, the representation of the DAG can
be as big as the input, but while the algorithm queries the input, it has full knowledge of the
DAG. Another important work in the same spirit is that of Halevy et. al. [HLNTO07], where they
studied properties defined by constraint graphs. In a constraint graph every edge is labeled by a
boolean variable, and every vertex is a boolean predicate on its incident edges. An assignment
to the edge variables is satisfying if all of the vertex predicates are satisfied. A property testing
algorithm in this setting has full knowledge of the graph structure and the vertex predicates,
and only queries the variable values. Again, the algorithm has full knowledge of a structure that

is at least as big as the input.

The orientation model is a well studied massively parametrized model. In it the underlying
structure is some undirected graph G, and the functions define orientation on its edges. This
means that the properties considered are properties of possible orientations of a given graph.
This also means that a property testing algorithm has full knowledge of the underlying graph G,
and only queries edges for their orientation. This model in fact originated in the work of Halevy
et. al. [HLNTO7] discussed above, since a boolean variable on an edge can be seen as assigning it
a direction. It was later studied in several works, such as that of Fischer et. al. [FLM112] which
studied the property of the orientation being Eulerian, and that of Chakraborty et. al. [CFLT07],
which considered the property of the existence of a directed path between two given vertices.
There are other instances of the massively parameterized model, such as the tree coloring
model [FY11] (also considered in this thesis), further work on branching programs [FNS04],
graph isomorphism where one graph is given in advance [Fis05] and others. Also see the survey
by Newman [New10]. Such algorithms cannot perform any blind sampling, as the queries they
perform are intrinsically related to the structure of the underlying combinatorial structure. Thus

they must explore this structure in tandem with performing queries to the unknown function.

Another model which is studied in this thesis is distribution property testing. While strictly
speaking it is not an instance of property testing, it is a spiritual relative. In distribution-property
testing, the goal is to distinguish the case where the samples come from a distribution that has
a certain property P from the case where the samples come from a distribution that is far, in
the variation distance, from any distribution that has the property P (the variation distance
between two distributions p and p/ over a common set B is § 3.5 | Pry[i] — Pry[d]|, which is
equal to the maximum difference in probability between the distributions for any possible event).
In the traditional setting no access is provided to the distribution apart from the ability to take
independent samples, and the two cases should be distinguished using as few samples as possible.

There are several natural distribution properties that were studied in this context: testing



whether a distribution is uniform [GR11], testing identity between distributions (taking samples
from both) [BFR™10, LRR10], testing whether a joint distribution is independent (a product of
two distributions) [BFR"10] and more. Some useful general techniques have also been designed
to obtain nearly tight lower bounds on various distribution-property testing problems [Valll].
Other tightly related works study the problems of estimating various measures of distributions,
such as entropy [BDKR05, GMV09] or support size [RRSS09].

For more information on property testing and it’s various branches, see the surveys [Fis04a,
Gol10a, Ron08, Ron09, Goll0b].

1.2 Summary of results

This thesis is concerned with property testing problems where there is a substantial algorithmic

component. In this section we will give an informal overview of our main results.

1.2.1 Testing formula satisfaction

An important family of problems in the massively parameterized model is satisfaction of nonuni-
form computational models. This includes the branching programs studied by Newman [New02]
and the constraint graphs studied by Halevy et. al. [HLNTO07]. Continuing in this line of research,
we consider the problem of testing read-once formula satisfaction in Chapter 3.

When testing read-once formula satisfaction the massive parameter is a formula, given as a
directed rooted tree where the inner nodes are labeled as logical gates, and the leaves are labeled
as input variables. The tested property then is that of a given input satisfying the formula. We
give several algorithms of varying generality. First, an algorithm to test satisfaction of read-once
formulas of general boolean gates. Second, an algorithm to estimate the distance of a given
assignment to satisfying a read-once formulas with monotone gates. Lastly, a more efficient
algorithm to test satisfaction of read-once and/or formulas.

Finally, we give a lower bound for cases involving non-boolean values. We give two lower
bounds, the first shows that read-once formula satisfaction over an alphabet of size 4 cannot be
tested with a constant query complexity, and the second showing that even if we require all the
gates to be monotone, read-once formula satisfaction over an alphabet of size 5 cannot be tested

with a constant query complexity.

1.2.2 Testing tree coloring properties

Tree coloring properties are another instance of the massively parameterized model. In this case
the underlying structure is a rooted, directed tree T', and the functions whose properties we test
are coloring functions over the vertices. Probably the first instance of this model was in the
context of monotonicity testing, in the work of Fischer et. al. [FLNT02].

A very general problem in this setting, is the problem of testing against forbidden topological
subtrees. In this problem the property is defined by a set of forbidden colored trees F, and

a coloring C' has the property if it does not contain any of these forbidden trees as a colored



topological subtree. An exact definition of a colored topological subtree is found in Section 4.2,
informally it means that there is a mapping from a forbidden tree t € F to T', where vertices are
mapped to other vertices of the same color, and edges are mapped to disjoint paths. This problem
was previously considered by Yahalom [Yah12], which developed constant query complexity
algorithms for the case where there is only one forbidden topological subtree. In this thesis we
give an algorithm for testing freeness from a finite family of forbidden topological subtrees, with
constant query complexity. Note that in general, testability is not preserved under property
intersection, so moving from a single forbidden tree to a family of such trees is non-trivial. The
basis of the algorithm is in a divide and conquer approach, with careful handling of ramsey-like
phenomena and the kind of transformation steps that can be done on the forbidden family to
“break it down”.

Finally, we give a family of forbidden subtrees, such that freeness from which, as a colored

induced subtree, cannot be tested in a constant query complexity.

1.2.3 Partial property testing

Let P be some property, and P’ C P. We say that P is P'-partially testable if there exists
a probabilistic algorithm that accepts inputs in P’ with high probability, and rejects inputs
far from P with high probability. In essence, this is a generalization of the usual definition of
property testing. We initiate the study of this model in Chapter 5.

First, we give a construction, based on error correcting codes, of a property P such that any
subproperty P’ for which P is P’-partially testable is very small. This is based on introducing
several new techniques for analyzing property testing algorithms and proving lower bounds for
query complexity.

One of the reasons that the notion of partial testing is interesting, is that many untestable
properties can be decomposed into relatively few subproperties, for which they are partially
testable. In particular, the construction described above actually shows that for some untestable
properties, any such decomposition must be to many sets.

Another way to view the idea of decomposition into partially testable subproperties is as
“property testing with a proof”, where the testing algorithm is given a proof 7 that it can read
in its entirety. The requirement is that for every input with the property, there is a proof
that causes the tester to accept with high probability, and for any input that is far from the
property, the tester will reject it with high probability no matter the proof. The correspondence
between the two definitions is that a proof can be seen as specifying a subpropery in the
decomposition. The notion of property testing with a proof was concurrently introduced by Gur
and Rothblum [GR15].

Next, we restrict our attention to proximity oblivious algorithms. Informally, these are
property testers which are based on a “mini-algorithm” with query complexity which is an
absolute constant (independent of ¢€), with success probability that depends on €, and the
property testing algorithm is based on performing several repetitions of this mini-algorithm (the

number of repetitions depends on €). We show that if a property can be decomposed into a



few sets for which it is partially testable with a proximity oblivious algorithm, then there is
also a sublinear algorithm for testing the entire property. We give two flavors of this results, a
more efficient one where the proximity oblivious algorithm uses 2 queries, and a less efficient
one for any constant number of queries. This shows a general framework for creating sublinear
query complexity property testers by developing testers for subproperties of it. The algorithm is
created by converting a proximity oblivious property tester to a sample-based property tester as
defined by Goldreich and Ron [GR13], thus partially answering an open question posed by them.

Finally, we return our attention to the general case of finding decompositions, and construct
a property that is hard to test, but has excellent decomposition into relatively few subproperties

for which it is partially testable.

1.2.4 Distribution testing with conditional samples

On its face, distribution testing seems like the least algorithmic of the various branches of
property testing. Since the algorithm just obtains independent samples, there is little for it to
decide other than the number of samples obtained and the final acceptance criterion. While
most previous works are focused on the ordinary sampling oracle, other stronger oracles were
considered too. A major reason is that the number of required samples, while sublinear, is
still very large in the original model. The most notable example of a strong oracle is the one
from [BDKRO5], that also allows querying the exact probability weight of any element from the
domain. Another research direction involved restricting the problem further, for example by
adding the promise of the distribution being monotone [BKRO04].

In this thesis we initiate the study of a new model, where the algorithm can condition its
samples on being in a certain subset S of the universe. This creates a wealth of algorithmic
possibilities for the algorithm, including the possibility of creating adaptive algorithms. A very
similar model was proposed and studied independently by [CRS14].

We give several results in this model. First, we give adaptive and non-adaptive algorithms for
testing uniformity and identity to a known distribution. As expected, the adaptive algorithms
are of better query complexity. Second, we give a general algorithm to learn distributions using
an explicit sampling oracle, in the sense of being able to produce samples and answer probability
questions for an approximation of the distribution. Using this, we also develop testing algorithms
for any label-invariant property. Many such properties were studied in the literature, such as
having a small support [RRSS09].

Finally, we give a comprehensive collection of lower bounds. First, a lower bound showing
that uniformity has no constant sample complexity non-adaptive test, separating the strength
of adaptive and non-adaptive algorithms in this model. Second, we show that there exist
label-invariant properties with no constant sample complexity adaptive test, showing that the
general problem is harder than uniformity. Lastly, we show a general mechanism for transforming
lower bounds for properties of boolean strings into lower bounds in the conditional sampling

model.
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Chapter 2

Preliminaries

We use [k] to denote the set {1,...,k}. We will also use the following Chernoff-type inequality,
which appears as Theorem A.1.11 and Theorem A.1.13 in [AS0S]:

Lemma 2.0.1. Let py,...,p, € [0,1], X1,..., X, be fully independent random variables with
Pr[X; =1—p;] =p; and Pr[X; = —p;] =1 —p;, and let p=L 57 | p; and X =1 X;. Then
Pr[|X| > a] < 2exp(—a?/2pn).

When using this lemma we interpret X +pn = > ;" ;(X; + p;) as the number of successes in n
independent trials where the probability of success in the ¢th trial is p;.

Let us now introduce a general definition of property testing.

Definition 2.0.2 (Property Tester). Let {U,}22; be a sequence of universes of objects, indexed
by n. Assume that there is some notion of query defined for the objects of the universe, and a
measure of distance dy, : U, x U,, = [0,1]. Let {P,}°2; be a sequence of properties where for
each m, P, C Uy,. For a real approzimation parameter € € [0,1] and a real confidence parameter
0 € 10,1], an (e, d)-tester with query complexity ¢ € N is a (possibly randomized) algorithm A

such that for any n:
e For an input x € P,,, A accepts with probability at least 1 — 4.

e For an input x € Uy, such that for any y € P, d,(x,y) > €, A rejects with probability at
least 1 — 4.

e For any input, A performs at most ¢ queries.

If furthermore for an input x € P,, A accepts with probability 1, then we say that the
algorithm is one-sided, and otherwise we say that it is two-sided. If all of the queries performed
by the algorithm can be determined before any of them are made, then the algorithm is said to

be non-adaptive, and otherwise it is adaptive.

While the generality in the above definition is mathematically satisfying, we will mostly
concern ourselves with cases where the universes are boolean strings or combinatorial objects. In

these cases the notion of a query corresponds to unveiling the value of a certain index, existence
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of an edge etc. Additionally, it will be cumbersome and unenlightening to discuss sequences of
properties and universes, and we will usually fix n for the discussion, without loss of generality.
For the rest of this section we will limit the definition to the case of boolean strings when it is

more convenient to do so.

Definition 2.0.3 (Normalized Hamming Distance). For x,y € {0,1}", the normalized ham-
ming distance between them is d(z,y) = L|{i € [n]|z; # y;}|, that is, the fraction of indexes
on which the strings disagree. For S C {0,1}", we define d(z,S) = minycsd(z,y). When

d(z,S) > €, we say that x is e-far from S, otherwise we say that it is e-close to S.

In each chapter we will introduce a more specific notion of testing suitable to the universe
discussed. In cases where we do not discuss boolean strings, a suitable notion of distance will
also be introduced, but it will always be similar to the normalized hamming distance.

We proceed with some general notions relevant to one-sided algorithms:

Definition 2.0.4 (0-witness). A O-witness for a boolean function f : {0,1}" — {0, 1} is a subset
of coordinates W C [n], which is minimal (by inclusion) amongst all subsets for which there
exists an assignment o : W — {0, 1}, such that for every z € {0,1}" which agrees with ¢ (that
is, for all ¢ € W, we have that x; = o(7)) we have that f(z) =0.

This notion is important because of the following observation, in which it is useful to

reinterpret the function f from the above definition as an indicator function for a set P:

Observation 2.0.5. Let A be a one-sided tester for a property P. A cannot reject unless the

queries it made contain a 0-witness.

This simple observation proves very useful for proving lower bounds against one-sided testers.
We will now briefly discuss the main technique for proving lower bounds against two-sided
testers. First, let us introduce a definition of distance between distribution, which will also be

useful to use when testing properties of distributions:

Definition 2.0.6. [Variation Distance] Let p and ¢ be two distributions over the domain D.

The variation distance between p and ¢ is defined to be

drv (p,q) = % > Ip(i) —a(i)].
i€D
We will follow the description of Yao’s method from Fischer [Fis04b]|. The basic method is
that instead of trying to find a worst case input for every possible randomized algorithm, we
find a distribution over inputs such that every deterministic algorithm will fail with probability
greater than § on an input taken according to this distribution. Let U be our universe of inputs,

where every input is a function f: D — {0, 1} for some domain D, and P C U be the property.

Definition 2.0.7 (Restrictions, Definition 4 in [Fis04b]). Let p be a distribution over inputs,
and let @ C D. The restriction p|g of p to @ is the distribution defined over functions of the
type g : @ — {0,1}, that results from choosing a function f : D — {0,1} according to u, and
setting g to be f|g, the restriction of f to Q.
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We can now introduce the version of Yao’s Lemma for property testing algorithms.

Lemma 2.0.8 (Yao’s Lemma, Lemma 8.1 in [Fis04b]). Suppose that there exists a distribution
up on inputs from U that satisfy a property P, and a distribution py on inputs that are e-far
from satisfying the property, and suppose furthermore that for any Q C D of size q, the variation
distance between pup|lg and pn|g is less than 6. Then it is not possible for a non-adaptive

algorithm making q (or less) queries to be an (e, d)-tester for P.

For adaptive algorithms, we have two options. First, there is a straightforward approach

that relies on the following observations:

Observation 2.0.9. Let P C {0,1}" be a property, and let A be an adaptive (¢, §)-tester for
P with query complexity g. Then there exists a non-adaptive (e, 0)-tester with query complexity
249,

This observation is obtained by non-adaptively querying the entire decision tree used by A,
and then simulating A over the queried values. The contrapositive of it implies that if we know
that no non-adaptive algorithm making ¢ queries can be an (e, 0)-tester for P, neither can any
adaptive algorithm making log g queries.

Yao’s Lemma also has an adaptive flavor. The following is similar to the form that appears

in [Fis04b] (but was developed earlier).

Lemma 2.0.10. Suppose that up and py are two distributions over {0,1}. For an indez set
Q C {1,...,n} of size ¢ and a word v € {0,1}4, let a(Q,v) be the probability that a word
w € {0,1} drawn according to pup agrees with v over Q (i.e., that setting iy, ... i, to be the
members of Q in sorted order, we have w;; = v; for all 1 < j < q). Define 3(Q,v) similarly with

un instead of up.

If for every Q of size q and every v € {0,1}? we have that a(Q,v) > (1 —n)5(Q,v), then no
algorithm making up to q queries can distinguish with probability more than n (even an adaptive
one and in a 2-sided manner) between the case where w was drawn according to pup and the case

where it was drawn according to py.

2.1 Directed ordered trees

Both Chapter 3 and Chapter 4 will concern algorithms over directed ordered trees. We introduce

here some common notations and terminology.

Definition 2.1.1. A digraph G is a pair (V, E) such that E CV x V.

For every v € V we set out-deg(v) = [{u € V | (v,u) € E}|.

Definition 2.1.2. A path is a tuple (u1,...,u;) € [V|¥ such that uy,...,u are all distinct and
(ui,uir1) € E for every i € [k —1]. The length of a path (us,...,uz) € |[V|Fis k — 1.
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We say that there is a path from u to v if there exists a path (u1,...,u) in G such that u; = u,

and ug = v.

Definition 2.1.3. The distance from u € V to v € V, denoted dist(u,v), is the length of the

shortest path from wu to v if one exists and infinity otherwise.

We use the standard terminology for outward-directed rooted trees.

Definition 2.1.4. A rooted directed tree is a tuple (V, E,r), where (V, E) is a digraph, r € V
and for every v € V there is a unique path from r to v. Let u,v € V. If out-deg(v) = 0 then
we call v a leaf. We say that u is an ancestor of v and v is a descendant of u if there is a
path from u to v. We say that u is a child of v and v is a parent of u if (v,u) € E, and set
Children(v) = {w € V | w is a child of v}.

Definition 2.1.5. An ordered tree is a rooted (directed) tree such that, for every vertex, there
is a linear order on its child vertices. A colored ordered tree is an ordered tree T supplied with a
function c¢: V(T') — C, called a coloring of the tree T.

Our trees will be such that every inner vertex is of degree d. If a vertex v has less than d

children, then we still see them as a d-tuple, with several entries set to null. Formally:

Definition 2.1.6. The children vector of a vertex v in an ordered tree T is a vector z €
(V(T) U {null})¢, where z; is the ith child vertex of v if one exists, and null otherwise.

Note that the tree is ordered, and we will indeed refer to it in this way. The tree also has
the descendence relation over its vertices. The descendant order and the ordering of the children
together induce a partial ordering comparing vertex pairs that have no descendence betweem
them, based on their lowest common ancestor. Note that a vertex is a descendant (and ancestor)
of itself.

Definition 2.1.7. Given an ordered tree T' and two vertices u,v € V(T'), we say that u is left
of v if there exists vertex w € V(T') such that u is a descendant of the ith child of w, v is a
descendant of the jth child of w, and 7 < j.

Although this is not explicitly required, w in the above definition will always be the lowest

common ancestor of v and v.
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Chapter 3

Testing Formula Satisfaction

3.1 Introduction

A central area of research in Property-Testing in general and Massively-Parametrized Testing in
particular is to associate the query complexity of problems to their other measures of complexity.
There are a number of results in this direction, to name some examples see [AKNS00, New02,
FNS04]. In [BSHRO5] the study of formula satisfiability was initiated. There it was shown that
there exists a property that is defined by a 3-CNF formula and yet has a query complexity that
is linear in the size of the input. This implies that knowing that a specific property is accepted
by a 3-CNF formula does not give any information about its query complexity. In [HLNT07] it
was shown that if a property is accepted by a read-twice CNF formula, then the property is
testable.

In this chapter we study the query complexity of properties that are accepted by read once
formulas. These can be described as computational trees, with the tested input values at the
leaves and logic gates at the other nodes, where for an input to be in the property a certain
value must result when the calculation is concluded at the root.

Section 3.2 contains preliminaries. First we define the properties that we test, and then
we introduce numerous definitions and lemmas about bringing the formulas whose satisfaction
is tested into a normalized “basic form”. These are important and in fact implicitly form a
preprocessing part of our algorithms. Once the formula is put in a basic form, testing an
assignment to the formula becomes manageable.

In Section 3.3 we show the testability of properties defined by formulas involving arbitrary
Boolean gates of bounded arity. For such formulas involving only monotone gates, we provide
an estimation algorithm in Section 3.4, that is an algorithm that not only tests for the property,
but with high probability outputs a real number n such that the true distance of the tested
input from the property is between 1 — ¢ and n + €. In Section 3.5 we show that when restricted
to And/Or gates, we can provide a test whose query complexity is quasipolynomial in e. We
supply a brief analysis of the running times of the algorithms in Section 3.6.

On the other hand, we prove in Section 3.7 that these results can not be generalized to

alphabets that have at least four different letters. We construct a formula utilizing only one
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(symmetric and binary) gate type over an alphabet of size 4, such that the resulting property
requires a number of queries depending on the formula (and input) size for a 1/4-test. We
also prove that for the cost of one additional alphabet symbol, we can construct a non-testable
explicitly monotone property (both the gate used and the acceptance condition are monotone).

Results such as these may have interesting applications in computational complexity. One
interesting implication of the testability results here is that any read-once formula accepting an
untestable Boolean property must use unbounded arity gates other than And/Or. By proving
that properties defined by formulas of a simple form admit efficient property testers, one also
paves a path for proving that certain properties cannot be defined by formulas of a simple form
— just show that these properties cannot be efficiently testable. Since property testing lower
bounds are in general easier to prove than computational complexity lower bounds, this may

become a useful approach.

3.2 Preliminaries

3.2.1 Formulas, evaluations and testing

With the terminology of rooted trees given in Chapter 2 we now define our properties; first we

define what is a formula and then we define what it means to satisfy one.

Definition 3.2.1 (Formula). A Formula is a tuple ® = (V, E,r, X, k, B, %), where (V, E,r) is
a rooted directed tree, 3 is an alphabet, X is a set of variables (later on they will take values
in X), B C Upeoo{ZF = 3} is a set of functions over 3, and x : V — B U X U Y. satisfies the
following (we abuse notation somewhat by writing r, for x(v)).

e For every leaf v € V' we have that k, € X U X.
e For every v that is not a leaf k, € B is a function whose arity is |[Children(v)]|.

In the case where B contains functions that are not symmetric, we additionally assume that the
tree is ordered, i.e. for every v € V there is an ordering of Children(v) = (uy, ..., ug).

In the special case where ¥ is the Boolean alphabet {0, 1}, we say that ® is Boolean. Unless
stated otherwise 3 = {0, 1}, in which case we shall omit 3 from the definition of formulas. A
formula ® = (V, E,r, X, k, B,Y) is called read k-times if for every x € X there are at most k
vertices v € V, where k, = x. We call ® a read-once-formula if it is read 1-times. A formula
o= (V,E,r,X,k,B,Y) is called k-ary if the arity (number of children) of all its vertices is at
most k. If a formula is 2-ary (all functions in B have arity at most 2) then we call it binary.
A function f:{0,1}" — {0,1} is monotone if whenever x € {0,1}" is such that f(z) =1, for
every y € {0,1}" such that = < y (coordinate-wise) we have f(y) = 1 as well. If all the functions
in B are monotone then we say that ® is (explicitly) monotone. We denote |®| = |X| and call
it the formula size (this makes sense for read-once formulas). Note that this is different from
another notion of formula size that refers to the number of operators. In our case, the formula

size is the size of its input.
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Definition 3.2.2 (Sub-Formula). Let ® = (V, E,r, X, k, B) be a formula and v € V. The
formula ®,, = (V,,, Ey, u, Xy, K, B), is such that V,, C V', with v € V,, if and only if dist(u,v) is
finite, and (v, w) € E, if and only if v,w € V,, and (v,w) € E. X, is the set of all k, € X such
that v € V,,. If u # r then we call ®,, a strict sub-formula. We define |®,| to be the number of
variables in V,,, that is |®,| = | Xy|, and the weight of u with respect to its parent v is defined as
B, /1.,

Definition 3.2.3 (assignment to and evaluation of a formula). An assignment o to a formula
o = (V,E,r,X,k,B,Y) is a mapping from X to X. The evaluation of ® given o, denoted
(abusing notation somewhat) by o(®), is defined as o(r) where o : V' — 3 is recursively defined
as follows.

o If Kk, € X then o(v) = Ky.
o If K, € X then o(v) = o(ky).

e Otherwise (k, € B), denote the members of the set Children(v) by (uq,...,ux), and set
o(v) = ky(o(ur),...,o(ug)).

Given an assignment o : X — X and v € V, we let o, denote its restriction to X, but
whenever there is no confusion we just use o also for the restriction (as an assignment to ®,,).

We set SAT(® = b) to be the set of all the assignments o to ® such that o(®) = b. For
Boolean formulas, when b = 1 and we do not consider the case b = 0 in that context, we simply
denote these assignments by SAT(®). If o € SAT(®) then we say that o satisfies . Let 01,02 be
assignments to ®. We define distg (o1, 02) to be the relative Hamming distance between the two
assignments. That is, diste (01, 02) = |[{z € X | 01(x) # o2(x)}|/|®|. For every assignment o to
® and every subset S of assignments to ® we define distg (0, S) = min{distg(o,0’) | 0’ € S}.
If distg(o,S) > € then o is e-far from S and otherwise it is e-close to S.

We now have the ingredients to define testing of assignments to formulas in a massively
parametrized model as it is analyzed in this chapter. Namely, the formula & is the parameter
that is known to the algorithm in advance and may not change, while the assignment o : X — X
must be queried using as few queries as possible, and distance is measured with respect to the

fraction of alterations it requires.

Definition 3.2.4. [(¢, g)-test] An (¢, g)-test for SAT(®) is a randomized algorithm .4 with free
access to ®, that given oracle access to an assignment o to ® operates as follows.

e A makes at most ¢ queries to o (where on a query x € X it receives o, as the answer).
o If 0 € SAT(®), then A accepts (returns 1) with probability at least 2/3.

o If o is e-far from SAT(®), then A rejects (returns 0) with probability at least 2/3. Recall
that o is e-far from SAT(®) if its relative Hamming distance from every assignment in
SAT(®) is at least e.

We say that A is non-adaptive if its choice of queries is independent of their values (and may
depend only on ®). We say that A has 1-sided error if given oracle access to o € SAT(®), it
accepts (returns 1) with probability 1. We say that A is an (e, q)-estimator if it returns a value
n such that with probability at least 2/3, o is both ( + €)-close and (1 — ¢€)-far from SAT(P).
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We can now summarize the contributions of the chapter in the following theorem:
Theorem 3.1 (Main Theorem). The following statements all hold for all constant k:

e For any read-once formula ® where B is the set of all functions of arity at most k there
exists a 1-sided (e, q)-test for SAT(®) with q = exp(poly(e~1)) (Theorem 3.2).

e For any read-once formula ® where B is the set of all monotone functions of arity at most
k there exists an (e, q)-estimator for SAT(®) with q = exp(poly(e~!)) (Theorem 3.3).

e For any read-once formula ® where B is the set of all conjunctions and disjunctions of
any arity there exists an (e, q)-test for SAT(®) with q = €21°8€) (Corollary 3.5 of Theorem

3.4).

o There exists an infinite family of 4-valued read-once formulas ®, where B contains one
binary function, and an appropriate b € X, such that there is no non-adaptive (e,q)-
test for SAT(® = b) with ¢ = o(depth(®)), and no adaptive (e, q)-test for SAT(®) with
q = o(log(depth(®))); there also exists such a family of 5-valued read-once formulas whose
gates and acceptance condition are monotone with respect to a fized order of the alphabet.
(Theorem 3.6 and Theorem 3.7 respectively).

For the first two items above, the degree of the polynomial is linear in k.

3.2.2 Basic formula simplification and handling

In the following, unless stated otherwise, our formulas will all be read-once and Boolean. For
our algorithms to work, we will need a somewhat “canonical” form of such formulas. We say

that two formulas ® and ®’ are equivalent if o(®) = o(®’) for every assignment o : X — 3.

Definition 3.2.5. A 1-witness for a boolean function f : {0,1}" — {0,1} is a subset of
coordinates W C [n] which is minimal (by inclusion) amongst all subsets for which there exists
an assignment o : W — {0,1} such that for every = € {0,1}" which agrees with o (that is,
where for all i« € W, we have that z; = o(i)) we have that f(x) = 1.

Note that a function can have several 1-witnesses and that a 1-witness for a monotone

function can always use the assignment o that maps all coordinates to 1.

Definition 3.2.6. The mDNF (monotone disjunctive normal form) of a monotone boolean
function f : {0,1}" — {0,1} is a set of terms T" where each term in 7" is a 1-witness for f and
for every « € {0,1}", f(x) = 1 if and only if there exists a term 7; € T such that for all i € Tj,
we have that z; = 1.

Observation 3.2.7. Any monotone boolean function f : {0,1}" — {0, 1} has a unique mDNF
T.

Proof. The corresponding mDNF is the disjunction of f’s 1-witnesses. O

Definition 3.2.8. For v € V, v € Children(u) is called (a,b)-forceful if o(v) = a implies
o(u) =b. v is forceful if it is (a,b)-forceful for some a,b € {0,1}.
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For example, for a A gate all children are (0, 0)-forceful, and for a V gate all children are
(1,1)-forceful. Forceful variables are variables that cause an “Or-like” or “And-like” behavior in

the gate.

Definition 3.2.9. A vertex v € V in a formula ® is called unforceable if no child of v is forceful.

Definition 3.2.10. A vertex v € V in a formula ® is called trivial if there exists a constant
c € {0,1} such that for every assignment o, o(v) = c.

Definition 3.2.11 (k-z-Basic formula). A read-once formula ® is k-z-basic if it is Boolean and
all the functions in B are either:

e Negations,

e unforceable and of arity at least 2 and at most k,

e an A gate or an V gate of arity at least 2.
Additionally, ® must satisfy the following:

e There are no trivial vertices,

e negations may only have leaves as children,

e there is no leaf v € V such that x, € {0,1},

e 1o A is a child of a A and no V is a child of a V,

e every variable may appear at most once in a leaf.

The set of variables that appear negated will be denoted by —.X.

Definition 3.2.12 (k-Basic formula). A read-once formula & is a k-basic formula if it is k-z-
basic, and furthermore all functions in B are also monotone. If B contains only conjunctions
and disjunctions then we abbreviate and call the formula basic.

Note that a k-Basic formula can obviously only be monotone.

Lemma 3.2.13. FEvery read-once formula ® with gates of arity at most k has an equivalent
k-z-basic formula ®', possibly over a different set of functions B.

Proof. Suppose for some u that v € Children(u) is (a,b)-forceful. If b = 1 then x, can be
replaced with an V gate, where one input of the V gate is v if « = 1 or the negation of v if a = 0,
and the other input is the result of v when fixing o(k,) = 1 —a. If b = 0 then &, can be replaced
with an A gate, where one input of the A gate is v if @ = 0 or the negation of v if a = 1, and
the other input is the gate u when fixing o(k,) = 1 — a. After performing this transformation
sufficiently many times we have no forceable gates left except for A and V.

We will now eliminate — gates. Any — gate in the input or output of a gate which is not
A or V can be assimilated into the gate. Otherwise, a = on the output of an V gate can be
replaced with an A gate with —’s on all of its inputs, according to De-Morgan’s laws. Also by
De-Morgan’s laws, a = on the output of an A gate can be replaced with an V gate with —’s on
all of its inputs.

Finally, any V gates that have V children can be merged with them, and the same goes for A
gates. Now we have achieved an equivalent k-z-basic formula. O
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Observation 3.2.14. Any formula ® which is comprised of only monotone k-arity gates has
an equivalent k-basic formula @’.

Proof. This observation follows by inspecting the above proof, and noticing that monotone gates
will never produce negations in the process described, in particular having no (0, 1)-forceful or
(1,0)-forceful children. O

3.2.3 Observations about subformulas and distance

Definition 3.2.15 (heaviest child h(v)). Let ® = (V, E,r, X, k, B) be a formula. For every
v € V we define h(v) to be v if Children(v) = (), and otherwise to be an arbitrarily selected
vertex u € Children(v), such that |®,| = max{|®,| | w € Children(v)}.

Definition 3.2.16 (vertex depth depthg(v)). Let @ = (V,E,r, X, k, B) be a formula. For
every v € V we define depthg (v) = dist(r,v) and depth(®) = max{depthy(u) | u € V}.

Our first observation is that in “and” gates and similar situations, distance implies distance

in subformulas, in a Markov’s inequality-like fashion.

Observation 3.2.17. Let v € V be a vertex with no trivial children, such that either x, =V
and its output b =0 or kK, = A and b =1, and dist (o, SAT(®, = b)) > €. For every 1 > a >0
there exists S C Children(v) such that ) g |®s| > ea|®| and dist (o, SAT(®, = b)) > (1 —a)
for every w € S. Furthermore, there exists a child u € Children(v) such that dist (o, SAT(®, =
1—-0)) >e.

Proof. Let T be the maximum subset of Children(v) such that ®,, is (1 — a)-far from being
evaluated to b for every w € T. If 37, o7 |®¢| < ear|®| then the distance from having ®,, evaluate
to b is less than ea + €(1 — ) = ¢, since we only need to change the ea|®,| leaves that descend
from the children in S and for the rest, we know that each of them is e(1 — «v)-close to satisfaction,
and therefore only that fraction of inputs in leaves that descend from children outside of S need
to be changed. This contradicts the assumption.

For the second statement, note that if no such child exists then ®,, is e-close to being evaluated
to b. O

Observation 3.2.18. Let v € V be a vertex with no trivial children, such that either
Ky =Vand b=1or k, = A and b = 0, and dist(o, SAT(®, = b)) > €. For every child
u € Children(v), |®,| > |®|e and dist (o, SAT(P, = b)) > €(1 + €). Furthermore, € < 1/2, and
for any u € Children(v) \ {h(v)}, dist (o, SAT(®, = b)) > 2e.

Proof. First suppose that the weight of some child u is less than e. In this case, setting u to b
makes the formula ®, evaluate to b by changing less than an ¢ fraction of inputs, a contradiction.

Since there are at least two children, every child u is of weight at most 1 — ¢, and since
setting it to b would make ®,, evaluate to b, it is at least €(1 + €)-far from being evaluated to b.

For the last part, note that since [Children(v)| > 1, there exists u € Children(v) such
that |®,| < |®,|/2. Thus every assignment to ®, is 1/2-close to an assignment ¢’ by which
®, evaluates to b. Also note that any u € Children(v) \ {h(v)} satisfies |®,| < |®,|/2, and
therefore if ®,, were 2¢-close to being evaluated to b, ®, would be e-close to being evaluated to
b. O
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3.2.4 Heavy and light children in general gates

We would like to pick the heaviest child of a general gate, same as we did above. The problem is
that since we will use this for unforceable gates, we will simultaneously want the heaviest child

or children not to be “too heavy”. This brings us to the following definition.

Definition 3.2.19. Given a k-z-basic formula ®, a parameter € and a vertex u, we let £ = £(u, €)
be the smallest integer such that the size of the ¢’th largest child of u is less than |®|(4k/e)~¢ if
such an integer exists, and set £ = k + 1 otherwise. The heavy children of u are the £ — 1 largest
children of u, and the rest of the children of w are its light children.

Note that if there is a really big child, then o is close to both SAT(®, = 1) and SAT(®, = 0).

More formally:

Lemma 3.2.20. If an unforceable vertex v with no trivial children has a child u such that
|Dy|(1 —€) < |®y], then o is both e-close to SAT(®, = 1) and e-close to SAT(®, = 0).

Proof. The child is unforceful, and therefore it is possible to change the remaining children to
obtain any output value. O

Observation 3.2.21. If for a vertex u with no trivial children, k, Z A, Ky, Z V, Ky € X and o
is e-far from SAT(®, = b), then it must have at least two heavy children.

Proof. By the definition of ¢, if there is just one heavy child, then £ = 2 and the total weight
of the light children is strictly smaller than e. Therefore by Lemma 3.2.20 there must be more
than one heavy child, as otherwise the gate is e-close to both 0 and 1. O

3.3 Upper bound for general bounded arity formula

Algorithm 3.1 tests whether the input is e-close to having output b with 1-sided error, and
also receives a confidence parameter §. The explicit confidence parameter makes the inductive
arguments easier and clearer. The algorithm operates by recursively checking the conditions in
Observations 3.2.17 and 3.2.18.

Theorem 3.2. Algorithm 3.1(®,¢,,0) always accepts any input that satisfies the read-once
formula ®, and rejects any input far from satisfying ® with probability at least 1 — §. Its query
complexity (treating k and & as constant) is always O(exp(poly(e~1))).

Proof. Follows from Lemma 3.3.3, Lemma 3.3.4 and Lemma 3.3.2 (in that order) below. O
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Algorithm 3.1 Test satisfiability of read-once formula

Input: read-once k-z-basic formula ® = (V, E,r, X, k), parameters €, > 0,b € {0, 1}, oracle to

g.

Output: “true” or “false”.

© ®

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:

if ¢ > 1 then return “true”
if K, € X then return the truth value of o(r) = b
if k, € =X then return the truth value of o(r) =1 -5
if (k, =ANandb=1) or (k, =V and b =0) then
Yy +— “true”
for i = 1 to [ = 32(2k/¢)** log(6~') do
u <— a vertex in Children(r) selected independently at random, where the probability
that w € Children(r) is selected is |®,,|/|P]
y +— y A Algorithm 3.1(®,, (e(1 + (8k/€)~*/16)),0,5/2,b)
return y
if (k, =N and b=0) or (k, =V and b= 1) then
if there exists a child of weight less than € then return “true”
y «— “false”
for all u € Children(r) do y «— y V Algorithm 3.1(®, (e(1 +€)), 0,€6/2,b)
return y
if there is a child of weight at least 1 — € then return “true”
for all u € Children(r) do
Y0 «— Algorithm 3.1(®,, (e(1 + (4k/e)7*)), 0,6 /2k,0)
yl «— Algorithm 3.1(®y, (e(1 + (4k/€)7*)), 0,6 /2k, 1)
if there exists = € {0,1}* such that , on z evaluates to b and for all u € Children(r) we
have yZ* equals “true” then return “true”
else return “false”

Lemma 3.3.1. The depth of recursion in Algorithm 8.1 is at most 16(8k/e)* log(e™1).

Proof. If € > 1 then the condition in Line 1 is satisfied and the algorithm returns without any
recursion.

All recursive calls occur in Lines 8, 13, 17 and 18. Since & is k-z-basic, any call with a

subformula whose root is labeled by A results in calls to subformulas, each with a root labeled
either by V or an unforceable gate, and with the same b value (this is crucial since the b value
for which A recurses with a smaller € is the b value for which V recurses with a bigger €, and
vice-versa). Similarly, any call with a subformula whose root is labeled by V results in calls to
subformulas, each with a root labeled either by A or an unforceable gate, and with the same b
value.

Therefore, in two consecutive recursive calls, there are three options:

1. The first call is made with distance parameter € where €(1 4 €) > ¢ > e(1 + (4k/e)~F)
and the second call with € = €'(1 — (8k/¢’)~%/16). In this case the distance parameter
increases by at least (1 + (4k/¢)™%)(1 — (8k/e(1 + €))% /16) > (1 + (4k/e)7*/8).

2. The first call is made with distance parameter ¢ = ¢(1 — (8k/¢)~%/16) and the second call
with €’ > € (1 + (4k/€’)F). In this case in two consecutive calls the distance parameter
increases by at least e(1— (8k/e)™%/16) (14 (4k/e(1 — (8k /€)% /16))7%) > (14 (8k/e)~F/8).
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3. The first call is made with distance parameter ¢ > e(1 + (4k/€)~") and the second call
with € > ¢/ (1 + (4k/€)~*). In this case two consecutive in calls the distance parameter
increases by at least (14 (4k/¢’)~%)?

Therefore, in all cases, an increase of two in the depth results in an increase of the distance
parameter from € to at least €(1+ (8k/€)~%/8). Thus in recursive calls of depth 16(8k/¢)* log(e™1)
the distance parameter exceeds 1 and the call returns without making any further calls. O

Lemma 3.3.2. Algorithm 3.1 uses at most exp(poly(1/e€)) queries for a constant k.

Proof. If € > 1 then the condition in Line 1 is satisfied and no queries are made. Therefore
assume € < 1. Observe that in a specific instantiation at most one query is used, either in Line 2
or Line 3. Therefore the number of queries is upper bounded by the number of instantiations of
Algorithm 3.1.

Recall that by Lemma 3.3.1 the depth of the recursion is at most 16(8k/¢)*log(e~1). Since by
the proof of Lemma 3.3.1 every two consecutive recursive calls increase the distance parameter,
it is never smaller than ¢ = ¢(1 — (8k/¢)™%/16). In a specific instantiation at most

32(2k/€' ) log(671) = 32(2k) % (e(1 — (8k/e)7%/16)) " log(671)

recursive calls are made in total (note that by Line 11 there are at most 1/€¢’ children in the case
of the condition in Line 10, and in the case of an unforceable gate there are at most 2k recursive
calls).

To conclude, we note that the value of the confidence parameter in all these calls is lower
bounded by

5. (6//2k)16(8k/e)klog(e*1) >4 (6/)32(8k/e)klog(ke*1) =5 (e(1— (8k/6)—k/16))32(8k/e)klog(kefl).
Therefore at most
(32(2k)* (e(1 — (8k/e) ™ /16))** log (5 (€(1 — (8k/e) ~* /16))~#2(S4/)" lomke ) 16(8K/9Flo( ™)
queries are used, which is exp(poly(1/¢)) for a constant k. O
Lemma 3.3.3. If ® on o evaluates to b then Algorithm 3.1 returns “true” with probability 1.

Proof. If € > 1 then the condition of Line 1 is satisfied and “true” is returned correctly. We
proceed with induction over the depth of the formula. If depth(®) = 0 then x, € X U —-X.
If k, € X then since ® evaluates to b, o(r) = b, and if k, € =X then o(r) = 1 — b, and the
algorithm returns “true” correctly.

Now assume that depth(®) > 0. Obviously, for all v € Children(r), we have that
depth(®) > depth(®,) and therefore from the induction hypothesis any recursive call with
parameter b’ € {0,1} on a subformula that evaluates to b’ returns “true” with probability 1.

If ki, = Aand b= 1or k. =V and b = 0, then it must be the case that for all u € Children(r),
®,, evaluates to b. By the induction hypothesis all recursive calls will return “true” and y will
get the value “true”, which will be returned by the algorithm.

Now assume that K, = A and b = 0 or kK, = V and b = 1. Since ® evaluates to b then it
must be the case that at least for one u € Children(r), ®, evaluates to b. By the induction
hypothesis, the recursive call on that u will return “true”, and y will get the value “true” which
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will be returned by the algorithm (unless the algorithm already returned “true” for another
reason, e.g. in line 11).

Lastly, assume that r is an unforceable gate. Since ® evaluates to b, the children of r
evaluate to the assignment o which evaluates to b. By the induction hypothesis, for every
u € Children(r) the recursive call on ®, with o(u) will return “true”, and thus the assignment
o will, in particular, fill the condition in Line 19 and the algorithm will return “true”. O

Lemma 3.3.4. If o is e-far from getting ® to output b then Algorithm 3.1 returns “false” with
probability at least 1 — .

Proof. The proof is by induction over the tree structure, where we partition to cases according
to k, and b. Note that € < 1.

If k. € X or Kk, € =X then by Lines 2 or 3 the algorithm returns “false” whenever o does
not make ® output b.

If kK, =ANand b =1o0r sk =V and b = 0, since o is e-far from getting ® to output b
then by Observation 3.2.17 we get that there exists 7' C Children(r) for which it holds that
Sier | @i > |@le((8k/e)7%/16) and each ®; is e(1 + (8k/€) ¥ /16-far from being evaluated to
b. Let S be the set of all vertices selected in Line 7. The probability of a vertex from T
being selected is at least €((8k/€)%/16). Since this happens at least 32(2k/¢)%* log(6~') times
independently, with probability at least 1 — §/2 we have that SNT # (). Letting w € TN S,
the recursive call on it with parameter e(1 + (8k/€)~%/16 will return “false” with probability at
least 1 — §/2, which will eventually cause the returned value to be “false” as required. Thus the
algorithm succeeds with probability at least 1 — 9.

Now assume that k, = Aand b =0 or k. = V and b = 1. Since ® is e-far from being evaluated
to b, Observation 3.2.18 implies that all children are of weight at least ¢ and are e(e + 1)-far
from b, and therefore the conditions of Line 11 would not be triggered. Every recursive call on a
vertex v € Children(r) is made with distance parameter €(1 4 €) and so it returns “true” with
probability at most €§/2. Since there are at most ¢! children of r, the probability that none
returns “true” is at least 1 — §/2 and in that case the algorithm returns “false” successfully.

Now assume that k, is some unforceable gate. By Lemma 3.2.20, since ® is e-far from being
satisfied the condition in Line 15 is not triggered. If the algorithm returned “true” then it must
be that the condition in Line 19 is satisfied. If there exists some heavy child v € Children(r)
such that y? is “true” and yl=? is “false”, then by Lemma 3.3.3 the formula ®,, does evaluate to
b and the assignment o must be such that o(u) = b. For the rest of the children of r, assuming
the calls succeeded, the subformula rooted in each v is (¢(1 4 (4k/€)~*))-close to evaluate to
o(v). Since u is heavy, the total weight of Children(r)\ {u} is at most 1 — (4k/e)~*, and thus
by changing at most an (e(1 + (4k/¢)~%))(1 — (4k/e)~*) < € fraction of inputs we can get to an
assignment where ® evaluates to b.

1-b

-~ are “true”, then pick some heavy

child w arbitrarily. Since r is unforceable, there is an assignment that evaluates to b no matter

If all heavy children u are such that both yz and y

what the value of ®, is. Take such an assignment ¢ that fits the real value of ®,. Note
that for every heavy child v we have that ¥ is “true”, and therefore by changing at most an
(e(1 + (4k/e)~F))-fraction of the variables in ®, we can get it to evaluate to z,. The weight of
u is at least (4k/¢) ¢! (vecall the definition of £ in definition 3.2.19), thus the total weight of
the other heavy children is at most 1 — (4k/e)~**! and the total weight of the light children is
at most §(4k/ €)~f. So by changing all subformulas to evaluate to the value implied by & we
change at most an (e(1 + (4k/€) %)) (1 — (4k/e)~*T1) + £(4k/e) =" < € fraction of inputs and get
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an assignment where ® evaluates to b. Note that this ¢ does not necessarily correspond to the x
found in Line 19.

Thus we have found that finding an assignment x in Line 19, assuming the calls are correct,
implies that ® is e-close to evaluate to b. The probability that all relevant calls to an assignment
return “true” incorrectly is at most the probability that any of the 2k recursive calls errs, which
by the union bound is at most d, and the algorithm will return “false” correctly with probability
at least 1 — 4. O

3.4 Estimator for monotone formula of bounded arity

Algorithm 3.2 below operates in a recursive manner, and estimates the distance to satisfying
the formula rooted in r according to estimates for the subformula rooted in every child of r.
The algorithm receives a confidence parameter § as well as the approximation parameter €, and
should with probability at least 1 — ¢ return a number 1 such that the input is both (1 + €)-close

and (n — €)-far from satisfying the given formula.

Algorithm 3.2 Approximate distance to satisfiability of monotone formula

Input: read-once k-basic formula ® = (V, E,r, X, k), parameters €,d > 0, oracle to o.
Output: n € [0,1].
if k, € X then return 1 — o(k,)
if ¢ > 1 then return 0
if Kk, = V and there exists u € Children(r) with |®,| < €|/®| then return 0
if K, = A then
for i = 1 to I = [1000¢~2=2(8k)?* . log(1/9)] do
u +— a vertex in Children(r) selected independently at random, where the probability
that w € Children(r) is selected is |®y,|/|®]
a; +— Algorithm 3.2(®,, e(1 — (8k/€)~%/8), 0¢(8k/e) 7% /32, 0)
return ! «a;/l
9: else
10:  for every light child u of r set a,, +— 0
11:  for every heavy child u of r perform a recursive call and use the return value to set
vy +— Algorithm 3.2(®,,, (1 4 (4k/€)7F), 6/ max{k,1/e}, o)
12:  for every term C' in the mDNF of x, set ac <— > ,co o - %
13:  return min{ac : C € mDNF(k,)}

The following states that Algorithm 3.2 indeed gives an estimation of the distance. While
estimation algorithms cannot have 1-sided error, there is an additional feature of this algorithm

that makes it also useful as a 1-sided test (by running it and accepting if it returns n = 0).

Theorem 3.3. With probability at least 1 — 0, the output of Algorithm 3.2(®,¢€,6,0) is ann
such that the assignment o is both (n + €)-close to satisfying ® and (n — €)-far from satisfying it.
Additionally, if the assignment o satisfies ® then n = 0 with probability 1. Its query complexity
(treating k and & as constant) is O(exp(poly(e~1))).

Proof. The bound on the number of queries is a direct result of Lemma 3.4.2 below. Given that,
the correctness proof is done by induction over the height of the formula. The base case (for any
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e and ¢) is the observation that an instantiation of the algorithm that makes no recursive calls
(i.e. triggers the condition in Line 1, 2 or 3) always gives a value that satisfies the assertion.
The induction step uses Lemma 3.4.3 and Lemma 3.4.4 below. Given that the algorithm
performs correctly (for any € and §) for every formula @’ of height smaller than @, the assertions
of the lemma corresponding to k, (out of the two) are satisfied, and so the correctness for ®
itself follows. O

The dependence on § can be made into a simple logarithm by a standard amplification
technique: Algorithm 3.2 is run O(1/9) independent times, each time with a confidence parameter
of 2/3, and then the median of the outputs is taken.

Lemma 3.4.1. When called with ®, €, §, and oracle access to o, Algorithm 3.2 goes down at
most 3(8k/e)* log(1/€) = poly(e) recursion levels.

Proof. Recursion can only happen on Line 7 and Line 11. Moreover, because of the formula
being k-basic, recursion cannot follow through Line 7 two recursion levels in a row. In every two
consecutive recursive calls there are three options:

1. The first call is made with distance parameter ¢ = (1 + (4k/¢)~*) and the second with
¢ = € (1 — (8k/e')7%/8). In this case the distance parameter increases by a factor of

(1+ (4k/€) ) (1 = (8k/(e(1 + (4k/€) 7)) 7*/8) = (1 + §(4k/e)™").

2. The first call is made with distance parameter ¢ = (1 — (8k/¢)~*/8) and the second
with € = €'(1 + (4k/€’)~"). In this case the distance parameter increases by a factor of

(1= (8k/€)*/8)(1 + (4k/(e(1 — (8k/€)7*/8)))™*) = (1 + §(8k/e)™")

3. The first call is made with distance parameter € = ¢(1 + (4k/e)~*) and the second with
¢’ =€ (1 + (4k/€')7F). In this case the distance parameter increases by a factor of at least

(1+ (4k/) )2,

Therefore, either way, in every two consecutive levels of the recursion € is increased by a
factor of at least (1 + %(Sk/e)_k). After 3(8k/e)*log(1/¢€) recursive steps, such an increase
has occurred at least 3(8k/€)¥ log(1/e) times, and therefore the distance parameter is at least
e-(1+ %(8/{/6)*’“)%(8’“/6)19log(l/e) > 1. In such a case the algorithm immediately returns 0 and
the recursion stops. ]

Lemma 3.4.2. When called with ®, €, §, and oracle access to o, Algorithm 3.2 uses a total of
at most exp(poly(1/¢€)) queries for any constant k.

Proof. Denote by € the smallest value of the distance parameter in any recursive call. Denoting
by &' the smallest value of & in any recursive call, it holds that &' > &(¢/(8k/¢/) ™ /32)3(8k/e)* log(1/e)
by Lemma 3.4.1. The number of recursive calls per instantiation of the algorithm is thus at most
I' = [1000€'~2*=2(8k)%* - log(1/6')] = poly(1/€'). Now, by the proof of Lemma 3.4.1, every two
consecutive recursive calls increase the value of the distance parameter. Since it only decreases
in line 7, it holds that ¢ > ¢(1 — (8k/€)~*/8)). This means that I’ = poly(1/e).

Since the algorithm may make at most one query per instantiation, and this only in the case
where a recursive call is not performed, the total number of queries is (bounding the recursion
depth through Lemma 3.4.1) at most (l’)?’(gk/e)k log(1/€) — exp(poly(1/e)). O
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Lemma 3.4.3. If k., Z A and all recursive calls satisfy the assertion of Theorem 3.3, then
with probability at least 1 — § the current instantiation of Algorithm 3.2 provides a value n such
that o is both (n + €)-close to satisfying ® and (n — €)-far from satisfying it. Furthermore, if o
satisfies © then with probability 1 the output is n = 0.

Proof. First we note that Step 3, if triggered, gives a correct value for n (as the o can be made
into a satisfying assignment by changing possibly all variables of the smallest child of ). We
also note that if k., = V and Step 3 was not triggered, then by definition all of ’s children are
heavy, and there are no more than 1/e of them.

Let us consider the cost of fixing input bits in order to make o satisfy ®. Note that any such
fix must make all of the children in some term C' in the mDNF evaluate to 1, since these terms
are all of the 1-witnesses. Additionally, making all of the children of one term evaluate to 1 is
sufficient. Therefore, the distance of ¢ from ® is the minimum over all terms C' in &, of the
adjusted cost of making all children of C' evaluate to 1, which is 3 .- dist (o, SAT(®,)) - I%“.
Now in this case there are clearly no more than max{k,e 1} children, so by the union bound,
with probability at least 1 — §, every call done through Line 7 gave a value 7, so that indeed o
is (1, + €(1 + (4k/€)7F))-close and (1, — (1 + (4k/e)~F))-far from ®,,.

Now let D; denote C; minus any light children that it may contain, since the approximation
ignores these. It may be that some D;’s contain all heavy children of C;, where “heavy children’
refers to the children of r. Since there are no forcing children (and there exist heavy children) it

)

must be the case that some D;’s do not contain all heavy children, since if a heavy child appears
in all D;s, then it appears in all C;s and therefore by setting it to 0 we force a 0 in the output.
The D;s that do not contain all heavy children will dominate the expression in Line 13. Note
that 3,cp, [Pul < (1 — (4k/€)*4)|@| for any D; not containing a heavy child. This implies by
bounding (1 + (4k/€)7%)) - (1 — (4k/e)**):

’(I)u’ ZueDi nu‘q)u‘

> dist (o, SAT(®y)) - o € |®|

ueD;

|

: +e— 2k(4k/e)~"
||

< ) dist(o, SAT(®y))
ueD;
Now the true distance of C; not containing all heavy children is at least that of D;, and

at most that of D; plus the added distance of making all light children evaluate to 1, which is
bounded by k(4k/€)~*. This means that for such a C; we have:

) N |P
Zdist(a, SAT(®,,)) - |<I>U| —€ EUED&;%‘ ul
2 @] @]
P
< Zdist(a, SAT(®,,)) - @] +e—k(4k/e)~*
ueC} |(I)|
. . . . ZueDv |<I>“|
The value returned as 7 is the minimum over terms Cj in &, of 7, - #. We also know

that this minimum is reached by some C); which does not contain all heavy children, but it

may be that in fact dist(o, SAT(®)) = >, ccdist (o, SAT(®,)) - ||<I:If‘| for some i # j (the true

distance is the minimum of the total distance of each clause, but it may be reached by a different

clause).
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By our assumptions

LI
@

dist(o, SAT(®)) — e = ) dist(o, SAT(®y))
ueC;

)
< Zdist(a, SAT(®,,)) - | @u’ —e<n
uECj | ‘
so we have one side of the required bound. For the other side, we split into cases. If C; also
does not contain all heavy children then we use the way we calculated 7 as the minimum over
the corresponding sums:

S Nu|® Ny | P
- ueﬁjqju' ul < Z%D’&:'}“’ ul < dist(o, SAT(®)) + €

In the final case, we note that by the assumptions on the light children we will always have
(recalling that C; will in particular have all heavy children of C}):

_ ZUEDJ' ?/]u‘@u‘
D

Dy

< Zdist(U,SAT(q)u))- )

uEC’j

+e— k(4k/e)™*

i)
< Zdist(a, SAT(®,,)) - @] +e
||
ueC;
where the rightmost term equals dist (o, SAT(®)) + € as required.
For the last part of the claim, note that if o satisfies @, then in particular, one of the terms
C of Kk, must be satisfied. By the induction hypothesis, for all v € C' we would have 7, = 0 and
therefore nc = 0, and since 7 is taken as a minimum over all terms we would have n =0. [

Lemma 3.4.4. If k. = A and all recursive calls satisfy the assertion of Theorem 3.3, then with
probability at least 1 — § the current instantiation of Algorithm 3.2 provides a value n such that
o is both (n + €)-close to satisfying ® and (n — €)-far from satisfying it. If o satisfies ® then
with probability 1 the output is n = 0.

Proof. First note that if we sample a vertex w according to the distribution of Line 5 and then
take the true distance dist (o, SAT(®,)), then the expectation (but not the value) of this equals
dist(o, SAT(®)). This is because to make o evaluate to 1 at the root, we need to make all
its children evaluate to 1, an operation whose adjusted cost is given by the weighted sum of
distances that corresponds to the expectation above.

Thus, denoting by X; the random variable whose value is dist (o, SAT(®,,;)) where w; is the
vertex picked in the ith iteration, we have E[X;] = dist (o, SAT(®)). By a Chernoff type bound,
with probability at least 1 — §/2, the average X of X1,..., X; is no more than ¢**+!(4k)~*/16

away from E[X;] and hence satisfies:
dist (o, SAT(®)) — ¥ (4k) 7% /16 < X < dist(o, SAT(®)) + 1 (4k) 7% /16

Then note that by the Markov inequality, the assertion of the lemma means that with
probability at least 1 — §/2, all calls done in Line 11 but at most e(4k/¢)~*/16 of them return a
value 7, 50 that o is (1, +€(1 — (4k/€)~%/16))-close and (1, — e(1 — (4k/€)~%/16))-far from ®,,.
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When this happens, at least a (1 — €(4k/¢)~%/16) fraction of the answers «; of the calls
are up to e(1 — (4k/€)~%/16)) away from each corresponding X;, while at most a e(4k/¢)~%/16
fraction of the answers «; are (trivially) up to 1 away from each corresponding X;. Summing up
these deviations, the final answer average n satisfies

X —e(1— (4k/e) 7k /8) — e(dk/e) 7K /16 < < X 4 €(1 — (4k/e)7*/8) + e(4k/e)* /16

With probability at least 1 — § both of the above events occur, and summing up the two
inequalities we obtain the required bound

dist(o, SAT(®)) — e <n < dist(o, SAT(®)) + ¢

3.5 Quasi-polynomial upper bound for basic-formulas

Let ® = (V, E,r, X, k, B) be a basic formula and o be an assignment to ®.

The main idea of the algorithm is to randomly choose a full root to leaf path, and recurs
over all the children of “V” vertices on this path that go outside of it, if they are not too many.
The main technical part is in proving that if ¢ is indeed e-far from satisfying @, then many of
these paths have few such children (few enough to recurs over all of them), where additionally
the distance of ¢ from satisfying the corresponding sub-formulas is significantly larger. An
interesting combinatorial corollary of this is that formulas, for which there are not a lot of leaves

whose corresponding paths have few such children, do not admit e-far assignments at all.

3.5.1 Critical and important

To understand the intuition behind the following definitions, it is useful to first consider what

happens if we could locate a vertex that is “(e, o)-critical” in the sense that is defined next.

Definition 3.5.1. [ (e,0)-important, (¢,0)-critical | A vertex v € V is (¢, 0)-important if
o ¢ SAT(®), and for every u that is either v or an ancestor of v, we have that

o dist (o, SAT(®y)) > (2¢/3)(1 + 2¢/3) 48Pt (w)/3]

o If Kk, =V and u # v then the heaviest child of u, h(u) is either v or an ancestor of v.
An (e, 0)-critical vertex v is an (e, 0)-important vertex v for which k, € X.

Note that such a vertex is never too deep, since dist (o, SAT(®,)) is always at most 1. Hence
the following observation follows from Definition 3.5.1.
Observation 3.5.2. If v is (¢, 0)-important, then depthg(v) < 4e~1log (2¢71).

A hypothetical oracle that provides a critical vertex can be used as follows. If v is the
vertex returned by such an oracle, then for every ancestor u of v such that k, = V, and every
w € Children(u) that is not an ancestor of v, a number of recursive calls with ®,, and distance

parameter significantly larger than e are used. The following lemma implies that if for each of

these vertices one of the recursive calls returned 0, then we know that o ¢ SAT(®).
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Definition 3.5.3 (Special relatives). The set of special relatives of v € V' is the set T" of every
u that is not an ancestor of v or v itself but is a child of an ancestor w of v, where k,, = V.

Lemma 3.5.4. Ifo & SAT(®,,) for every uw € T U{v}, then o & SAT(®).

Proof. 1f depthg(v) = 0 then o & SAT(®,) implies 0 ¢ SAT(®). Assume by induction that the
lemma holds for any formula ® = (V' E',v', X' k'), assignment ¢’ to ® and vertex u € V' such
that 0 < depthg/(u) < depthg(v). Let w be the parent of v. Observe that the special relatives
of w are a subset of the special relatives of v and hence by the induction assumption we only
need to prove that o ¢ SAT(®,,) in order to infer that o & SAT(®P).

If Ky = A, then o & SAT(®,) implies that o & SAT(P,). If Ky =V, then o ¢ SAT(®,) and
o & SAT(®,) for every u € T implies that o ¢ SAT(P,,), since Children(w) \ {v} C T. O

The following lemma states that if o is e-far from SAT(®), then (e, o)-critical vertices are
abundant, and so we can locate one of them by merely sampling a sufficiently large (linear in
1/€) number of vertices.

The main part of the proof that this holds is in showing that if o is only 2¢/3-far from
SAT(®), then there exists an (e, o)-critical vertex for 0. We first show that this is sufficient to
show the claimed abundance of (e, o)-critical vertices, and then state and prove the required

lemma.
Lemma 3.5.5. If o is e-far from SAT(®), then |[{v|v is (¢, 0)-critical}| > €|®|/4.

Proof. Set Critical., = {v|v is (¢, o)-critical} and assume the contrary to the lemma statement,
that is that |Critical.,| < €|®|/4. Set ¢’ to be an assignment to X so that for every s € V
where ks € X, we have that o/(ks) = 1 if ks € Critical., and otherwise ¢’(z) = o(x). Thus
Critical., = (). By the triangle inequality we have that

dist (o, SAT(®)) — dist(o/, SAT(®)) < dist (¢, ).

Finally, since Critical.,» = (), Lemma 3.5.6, which we prove below, asserts the inequality
dist(o’, SAT(®)) < 2¢/3 and we reach a contradiction. O

Lemma 3.5.6. If there is no (e, 0)-critical vertex, then o is 2¢/3-close to SAT(®P).

Proof. We shall show that if o is 2¢/3-far from SAT(®), then there exists an (e, o)-critical vertex.
Assume that o is 2¢/3-far from SAT(®). This implies that r is an (€, o)-important vertex. Hence
an (e,0)-important vertex exists. Let v be an (e, 0)-important vertex such that depthg(v) is
maximal. Consequently, none of the vertices in Children(v) are (e, o)-important. We next prove
that v is (e, o)-critical.

Assume on the contrary that v is not (e, o)-critical. Consequently k, ¢ X and hence to get a
contradiction it is sufficient to show that there exists an (€, o)-important vertex in Children(v).
If k, =V, then by Observation 3.2.18 we get that

dist (o, SAT(Pp)) > (2¢/3)(1 + 2¢/3)ACPtRe (h(0))/3],
and hence h(v) is (€, o)-important.

Assume that x, = A. Let u be such that dist (o, SAT(®,)) > dist (o, SAT(®,)). Observa-
tion 3.2.17 asserts that such a vertex exists. We assume that depthg(u) > 2, since otherwise
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it cannot be the case that dist (o, SAT(®,)) < (2¢/3)(1 + 2¢/3)°. Let w € V be the parent
of v. Since w is an ancestor of v it is (¢, 0)-important, and hence we have the lower bound
dist (o, SAT(®,,)) > (2¢/3)(1+ 26/3)Ldepth¢(w)/3j. Since ® is basic we have that k., = V. Thus
by Observation 3.2.18 we get that

dist(o, SAT(®,)) > (2¢/3)(1 + 2¢/3)1FLdePthy (w)/3]

Finally since dist (o, SAT(®,,)) > dist(o, SAT(®,)) and depthg(u) = depthg(w) + 2 we get
that
dist(o, SAT(®,)) > (2¢/3)(1 + 2¢/3)146PThy (w)/3],

3.5.2 Algorithm

This algorithm detects far inputs with probability Q(e), but this can be amplified to 2/3 using

iterated applications.

Algorithm 3.3 Test satisfiability of basic read-once formula

Input: read-once basic formula ® = (V, E,r, X, k), a parameter € > 0, oracle to o .
Output: z € {0,1}.

1: if € > 1 then return 1

2: if Kk, € X then return o(x,)

3: Pick s uniformly at random from all v such that s, € X

4: A <— all ancestors v of s such that k, =V

5 R ¢— (Uyea Children(v)) \ {w | w is an ancestor of s}

6: if |R| > 3¢ 2log(2¢7!) then return 1

7: for all u € R do

8 Yy +—1

9:  for i=1to [20e !loge '] do y, <— yu A Algorithm 3.3(®,, 0, 4¢/3)
10: return o(ks) V Vycr Yu

We now proceed to prove the correctness of Algorithm 3.3. Algorithm 3.3 is clearly non-
adaptive. We first bound its number of queries and next prove that it always returns “1”
for an assignment that satisfies the formula, and returns “0” with probability linear in € for
an assignment that is e-far from satisfying the formula. Using O(1/¢) independent iterations
amplifies the later probability to 2/3.

—16+161loge

Lemma 3.5.7. For e >0, Algorithm 3.3 halts after using at most € queries, when

called with ®, € and oracle access to o.

Proof. The proof is formulated as an inductive argument over the value of the (real) distance
parameter e. However, it is formulated in a way that it can be viewed as an inductive argument
over the integer valued [log(ae™!)], for an appropriate global constant .. This is since the value
of the distance parameter increases multiplicatively with every recursive call.

If € > 1, then the condition in Line 1 is satisfied, and there are no queries or recursive calls.
Hence we assume that ¢ < 1. Observe that in a specific instantiation at most one query is used,
since a query is only made on Line 2 or on Line 10, and always as part of a “return” command.
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Hence the number of queries is upper bounded by the number of calls to Algorithm 3.3 (initial
and recursive). We shall show that the number of these calls is at most e~ 16+161oge,

Assume by induction that for some n < 1, for every n < ' < 1, every formula ®' and
assignment o’ to ®, on call to Algorithm 3.3 with @, i/ and an oracle to o', at most 5/ ~-6+16187’
calls to Algorithm 3.3 are made (including recursive ones).

Assume that € > 3n/4. If k, € X, then the condition on Line 2 is satisfied and hence there
are no recursive calls. Thus Algorithm 3.3 is called only once and 1 < ¢~ 16+16loge,

Assume that s, ¢ X. Note that every recursive call is done by Line 9. By Line 7 and Line 9
at most |R| - [20e 1 loge™!] recursive calls are done. The condition on Line 6 ensures that
|R| - [20e 'loge 1] < 3¢ 2log (2¢71) - [20e !loge™1]. According to Line 9 each one of these
recursive calls is done with distance parameter 4¢/3 > n. Thus by the induction assumption the

number of calls to Algorithm 3.3 is at most
3¢ 2log (2¢ 1) - [20e Mlog e ] - (4¢/3) 710 H16108 (4e/3),

This is less than e~ 16+16loge, -

The following theorem will be immediate from Lemma 3.5.7 above when coupled with Lemma
3.5.8 and Lemma 3.5.10 below.

Theorem 3.4. Let € > 0. When Algorithm 3.3 is called with ®, € and an oracle to o, it uses at
most e 16F16108¢ gyeries: if o € SAT(®) then it always returns 1, and if o is e-far from SAT(®)
then it returns 0 with probability at least €/8.

Theorem 3.4 does not imply that Algorithm 3.3 is an e-test for SAT(®). However it does imply
that in order to get an e-test for SAT(®) it is sufficient to do the following. Call Algorithm 3.3
repeatedly [20e!] times, return 0 if any of the calls returned 0, and otherwise return 1. This

only increases the query complexity to the value in the following corollary.

Corollary 3.5. There exists an e-test for ®, that uses at most ¢ 20+16loge

queries.
Lemma 3.5.8. Lete >0 and o € SAT(®). Algorithm 3.3 returns 1 when called with ®, e and
an oracle to o.

Proof. To prove the lemma we shall show that if Algorithm 3.3 returns 0, when called with &,
e and oracle access to o, then o & SAT(®). We will show this by induction over depth(®). If
depth(®) = 0 then the condition in Line 1 is satisfied and o(k,) is returned. Hence o(k,) =0
and therefore o ¢ SAT(®). Assume that for every € > 0, &’ where depth(®’) < depth(®), and
assignment ¢’ to @', if Algorithm 3.3 returns 0, when called with ®’, ¢ and oracle access to o’,
then o’ & SAT(®).

Observe that the only other way a 0 can be returned is through Line 10, if it is reached. Let
R be the set of vertices on which there was a recursive call in Line 9 and ks the variable whose
value is queried on Line 10. According to Line 10 a 0 is returned if and only if o(ks) = 0, and
for every u € R, there was at least one recursive call with ®,, and distance parameter 4¢/3 that
returned a 0. By the induction assumption this implies that o ¢ SAT(®,,) for every u € R. Note
that the set R satisfies the exact same conditions that the set T' of special relatives satisfies in
Lemma 3.5.4. Hence, Lemma 3.5.4 asserts that o ¢ SAT(®). O
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We now turn to proving soundness. This depends on first noting that the algorithm will

indeed check the paths leading to critical vertices.

Observation 3.5.9. If the vertex s picked in Line 3 is (e, o)-critical, then it will not trigger
the condition of Line 6.

Proof. Definition 3.5.1 in particular implies (see observation 3.2.18) that for every u € A (as per
Line 4) we have |[Children(u)| < (3/2¢)(1 + 2¢/3)~[4€Pthe(w)/3) < 3/9¢ as otherwise o will be
too close to satisfying ®,,. Also, from Observation 3.5.2 we know that depthg(s) < 4e~!log (2¢71)
and so |A| < 2¢ !log (2¢71) + 1.

The two together give us the bound |R| < (3/2¢ — 1)(2¢ !log (2¢71) + 1) < 3¢ 2 log(2¢71),
and so the condition in Line 3 is not triggered. O

Lemma 3.5.10. Let o be e-far from SAT(®). If Algorithm 3.3 is called with €, ® and an oracle
to o, then it returns 0 with probability at least €/8.

Proof. We will prove this by induction on depth(®).

The base case, k, € X, is handled correctly by Line 1. Assume next that € > 3/4. Assume
first that the vertex s selected in Line 3 is (e, 0)-critical. By Lemma 3.5.5, with probability at
least 3/16 the vertex s selected in Line 3 is indeed (e, o)-critical. Hence by definition o is more
than 1/2-far from SAT(®,,) for every ancestor u of s. Thus by Observation 3.2.18 we have that
Ky = A for every ancestor u of s. Consequently, by Line 2 and Line 10 the value returned will
be o(ks), and o(ks) = 0 because s is (¢, o)-critical.

Thus, 0 is returned with probability at least 3/16, which is greater than €/8 when 3/4 < e < 1.

For all other € we proceed with the induction step. Assume that for any formula ®' such
that depth(®’) < depth(®) and any assignment ¢’ to ®’ that is n-far from SAT(P’) (for any n),
Algorithm 3.3 returns 0 with probability at least /8. Given this we prove that 0 is returned
with probability at least €/8 for ® and o.

Assume first that the vertex s selected in Line 3 is (€, 0)-critical. Let A, R be the sets from
Line 4 and Line 5. Since s is (e, 0)-critical, by definition for every u € A we have that o is
2¢/3-far from SAT(®,). Also, because s is (e, 0)-critical, by definition for every u € A and
w € Children(u) N R we have that w # h(u), and therefore by Observation 3.2.18 we have that
o is 4¢/3-far from SAT(®,,) for every w € R.

By the induction assumption, for every w € R, with probability at least 1 — (4¢/3)/8
Algorithm 3.3 returns 0 when called with 4¢/3, ®,, and an oracle to o. Hence, for every w € R,
the probability that on [20e~!loge~!] such independent calls to Algorithm 3.3 the value 0 was
never returned is at most (1 — (4¢/3)/8)120¢ ' loge "1 This is less than (e 2log (2¢71))/6.

Observation 3.5.9 ensures that |R| < 3¢ 2log (2¢!), and in particular the condition in Line
6 is not invoked and the calls in Line 9 indeed take place. By the union bound over the vertices
of R, with probability at least 1/2, for every u € R at least one of calls to Algorithm 3.3 with
4e/3, ®,, and an oracle to o returned the value 0. This means that for every u € R, y,, in Line 9
was set to 0. Consequently this is the value returned in Line 10

Finally, since o is e-far from SAT(®), by Lemma 3.5.5 the vertex s selected in Line 3 is
(e, 0)-critical with probability at least €¢/4. Therefore 0 is returned with probability at least
€/8. O
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3.6 The computational complexity of the testers and estimator

There are two parts to analyzing the computational complexity (as opposed to query complexity)
of a test for a massively parametrized property. The first part is the running time of the
preprocessing phase, which reads the entire parameter part of the input, in our case the formula,
but has no access yet to the tested part, in our case the assignment. This part is subject to
traditional running time and working space definitions, and ideally should have a running time
that is quasi-linear or at least polynomial in the size of its input (the “massive parameter”). The
second part is the testing part, which ideally should take a time that is logarithmic in the input
size for every query it makes (as a very basic example, even a tester that just makes independent
uniformly random queries over the input would require such a time to draw the necessary log(n)
random coins for each query).

In our case, the preprocessing part would need to take a k-ary formula and convert it to the
basic form corresponding to the algorithm that we run. We may assume that the formula is
represented as a graph with additional information stored in the vertices.

Constructing the basic form by itself can be done very efficiently (and also have an output
size linear in its input size). For example, if the input formula has only “A” and “V” gates,
then a Depth First Search over the input would do nicely, where the output would follow this
traversal, but create a new child gate in the output only when it is different than its parent
(otherwise it would continue traversing the input while remaining in the same output node).
With more general monotone gates, a first pass would convert them to unforceable gates by
“splitting oft” forceful children as in the proof of Lemma 3.2.13. It is not hard to efficiently handle
“=” gates using De-Morgan’s law too.

Aside from the basic form of the formula, the preprocessing part should construct several
additional data structures to make the second part (the test itself) as efficient as possible.

For Algorithm 3.1, we would need to quickly pick a child of a vertex with probability
proportional to its sub-formula size, and know who are the light children as well as what is the
relative size of the smallest child. This mainly requires storing the size of every sub-formula for
every vertex of the tree, as well as sorting the children of every vertex by their sizes and storing
the value of the corresponding “£”. Algorithm 3.2 requires very much the same additional data
as Algorithm 3.1. This information can be stored in the vertices of the graph while performing a
depth-first traversal of it, starting at the root, requiring a time linear in the size of the basic
formula.

For Algorithm 3.3, we would need to navigate the tree both downwards and upwards (for
finding the ancestors of a vertex), as well as the ability to pick a vertex corresponding to a
variable at random, which in itself does not require special preprocessing but does require
generating a list of all such vertices. Constructing the set of ancestors is simply following the
path from the vertex to the root, requiring time linear in the depth of the vertex in the tree, can
be deferred to the testing part and charged to the recursive calls, while in the preprocessing
stage we only store parents.

The only part in the algorithms above that depends on € is designating the light children, but
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this can also be done “for all ¢” at a low cost by storing the range of € for every positive £. Since
¢ is always an integer no larger than k + 1, this requires an array of such size in every vertex.

Let us turn to analyzing the running time complexity of the second part, namely the testing
algorithm. Once the above preprocessing is performed, the time per instantiation (and thus per
query) of the algorithm will be very small (where we charge the time it takes to calculate a
recursive call to the recursive instantiation). In Algorithm 3.1, the cost in every instantiation is
at most the cost of selecting a child vertex at random for each iteration of the loop in line 6, a
cost linear in k for performing the calls in Lines 17 and 18 and a cost of O(2*) for searching
the space of possible z’s in Line 19. This would make it a cost logarithmic in the input size per
query (multiplied by the time it takes to write and read an address) — where the log incurrence
is in fact only when we need to randomly choose a child according to its weight. The case of
Algorithm 3.2 is similar, except that while we don’t have the cost of iterating over possible
assignments to the root, there is an additional constant cost for every term in the mDNF, of
which there are at most 2.

For Algorithm 3.3, every instantiation requires iterating over all the ancestors of one vertex
picked at random. This requires time linear in the depth of the formula and logarithmic
in the input size per query, where the depth only depends on the distance parameter (see

observation 3.5.2).

3.7 The untestable formulas

We describe here a read-once formula over an alphabet with 4 values, defining a property that
cannot be 1/4-tested using a constant number of queries. The formula will have a very simple
structure, with only one gate type. Then, building on this construction, we describe a read-once
formula over an alphabet with 5-values that cannot be 1/12-tested, which satisfies an additional
monotonicity condition: All gates as well as the acceptance condition are monotone with respect

to a fixed ordering of the alphabet.

3.7.1 The 4-valued formula

For convenience we denote our alphabet by ¥ = {0,1, P, F'}. An input is said to be accepted
by the formula if, after performing the calculations in the gates, the value received at the root
of the tree is not “F”. We restrict the input variables to {0, 1}, although it is easy to see that
the following argument holds also if we allow other values to the input variables (and also if we

change the acceptance condition to the value at the root having to be “P”).

Definition 3.7.1. The balancing gate is the gate that receives two inputs from ¥ and outputs
the following.

e For (0,0) the output is 0 and for (1, 1) the output is 1.
e For (1,0) and (0,1) the output is P.

e For (P, P) the output is P,
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e For anything else the output is F.
For a fixed h > 0, the balancing formula of height h is the formula defined by the following.

e The tree is the full balanced binary tree of height h with variables at the leaves, and hence
there are 2 variables.

o All gates are set to the balancing gate.

e The formula accepts if the value output at the root is not “F”.

We denote the variables of the formula in their order by xg,...,Z9n_;. The following is easy.
Lemma 3.7.2. An assignment ag € {0,1},...,a9n_; € {0,1} to xo,...,2x9n_q is accepted by
the formula if and only if for every 0 < k < h and every 0 < i < 2"=F, the number of 1 values in
Qigk - -+ 5 Q(iy1)2k—1 1S either O, 2k or 21,

Proof. Denote the number of 1 values in variables descending from a gate u by num; (u). Note
that aok, ..., ag1yor—1 are the set of descendant leaves of a single vertex, denote it by v. We
prove by induction on k that:

e num;(v) = 0 if and only if the value of v is 0.

e num; (v) = 2% if and only if the value of v is 1.

e If the value of v is P then num;(v) = 2F~1.

e If num; (v) ¢ {0,251 2%} then the value of v is F.

For k =1 we have the two inputs of v, and by the definition of the balancing gate the claim
follows.

For k > 1, if at least one of the children of v evaluates to F' then so was v (and so does the
entire formula) and by the induction hypothesis one of the descendants of its children doesn’t
have the correct number of 1 values. If neither of them evaluates to F' then by the induction
hypothesis for both children of v, denoted u, w, we have that numj (u), num; (w) € {0,252 2F=1}
and that this determines their value. If num; (w) = num; (u) = 0 then they both evaluate to 0
and so does v. Similarly, if num; (w) = numj(u) = 2¥~! then both evaluate to 1 and so does v.
If num; (u) = 2~! and num; (w) = 0, then u evaluates to 1 and w to 0, and indeed v evaluates
to P (and similarly for the symmetric case). If num;(u) = numi(w) = 2¥=2, then both evaluate
to P and so does v. The remaining case is num; (u) € {0,271} and num; (w) = 2¥=2 (and the
symmetric case). Here the induction hypothesis and the definition of the balancing gate implies
that v evaluates to F' and the formula is unsatisfied, while the interval of all descendant variables
of v does not have the correct number of 1 values. O

In other words, for every satisfying assignment every “binary search interval” is either all
0, or all 1, or has the same number of 0 and 1. This will allow us to easily prove that certain

inputs are far from satisfying the property.
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3.7.2 Two distributions
We now define two distributions, one over satisfying inputs and the other over far inputs.
Definition 3.7.3. The distribution Dy is defined by the following process.

e Uniformly pick 2 < k < h.

e For every 0 <i < 2" independently pick either (y;0,%:1) = (0,1) or (yi0,vi1) = (1,0)

(each with probability 1/2).

e For every 0 <i < 2% set
Ligh = "= Tjgkyok—1_1 = Yi,0; Ligkpok—1 = " = T(j41)2k—1 = Yi,1-

Definition 3.7.4. The distribution Dy is defined by the following process.

e Uniformly pick 2 < k < h.

e For every 0 <1 < 2}“’“, independently choose (z; 0, 2i 1, i,2, 2i,3) to have either one 1 and

three 0 or one 0 and three 1 (each of the 8 possibilities with probability 1/8).

e For every 0 < i < 2% set
Lok =+ = xi2k+2k72_1 = Z@'70; $i2k+2k72 == $i2k+2k—1_1 = 21'71;
Lok yok—1 =+ = Lok yok—119k=2_1 = 242} Lijgkok—149k=2 = * = T(;41)2k—1 = Zi,3-

It is easier to illustrate this by considering the calculation that results from the distributions.
In both distributions we can think of a randomly selected level k& (counted from the bottom,
where the leaf level 0 and the level above it, 1, are never selected). In Dy, the output of all
gates at or above level k is “P”, while the inputs to every gate at level k will be either (0, 1) or
(1,0), chosen uniformly at random.

In Dy all gates at level k will output “F” (note however that we cannot query a gate output
directly); looking two levels below, every gate as above holds the result from a quadruple chosen
uniformly from the 8 choices described in the definition of Dy (the quadruple (z; 0, zi1, 2i,2, 2i,3))-
At level k — 2 or lower the gate outputs are 0 and 1 and their distribution resembles very much
the distribution as in the case for Dy, as long as we cannot “focus” on the transition level k.

This is formalized in terms of lowest common ancestors below.

Lemma 3.7.5. Let Q C {1,...,2"} be a set of queries, and let H C {0,...,h} be the set of
levels containing lowest common ancestors of subsets of Q). Conditioned on neither k nor k — 1
being in H, both Dy and Dy induce exactly the same distribution over the outcome of querying

Q.

Proof. Let us condition the two distributions on a specific value of k satisfying the above. For
two queries ¢, ¢’ € @ whose lowest common ancestor is on a level below k — 1, with probability 1
they will receive the exact same value (this holds for both Dy and Dy). The reason is clear
from the construction — their values will come from the same y; ; or z; ;.
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Now let ) contain one representative from every set of queries in @@ that must receive the
same value by the above argument. For any ¢,¢ € @', their lowest common ancestor is on a
level above k. For Dy it means that z, takes its value from some y; ; and z, takes its value
from some y;s ;» where i # . Because each pair (y;,0,¥;,1) is chosen independently from all other
pairs, this means that the outcome of the queries in Q' is uniformly distributed among all 2/<’l
possibilities. The same argument (with z;; and zy j» instead of y; ; and y; ;) holds for Dy.
Hence the distribution of outcomes over @’ is the same for both distributions, and by extension
this holds over Q). ]

On the other hand, the two distributions are very different with respect to satisfying the

formula.

Lemma 3.7.6. An input chosen according to Dy always satisfies the balancing formula, while
an input chosen according to Dy is always 1/4-far from satisfying it.

Proof. By Lemma 3.7.2, the assignment constructed in Dy will always be satisfied. This is since
for every vertex in a level lower than k, all of its descendant variables will be of the same value,
while for every vertex in level k or above, exactly half of the variables will have each value.
Note that in an input constructed according to Dy, every vertex at level k has one quarter
of its descendant variables of one value, while the rest are of the other value. By averaging, if
one were to change less than 1/4 of the input values, we would have a vertex v at level k for
which less than 1/4 of the values of its descendant variables were changed. This means that v
cannot satisfy the requirements in Lemma 3.7.2, and therefor it and hence the entire formula
evaluate to F. O

3.7.3 Proving non-testability

We use here Lemma ?7 introduced in Chapter 2 to conclude the proof.

Theorem 3.6. Testing for being a satisfying assignment of the balancing formula of height h
requires at least Q(h) queries for a non-adaptive test and Q(logh) queries for a possibly adaptive
one.

Proof. We note that for any set of queries @, the size of the set of lowest common ancestors
outside @ itself is less than |@|, and hence (in the notation of Lemma 3.7.5) we have |H| < 2|Q)|.
If |Q| = o(h), then the event of Lemma 3.7.5 happens with probability 1 — o(1), and hence
the variation distance between the two (unconditional) distributions over outcomes is o(1).
Together with Lemma 3.7.6 this fulfills the conditions for Lemma 7?7 for concluding the proof
for non-adaptive algorithms.

For adaptive algorithms the bound follows by the standard procedure that makes an adaptive
algorithm into a non-adaptive one at an exponential cost, by querying in advance the algorithm’s
entire decision tree given its internal coin tosses. O

3.7.4 An untestable 5-valued monotone formula

While the lower bound given above uses a gate which is highly non-monotone, we can also give
a similar construction where the alphabet is of size 5 and the gates are monotone (that is, where
increasing any input of the gate according to the order of the alphabet does not decrease its

input).
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Instead of just “{1,...,5}” we denote our alphabet by ¥ = {0, Fy, P, F1,1} in that order.
We will restrict the input variables to {0, 1}, although it is not hard to generalize to the case
where the input variables may take any value in the alphabet. At first we analyze a formula

that has a non-monotone satisfying condition.

Definition 3.7.7. The monotone balancing gate is the gate that receives two inputs from X
and outputs the following.

e For (0,0) the output is 0 and for (1,1) the output is 1.

e For (1,0) and (0, 1) the output is P.

For (P, P) the output is P.

For (0, P) and (P,0) the output is Fp.

For (1, P) and (P,1) the output is Fj.

e For (P, Fy), (Fy, P), (Fu,0), (0, Fy) and (Fy, Fy) the output is Fp.
e For (Fpy,1) and (1, Fy) the output is F}.

e For any pair of inputs containing F}, the output is Fj.

For a fixed h > 0, the almost-monotone balancing formula of height h is the formula defined by
the following.

e The tree is the full balanced binary tree of height h with variables at the leaves, and hence
there are 2 variables.

e All gates are set to the monotone balancing gate.

e The formula accepts if the value output at the root is not “Fy” or “Fy”.

The following observation is easy by just running over all possible outcomes of the gate.

Observation 3.7.8. The monotone balancing gate is monotone. Additionally, if the values Fj
and Fi are unified then the gate is still well-defined, and is isomorphic to the 4-valued balancing
gate.

In particular, the above observation implies that the almost-monotone balancing formula
has the same property testing lower bound as that of the balancing formula, using the same
proof with the same distributions Dy and Dpy. However, we would like a completely monotone
formula. For that we use a monotone decreasing acceptance condition; we note that a formula
with a monotone increasing acceptance condition can be obtained from it by just “reversing”

the order over the alphabet.

Definition 3.7.9. The monotone sub-balancing formula is defined the same as the almost-
monotone balancing formula, with the exception that the formula accepts if and only if the value
output at the root is not Fj or 1.
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By Observation 3.7.8, the distribution Dy is also supported by inputs satisfying the monotone

sub-balancing formula. To analyze Dy, note the following.

Lemma 3.7.10. An assignment ag € {0,1},...,a9n_1 € {0,1} to xg,...,x9n_q, for which for
some 0 < k < h and some 0 < i < 2"% the number of 1 values in aqox, . . . s Q(ip1)2k—1 1S TOTE
than 281 and less than 2F, cannot be accepted by the formula.

Proof. We set u to be the gate whose descendant variables are exactly a;ok, ..., axy1)o0—1. We
first note that it is enough to prove that u evaluates to Fi, because then by the definition of
the gates the root will also evaluate to F;. We then use induction over k, while referring to
Observation 3.7.8 and the proof of Lemma 3.7.2. The base case k = 1 is true because then no
assignment satisfies the conditions of the lemma.

If any of the two children of u evaluates to F; then we are also done by the definition of the
gate. The only other possible scenario (using induction) is when one of the children v of u must
evaluate to 1, and hence all of its 2¥~1 descendant variables are 1, while for the other child w
of u some of the descendant variables are 0 and some are 1. But this means that w does not
evaluate to either 0 or 1, which again means that u evaluates to F}. O

This yields the following.

Lemma 3.7.11. With probability 1 — o(1), an input chosen according to Dy will be 1/12-far
from satisfying the monotone sub-balancing formula.

Proof. This is almost immediate from Lemma 3.7.10, as a large deviation inequality implies
that with probability 1 — o(1), more than 1/3 of the quadruples (z;, zi1, i 2, 2i,3) as per the
definition of Dy will have three 1’s and one 0. (]

Now we can prove a final lower bound.

Theorem 3.7. Testing for being a satisfying assignment of the monotone sub-balancing formula
of height h requires at least Q(h) queries for a non-adaptive test and Q(logh) queries for a
possibly adaptive one.

Proof. This follows exactly the proof of the lower bound for the balancing formula. Due to
Observation 3.7.8 and Lemma 3.7.11 we can use the same Dy and Dy, since the o(1) probability
of Dy not producing a far input makes no essential difference for the use of Yao’s method. [
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Chapter 4

Testing Tree Coloring Properties

4.1 Introduction

Fixing a tree T and some finite color set C', a tree coloring property of T is a subset P of all
possible functions ¢ : V(T') — C assigning the vertices of T" with colors from C. The tree T is a
parameter to the algorithm, and is fully known, whereas the coloring function ¢ is unknown and
has to be queried. The goal of the algorithm is to decide whether ¢ has the property or is far
from it using as few queries as possible. The distance of ¢ from the property is measured by the
fraction of entries that need to be changed so that ¢ would be in P, while T itself is immutable.
This is an instance of a massively parameterized model.

Possibly the first case where coloring properties were considered, albeit implicitly, was in
the work of Fischer et. al. where they considered monotonicity testing over general posets
[FLN*02]. The most relevant to our case is tree-monotonicity, where we fix a rooted tree T
and take C'={1,2,...,k}, where the property we demand from the coloring is that no vertex
v colored ¢(v) has a descendant with a color strictly smaller than its own. This can be tested
using O(e~1) queries [FLNT02].

Several works were published dealing explicitly with tree coloring properties. Fischer and
Yahalom [FY11] studied convexity and related properties. A coloring of a tree is convez if the
preimage of every color is a connected subtree. Fischer and Yahalom show that this property, as
well as several related properties and generalizations, can be tested using a number of queries
depending only on the distance parameter. Note that when the tree is rooted, testing convexity
actually amounts to testing freeness from certain topological subtrees (as do the other problems
considered in [FY11]). Later, Yahalom [Yah08, Yah12] considered a more abstract tree coloring
property, namely, the property of a tree coloring being free from a family of forbidden paths,
and the property of a tree coloring being free from a single tree minor.

Tree coloring properties were also considered in a more applied context. Ndione et. al.
[NNL13] studied DTD validity properties. These are properties of colored trees, where the tree
is not known in advance. The distance in this case is with respect to three operations: changing
a vertex’s color, removing a leaf from the tree and adding a leaf to the tree. A DTD property
specifies for every possible color a regular expression for the allowed coloring of its children.

In particular, the lower bound we give in Section 4.5 can be put in terms of a DTD property,
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the difference being that in our lower bound the underlying tree is known to the algorithm in
advance.

Czumaj et. al. [CGR114] studied testing of subtree minor freeness in a different setting.
Czumaj et. al. develop an algorithm for testing whether a given tree H is a subtree minor of
a bounded degree graph G. Their model is different in several key aspects: (1) The trees and
graphs in the work of Czumaj et. al. are unlabeled, (2) they look for the graph H in a bounded
degree graph G rather than a tree, (3) they measures distance by changes to the graph G, and
our work sees the underlying tree 7' as immutable and measures distance by changes to only the
coloring of T.

Tree coloring can also be an abstraction of formula satisfaction problems. In such an
abstraction, the coloring of the tree is the values given to the input nodes, as well as the
values calculated in the intermediate nodes. The property to be tested is that of the coloring
corresponding to an accepting input. This viewpoint was taken by Halevy et. al. [HLNTO07],
who used a different model of graph coloring problems (in which edges are colored) to prove
that every property of boolean strings that can be represented by a read-twice C N F formula is
testable.

4.1.1 Topological subtrees

The notion of a Topological subtree (and more generally a topological subgraph) is a classic
notion in graph theory, appearing under various names, which has found much use in computer
science. Roughly, a tree H is a topological subtree of a tree T if we can map the vertices of H to
those of T" such that every edge will be mapped to a path, with all of these paths being disjoint
outside their end-nodes. In applications we usually view the subtree H as representing some
partial information that we are trying to match to the information in 7.

One such example is in incomplete information queries to heterogenous data-centric XML
databases [NNL13]. Suppose we have various entries representing books, and we are interested
in finding books with contributions by “Joseph Conrad” discussing “boats”. The problem is
that “Joseph Conrad” might be listed as an author, editor, or perhaps the author of a chapter.
The fact that the book discusses “boats” might appear in a keyword list, in a list of themes,
or maybe just on the title. What we would like to query is whether we can find a topological
subtree, where the root is a book entry, one of the children is an entry labeled “Joseph Conrad”
and another is labeled “boats” (this example is drawn from Schlieder and Naumann [SN0O]).
In this case we need to use the notion of a topological subtree because we only have partial
information on where we expect the different pieces of information to appear relative to one
another. This notion is sometimes called tree inclusion [KM93] or constrained tree inclusion
[Val05] in the information retrieval and pattern matching literature.

An important thing to note about this example is that it actually requires the appearance
of a labeled topological subtree, rather than just the subtree structure itself. Also note that in
some applications we might not require that the mapping sends the edges to disjoint paths, in

which case we call it a subtree minor.
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In this work we give an algorithm for testing whether a coloring is free from a constant sized
family of forbidden topological subtrees, for the case where the underlying tree T' is of bounded
degree. This also solves the problem for the case of a constant sized family of forbidden subtree
minors, by a manipulation of the family. In this work we view the underlying tree T' as being
rooted and ordered, but it can also be made unordered, again by manipulating the forbidden

family.

4.2 Preliminaries and statement of main result

We will present an algorithm to test certain properties of tree colorings. For this we need
to define the relevant notion of distance between colorings, and follow it with a definition of
the notion of property testing as adapted for tree colorings. For defining distance we use the
normalized Hamming norm. We rely on definitions of the basic notions of ordered trees from

subsection 2.1.

Definition 4.2.1. Given two colorings ci, co of T', the distance between c1 and cg is the fraction
of vertices on which c¢; and ¢y disagree. When considering a coloring ¢ and a set of colorings P,
we will define the distance between ¢ and P to be the minimal distance between ¢ and a member
of P.

The properties considered are sets of colorings of a fixed tree.

Definition 4.2.2. Given an ordered tree T, a property of colorings of T" with C colors is a
subset P of all possible colorings of T'. That is, P € V().

Note that we do not consider colorings of different underlying trees. One can see colorings
of different trees to be of infinite distance from each other. The algorithms in this setting are
supplied with query access to the coloring function ¢ : V(T') — C, and the number of queries

they require will be the main computational resource that we consider.

Definition 4.2.3. Given an ordered tree T and a property P of colorings of T" with C' colors, a
property tester for P is a randomized algorithm A such that for any e > 0,1 > § > 0, given a
coloring c¢: V(T') — C, if ¢ € P then A accepts with probability at least 1 — J, and if ¢ is e-far
from P then A rejects with probability at least 1 — §. The algorithm A is given T, € and ¢ in
advance.

In the case where the algorithm never rejects a coloring ¢ € P we say that it is one-sided,
and otherwise the algorithm is two-sided.

The algorithms in this section will all be one-sided. The properties of colorings that we
consider will be defined by freeness from some set of forbidden topological subgraphs. Let us

define this formally:

Definition 4.2.4. Given a colored ordered binary tree 77 and a “forbidden” colored ordered
binary tree Th, we say that T} contains Ty if there exists an injective mapping I : V(Tz) — V (T1)
such that the following holds for all u,v € V(T»):
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e v is a descendant of the ith child of v if and only if I(u) is a descendant of the ith child of

I(v)

e If w is the lowest common ancestor of u and v then I(w) is the lowest common ancestor of
I(u) and I(v)

That is, the function I preserves color, and respects the tree orders and lowest common ancestry.

This can alternatively be stated as “T» appears in 77 as an order preserving topological
subgraph with matching colors”. We can now formally define being free of the forbidden

subgraphs:

Definition 4.2.5. Given a finite family of colored trees JF, we say that a coloring ¢ of an ordered
tree T is free of F if it does not contain any of the elements of F in the sense of Definition 4.2.4.
The set of all colorings of T' that are free from F will be denoted by P .

Note that actually P also depends on T', but we will keep this implicit. When dealing with
families of forbidden colored trees, we will denote the number of trees in the family by |F| and
the set of all vertices of trees in the family by V(F) (where the trees are vertex disjoint).

The main result that we prove is the following;:

Theorem 4.1. For every e > 0 and 1 > § > 0, every tree T with degree bound d, and every
forbidden family F, there exists an algorithm that queries the colors of at most q(e, d,d, |V (F)|)
vertices, always accepts colorings in Pr, and rejects all colorings e-far from Pr with probability
at least 1 — 4.

4.3 Overview

The general method of the algorithm is one of divide and conquer. The algorithm samples a
vertex v (the manner by which it is sampled will depend on circumstances as defined below) and
then attempts to find a some evidence that a tree from F cannot appear rooted in v. It does so
by considering several different forbidden families on the subtrees rooted in the children of v.
Let us now explain what are those families.

We denote by F[i] the subset of F containing only those trees whose root is colored i. We
denote by R(F) the set of all colors of roots of trees in F. The set of colors used in the property,
that is, the range of ¢, is denoted by C.

Since the algorithm will be traversing the tree T and the trees in F, it will be useful to
introduce some notation for that. Given a tree T' and a vertex v € V(T'), we denote by T;, the
subtree rooted in v. v’s ith child vertex will be denoted v;. We call the subtree rooted in the ith
child of a vertex v € V(T') “the ith subtree of v”, and denote it by T,,. If v is the root of T,
then we also denote its subtrees by T; for i € {1,...,d}. Note that if, for example, v has no first
child then T}, is the empty tree.

Definition 4.3.1. Given two families of ordered colored trees, G, F, we will say that G is
stronger than F if F # G and for any tree t € F, either it or some subtree of it is in G, and
conversely all trees in G are subtrees of trees in F. We denote this by F < G
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A simple observation which will be useful and serves as a sanity test is the following;:

Observation 4.2. If a tree T is free from a family G and F < G then T is also free from the
family F.

The algorithm will operate recursively, mostly using strictly stronger families. We will need
to spend much energy to deal with the case where we will not be able to use strictly stronger
families.

We can now explain in what manner we construct our stronger families. Let ¢ be the color
of v. Replace some of the trees in F having a root colored ¢ with their subtrees rooted in the
ith child of the root. This obviously creates a stronger family, and will be called strengthening
F to the ith children of the trees S, where S C F[c]. We denote it by F©. If S = F|c] then we
just denote it by F7. Note that in this process we keep empty trees if they are generated in the
new families, where such trees mean that any coloring of any tree will contain this family. We
may also use one subtree common to several trees in the original family, so the number of trees
may actually decrease in a strengthening. Note that a sequence of such strengthenings may only
continue for |V (F)| steps, as we eliminate at least one vertex each time. We will now need to

perform this construction in a coordinated manner:

Definition 4.3.2. Let F be a family of colored trees with degree bound d. Let ¢ be some
color, and let (S1,S5s,...,S4) be an ordered partition of Flc|]. A d-tuple of stronger families
(.7-"151 , .7-"252, . ,.Fde) will be called a c-useful d-tuple. If at least one of the sets in the partition is
empty, then we say that it is null, and otherwise we say that it is non-null.

The following lemma shows that such d-tuples are exactly the forbidden families we are

interested in:

Lemma 4.3.3. Given a tree T rooted in v, a coloring of T is in Px if and only if there exists a
c(v)-useful d-tuple (Fi*, F32,. .. ,]—"5‘1) such that for all 1 < i < d we have that T,, is in P s, .

Proof. If the coloring is in Pz then for every tree ¢ € F[c(v)] there exists some 1 < i < d such
that T, is in P £ty a8 otherwise either ¢t would appear with v being its root, or another tree
from F would af)pear in T;,,. For every such tree ¢, assign it to a set .S; for an appropriate ¢
(choosing arbitrarily if there are several possibilities). Since no tree from F appears in T, this is
indeed a partition of F[c(v)], and a useful d-tuple exists as required.

Now if there exists a useful d-tuple as above, then no tree from F may appear in T — for
all 1 <i < d we have that P FSi is either equal to or stronger than F and thus no tree from F

appears in T,,, and finally for 1every tree t € F|c(v)] there exists 1 < ¢ < d such that t € S;, and
therefore t; cannot appear rooted in T;, and ¢ cannot appear rooted in v. There is also no other
possibility for a tree not contained in 7, for some 1 <+¢ < d, as such trees must be rooted in v.[]

In our soundness proof we mainly use the following implication:

Lemma 4.3.4. Given a tree T rooted in v, if there ezists a c(v)-useful d-tuple (ffl ) .7-"592, . ,ff‘i)
such that for all 1 < 1 < d we have that T, is o;e-close to P}_si, then the coloring of T is

: | [3
We-close to Pr.
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Proof. For each 1 <17 < d, recolor T, to be free from ]:Z-S . This is possible by our assumption

and recolors at most a Wﬁ—fra@lon of the vertices in the tree. Now we can appeal to

Lemma 4.3.3 to see that the new coloring is free from F. O

4.4 Testing for a family of forbidden topological subtrees in
bounded degree trees

In this section we present and analyze an algorithm for testing whether a coloring of a given
ordered tree of degree at most d is free from a family of forbidden topological subgraphs, in the
sense of Definition 4.2.4, or is e-far from any such coloring.

The algorithm works by trying to find evidence that the subtree it currently considers is
far from being free from the forbidden family. It does so by finding “suspicious” vertices and
considering all useful d-tuples of stronger families.

The main problem is in handling the case of null useful d-tuples. When not all colors appear
in the roots of the forbidden family, that is, when R # C, an e-far coloring also implies that
there are many roots of forbidden trees, and therefore we can allow ourselves to assume that
there is no need to recurse on the subtrees corresponding to the empty sets in the partition.
This is since if there is any trouble there, then we are likely to sample it.

If all colors appear in the roots of the forbidden family, that is, R = C, then we cannot avoid
recursion to all subtrees even for the null useful d-tuples. The key here is to note that even in a
null useful d-tuple, at least one child will be tested with a strictly stronger family, and for this
reason the distance for other children can be amplified. For notational simplicity, we will assume
in the proof that the children of v are sorted in increasing order by the size of the subtree rooted
in them, but it is easily extensible to trees where this is not the case.

One more important thing to note is that there may be cases where the forbidden family F
is such that no coloring of T' is free from it. We call such a family unavoidable. One important
example of an unavoidable family is is a family containing an empty tree.

We divide the algorithm into three subroutines: MissingColor solves the case where R # C,
AllColors solves the case where R = C, and GeneralTest glues them together. Parameters for
all the tests are the input tree T, the forbidden family F, the distance parameter € and the

required confidence parameter 9.

Algorithm 4.1 GeneralTest(T',.F,e,0)
if F is unavoidable then reject T' and terminate
if F is empty, T is empty or € > 1 then accept T" and terminate
if R(F) = C then call AllColors(T',F,e,0), answer as it did and terminate
else call MissingColor(7,F,d,€), answer as it did and terminate

We first prove the correctness of GeneralTest assuming the correctness of the two subpro-
cedures. We then provide the AllColors subprocedure and prove its correctness in Subsection
4.4.1. MissingColor and its proof of correctness is found in Subsection 4.4.2. We calculate the

query complexity in Subsection 4.4.3. For the entire analysis, we assume that the tree is full
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(every vertex is either a leaf or has d children); in Subsection 4.4.4 we provide a simple reduction

showing that this does not limit generality (we do not make this assumption for the trees in F).

Lemma 4.4.1. Procedure GeneralTest always accepts if T is in Px, and rejects if it is e-far
from Pr with probability at least 1 — 6.

Proof. If F is unavoidable, then T" must contain it and therefore the coloring is not in P and
the algorithm correctly rejects. If F = () then any coloring is in Pz and the algorithm correctly
accepts. If T is an empty tree and F is not unavoidable, then T" cannot contain any tree from F
and is thus in Pz and the algorithm correctly accepts. Finally if € > 1 and the family F is not
unavoidable then any coloring is e-close to P and we can accept.

Procedure GeneralTest invokes procedure MissingColor if there is a color missing in the roots
of the forbidden family, and by Lemma 4.4.17 this is correct. If all colors are present at the roots
of the forbidden family, procedure GeneralTest invokes procedure AllColors, which is correct by
Lemmas 4.4.11 and 4.4.12. Both will accept an e-far tree with probability at most 4. O

4.4.1 AllColors

To simplify notation, in this analysis we will assume that the children of every vertex are ordered
by increasing subtree size. That is, for every v € V(T'), we have that |V (Ty,)| < |V(Ty,)| <
... <|V(T,,)]. We explain how to generalize the algorithm and proof to trees not satisfying this
requirement in Subsection 4.4.5, at the cost of clumsier notation.

The main idea will be to use the lighter subtrees of T, to “fix” it. The problem is that for

some vertices this will not work:

Definition 4.4.2. A vertex v is structurally limiting if in any coloring, T;, contains a tree from
]:1]: )] Recall that F [c(v)] is the subset of F containing only those trees with a root colored
¢(v), and that Ff[c(v)] is the strengthening of F to the first child of the trees in F|c(v)]. That is,
this is the family of trees created from F by replacing all of the trees in F[c(v)] with the subtree
rooted in their first child. Also recall that we assume throughout that v; is the lightest child of
.

We will only need the “topmost” such vertices:

Definition 4.4.3. The set of significant structurally limiting vertices is the minimal set L C
V(T) such that for any structurally limiting vertex v, either v € L or there exists a u € L which
is an ancestor of v.

Note that this is well-defined since T is a tree. We can now proceed to explain our probability

distribution.

Definition 4.4.4. The heaviest subtree of T', denoted H (T'), is the subtree created by removing,
for every v € V(T'), the subtree T}, from the tree.

Definition 4.4.5. Let L be the set of significant structurally limiting vertices in the coloring of
s ) _ _ V@)l
T. Define the probability vector [ : L — [0, 1] by I(v) = S V@I
Definition 4.4.6. Define the probability vector p : H(T) — [0, 1] by p(v) = V@I
2 uerncry |V (Tar)l

47



Now, to perform the “fixing” part of the proof, we will need useful d-tuples with a certain

structure, that corresponds to not requiring null-recursions on the heaviest “relevant” child.

Definition 4.4.7. A c(v)-useful d-tuple (F},... ,ffd) is i-proper for v € V(T) and 1 <i <d
if Uj<; Sj = Fle(v)], Si # 0 and for all 1 < j <4, if Sj # 0 then T, is qg55-close to P(}"]Sj) and
if S; = 0 then T, is € + qg5-close to P(F).

Note that Lemma 4.3.4 applies to the above definition. Now, these are enough if we are only

interested in roots of forbidden trees:

Observation 4.4.8. For v € V(T), if there exists a ¢(v)-useful d-tuple (F>,. .. ,]:C‘?d) such
that for every 1 < i < d where S; # () we have that T,, is free from .7:2-5 ¢ then in the current
coloring of T', v cannot be the root of a tree from F.

We use the term “bad” to define those vertices that make the algorithm reject:

Definition 4.4.9. A vertex v € V(H(T)) is bad if for all 1 < i < d, there exists no i-proper
c¢(v)-useful d-tuple for T,.

What follows is the core of the algorithm’s correctness. It shows that if we have a statistically
insignificant portion of bad vertices, both structurally limiting and others, then the coloring is

close to being free from F.

Lemma 4.4.10. Let B be the set of bad vertices which are not structurally limiting, and BL be
the set of bad vertices which are structurally limiting and significant. If 3", cp |V (Tv,)| < 5lIV(T)],
Yovenn |lV(T)| < 52 venr IV(Ty)|, and P(F) # 0, then the coloring of T' is e-close to P(F).

Proof. Perform the following process recursively for a vertex v, starting at the root: If v ¢
(BUBL), then find the maximal i for which v has an i-proper d-tuple (F>,. .. ,]:C‘?d). For every

1 < 5 <1, recolor ij to be free from .7-"jSJ . For every ¢ < k < d, recursively repeat the whole
process for v,. Let us examine what fraction of the total tree is recolored, in addition to what is
recolored by the recursive calls. Note that we recolor at most an 155, fraction of Ty, by the

< (1= D|Uigji VIT,)|-
Thus the total fraction of T, .. ., T,, we have recolored is at most 157+ (1— 1) (e+ 1557) < 2%—516.

For a vertex v € B, by the fact that it is not structurally limiting, we can recolor its entire
light subtree, T),,, to be free from ]-'1]: )] and then recurse on the other children.

For a vertex v € BL, just recolor T, to be in P(F).

First note that we have recolored at most an ¢ fraction of the vertices. The total of all calls
on non-bad vertices recolors at most a 2%7&16 fraction of the tree by the previous calculation, the
calls on bad vertices recolor at most an €/4d fraction of the tree, and the calls on structurally
limiting vertices recolor at most an €/4d fraction of the tree, both by the assumptions of the

lemma.

definition of an i-proper d-tuple. Also notice that ‘Ulgj < V(Ty,)

To show that the new coloring is in P(F), we will demonstrate that no vertex in 7" can serve
as the root of a forbidden tree. Suppose that a tree ¢ € F appears rooted in v. If v € B, then ¢
cannot appear rooted in v, since 7Ty, is free from ]—"1]E )] and thus the corresponding subtree of
t cannot appear in T,,. If v ¢ (B U BL) and the process was invoked on it, let (Fi', ... ,]—fd)
be the i-proper d-tuple according to which its subtrees were recolored. Since U;<; Sj = Flc(v)],
there exists some j < i such that ¢t € S, and therefore the subtree rooted in the jth child of the
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root of ¢ cannot appear in 7);. Obviously it cannot be that v € BL, since then T}, was recolored
to be free from F. The last remaining case are those v € V(T') that the recoloring procedure
was not invoked on. Such a v must be in a subtree T of a u that the recoloring was invoked
on, but the recoloring was not invoked on any vertex below u. This implies that the recoloring
algorithm recolored all of T to be free of F or some family stronger than it, and so ¢t cannot
appear rooted in v. Therefore ¢t cannot appear anywhere in 7. O

Algorithm 4.2 AllColors(T,F,e,0)
8dlog(6~ 1)

Sample vertices Ap according to p {Locating non-limiting bad vertices}

€
Sample 8(“%(571) vertices Ay, according to [ {Locating structurally limiting bad vertices}
for every v € AU A, do
Query c[v]
for every S € (P(Fle(v)]) \{0}) and 1 <i < d do
{Non-null-recursions}
Call GeneralTest (T, ,F? +To5d" W)
for every 1 <i < d do
{Null-recursions to all children apart from the heaviest}
Call GeneralTest(Ty, ,F,e(1 + ﬁ), WSF)HI)
if there exists a proper d-tuple for v then accept v,
else reject T" and terminate
Accept T {No v was rejected }

We can now prove the correctness of AllColors by induction over the size of T'. This could
supposedly imply that the algorithm reads the entire coloring of the tree, but we will later
analyze the use of stronger families and larger distance parameter to prove that this is not the

case.

Lemma 4.4.11. Assume that all recursive calls to GeneralTest with a tree T' such that:
\V(T")| < |V(T)|, with any forbidden family F', distance parameter € and confidence pa-
rameter &', accept colorings of T' which are in P(F) with probability 1. Then given a tree T, if
the coloring is in P(F) then AllColors accepts with probability 1.

Proof. Let us show that we accept every vertex v sampled. Since the coloring is in P(F), so
is the coloring of T,. Therefore, by Lemma 4.3.4 we know there exists a c(v)-useful d-tuple
(]:1‘31’ 252, ce ,fdsd) such that for all 1 <14 < d we have that T,, is in P]:si. By our assumption,
all recursive calls corresponding to this d-tuple will accept with probabifity 1. Letting j be the
largest index such that S; # (), this is also a j-proper d-tuple, and thus AllColors will accept v
with probability 1. Since this reasoning is true for all sampled vertices, AllColors will accept
with probability 1. O

We now use Lemma, 4.4.10 to prove the soundness of AllColors:

Lemma 4.4.12. Assume that all recursive calls to GeneralTest with a tree T' such that:
[V(T")| < |V(T)|, with any forbidden family F', distance parameter € and confidence pa-
rameter §', reject all colorings € -far from P(F) with probability at least 1 — 6'. Then given a
tree T', a distance parameter € and confidence parameter 0, if the coloring is e-far from P(F)
then AllColors rejects with probability at least 1 — 6.
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Proof. Denote the set of bad significant structurally limiting vertices by BL, and the set of bad
vertices which are not structurally limiting by B. By Lemma 4.4.10, if the coloring is e-far from
P(F), then either Xy V(Lo > V(D] or Syepp VT > 5 Soeps V)]

In either case, we will sample a bad vertex v with probability at least 1 — %. Since v is a
bad vertex, it has no i-proper ¢(v)-useful d-tuple for any ¢, and therefore, for every candidate
d-tuple there will be at least one recursive call that will reject with probability 1 — §’, where ¢’
is the confidence parameter fed to that call. By the union bound, the probability that any call
incorrectly accepts and causes us to falsely discover a proper d-tuple for v is at most 6/2, and
thus we will correctly reject with probability at least 1 — §. O

4.4.2 MissingColor

We will start by explaining the kind of rejection witnesses we are looking for. We re-use the

term “bad” to define those vertices that will make the algorithm reject.

Definition 4.4.13. Let v be a vertex colored ¢ € R. We say that v is bad if for any c-useful
d-tuple (]-"151, 52, . ,.Fdsd) there exists some 1 < i < d such that S; # () and T, is €/2-far from
P_s,.

Fi

Note that a bad vertex can be easily “fixed” by changing its color to a member of C'\ R.

Now for the converse definition:

Definition 4.4.14. Suppose that v is a vertex such that ¢(v) € R. Further suppose that we
have a c(v)-useful d-tuple (F21, F52, ... ,ffd) such that for all 1 <14 < d either S; = ) or the
coloring of T,, is €/2-close to P #s;- Denote the indices 1 < i < d corresponding to S; # 0 by I.

k3

The vertex v is called I-good.

In essence, we prove that if a tree is far from being free from the forbidden family, then there

are many bad vertices.

Lemma 4.4.15. If R # C and there are at most §|T| bad vertices in T, then T is e-close to
Pr.

Proof. We show that by changing the color of at most an € fraction of the vertices, no tree in
F can appear in T. Let us consider the current coloring of T. Considering the root of any
forbidden tree appearing in 7', it can be either bad or I-good for some I C {1,...,d}.

Consider the following set U: for any I-good vertex v, add all of its children corresponding
to indices from I to U. If a vertex is I-good for more then one set I # {1,...,d}, pick one
arbitrarily. Now remove from U any vertex v € U which is a descendant of another vertex in U.
Since these are vertices in a rooted tree, this is possible and uniquely determined. Note that for
every vertex in U, the subtree rooted in it is €/2-close to being free from a corresponding family
which is stronger than F.

Define the new coloring: Every bad vertex which is not a descendant of a vertex in U is
recolored to a color in C'\ R, this recolors at most an €/2 fraction of the tree’s vertices. For each
vertex v € U recolor the subtree rooted in it to be free from the corresponding strengthening
of F. Since the subtrees rooted in the vertices of U are pairwise disjoint, we have recolored at
most another €/2 fraction of the tree’s vertices.

Suppose that a forbidden tree ¢ appears in the new coloring. Its root must appear as either
a bad vertex or an I-good vertex, as it obviously cannot be a descendant of a vertex from U.

50



The root of ¢t cannot appear in an I-good vertex v, since there exists some ¢ € I for which ¢ is in
Si, and therefore T), is free from ]:15’ The root of ¢ also cannot appear in a bad vertex, since
we have recolored all bad vertices which are not descendants of U to a color in C'\ R. Thus
there can be no forbidden topological subtrees in the new coloring.

We have recolored at most an € fraction of the vertices to get a coloring in P, and thus the
original coloring is e-close to Pr. O

In the following we will use the converse of the above:

Lemma 4.4.16. If F is e-far from Px, then there are at least an €/2 fraction of bad vertices.

We can now state the algorithm and prove its correctness.

Algorithm 4.3 MissingColor(7',F e,0)
Sample 10e!log(d~1) vertices uniformly and independently
for every sampled vertex v do
Query c[v]
if Flc(v)] = 0 then accept the vertex v
for every S € (P(Flc(v)])\{0}) and 1 <i <d do
Call GeneralTest(T,,,F? ¢/2, 2—1(““/%‘))
if there exists a c(v)-useful d-tuple (F2!, F52, ... ’]_—de) such that for each 1 <1 < d we
either accepted a call on T, with ]-'l-Si or S; = () then
Accept the vertex v {v is an I-good vertex}
Continue with the loop to the next vertex
else reject T and terminate {v is a bad vertex}
if there was no rejection then accept 1" and terminate

Lemma 4.4.17. Assuming by induction that calls to GeneralTest on stronger families are
correct (with 1-sided error whose probability is not more than the corresponding call parameter),
MissingColor always accepts colorings in P, and rejects colorings which are e-far from Pr with
probability at least 1 — 9.

Proof. Note that if the coloring is in P then there are no bad vertices and MissingColor will
always accept. According to Lemma 4.4.16, if T is e-far from Pz then there exist at least
€/2 - |T| bad vertices. Thus the probability of getting one in a sample is at least €/2, and the
probability of not finding such a vertex in k samples is at most (1 — €/2)*¥ < exp(—ke/2), and
with k& = 10e ' log(6~') samples the probability of not sampling a bad vertex drops below 4 /2.

If a bad vertex v colored ¢ is sampled, then for any useful d-tuple (.7-"13 Y ]:2S 2. ,]-"C}q 4) there
exists some 1 < i < d such that S; # () and T, is €¢/2-far from P FSi- By the induction hypothesis
all calls over subtrees with stronger families (and parameter €/ i) will reject with probabilities
as required. To accept a false positive we need a useful d-tuple (ff L 5 2. ,.ng) for which
we accepted for some 1 < i < d such that S; # (). By a union bound the probability that this
occurs is at most /2.

Concluding the proof we have that the probability for either failing to sample a bad vertex
or failing to detect that it is bad is at most 4. O
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4.4.3 Query complexity

We will conclude the proof of Theorem 4.1 by calculating the query complexity of the algorithm.

Note that it is independent of n and quasipolynomial in €' for any fixed F and d.

Lemma 4.4.18. Given a full degree d tree T, a forbidden family F such that m = |V (F)|, a
distance parameter €, confidence parameter § and an oracle access to a coloring function for the

vertices of the tree ¢ : V(T') — C, the number of queries performed by GeneralTest is at most
6—(md)o(1) log(e~1)loglog(6—1)

Proof. Denote the worst-case query complexities of GeneralTest, MissingColor and AllColors with
distance parameter €, confidence parameter §, degree bound d and family F with m = |V (F)|
vertices in total by G(e, d,d, m), M(e,d,d,m) and A(e,d,d, m) respectively. Note that unless
{0} € F, |F| <|V(F)|, and thus we will regard both as bounded from above by m. By the
definition of GeneralTest we have

G(Ea 67 da m) < maX{A(ev 57 d? m)v M(67 57 da ’I?’L)}

First let us deal with the base case where m = 0 and § > 0,e > 0. In this case we either
have an empty family and accept without performing any queries, or we have an empty tree and
reject without performing any queries.

Now let us consider the case of m > 0 and § > 0,e > 0. Each call to MissingColor entails
the query of 10¢~ ! log(6—1) vertices. Each vertex sampled during the execution of MissingColor
generates d - 2™ calls to GeneralTest with distance parameter €/2 and confidence parameter
. That is,

-1 -1 -1 -1 m 19
M(e,d,d,m) < 10 " log(d ") + 10e” “log(d~ ") - d2™ - G | €/2, 2ggm ™ 1

To analyze the query complexity of AllColors, consider the recursion tree. That is, the
directed tree where every vertex is an instantiation of the algorithm, and an edge (u,v) exists
when v invoked v. The null-recursion tree Y of F is the subtree of the recursion tree comprised
of null recursive calls with F. Note that all calls that go from Y to a vertex outside of it are
with a smaller value of m.

Since every recursive call within the null-recursion tree multiplies the distance parameter
by (1 + ﬁ), its depth is bounded by 100d - log(¢~!). The minimal distance parameter used

in the null-recursion tree is €, and the minimal confidence parameter is ¢ - (2d)*100d'l°g(6_1) =
§el00dlogd and therefore the function call for every vertex in the null-recursion tree performs
16dlog(56150d10gd71) < 2Ha3e21og(67 1) queries. AllColors performs at most (d — 1)
null-recursive calls for every vertex sampled, and thus every vertex in the null-recursion tree has
at most 2!'d*e~2log(671) children. Therefore, there are at most (2'1d*e=2 log(dfl))lood'log(eil)

instantiations in the null-recursion tree. Additionally, every such instantiation performs at most

at most

d2™ calls to GeneralTest with distance parameter at least 1755, confidence parameter at least

100d log d . . : 1
j;w(if)fﬂ and family with at most m — 1 vertices, for very vertex queried.

Thus we can bound the number of queries used in the entire null-recursion tree by:

) 100d-log(e~ 1)+ 100d-log(e~1)

1
(2" d*e 2 log(67") +(2Md"e 2 log(071))

.d2mG <1060d’ 56100dlogd’ m — 1)
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And thus we can bound G(¢,d,d, m) < max{A(e,d,m), M (e, §, m)}:

114 —2 —1y) 100d-log(e™)+1 m € 100d log d
G(e,6,d,m) < (2" d"e 2 log(57)) L4 d2" - G ( 557 0¢ m— 1

Now unfold the recurrence relation to get

101md-log(e~!
G(e,8,d,m) <m (211d4e_2 log((s—le—lOOmdlogd)) g(e™)

101md-log(e~*
<m (218md5673 logdlog(6*1)> sl

— ef(md)o(l) log(e~ 1) loglog(s—1)

We note here that the dependency on § can always be made logarithmic by first running
the algorithm with 1/2 as the confidence parameter, and then repeating the whole test log(5~!)

independent times.

4.4.4 Reduction from a general tree to a full tree

In the previous subsections we assumed that in the d degree tree T all vertices have an out-degree
of d or 0. In this section we will describe how to reduce the case of a general degree d tree T
(that is, where some vertices might have degree 1,...,d — 1) to the case of a full tree.

We define a new color, ¢;, which we think of as the color given to the extra leaves. For any
vertex in 1" with an out-degree smaller than d we add child vertices colored ¢; for all of the
missing children. For the leaves in 1" we also add d child vertices colored c;. For any d colors
c1,...,¢4 € CU{c:} (this is an ordered choice with repetition), we add a tree to F which has

only a root colored ¢; with d children where the ith of which is colored ¢; for all 1 <14 < d.

Claim 4.4.19. Given the colored tree T and the family F, denote the new colored tree by Ty
and the new family by Fy. The following holds:

e If a coloring of T is free from F then the coloring of Ty, described above is free from Fy
and vice versa, that is T € Pr <= T, € Pr,.

e The distance of the colored tree Ty from being free of Fy is at least ﬁ the distance of T
from being free of F, that is ﬁd(T, Pr) <d(T,,Pgr).

Proof. For the first item suppose first that 7' € Px, and assume that there exists a tree Ty € F,
that appears in 7. By its construction, all the vertices colored ¢; are in its leaves, and thus
Ty € F, and T contains this tree from F, as Ty does not have a vertex colored c;, a contradiction.
The other direction of this item is a consequence of the second item, proved next.

For the second item first note that the tree 77 € Px, which obtains the distance of T}, to
Pr,, that is, the tree that has d(Ty,T") = d(T}, Pr,), is such that all of the vertices colored ¢; in
T’ are leaves, and if we remove them all we obtain a tree in Px. Supposing this was not the
case, if T" had vertices colored ¢; which were not leaves, then it would not be in Pz, since it
would contain one of the new trees introduced to F;. On the other hand, it is easy to see that
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all the leaves in Tj, which were colored ¢, retain their color in 7" (since with this color they
can never be in any Ty € F). If after removing all of the vertices colored ¢; from 7" we do
not obtain a tree in Pr then there must be some tree Ty € F which appears in 7", and thus
its corresponding tree in JF, appears in 7", in contradiction to the assumption that 7" € Px,.
Therefore, if we recolor a d(Ty, Pr,) fraction of the vertices in T} to be free from Fj, and then
remove the vertices colored c¢;, we will get a coloring of T" which is free from F. Since T} may
have at most as many as d + 1 times the vertices of T, we get the second item. O

4.4.5 Extending AllColors to trees with unsorted children

Recall that in the analysis and statement of the AllColors algorithm, we assumed that for
every vertex v € V(T'), its children are sorted by increasing subtree size, that is that we have
\V(Ty,)| < |V(Ty,)| <...<|V(T,,)|- This assumption helps clarify the discussion, as it helps to
make for an easier definition and use of i-proper useful d-tuples. In this section we will explain
how to avoid this assumption. Note that we are here under the assumption that the tree is full,

see Subsection 4.4.4 above for proof that this assumption does not limit generality.

First, we will need to define a “sorting function” for the children of each vertex:

Definition 4.4.20. Let v € V(T') be a vertex, and fix some sorting S of its children by non-
decreasing subtree size. The sorting function of v, o, : [d] — [d] is the function mapping the
positions in the sorting S to the original children of v. That is, 0,(7) = j means that the i’th
smallest child of v is v;.

Note that o, truly depends on v as well as T'. A simple example of how this affects definitions

is the notion of a structurally limiting vertex.

Definition 4.4.21. A vertex v € V(T) is structurally limiting if any coloring of T, contains

(1)
a tree from ]:]:[(C(;J)]

The definition of the heaviest subtree changes in a similar manner.

Definition 4.4.22. The heaviest subtree of T', denoted H (T'), is the subtree created by removing,

for every v € V(T'), the subtree T, ,, from the tree.

The main change in the proof of the testability of the coloring property is the following new

definition of an i-proper d-tuple, and the corresponding changes wherever it is used.

Definition 4.4.23. A ¢(v ) useful d-tuple (]-" ,...,fid) for v € V(T) is i-proper if it holds
that U;<; So, () [ ()], S, (5) # 0 and for all j such that 1 < j <4, if S, ;) # 0 then T,
is 1gg5-close to P(F, "“(”) and 1f Sou(j) = 0 then T}, . is € + gzz-close to P(F).

The algorithms, definitions and proofs now follow those of subsections 4.4.1, 4.4.2, 4.4.3 and

4.4.4 almost verbatim, using the new definitions and notation.
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4.5 A lower bound for testing against a family of forbidden
induced subtrees in a balanced binary tree

We sketch here an adaptation of the lower bound from Section 3.7 for testing for a family of
forbidden subgraphs in a balanced binary tree. The proof uses Yao’s principle, which is the

standard tool in this setting. Let us first state the lower bound formally:

Definition 4.5.1. Let F be a set of colored full balanced binary trees, and let T' be a fixed full
balanced binary tree. We denote by Pjé‘b the set of all colorings of T" which do not contain any
of the colored trees from F as an induced subgraph.

Theorem 4.3. There exists a family of 3-colored trees F such that any nonadaptive algorithm
A, which accepts all colorings in Pﬁ_yb and rejects all colorings which are 1/5-far from it with
probability at least 2/3, must perform at least Q(h) non-adaptive queries, or at least Q(log(h))

adaptive queries, where h is the height of T'.

Proof sketch. To present the property it is convenient to use the set of colors {1,2, X'}. The set
of forbidden subtrees includes all trees with one root and two children, apart from the following:
The three possibilities where the two children have the same color as the root, and the two
possibilities where the root is colored “X” and the children are colored one with “1” and one
with “27.

We present two input distributions Dgyoq and Dyeq, such that the distribution Dggeq is
supported on inputs which are in Pﬁ_yb and Dy,g is supported on inputs which are 1/5-far from
P}“b. We then prove that for any set () of at most ¢ = « - h vertices of T, for some fixed «, the
variation distance between Dgooq and Dyqq when projected on @ is at most 1/3. The fact that
the two distributions are indeed supported on the correct sets and the proof that projections of
them on small subsets have small variation distance is almost identical to that of Section 3.7.

Both distributions are constructed by first choosing, randomly and uniformly, a level [ in
the balanced tree, except for the two bottom levels (that is, we choose a number [ between 1
and h — 2). In both distributions all vertices at or above Level [ are colored X. In Dgood, at
level I 4+ 1 each pair of siblings is uniformly and independently colored with either 1 and 2 or 2
and 1 (in that order). In Dy.q, at level [ + 1 one vertex of each pair of siblings is colored with
X and the other vertex with 1 or 2 (we uniformly and independently choose among the four
options), while at level I + 2 each pair of siblings whose father was colored with X is uniformly
and independently colored with either 1 and 2 or 2 and 1. In both distributions, every vertex
not already colored by the above is colored by 1 or 2 according to the color of its lowest colored
ancestor.

The main thing to note about the family F is that colorings in it can be characterized as
follows: Pick some vertex v at level £k < h. Then it must be that the number of 1s appearing in
the leaves descendant from v must be either 0,2 or 2*~1, and none of them may be equal to X
unless all of them are. That is, every “binary search interval” is either all 1, all 2, exactly one
half of each, or all X.

Note that in Dy,q, the leaves will contain disjoint intervals far from following the above
characterization, and therefore the coloring will be far from Pﬁ_yb.

We refer to Section 3.7 for the full proof that the two distributions are indistinguishable
with a small number of queries. The general idea is that if none of the queries or their lowest
common ancestors is in Level [ or [ + 1, then the two distributions look the same. While in
Section 3.7 only leaf queries are allowed, this does not significantly change the proof. O
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Note that one can construct an algorithm for distinguishing between the two distributions in
the proof sketch with O(log(h)) queries, by picking a root to leaf path in the tree and then using
binary search to find the level | and check the computation there. In fact, a similar procedure
(over a random sample of leafs) gives an O(log(h)) adaptive test or an O(h) non-adaptive test

(for a any fixed €) for the property itself, over full balanced binary trees of height h.
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Chapter 5

Partial Property Testing

5.1 Introduction

When proving that testing a property requires many queries, one might ask “how strong is
this requirement?”, which can be illustrated with an example. Alon et. al. [AKNSO00] studied
the testability of formal languages, and proved that the language L = {uuRvvf|u,v € {0,1}*}
requires at least Q(y/n) queries to test (formally, the property L N{0,1}" requires that many
queries to test). Informally, one may say that the “reason” for this language being untestable
is the difficulty in guessing the length of uu’. This can be made formal by considering the
languages L; = {uufvvf|u,v € {0,1}*, |u| = i}, which form a partition of L. A simple sampling
algorithm can perform O(e~!) queries to an input and distinguish between inputs in L; and
inputs e-far from L. It is also important to note that [L N {0,1}"| = 29 but its partition
Lon{0,1}",..., L, N{0,1}" is only to a number of subsets linear in n.

This phenomenon is not unique to the language considered by Alon et. al. Another example
is that of graph isomorphism, first considered in the property testing framework by Alon et.
al. [AFKS00] (and later by Fischer and Matsliah [FMO08]), and shown to require at least Q(n)
queries to test. In this setting we consider a pair of unknown graphs given by their adjacency
matrices, and we are charged with distinguishing the case where they are isomorphic from the
case where more than en? of their edges must be changed to make them isomorphic. In this
case, the size of the property is 26(”2), and we can partition the property into n! properties
{Pr|m € S}, each defined by Pr = {(G1,G2)|r(G1) = G2}, such that a sampling algorithm can
perform O(e™!) queries to an input and distinguish between inputs in P, and inputs e-far from
the original property.

Thus it is tempting to ask whether this is a general phenomenon. Can any property P be
partitioned into k = |P|°(") properties Py, ..., P, such that the task of distinguishing inputs in
P; from inputs far from P can be performed with a number of queries that depends only on €?

This question has a strong connection, in fact a near-equivalence, with the notion of a MAP
as defined by Gur and Rothblum [GR15]. They define a MAP (Merlin-Arthur proof of Proximity)
as a testing algorithm that first reads a “proof string” in whole, and uses it to test the given
input. The requirement is that an input in P will have some corresponding proof that causes

high probability acceptance, while for e-far inputs for every proof there will be a high probability
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of rejection. The connection to our framework is that the proof corresponds to the representation
of the alleged 7 such that the input is in P;, making the required proof length equal to [log k|
for the optimal k.

The first main result of this chapter is a proof that an efficient decomposition does not always
exist. In fact, there exist properties for which any such partition must be to a number of subsets
exponential in n (and equivalently they do not admit a MAP with an o(n) proof size for testing

with a number of queries independent of n).
To prove this result we in fact show the non-existence of a strictly weaker testing scenario,
that would correspond to being able to test just for the biggest P; in the alleged partition.

Definition 5.1.1 (Partially testable property). For P C {0,1}" and P’ C P, we say that P is
P'-partially testable with q queries if there exists an algorithm A that gets as input a parameter
e > 0 and query access to an input string x € {0,1}" and outputs accept or reject such that:

e If 2 € P/, then A accepts with probability at least 2/3.
o If d(z, P) > ¢, then A rejects with probability at least 2/3.

If furthermore all queries performed to the input can be decided before any of them are made,
then the algorithm is non-adaptive, and else it is adaptive.

Obviously, if P is testable with ¢ queries, then for any subset P’ C P it is P’-partially
testable with the same number of queries. On the other extreme, for any property P and any
element x € P, we have that P is {z}-partially testable with O(e~!) queries.

The partitions described above are in fact partitions of P into subsets P, ..., P; such that
P is Pj-partially testable for every 1 < i < k. If there exists such a partition into not too many
sets, then there must be at least one set that is relatively large. Our main result shows that
there exists a property P for which all subsets P’ C P such that P is P’-partially testable are

small. In fact, all linear codes with large dual distance define such properties.

Theorem 5.1. Let C C {0,1}" be a linear code of size |C| < 261" and dual distance T'. For
every C' C C, if C is C'-partially testable with q adaptive queries, then |C'| < |C|2-9T'/a),

We will first prove, as a warm-up, a weak version of Theorem 5.1 in Section 5.4 which will
apply for ¢ non-adaptive queries and imply the bound |C’| < |C|2~ €T/ ). This proof will use
some of the key ideas that will later manifest in the proof of the theorem in its full generality in
Section 5.5.

Remark. Theorem 5.1 holds for every property P which is I'-wise independent. The only use of
the linearity of C is in that dual distance I" implies I'-wise independence (see Theorem 5.3.8).

An important question is the existence of codes with strong parameters. A random linear
code C will have T' = O(n) and |C| = 2™ with high probability (this is implied by the
Gilbert-Varshamov bound [Gil52, Var57]; MacWilliams et. al. [MST72] showed that this can
also be obtained by codes which are self-dual and thus also have good distance), and thus by

Theorem 5.1 we will have that for any C’ C C such that C is C’-partially testable with ¢ queries,
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|C7] < |C)|279(/9), For a constant g, this implies that partial testability will only be possible
with exponentially small subsets. The best explicit (and reasonable uniform decision complexity)
construction known to us is that of [ABI86], which gives |C| = 29" with T' = ©(n/logn), and
thus the bound deteriorates to |C’| < n©M|C|2-9("/9) which is polynomially worse than the
non-explicit bound, but is still a strong upper bound on the size of C’.

Theorem 5.1 implies that there exist properties P that require a lot of queries to test, and
that every partition of P into subsets P, ..., P, such that P is P;-partially testable for every
1 < i < k requires that k£ will be very big. One might ask if we can prove a converse. That is, if
P can be tested with a few queries, can we find such a partition with a small k7

This problem can also be phrased as whether there exists a general trade-off between testing
hardness and partitionability to easily partially testable properties. For the converse direction,
of whether partitionability implies an efficient test for the whole property, we present results

that revolve around the stricter notion of proximity oblivious testing:

Definition 5.1.2. A non-adaptive, 1-sided proximity-oblivious q-test for a property P with
detection function p(e) is an algorithm that makes ¢ non-adaptive queries to the input (i.e. the
queries are all made before the answers to them are received), and based on those answers
accepts or rejects the input in a way that satisfies the following:

e If the input satisfies P then the algorithm accepts with probability 1.
e If the input is e-far from P, then the algorithm rejects with probability at least p(e).

Note that the algorithm is given the input length n in advance, but is not given €. A partial
proximity-oblivious g-test is defined in the analogous manner.

The simplest conceivable proximity-oblivious test would be a 2-test, making only 2 queries.
Such tests exist for example in some monotonicity testing scenarios. We prove that partitionability
into properties that are 2-testable implies a sublinear query test (that is not proximity-oblivious)

for the entire property.

Theorem 5.2. Let P, Py, ..., P, C {0,1}" be properties such that for every i € {1,...,k}, P;
has a 1-sided error proximity-oblivious 2-tester with detection function p(€). If € > 0 is such that
p(e/2) > 0, then for n large enough, as a polynomial function of 1/p(e/2), there is a one-sided
error non-adaptive e-tester for P =\J¥_| P; with query complexity O(n®3e1) -log(k). This also
holds if for every P; we only require a 1-sided error proximity-oblivious P;-partial 2-test for P.

The converse of the above immediately implies an observation interesting enough to state on

its own.

Corollary 5.3. If a property P requires Q(n®) many queries for some fized 3 > 2/3, then
there is no way to partition P into polynomially many properties (even not necessarily disjoint)
admitting 1-sided prozimity-oblivious 2-tests (or even the corresponding partial tests).

Theorem 5.2 is proved using a special test that we call a universal test, that works by selecting
every index 7 for querying with probability O(n~3¢~1) . log(k), independently of other indexes.
We prove in Theorem 5.10 below that such a kind of test will work for any property admitting a
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proximity oblivious 2-test, regardless of how that 2-test works. This universal test is very close
to what is defined as a sampling based test in an independent work [GR13] of Goldreich and Ron.
In particular, our proof yields the following corollary, which partially addresses a question from

[GR13] about whether proximity oblivious tests are translatable to sample-based ones:

Corollary 5.4. Let P be a property that has a 1-sided error proximity-oblivious 2-tester with
detection function p(e). If € > 0 is such that p(e/2) > 0, then for n large enough, as a polynomial
function of 1/p(€e/2), there is a 1-sided error sample based test (see [GR13], Definition 2.3) with
query complexity O(n*/3¢=1) - log(k).

For proximity oblivious g-tests with ¢ > 2 the situation is more complex, and we can only
prove an analog of Theorem 5.10 (and by it Theorem 5.2) where the power of n in the query
complexity depends (rather badly) on both ¢ and p(e/2).

To formulate the theorem achieving this, we say that a set R of indexes is a witness against
the input for a property P, if the restriction of the input to R is such that it cannot be the
restriction of any member of P (or alternatively, this restriction cannot be extended to an

alternate input that satisfies P).

Definition 5.1.3. For v € (0,1), the y-universal sampler selects a set R C [n] where, for every
i €[n], Pr[i € R =n"".

We prove that the above sampling technique, essentially that of a sample-based tester as in
[GR13], is indeed a core of a “universal test” for any property that has a (possibly “unknown”)

1-sided proximity-oblivious g-test.

Theorem 5.5. For every property P with a proximity oblivious q-test with detection function
p(€) there exists v depending on q and p(e/2) (for every €), so that for n large enough and
every e-far input over {0,1}", the v-universal sampler finds a witness against it with probability
1—o(1).

Its immediate corollary (through standard probability amplification and union bound) gives
us a sub-linear query complexity test for any property decomposable into not too many (at most
exp(n®M)) properties where each of them has a proximity oblivious test, as long as they have

the same detection function p(e).

Corollary 5.6. If P = Ule P; is a property such that every P; has an oblivious 1-sided error
(prozimity oblivious) q-test, all with the same detection function p(e) (but not necessarily the
same test), then for n large enough the following is a test for P with O(log(£)n'~7) query
complexity, where we use the v of Theorem 5.5:

Select a set R C [n] that is the union of 2log(¢) sets, each chosen according to the y-universal
sampler. If |R| > 4log(£)n'~" then accept immediately, and otherwise query the input on all
indexes of R, reject if R is a P;-witness against the input for every i € [{], and accept otherwise.

Finally, we prove a result in the other direction, hinting that maybe some role for proximity

oblivious testing is essential. Using a very simple construction we prove the following:
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Theorem 5.7. For every fized k there is a property P, so that 1/5k-testing P (even adaptively)

k—1

requires Q(nl_l/k) queries, while P is still decomposable to at most n many properties so

that each of them is even e-testable in itself with O(1/€) many queries for every €; in fact each
of them will have a prozimity-oblivious 1-sided k-test with the detection function p(e) = O(ke).

Until now we discussed the relation of Theorem 5.1 to the impossibility of decomposing a
property to testable ones. However, there may be use in its stronger statement of not having
even one large sub-property for which there exists an efficient test. The proof of Theorem 5.1

immediately gives the following corollary.

Corollary 5.8. Suppose that P is a property for which |P| < 26%1”, and C is any linear code
with dual distance T so that |P N C| > |C|27Y/9. Then P requires at least ©(q) many queries to
test (or even P N C-partially test).

5.1.1 Related work

The notion of partial testability, while not defined before, is implicit in previous works on PCPs
(Probabilistically Checkable Proofs). The long code tester of Hastad [Has01] accepts inputs
which are codewords in the long code, and rejects inputs which are far from being k-juntas for
some k. Since codewords in the long code are dictatorships (1-juntas), this is an instance where
the fact that being such a k-junta is dictatorship-partially testable is used to construct PCPs.

Our notion of a partition is similar to existing notions in computational complexity. For
a partition P = Py U P, U ... U P, where for every 1 < ¢ < k, P is P;-partially testable, the
designation of P; can be seen as a “proof” that a certain x is in P. If x € P, then there
exists some P; such that x € P; and therefore a P;-partial tester for P will accept it with
high probability. If z is e-far from P, then all P;-partial testers for P will reject it with high
probability.

This is similar to the notion of a Probabilistically Checkable Proof of Proximity (PCPP), first
introduced by Ben-Sasson et. al. [BSGH'06] (a precursor to this is found in [Sze99]). PCPPs
are to property testing as NP is to P. A ¢g-query PCPP for a property P C U is an algorithm
that gets as input € U and a proof of prozimity = € {0,1}!. The algorithm must perform at
most g queries to z and 7 and fulfill the requirement that if x € P then there exists a proof m
that causes the algorithm to accept with high probability, but when x is e-far from P then for
any proof 7 the algorithm rejects with high probability. In our setting, the algorithm is allowed
free access to a proof of length | = log(k), but we expect [ to be sublinear in the size of x.

Rothblum et. al. [RVW13] introduced the notion of an Interactive Proof of Proximity (IPP).
In an IPP for a property P, the tester can also communicate with a prover in addition to
querying the input z. If x € P then the prover has a strategy that will cause the tester to accept
with high probability. When z is e-far from P, the prover cannot make the tester accept with
high probability. Rothblum et. al. show that all languages in NC admit such a protocol with y/n
query and communication complexity and polylog(n) communication rounds. Protocols of this
kind are only interesting for the case where the communication complexity is sublinear, or else

the prover may just give the input to the tester.
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Independently of the research performed towards this thesis, Gur and Rothblum [GR15]
weakened the IPP model to create Merlin-Arthur Proofs of Proximity (MAP). Gur and Rothblum
define a MAP as a proof-system for a property P where for an input x and a proof 7 the verifier
reads the entire proof m and queries ¢ bits from the input x. If z € P, then there exists a proof
7 such that the verifier accepts with high probability, and if = is far from P, then for every proof
m the verifier rejects with high probability. Since we can trivially set m = z, the only interesting

cases are where the length of 7 is sublinear.

The notion of a MAP with ¢ queries and proofs of length ¢ for a property P is equivalent to
the existence of k = 2¢ sets Py, ..., P, such that P = P,UP,U. ..U P, where for every 1 <1 <k,
P is P;-partially testable with ¢ queries.

Gur and Rothblum give several constructions of properties where a MAP with a sublinear
length proof greatly reduces query complexity. Gur and Rothblum also introduce the Tensor
Sum family of properties, and prove that for every constant o > 0 there exists an instantiation

of Tensor Sum such that any MAP for it that performs ¢ queries must require a proof of length

Q ("lq_a ) This bound is slightly weaker than the implication for decomposability of Theorem 5.1
proved in this chapter for our property (however, their property is not a high dual-distance code,
so our result would not apply directly). There is no known bound on the size of a sub-property

of the Tensor Sum properties admitting a partial test, only on decomposability.

Their lower bound is proved by an extension of the communication complexity technique
of Brody et. al. [BBM12] to Merlin-Arthur communication complexity. First proving a lower
bound for 1-sided testing this way, they then use a general conversion technique (at some cost
to both proof length and query complexity, see below) to 2-sided testing. Gur and Rothblum

also prove that this trade-off is almost optimal for the Tensor Sum properties.

Additionally, Gur and Rothblum show separations between the power of MAPs and that
of IPPs and PCPPs. For their proofs they also show that 2-sidedness may only give a MAP a
polylog(n) factor improvement in proof length and query complexity over a 1-sided algorithm.
Their result implies a connection also between 1-sided and 2-sided partial testability, although

not one that would preserve O(1)-query partial testability.
Regarding the testing versus proof length trade-off question, they show it for the very simple

case of “proof-oblivious” testers, i.e. algorithms that make their queries before reading the alleged
proof. By contrast, the main difficulty in proving our preliminary trade-off result is exactly that
the tests for different P; could have differing query distributions (even that each of them in itself
is proximity oblivious).

Another angle to our methods related to the above trade-off comes from the recent work of
Goldreich and Ron [GR13]. Their work is centered on what they call sample-based algorithms,
which are testing algorithms that select all their queries uniformly and independently at random.
For a number of queries that is a fixed power of n where n is large enough, this is virtually
identical to the way our universal tests work, where every index is independently chosen to be
queried with some fixed probability. Indeed they raised the question of whether any property

that is testable by a proximity-oblivious g-test can also be tested by a sublinear complexity
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sample-based test, for which we give a partial positive answer for 1-sided error tests. Golreich
and Shinkar [GS14] also define 2-sided error proximity oblivious g-tests, which we do not analyze

here.

5.2 General themes

For the proofs of our main result we develop new techniques that are in some ways more flexible
than the traditional use of Yao’s method for proving property testing lower bounds. We believe
that these techniques hold promise for other lower bound situations where using Yao’s method
seems to hit a wall.

As with Yao’s method, we contrast the behavior of a supposed test when it is run over an
input chosen according to some distribution over “yes” instances, with its behavior when it is
run over an input chosen according to some distribution over “no” instances. However, while
in the traditional method these two distributions are chosen based only on the property (and
should work against all possible algorithms of a given class), here the distributions are in fact
tailor made for the specific analyzed algorithm. Note that special care must be taken in the
definition of such an input distribution. It may not depend on the “real-time” behavior of the
algorithm (i.e. it may not adapt itself to the identity of the random queries that the algorithm
has made), and is instead constructed based only on the description of the algorithm.

The second theme is the use of Shannon entropy. Our goal here is to prove that if C' is
(C'-partially testable, then C’ cannot be too large. For achieving this we assume that a testing
algorithm exists, and then contrast a uniformly random choice of a word in C’ with another
word chosen from a “dangerous” distribution over words far from C. The assumption that the
test in fact distinguishes the two distributions allows us to show that a uniformly random choice
of a word in C’ has low entropy, and hence C’ must be small. Using entropy instead of direct
counting is crucial for applying our main method to obtaining a bound against 2-sided error
tests, rather than only 1-sided error ones.

A third theme used in the proof against adaptive algorithms is that of first parsing the
input through a specially constructed injective mapping, called a “reader”, which is crucial for
“exposing” low-entropy portions in this setting. We are in fact considering not just one input

distribution, but several of them as the reader is constructed.

5.2.1 Proving a bound against non-adaptive algorithms

The bound against non-adaptive algorithms showcases many of the general themes. A supposed
(C'-partial test with ¢ queries is in essence a distribution over query sets of size ¢, such that with
high probability the chosen query set is one that highlights a difference between members of
C' and inputs far from being in C. As a toy example, assume first that the test is additionally
1-sided, and “well-spread” with respect to the probabilities of querying any particular index. In
this case, for every e-far input, the high probability of finding a forbidden substructure (as this

is the only way a 1-sided test can reject) translates to having many disjoint g-tuples of indexes
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where in each of them there is a value that a member of C’ cannot take (as a hypothetical
forbidden structure must exist). This would give a cross product bound on the size of C”.

As our tests are not necessarily “well-spread”, we will construct a specialized distribution
that depends on the specific testing algorithm (but is independent of any particular running
instance). For handling 2-sided tests we use a feature of entropy that allows for bounds analogous
to combinatorial cross product bounds, namely the subadditivity of the entropy measure.

To construct a “dangerous” distribution over words far from being in C', we first take note of
the “heavy” indexes, which are those bits of the input that are with high probability part of the
query subset of the investigated testing algorithm. There will be only a few of those, and our
distribution over far words would be that of starting with a restriction of a uniformly random
word in C’ to the set of heavy indexes, and augmenting it with independently and uniformly
chosen values to all other input bits. When contrasted with the uniform distribution over all
members of C’, we obtain that there must be many query sets that show a distinction between
the two distributions over the non-heavy indexes with respect to the heavy ones. This means
that the values of the non-heavy indexes in each such query set do not behave like a uniformly
independent choice, and thus have a corresponding entropy (conditioned on the heavy index
bits) that is significantly less than the maximal possible entropy. Having many such query sets
in essence means that we can find many such sets that are disjoint outside the heavy indexes,
which in turn leads to an entropy bound by virtue of subadditivity (when coupled with general

properties of linear codes).

5.2.2 Proving a bound against adaptive algorithms

An adaptive algorithm cannot be described as a distribution over query sets, but rather as a
distribution over small decision trees of height ¢ that determine the queries. Therefore low-
entropy index sets cannot be readily found (and in fact do not always exist). To deal with this
we employ a new technique, that allows us to “rearrange” the input in a way that preserves
entropy, but does admit disjoint low-entropy sets.

This new construction is a reader, which in essence is an adaptive algorithm that reads the
entire input bit by bit (without repetitions). As this adaptive algorithm always eventually reads
the entire input, it defines a bijection between the input to be read and the “reading stream”,
i.e. the sequence of values in the order that the reader has read them.

The construction of this reader is fully based on the description of the g-query adaptive
algorithm that C’-partially tests for C' (again we assume that such an algorithm exists). In
fact we contrast the uniform distribution over members of C’ with not one but many possible
distributions over inputs far from C. At every stage we obtain that, as long as our reader has
not yet read a large portion of the input, the adaptive test can provide a decision tree over the
yet-unread bits that shows a difference between a uniformly random member of C’ (conditioned
on the values of the bits already read) and an independently uniform random choice of values
for the unread bits. Our reader will be the result of “concatenating” such decision trees as long

as there are enough unread bits. Thus, in the “reading stream” we have sets of ¢ consecutive
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bits, each with low entropy (as it is distinguishable from independently uniform values). When
there are not enough unread bits left, we read all remaining bits arbitrarily, and use general
properties of large dual distance codes to bound the entropy on that final chunk.

The method of constructing a reader not only allows us to do away with the exponential
penalty usually associated with moving from non-adaptive to adaptive algorithms, but we
additionally obtain better bounds for non-adaptive algorithms as well. This is because a reader
can do away also with the penalty of moving from the situation of having many low-entropy
query sets to having a family of sets disjoint outside the heavy indexes, in essence by constructing
the reader for the uniform distribution over C’ based on not one but many “dangerous” input

distributions.

5.2.3 Testing decomposable properties through universal testing

Suppose that a property P defined over {0,1}" is decomposable to properties Py, ..., Pk, so that
each of them is in itself e-testable with g(e)-queries for every ¢ > 0 (the same arguments work
also for partial testability, but we restrict the discussion here to proper testability for the sake of
explanation). How can we test for all of P at once? The simplest way would be to juxtapose the
individual tests for every P;, which would give a test with O(kqlog(k)) many queries (accounting
also for the necessary probability amplification). However, in our discussion here k rises too fast
with n, so we would like the dependence on it to be at most polylogarithmic, even at the cost of
replacing the “base complexity” g with a value that depends (sublinearly) on n.

If the tests for all P; “behave the same”, i.e. have the same query distribution, then instead
of querying for every test individually we can do the querying once and feed it to all the tests,
and then indeed get a test with O(qlog(k)) many queries. This is essentially what is done in the
preliminary result from [GR15]. Our goal here is to replace the original test with a “universal”
test that would work for any property for which an original test with the specified parameters
exist, and then use it instead of the original individual tests.

In our first preliminary result we construct such a test whose number of queries is bounded
by a fixed power of n, but only if every P; was testable by the very restricted notion of a
1-sided non-adaptive proximity-oblivious test with 2 queries. Such tests allow for a combinatorial
viewpoint through their underlying graphs (where an edge connects two indexes i,j € {1,...,n}
if with positive probability the test query set is {i,7}). This allows for some analysis of the
probability of picking a “rejecting edge” when every index (“vertex”) is picked and queried with
probability n~? for an appropriate constant 3. The hard part in the proof is when the test has
some “heavy indexes”, corresponding to high degree vertices.

Our second result handles proximity-oblivious g-tests for any fixed ¢, but unlike the first result,
also the power of n in the resulting test depends on €. We essentially make sure that the sampling
is “forceful” enough so that any small “erroneous fragment” of the input cannot “propagate”
much if it is altered (the test will detect all possible alterations with large propagations, so such
alterations will be forbidden). This in turn allows us to analyze 1/p(€/2) many €/2-far inputs

derived from the original input, showing that unless the universal test works, they cannot be all
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rejected by the original test. The propagation requirement allowing us to analyze these inputs is

what causes a dependency on p(e/2) of the power of n.

5.2.4 A non-testable property that is decomposable to testable ones

The property of being a concatenation of two palindromes was mentioned above as one that
requires 2(y/n) many queries to test, while being decomposable to O(n) many testable properties
(in fact properties admitting a proximity oblivious 2-test). The basic idea from this property is
carried over to the properties constructed here. A parity condition ensures that instead of having
to correlate two strings (an alleged palindrome and its reverse), we would have to correlate
k strings, increasing the bound from Q(/n) to Q(n'~1/¥). As these k strings are allowed to
“slide” relative to each other, the number of k-testable properties that we decompose to would be

O(nF~1), each one corresponding to a fixing of the locations of the strings.

5.3 Preliminaries

Below we introduce the reader to some basic definitions and results regarding entropy and the
dual distance of codes. We refer the reader who is interested in a more thorough introduction of
entropy to [CT00, Chapter 2.

First, we introduce the notion of the entropy of a random variable, the entropy of a random

variable conditioned on another one, and two well-known lemmas.

Definition 5.3.1 (Entropy). Let X be a random variable over the domain D. The entropy of
X is defined to be H[X] = —>,cp Pr[X = i]log(Pr[X =1]).

Definition 5.3.2 (Conditional entropy). Let X and Y be random variables over the domain
D. The entropy of X conditioned on'Y is defined to be H[X|Y] =" op Pr[Y = y|H[X|Y = y].

Lemma 5.3.3 (The chain rule). Assume that X andY are random variables. The entropy of
the combined state determined by both random variables is denoted by H[X,Y|. This quantity
obeys the chain rule H{X,Y| = HX|Y] + H[Y].

Lemma 5.3.4 (Subadditivity). If X andY are random variables, then H[X,Y]| < H[X]|+H[Y].

The variation distance is not a natural fit in the context of entropy. A more fitting notion
of distance between distributions is divergence (also known as the Kullback-Liebler diver-
gence [KL51]).

Definition 5.3.5 (Divergence). Let p and ¢ be two distributions over D. The divergence of q
from p is defined to be D(p|lq) = >_;cp p(i) log (%).

Fortunately, divergence and variation distance are related via Pinsker’s inequality. This
was originally proved with worse bounds by Pinsker [Pin64] and has seen many subsequent

improvements, the current definitive version being that of Reid and Williamson [RW09].
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Lemma 5.3.6 (Pinsker’s inequality). Assume that p,q are two distributions over the domain D.
The variation distance between p and q is related to the divergence of q from p by the inequality

/3D llg) = drv(p, q).
We will actually be using a simpler corollary of it.

Lemma 5.3.7 (Corollary of Pinsker’s inequality). Assume that X is a random variable dis-
tributed according to p over D, and denote the uniform distribution over D by p,. The en-
tropy of X is related to its variation distance from the uniform distribution by the inequality

H([X] < log(|Dl) — 2(drv (p, pu))?.

Proof. Follows by

H[X] = —) Pr[X =i]log(Pr[X =1i])
1€D
1
_ _Z;)pr i log(Pr[X = 1] - D D))
= — Z Pr[X = i]log( Z Pr[X = i]log(Pr[X =] - |D])
i€D |D| €D

10g(|D]) — D(plipu) <log(|D) — 2(drv (p, pu))?

where the last step follows from Pinsker’s inequality. O

Let x € {0,1}"™ and J C [n]. We use z[J] to denote the restriction of x to the indices in J.
That is, the vector (z;)jes. When C' C {0,1}" we use C[J] = {z[J]|z € C}.

Let C' C {0,1}". We denote by U(C') the uniform distribution over C. In accordance with
the notation above, when X ~ U(C), X[J] denotes the random variable obtained by drawing
uniformly from C' and then restricting to the indices in J. As a shorthand we use U(C)[J]
for the distribution of X[J]. We use U;(C) to denote the result of first drawing a vector x
according to U(C), and then replacing z [[n] \ J] with a uniformly random vector in {0, 1}~ /I,
In particular, in many cases we will take C' to be a singleton, in which case we drop the curly
braces and denote this probability distribution by Uy (z).

We will make inherent use of the following result, which can be found e.g. in [MS77, Chapter
1, Theorem 10].

Lemma 5.3.8. Let C be a linear code with dual distance T'. If J C [n] is such that |J| <T' and
X ~ U(C), then X[J] is distributed uniformly over {0,1}7],

We also need the fact that a mostly random input is far from a given code with high
probability.

Lemma 5.3.9. Let C C {0,1}" such that |C] < 261", € < 1/8, and let J C [n] be such that
|J| <n/2. X ~Uj;(C) is e-far from C with probability 1 — o(1). Furthermore, this is still true
when conditioned on any value of X[J].

Proof. By Chernoff bounds, the probability that a random element X ~ U;(C) will agree with
¢ € C in more than (1 — €)n coordinates is at most exp ( — n(1/4 — €)?). Taking the union
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bound over all ¢ € C gives us the probability bound |C|-exp (—n(1/4 — €)?) = o(1). Since this
calculation assumes that X[J] always agrees with c[J], it holds when conditioned on any value

of X[J]. O

We note (and use throughout) that trivially H[X|X[J]] = H[X[{1,...,n}\ J]|X[J]]. Finally,
we will need to use Lemma 5.3.8 to help us calculate the entropy of uniform random variables in

codes.

Lemma 5.3.10. Let C be a code with dual distance I', let J C [n] be such that |J| <T', and
let C" CC and X ~U(C"). Then H[X|X[J]] <log|C|— |J|. Furthermore, this is true when
conditioned on any particular value of X[J].

Proof. We can partition C' according to the values of the bits in J:

C= | {ceClJ] =2}
2€{0,1}171

By Lemma 5.3.8, all sets on the right hand side are of size 271/1|C|. Obviously, for all z € {0, 1},
we have {¢/ € C'|d[J] = z} C {c € C|c[J] = z}, simply because C’ C C. Thus for every x € C'[J],
we have that

H[X|X[J] =z] <log|{c € C'|d[J] = 2}

<log|{c € C|c[J] = z}|.

This completes the “furthermore” part of the lemma. To obtain the X [.J]-conditioned version,
note that by the definition of conditional entropy,

HIX[X[J]]| = Egv(cnnHIXIX[J] = 2] < log|C| - [J].

Thus concluding the proof. O

5.4 Nonadaptive lower bound

In this section we prove Theorem 5.1 for the case of a non-adaptive tester and with slightly
worse quantitative bounds. For the rest of this section, set C' C {0,1}" to be a code with dual
distance I' and |C] < 281" Set € < 1/8 and assume that C is C’-partially testable for C' C C
with ¢ non-adaptive queries.

Next we define a non-adaptive tester for a property. This definition is consistent with the
standard one.

Definition 5.4.1 (Non-adaptive property tester). A non-adaptive e-tester for a binary code
C C {0,1}"™ with query complexity g(e,n) is defined by a collection of query sets {Q;}icr of size
q together with a predicate m; for each query set and a distribution u over I which satisfies:

e If z € C, then with probability at least 2/3 an ¢ € I is picked such that m;(z[Q;]) = 1.
e If d(z,C) > €, then with probability at least 2/3 an i € I is picked such that m;(x[Q;]) = 0.

For a C’-partial tester the first item must hold only for z € C".
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Set a non-adaptive tester for C’, and let {Q;};cs be its query sets.
We will be interested only in those query sets which are useful for telling a random element

in C’ from a mostly random element in {0, 1}".

Definition 5.4.2 (J-Discerning query set). Let J C [n] be such that |J| < n/2. A query set
Qi is a J-discerning set if dpy (U(C")[Qq], Us(C")[Q4]) > 1/8.

Next we prove that a tester must have a lot of such good query sets.

Lemma 5.4.3. Set J C [n] such that |J| < n/2. With probability at least 1/9 the query set Q;
picked by the tester is a J-discerning set.

Proof. Assume the contrary, that is, that with probability greater than 8/9 the query set @;
picked by the tester is such that dpy (U(C")[Q:i], Us(C")[Qi]) < 1/8.
Thus for every such @,

Pr |tester accepts| — Pr tester accepts|| < 1/8.
v pis| = il pisi] <1/

For the case where the query set picked is discerning, which occurs with probability smaller than
1/9, we have no bound (better than 1) on the difference in probability.
Overall, over the randomness of the tester,

| Pr [tester accepts| — P

u(cn UJ(é/)[tester accepts]| < 8/9-1/8+1/9 =2/9.

But by the correctness of the tester and Lemma 5.3.9, we arrive at Pry oy [tester accepts] > 2/3
while simultaneously Pry o) [tester accepts] < 1/3 + o(1), a contradiction. O

We will later want to construct a collection of J-discerning sets disjoint outside of a small
fixed portion of the input. Towards this end we prove that J-discerning sets show difference
between an element in C’ and a mostly random element in {0,1}" even when we only look
outside of J.

Lemma 5.4.4. Assume that Q; is a J-discerning set, draw Z ~ U(C")[J] and then draw
X ~U(C)|[Q;] conditioned on X[J| = Z. With probability at least 1/16 (taken over the choice
of Z), the distribution of X[Q; \ J] is 1/15-far from U ({0, 1}1Q:\1),

Proof. First note that the distance between U(C")[Q;] and U;(C")[Q;] is the expectation over Z
of the distance of X[Q; \ J] from U ({0, 1}/Q\/])  conditioned on X[J] = Z. By definition, this
is at least 1/8. By simple probability bounds, with probability at least 1/16, Z is such that the
distance of X[Q; \ J] from U ({0, 1}/9:\’I) conditioned on X[J] = Z is at least 1/15. O

However, total variation distance is not very handy for counting. We now use Lemma 5.3.7
to transform our variation bounds into “entropy loss” bounds.
Lemma 5.4.5. If Q; is a J-discerning set and X ~ U(C")[Q;], then the following inequality
holds: H[X[Q; \ J]|X[J]] <|Q: \ J| — 0.0005.
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Proof. Let L C {0,1}/! be the set of values z € {0,1}” such that when drawing X ~ U(C")[Q]
conditioned on having X [J] = z, the distribution of X|[Q; \ J] is 1/15-far from U ({0, 1}1@:"\/1).
Since the entropy is non-negative, we can upper bound

HIX[Q:\ J)IX (]
<y Z=AH[Q\ XU =+ 3 P (Z=2Q\J]

= 2l sefone””

To treat the first summand on the right hand side, we invoke Lemma 5.3.7 to obtain
H[[Qi\ J]|X[J] = 2] < Qs \ J| - 0.008.
Overall we get

S P [Z=ZH[Q\JIX[]=2+ Y Pr [Z=2Qi\J|

=7 Z~U(C)J) e {01}\L Z~U(C]J]

<|Q; \ J| — 0.0005.

Next, we would try to cover the indices in [n] with as many discerning sets as possible. We
will need these sets to be disjoint outside a not-too-big set, so that the “entropy loss” could be
aggregated. This set of “bad” indices will be the set of bits read by the tester with the highest
probability.

Definition 5.4.6. Define B = {k € [n]| Prg.[k € Q] > %}
Observation 5.4.7. |B| <TI'/2 < n/2. Therefore Lemma 5.3.9 holds with J = B.

Now we can prove that we can find many B-discerning sets which are disjoint outside of B.
Lemma 5.4.8. There exists a set Ip such that:

e Foralli€ Ip, Q; is a B-discerning set
e Foralli,j€lIp, Q;\ B and Q; \ B are disjoint
D = Ujer, (Qi \ B) satisfiesT'/2 > |D| > 18 1872+ Additionally, |Ip| > 155

Proof. We construct the set Ip greedily. Suppose that we have discerning sets covering k bits
that are disjoint outside of B. Choose a set randomly using the tester’s distribution conditioned
on it being B-discerning. By Lemma 5.4.3, this condition increases the probability of every
query set, and every bit to be in a query set, times at most 9. By the definition of B, if we
choose a query set randomly using the tester’s dlstrlbutlon the probability that it intersects our
already covered bits outside of B is at most 9 “k. As long as this number is smaller than 1,
such a set exists. Therefore, as long as k < 18q2 we have a set to add, leading to the bound. To
get the upper bound on |D| we can just stop the process before D gets too big.

The lower bound on the size of Ip follows from the lower bound on the size of D. O

Finally, we are ready to bound the entropy of a uniformly random codeword from C’. We
use the chain rule to split this into bounding the entropy of the bits in B, the entropy of the
bits in D conditioned on the bits of B, and the entropy of everything else conditioned on the
bits in DU B.
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Lemma 5.4.9. If X ~ U(C"), then its entropy H|[X] is bounded away from the mazimal log|C|

by the inequality H[X] < log |C| — 0.0005 185]

Proof. First, by the chain rule for entropy and the fact that D\ B = D,

H[X|=H[X|X[DUB]| + H[X[D]|X[B]| + H[X|B]]

We proceed by bounding each element in the sum. First, trivially:

HIX[B]] < |B|

Next, invoke Lemma 5.3.10 over D U B, as |D U B| <T'. This gives us:

H[X|X[D U B]] < log|C| - |DU B

Now, recall that Uy, (Qi \ B) = D. Since these sets are disjoint outside of B, we employ
subadditivity to get:

H[X[D]|X[B]] = HIX[D\ B]IX[B]] < ) _ H[X[Q;\ B]|X[B]]

i€lp

Now, since these are all B-discerning sets, by Lemma 5.4.5 we know that for all ¢ € Ip we
have that H[X[Q; \ B]|X[B]] <|Q; \ B| —0.0005. By Lemma 5.4.8 we know that |Ip| > 155
Summing up we get:

r
3 HIX[Q;\ B]|X[B I} 1P| = 0.0003|p| < D] - 0.0005
i€lp

That is, H[X[D]|X[B]] < |D| — 0. 000518 z. Summing up the bounds on H[X|X[D U B]],
H[X|[D]|X|[B]] and H[X|[B]] we get the statement of the lemma. O

From this it follows that:

Theorem 5.9 (Weak form of the main theorem). For C' C C, if C is C'-partially testable with
q non-adaptive queries, then

\C’\ — oH[X] < |C’\2_0'0005#

5.5 Adaptive lower bound

In this section we prove Theorem 5.1 in its full generality. We start by introducing the mechanism

of a reader, which allows us to separate the adaptivity and randomness of the algorithm.

Definition 5.5.1 (Reader). A k-reader r is a sequence ro,71,...,rx—1, where all the readers
r; : {0,1} — {1,...,n} satisfy for all i < j and y € {0,1}9 that r;(y[{1,...,i}]) # rj(y).

Given an input z € {0,1}", the reader defines a sequence of its bits. This is the reading of x,
defined below.

71



Definition 5.5.2 (Reading). Given x € {0,1}" and a k-reader , the reading R, ,) of x accord-
ing to r is a sequence yi,. ..,y defined inductively by yi11 = 2y, ....4,)- We define r;(z) to
be ri(y1,...,y:). The set of unread bits U, () is the subset of {1,...,n} that did not appear as
values of r{,...,r in the reading.

We can now define an adaptive tester as a distribution over readers and decision predicates.

Definition 5.5.3 (Adaptive tester). An adaptive e-tester for a code C' C {0,1}" with query
complexity ¢ = q(e,n) is defined by a collection of g-readers {r?};c; together with predicates 7;
for each reader, and a distribution g over I which satisfies:

e Forall z € C, Prj, {m(Rﬂ(I)) = 1} > 2/3.
e For all € {0,1}" such that d(z, C) > €, we have that Pr;., |:7Ti(Rri(m)) = 0} > 2/3.

For a C'-partial tester the first item must hold only for z € C".

Part of the usefulness of readers is that if we can construct a reader that reads the entire

input, then reading the property C’ through it preserves its size.

Observation 5.5.4. If r is an n-reader, then the function mapping every x € {0,1}" to its
reading R,(;) is a bijection.

Proof. Suppose that 2’ # x, and let 7 € {1,...,n} be the least index such that Tri(a) F x!

ri(x)’
Such an i must exist since r reads all bits, and 2/ # . Note that r;(z) = r;(a’), since it is the

first bit read to be different (and thus yi,...,%i-1 = ¥1,...,%_,). Thus z,, ) # x;i(z/) and
therefore R, () # Ry(y1)- O

In light of the above, we will construct an n-reader and bound the size of C’ when permuted by
its reading. However, while the end product of the construction is an n-reader, the intermediate

steps might not be k-readers for any k. Thus we need to introduce a more general notion.

Definition 5.5.5 (Generalized reader). A generalized reader r is a sequence ro,71, ..., p_1
where 7; : {0,1}* — {1,...,n} U {x} satisfy for all i < j and y € {0,1}7 one of the following

o ri(y{Ll,...,i}]) e {1,...,n}\7(v)

o 7i(y[{1,...,i}]) = ri(y) = %

Given a generalized reader r, a terminal sequence in the reader is y € {0,1}% such that
ri(y1,...,yi) = *, while either 7;_1(y1,...,yi—1) # * or i = 0.

If we fix a certain = € {0,1}" then a generalized reader defines a sequence of non-repeating
indices that at some point may degenerate to a constant sequence of x. Note that every k-reader
naturally defines a generalized reader by setting all undefined functions to map everything to x.

It is useful to think of a (possibly generalized) reader as a decision tree. With a generalized
reader, we will often want to continue the branches of the tree with another reader. This

operation is called grafting. We start with the notion of a 0-branch and a 1-branch.
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Definition 5.5.6 (O-branch, 1-branch). Let r be a reader, possibly generalized. The 0-branch
of r is the reader ' defined by r.(y1,...,v:) = 7i+1(0,y1,...,y;). Similarly, the 1-branch of r is
the reader r” defined by v/ (y1,...,vi) = riza (L, y1, .-, ¥i)-

We can now define grafting, and will do so recursively. Informally, grafting a reader ¢ onto
r at y means that at every % in the decision tree of r that can be reached after reading y, we
continue the reading according to t. In other words, this is the process of appending a decision

tree t to another decision tree r given a certain history of reads y.

Definition 5.5.7 (Grafting). Let r and t be generalized readers and y € {0, 1}’ be a terminal
sequence in 7. The grafting of t onto v on the branch y is a new reader r*¥ defined as follows.

o If tg € {ro(y1,---,¥i), - mi—1(y1,...,v:)}, graft the y,-branch of ¢ onto r at y1, ..., y;.

o Ifto & {ro(y1,---,%i)y--- 7mi—1(y1,--.,¥i)}, then set r;(y1,...,y;) = to, call the new reader
r’, and then graft the O-branch of ¢ onto " at yo,...,¥;,0 and the 1-branch of ¢ onto t at

yOa"',y’ia]-'

Repeat the above recursively, with the base case being the grafting of an identically x reader
onto r by not changing anything.

Note that the grafting of a generalized reader onto another results in a generalized reader.
Note that it is also possible that 7Y = r when all bits that ¢ may read were already read by r
on y.

To introduce the notion of a reader that discerns a random input from an input from C’, we
will first need to formulate a notion of executing a reader, which is inherently adaptive, on a

partly random input.

Definition 5.5.8 (J-Simulation of a reader). Let 7 be a g-reader, J C [n] and y € {0,1}//].
The J-simulation of v on y is the distribution S(r,y, J) over {0,1}7 defined to be R, (,) where
x ~ Uj(y), that is, x[J] = y[J] and all bits of x outside of J are picked independently and
uniformly at random from {0, 1}.

We now introduce the notion of a reader discerning a random input from an input from C’.

Definition 5.5.9 (J-Discerning reader). Let r be a (possibly generalized) reader, J C [n] and
y € {0,1}VI. Let z be a uniform random variable in {c¢ € C’|c[J] = y}. We say that r is a
J-discerning reader for y if it holds that dry (R, S(r,y,J)) > 1/8.

Next, we prove that in a given test many of its readers are discerning.

Lemma 5.5.10. Set .J C [n] such that |.J| < n/2 and y € {0, 1}/, With probability at least 1/9
the g-reader r picked by the tester is J-discerning for y.

Proof. Let r be a reader that is not J-discerning for y. Let B and G be random variables such
that B ~ Uy(y) and G ~ U({c € C’|¢[J] = y}). Denote by =, the predicate associated with r.
By our assumption,

| Pr[m,(Ry(p)) = 1] = Pr[m(Ry(g)) = 1]] <1/8.
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Now assume that with probability greater than 8/9, the g-reader picked is not J-discerning
for y. Now consider the difference in acceptance probability when drawing a reader according to

L.
| P [ (Ruy) = 1] = Pr [y (Roey) = 1]
<8/9-1/8+1/9=2/9.
But by Lemma 5.3.9 (the “furthermore” claim) and the correctness of the tester, we have that

Pr.pu[mr(Ry(py) = 1] < 1/3, and by the correctness of the tester Pr..,[m(R.(q)) = 1] > 2/3, a
contradiction. O

A common operation will be to graft a discerning reader with additional arbitrary bits. This

does not cause a discerning reader to stop being one.

Definition 5.5.11. Let r and s be generalized readers. We say that r contains s if for every
x € {0,1}", the sequence of non-x elements in R,(,) is a prefix of R, ).

Note that in particular, whenever we graft ¢ onto r along some branch, we obtain a reader

that contains r.

Lemma 5.5.12. Let r and s be generalized readers such that r contains s. Let J C [n] and
y € {0, 1}“]‘. If s is a J-discerning reader for y, then so is r.

Proof. Let B ~ U;(y) and G ~ U({c € C'|c[J] = y}). Consider R,p). Its outcomes can be
partitioned according to their R,p) prefixes. Thus every event defined by values of R,(p) can
be written also as some event defined by values of R, (g). The same is true for Ry ) and R,(q),
with the same translation. Therefore dry (R, S(r,y,J)) > drv(Rs(), S(s,y,J)), implying
the lemma. O

To prove that a uniform choice in C’ does not have high entropy, we graft discerning readers
one onto the other. We will want to make sure that all the branches of the decision tree are of

the same height throughout the grafting, and thus we define the notion of a padded grafting.

Definition 5.5.13 (¢-Padded grafting). Let r be a generalized reader, ¢ be a g-reader and
y € {0,1} be a terminal sequence in r. The g-padded grafting of t onto r on the branch y is defined
by the following process. First, let ’ be the grafting of ¢ onto r at the branch y. Now perform the
following repeatedly: Let z1,...,2; with j < ¢ be such that rgﬂ_l(yl, e Ui By 1) K
while rgﬂ-(yl,...,yi,zl,...,zj) = x, or j =0 and 7}(y1,...,y;) = x. Let k be an arbitrary
index not in the set of indexes {r(,..., 7 ;_1(¥1,--,%i 21, .., 2j-1)}, and redefine the reader
frgﬂ»(yl, .3 Yiy 21, ..., %) = k. Repeat this process as long as such z1,...,z; with j < ¢ exist.

The above is basically grafting additional arbitrary reads, so that the end-result will always
read exactly ¢ bits after reading the sequence y1,...,¥y;. The next observation together with
Lemma 5.5.12 implies that ¢-padded grafting of a J-discerning reader is equivalent to a grafting

of some other J-discerning reader.

Observation 5.5.14. Let 7 be a generalized reader, t a ¢g-reader and y € {0,1}% a terminal
sequence in r. There exists a reader s containing ¢ such that the g-padded grafting of ¢ onto r
at y is equivalent to the grafting of s onto r at y.
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Now we can finally prove the main lemma, by performing repeated g-padded grafting of

discerning readers one onto another.

Lemma 5.5.15. If X ~ U(C"), where C is C'-partially testable with q queries, then it holds
that H[X] < log|C| — [T /q]

Proof. Let us construct an n-reader and consider the entropy of C’ when permuted by this
reader. We assume that I' is a multiple of ¢, otherwise we replace it by ¢|I'/q].

Start with the O-reader ¥ (i.e. the reader with all functions being identically %). Let s be a
(-discerning g-reader for the empty word, which must exist since the adaptive tester must pick
one with positive probability. Set 7! to be the g-padded grafting of s onto r° on the branch of
the empty word (so in particular ! contains s).

Assume that we have constructed the jg-reader 7. If jq > I, graft a reader that reads all
remaining bits arbitrarily onto 7/ on every branch. Else, perform the following for all branches
y € {0,1}79 to obtain r/T1 (noting that they are all terminal sequences in 77):

e If there is no member of C’ with the reading R,; (y)» berform a g-padded grafting of an
arbitrary g-reader onto v/ at the branch v,

e If such a member exists, let s be a reader which is an {r!(y),73(y), . .., ]q( ) }-discerning
reader for 3 (which exists by Lemma 5.5.10). Perform a ¢g-padded grafting of s onto 7 at

the branch y.

Now let r be the resulting n-reader, let 7r(cr) be the image of C’ under the reading of r, and
let X ~ U(rg(cr). By Observation 5.5.4, the distribution of X is the same as starting with a
uniformly random member of C’ and then taking its reading according to r. By the chain rule
H[X|=H[X[{1,...,T}]+ HX|X[{1,...,T}]].

Note that in the case of a word from C’, the maximal j in the construction is equal to I'/q.
By the chain rule we may write

I'/q
H[X[{1 ZH {G—Dqg+1,....i¢} ]| X[{1,..., (> —1)g}]]

and since each sequence of ¢ bits is from the grafting of a reader which is discerning with respect
to all the previous ones, we may apply Lemma 5.3.7 to obtain

I'/q
H[X[{1,...,T}]] = ZH {G—=1)g+1,...,ig— 1}|X[{1,..., (i —1)g— 1}]]

= Ff(q—;) ~T/a- 55 0

=1

By Lemma 5.3.10 (the furthermore part, for every y € {0,1}" using J = {r1(y),...,rr(v)}),
H[X|X[{1,...,T}]] <log|C| —T, so by summing it all up we get H[X] <log|C| —T'/q - 5.

Proof of Theorem 5.1. Let C a code with dual distance I" and suppose that it is C’-partially
testable with q queries for some C' C C. By Lemma 5.5.15, if X is uniformly distributed in C’,
then H[X] < log|C| — |%I'/q]. This implies that |C'| = DHIX] < 2-F/324) 0. O
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5.6 Properties with a proximity oblivious 2-test decomposition

For simplicity of presentation all the proofs here are for a property P which is decomposable to
properties P, ..., P, that in themselves admit a proximity oblivious 2-test, rather than just a
P;-partial test for P. A sketch on how to extend this to the more general setting is found at the

end of this section.

Definition 5.6.1 (P-witness). Let P C {0,1}" be a property and w € {0,1}". A P-witness
against w is a set @ C [n] such that for every w' € {0,1}", if w] = w; for every i € @, then
w' & P.

The family of witness sets for a specific w is closed under taking supersets. Note that any
1-sided g-test essentially rejects only if their query set is a witness. A proximity oblivious
1-sided test is a non-adaptive one which is also independent of the proximity parameter e,
essentially just a probability distributions over query sets of a fixed size ¢. This means that the
following definition of a proximity-oblivious test is in fact equivalent to Definition 5.1.2 from the

introduction.

Definition 5.6.2 (Test defined by witnesses). A prozimity oblivious 1-sided g¢-test with the
detection function p(e€) is a probability distribution over query sets of a fixed size ¢, so that for
every e-far input w (for every €) the probability of obtaining a witness against w is at least p(e).

Definition 5.6.3 (universal sampler). For parameters €,n € (0,1), the (e, n)-universal sampler
selects a set R C [n] where, for every i € [n], Pr[i € R] = o®n~'/3, where we set the value
a=81loge! - logn~! - logn.

Let Py, Ps,...,P; C {0,1}" be properties, each having an oblivious one-sided error 2-tester
with the same detection function p(e). Given oracle access to an input string w € {0,1}",
the e-universal algorithm for |J¢_, P; selects a set R C [n] according to the (e, 1/4¢)-universal
sampler. If |R| > 2a°n?/3, then it accepts immediately, and otherwise it queries the input on all
indices of R, rejects if R is a P;-witness against w for every i € [¢], and accepts otherwise.

This section is devoted to proving the following:

Lemma 5.6.4 (implying Theorem 5.2). Suppose that we have a sequence Py, Po, ..., P C {0,1}"
of properties, where for every i € [¢] P; has a 1-sided error oblivious 2-tester with detection
function p(e). If € > 0 is such that p(e/2) > 0, then for n large enough (as a polynomial function
of 1/p(e/2)) the e-universal algorithm for \Ji_, P; is a 1-sided error non-adaptive e-tester for
Ule P; with query complexity bound O(n?/3(e *loge ! -logn~"' - logn)?).

To arrive at the theorem, we first need to “thin out” the possible 2-test queries.

Definition 5.6.5 (e-trap). A set Q of size-2 subsets of [n] is called an e-trap for a property P,
if for every word w € {0,1}" that is e-far from P, there is some set @ € Q which is a P-witness
against w.

Lemma 5.6.6. If P has a 1-sided error oblivious 2-tester with the detection function p(e€), then
for every € it has an e-trap Q with |Q| < 9In/p(e).
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Proof. This is immediate from running the 2-tester for 9n/p(€) many times (so that with positive
probability it will happen that every possible e-far word is rejected by some iteration of it), and
then setting Q to be the set of all query sets drawn in these iterations. O

We will also use the following.

Observation 5.6.7. For n larger than some universal constant, the e-universal test will execute
the “immediate accept” step (due to R being too large) with probability less than 1/12.

Lemma 5.6.4 and hence Theorem 5.2 follows by first obtaining Q;, ..., Qp as €/2-traps for
Py, ..., Py respectively, and then using the union bound for the respective applications of the

following statement, which is in some way the “true theorem” of this section.

Theorem 5.10. Let ¢ >0, n > 0, Q be an €¢/2-trap for a property P, and w be e-far from P.
For n larger than some polynomial function of |Q|/n, the set R produced by the (e,n)-universal
sampler is a P-witness against w with probability exceeding 1 — 7.

Observation 5.6.8.

2/3

1. (1 _ a3n—1/3)5n/4 < 772—2671 /37
2. (1 —a3n~1/3)a™* ' /3,

3. e—cla=d) <,

From here on we fix P to be a property, Q to be its ¢/2-trap, and w € {0,1}" to be e-far from P.
Definition 5.6.9 (degree). For every i € [n] and @' C Q, we define the degree of an index i by
dego (i) = {Q € Q' € Q}|.

Definition 5.6.10 (W,,, £,, and M,,). For every w € {0, 1}"

1. W, is the set of all members of Q that are witnesses against w, and for every i € [n], Wi,
is the set of all members of W,, that contain 3.

2. Loy = { Q€ Wy )Hj € Q st. degyy, (j) > a~2nl/3 }
3. Mw = Wy \Ew

Definition 5.6.11 (the = notation). Let (i,a),(j,b) € [n] x {0,1} be distinct. We write
(i,a) = (4,b) if Q has no witness against some w’ € {0,1}" such that w;- = —b while QO
has a witness against every w* € {0, 1}" such that w} = a and w} = —b.

Definition 5.6.12 (viable sub-string). Let B C [n] be a set of indexes and op : B — {0, 1}.
op is a viable sub-string if there exist no h € [n], a € {0,1} and 4, j € B, that are not necessarily
distinct, such that (i,05(i)) = (h,a) and (j,05(j)) = (h,—a), or (i,05(i)) = (h,a) and Q has
a witness against every w* € {0,1}" such that w} = a.

Definition 5.6.13 (witness against sub-string). Let B C [n] and op : B — {0, 1} be a viable
sub-string. i € [n] is a witness against op in w € {0,1}", if i € B and w; # op(i), or if there
exists j € B such that (j,0p(j)) = (i, ~w;).
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Definition 5.6.14 (Inf,,, o%). Let B C [n] and o5 : B — {0,1} be a viable sub-string.
We define Inf,, to be the set containing all the possible witnesses against op. We define
ol . Inf,, — {0,1} so that for every i € B and j € Inf,,, if (i,05(i)) = (j,a), then
a=0og'(5)-

Lemma 5.6.15. Let B C [n] and op be a viable sub-string. For every w* € {0,1} such that
Inf

w; =o0pg" (1), for every i € Inf,,, all of the members of Wy,+ are disjoint from Inf, .

Proof. Assume for the sake of contradiction that the lemma does not hold. If there exists a
member of W« that is contained in Inf,,, then op is not a viable sub-string and hence the
contradiction. If W« has a member {i,j} such that ¢ € Inf,, and j & Inf,,, then there exists
h € B such that (h,op(h)) = (j, ~w}) (we take the h for which (h,op(h)) = (i,w;)). This is a
contradiction to the definition of Inf,, as containing all such j. O

Lemma 5.6.16. Let w be 3¢/4-far from P. If W,, C 2B, then Inf,, contains at least en/4
witnesses against op for any viable sub-string op : B — {0, 1}.

Proof. Assume for the sake of contradiction that Inf,, contains less than en/4 witnesses against
op. Let w* € {0,1} be such that w} = oBi(7) if i € Inf,, and otherwise w} = w;. Obviously,
w* is €/2-far from P.

By Lemma 5.6.15, W,~ does not have any sets that intersect Inf,,. Since W,, C 2B,
Wy N 2mNfop — Thus, Wy« = (0 and hence Q has no witness against w. This is a
contradiction to Q being an €/2-trap for P. O

Lemma 5.6.17. If |[Ugew, Q| < 2en?/3, then Pr[R is a witness against w] > 1 —n/3, even if
w is only 3e/4-far from P.

Proof. Let W = Ugey, @ By assumption, [W| < 2en?/3. Let oy be a viable sub-string. Since
W, C 2%, by Lemma 5.6.16, there are at least en/4 witnesses against oyy.

The probability that such a witness is not selected is at most (1 — aSn~Y 3)5"/ 1< 7]2_26”2/3 /3,
where the inequality is by Observation 5.6.8. The lemma follows by the union bound over all
viable sub-strings for W. O

Lemma 5.6.18. If [Ugew,, @ > 2en?/3 and | Ugem,, @I < en?/3, then the probability that R is
a witness against w is at least 1 —n, for n larger than some polynomial in |Q|/n = O(1/p(e/2)).

Proof. Observe that |£,| > en?/3, because by definition we have Ugew, @ = Ugem,uc,, @- Let
Piv C [n] be the set of all i such that deg,, (i) > a~2n!'/3 and opiy, be such that opi, (i) = ~w;
for every i € Piv. Note that, for every i € Piv,

Pr[R does not contain j; such that {7, j;} € W,

<(1- 04371_1/3)0‘72"1/3 < n/3n,

where the last inequality is by Observation 5.6.8. Consequently, by the union bound
Pr[for every i € Piv, 3j; € R s.t. {i,75:} € Wy| >1—n/3.

When the event above indeed occurs, it is only for o = op;y, (out of any o : Piv — {0, 1}) that it
may be the case that {j; : i € Piv} is not a witness against o. In other words, with probability
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at least 1 — 7/3 we obtain the event that R contains witnesses against all possible assignments
to Piv, apart from possibly opj,. To conclude we partition to two cases that depend on the

relationship of opj, and w.

1/3

If w has at least en'/® witnesses against opjy, then the probability that such a witness is

?’n_l/?’)ml/3 < n/3, where the inequality is by Observation 5.6.8.

not selected is less than (1 — «
Thus, by the union bound, with probability exceeding 1 — 7, R is a witness against w (as it also
contains witnesses against any possible assignment to Piv).

Assume now that there are less than en!/3

that if i € Infpjy, then w} = ol (i), and otherwise w} = w;. By the triangle inequality, w* is
3¢/4-far from P (for n large enough so that en'/? < en/4). By Lemma 5.6.15, none of the sets

in Wy~ intersect Infp;, and hence Wy« C M,, Consequently,

U Q< U Q<2

QEWw* QEMw

witnesses against opi,. Let w* € {0,1}" be such

Thus, by Lemma 5.6.17, with probability exceeding 1 —n, R is a witness against w* and so against
w (this case does not even require us to analyze witnesses against the possible assignments to
Piv themselves). O

Lemma 5.6.19. If |Ugecrq, @ > en®/®, then PriW, N2 £ 0] > 1— .

Proof. Let R’ be a random subset of R, where every member of R is in R’ independently with
probability a~2. We observe that, by the definition of R, for every i € [n] independently, we
have that i € R', with probability an~/3. We next prove that Pr[M,, N 2% #£ 0] > 1 — 5, and
since R’ C R and M,, € W,,, this implies the Lemma.

For every integer i, let d(i) = |[{j € [n] | 2 < degpy, (j) < 2°7'}|. Let A be the expected
number of pairs of distinct Q, Q" € M., N 2% such that Q N Q' # 0. We observe that,

logn

=——2loga 2i+1
A < alnt Z 5 d(1).

=1

We observe that d(i) < | M, |21, Plugging this into the above,

lc’%—ﬂoga lo%—QIOgoz
. . . 2
A<a®n™t Y 2 IM 2T =4’ T M, YD 20 <8anTEM,].  (5.1)
i=1 =1

For every Q € My, let X be a random variable that is 1 if @ C R’, and otherwise 0. Let x be
the expected value of > e v, X@. Then,

a®| M|
H=——=2"":

n3

(5.2)
Consequently, by (5.1), (5.2) and Janson’s inequality [AS08, Part 8],

P’I“[_/\/[w N 2R’ — @] < e—n_%\/\/lw|a(a—4) < e_ea(a_4) <,

where the second to last inequality follows from |M,,| > eng, and the last inequality follows
from Observation 5.6.8. O
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Proof of Theorem 5.10. An e-far w must clearly fall under at least one of Lemma 5.6.17, Lemma
5.6.18 and Lemma 5.6.19. O

We conclude this section with a sketch of how to generalize the result for a decomposition
admitting only partial sets. The key is in relaxing the definition of a trap. Under the new scheme,
for every i, for a word €/2-far from P (rather than P;), the “partial” trap Q; would be required
to contain a witness against P;. The arguments translate almost verbatim to this setting, only
one must be careful with the definitions such as Definition 5.6.11 — the exact wording about the
(partial) trap containing a witness against the words under consideration becomes even more

important.

5.7 Properties with a proximity oblivious ¢-test decomposition

In the following we assume knowledge of the definitions and methods of Section 5.6. We also
assume everywhere that n is large enough for the arguments to follow. To prove Theorem 5.5

we will make crucial use of sunflowers.

Definition 5.7.1. A sunflower with center A is a family of subsets By,...,B; C {1,...,n} so
that every B; contains A, and By, ..., By are disjoint outside of A (a completely disjoint family
is a sunflower with center A = ().

Lemma 5.7.2 (sunflower theorem, Erdés and Rado [ER60]). Any family of at least s = q!ti+!
sets whose sizes are at most q contains a sub-family of size t which is a sunflower.

In the following g will be the (constant) number of queries of the proximity-oblivious test,
and ¢ will be some power of n, so our required s will essentially be another power of n.

We next define fragments.

Definition 5.7.3 (fragments and violations). A fragment £ = (A,v) consists of a subset of
indices A C {1,...,n} and a function v : A — {0,1}. The special case where A = () is called the
null fragment.

A fragment & = (A1, v1) contains o = (Ag,va) if As C A; and the restriction of vy to Ay is
vg; in this case the difference fragment {3 = (As,v3) = &1 \ &2 is defined where Az = A; \ A2 and
v3 is the restriction of v1 to As.

A fragment £ = (A, v) is said to be violated by the input w if the restriction of w to A is v.
A fragment £ that is not violated is said to be satisfied by w.

It will be easier for us to redefine proximity oblivious tests as distributions over fragments.

Definition 5.7.4 (fragment version of a g-test). A proximity oblivious q-test for P is a distri-
bution p over a set Z of fragments of sizes bounded by ¢ (some members of = could be with
probability 0) satisfying the following:

o If w satisfies P then no fragment is violated (not even probability 0 ones).

e If w is e-far from P then the probability of picking a violated fragment is at least p(e).
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When moving from a g-test as in the original definition of finding a witness against w, to a
g-test as per the above definition, the original p(€) might be divided by up to 27 (since every
original query set is converted to all corresponding fragments that are possible witnesses against
the input).

We now introduce a definition of universal testers suitable for the analysis in this section:

Definition 5.7.5 (universal tester). For parameters v € (0,1),q € N and a set of fragments =,
the (7, ¢)-universal tester operates in g rounds. In each round it picks a set R; by taking every
index i with probablity n=27. Let R = U?:l R;. If |R| > n7, then it accepts immediately, and
otherwise it queries the input on all indices of R, rejects if the values of w form a witness against
P, and accepts otherwise.

For what follows, we note that the “immediate acceptance” step occurs with probability
1 —o(1), and we will continue the discussion conditioned on the event where it does not occur.
We next define how fragments can be “shortened” sometimes, through either queries or

logical deductions.

Definition 5.7.6 (witnesses and refutations). A witness for a fragment & is a containing frag-
ment &', so that the difference fragment &'\ £ is violated by the input w (¢ itself does not have
to be violated by w).

A refutation for a fragment £ is a set = of fragments, at least one of which containing &, so
that no possible input that satisfies the entire set = may satisfy €.

—_—
=

Note that in particular a set = is a refutation of the null fragment if and only if it is
unsatisfiable.

Our main tool of analyzing the universal sampler is the following:

Definition 5.7.7 (R-reduction of a test). Given a g-test for a property P, as a distribution
over a set = of fragments, and a set of queries R C {1,...,n}, the R-reduction of the test is the
result of the following process.

1. For every i € R, we add the corresponding satisfied fragment (i, ~w(7)), where w is the
input, to =, for the time being with probability 0 (this is essentially “adding the query i”).

2. We add to = (still with probability 0) every fragment for which there is a refutation in =
(note that, because of the previous item, this also includes fragments for which there is a
witness whose corresponding difference was indeed verified to violate w through R).

3. For every fragment & € = which contains another fragment in ¢’ € = (and is hence made
“redundant” by it), we remove & from =. If p(§) was non-zero, we modify u by adding this
probability to the contained & (for this procedure we can pick any contained & which in
itself does not contain yet another member of =).

The R-reduction in itself is not necessarily a test for P. It may reject members of P, and it
may even contain the null fragment (when that happens = will contain only the null fragment
and with probability 1; this in particular means that R is a witness for the property against the
input, i.e., that the input’s restriction to R is not extensible to any possible string satisfying P).

On the other hand, the following is immediate.
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Observation 5.7.8. For every possible R, the R-reduction of the test is still a probability
distribution over fragments. Moreover, for every possible input w, the probability of rejection
(obtaining a violating fragment) by the R-reduction is at least the corresponding probability by
the original test.

Our main argument for Theorem 5.5 lies in the following: We prove that certain events
concerning R and the resulting R-reduction of the test occur with probability 1 — o(1). Given
these events, we prove that if the null fragment is not in the resulting =, then it may not be
the case that all e/2-far inputs are rejected with probability p(e/2) by the original test (we will
construct too many “disjoint” inputs).

In the following, v (of the universal sampler) will be chosen small enough as a function of
all other parameters that will be defined below. First we define the following with respect to a

value 8 to be chosen later (v will depend on f3).

Definition 5.7.9 (sunflowers of fragments). Let & = (A1, v1),...,& = (A¢, v¢) be a family of
fragments. We say that it’s a sunflower with center { = (A,v) if Ay,..., A; is a sunflower (of
sets) with center A, and additionally the restriction of every v; to A is v.

Definition 5.7.10 (generations). Given a g-test with the set of fragments =, all members of =
are said to be generation 0. By induction, a fragment is said to be generation i if it is the center
of a sunflower of n® fragments whose generation is at most s — 1 and which are all witnesses for
it, or it has a refutation using fragments whose generation is at most 7 (and unless the fragment
is already of a smaller generation).

Fragments not having a designated generation by the above are said to be generation oo.

We will only be interested in fragments of generation up to ¢ due to this simple observation.

Observation 5.7.11. A generation ¢ fragment for ¢ < oo has length at most ¢ — ¢, so in
particular all finite generations are at most q.

A central claim is the following:

Lemma 5.7.12. Let R = U?:1 R; be the result of q rounds, where in each round every index 1
is independently chosen to be in R; with probability n=27. With probability 1 —o(1), after the j 'th
round, the \J._; Ri-reduction of the test contains all generation j fragments or sub-fragments
thereof. This is when ~y is chosen to be 3/(4q).

Proof. This is proved by induction. The base is j = 0 (the (-reduction of the test will still have
all the original fragments, or sub-fragments thereof if there were meaningful refutations).

Let us assume that the Ufc;ll Ry-reduction of the test includes all generation j — 1 fragments
or sub-fragments thereof. For a generation j fragment £ = (A, v) that is the center of a sunflower
of witnesses, first let & = (A’,v’) be any member thereof. The probability that R; contains
A’\ A is at least n=297. Note that when this happens, & or a sub-fragment thereof will be in the

i:l Ry-reduction as required.

Now there are at least n” members of the sunflower, and the events of each difference to
be included in R; are all independent (as this is a sunflower). Therefor the probability of none
of the events happening is at most (1 — n~277)"" < exp(—n~207), which is o(n"'"7) taking
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v = 3/(4q). Noting that there are not more than n'*9 fragments in all, we are done for all such
flower centers by a union bound.

The case where the generation j fragment has a refutation by other generation j fragments
is immediate, once we know that all fragments that are generation j through being a center of a
sunflower are included. O

This claim in turn motivates the following definition.

Definition 5.7.13. Given a test (as a distribution over a set of fragments =) and an input w,
the generational reduction thereof is the result of the following process:

1. We add to = (with probability 0) every fragment which is of generation ¢ for some i < oo
(and hence i < q).

2. For every fragment & € Z which contains another fragment £’ € = (and is hence made
“redundant” by it), we remove & from =. If p(§) was non-zero, we modify u by adding
this probability to the contained ¢’ (we can pick any contained & which in itself does not
contain yet another member of =).

Again the following is straightforward.

Observation 5.7.14. The generational reduction of the test is still a probability distribution
over fragments. Moreover, for every possible input w, the probability of rejection (obtaining a
violating fragment) by the generational reduction is at least the corresponding probability by
the original test.

It is important for us to note the following, as the generational reduction has a better

structure than just any randomized R-reduction obtained through sampling.

Lemma 5.7.15. With probability 1 — o(1), the R-reduction of the test is also a reduction of the
generational reduction of the test.

Proof. This is equivalent to Lemma 5.7.12 for j = ¢, because it means that with probability
1 —o(1) there will be witnesses in R to all finite generation fragments, recalling also Observation
5.7.11. ]

In particular, if the generational reduction has the null fragment in its set of fragments, then
with probability 1 — o(1) the y-universal testing algorithm will reject the property. To complete
the components required for the proof of Theorem 5.5, we will assume that the null fragment
is not in this reduction (i.e. it is of generation oo, which is implied by R not being a witness
against the input with high probability) and reach a contradiction. At this point we use the

sunflower theorem.

Lemma 5.7.16. Let Z¢g denote the set of fragments of the generational reduction of the test,
and assume that it does not contain the null fragment. For n large enough, there exists no
fragment (regardless of whether it is violated itself) that is contained in more than nlat2)8
members of Eq that are witnesses against it.
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Proof. If € = (A, v) was such a fragment, and &; = (A, v1),...,& = (A, vy) for t = nl0+2)F were
(containing) members of Zg that witness it, then (for n such that n® > ¢!) by Lemma 5.7.2 there
would have been a sunflower of sets A;,..., A;, for t = n?, whose center is some set A’ that
contains A. Now the restrictions of vj,,...,vj;, to A" are all identical: Over A these are identical
to v, and over A’ \ A these are identical to the restriction of w to this set. Let v’ denote the
common restriction of vj,,...,v;, to A'. §,...,&;, are now also a sunflower of fragments, all
witnesses to their center ¢’ = (A’,v"). This would have meant that £’ is a fragment of some finite
generation, which is a contradiction to Zg already corresponding to the generational reduction
of the test. O

In particular (through the null fragment), the above means that there are no more than
nl@*t2)8 members of Z¢ that are violated by w. However, =¢ in itself could still be very large, as
for example it could contain many fragments that would be violated by the bit-wise negation of
w.

In the following, we assume that w is an e-far word for which the generational reduction does

not contain the null fragment. We then do the following construction.

Definition 5.7.17. Assume that =g does not contain the null fragment (and is hence satisfiable).
We define by induction the following sequences, where wg = w, 29 = ) and By = 0. We let w*
be any word that violates no member of Z¢.

e =, is the set of the members of Z¢ that are violated by w;_1.

e B,=B, 11U U{A (€= (A,’U) S Ez}

e w; is identical to w* over B; and identical to w outside of it.

We are interested in taking wy, ..., w,, Z1,...,Z.41 and By,..., B, for r =1/p(e/2). The
following lemma gives us their required properties.

Lemma 5.7.18. Assume that =g does not contain the null fragment. All of the following hold
for n large enough.

o The sets Z; are all disjoint.

21| < nl9t28 and |B;| < gqnlat2)5,

1Z;| < nl@t2B8|B; 1|7 and additionally |B;| < |Bi_1| + qn'®2P|B;_1|9 fori > 1.

| B| < nGO*8 for k> 1.

Proof. The first item is because Z; cannot contain any fragment whose respective set is inside
Bi_1 (because w;_1 is identical to w* there), or any fragment whose respective set is not contained
in B; (because of how B; was defined), and we have successive containment B;_; C B;.

The second item is from the discussion after Lemma 5.7.16, noting also that all members of
g are of length bounded by g¢.

The third item is by Lemma 5.7.16 again. We note that violated fragments of =g here
can only come from witnesses in E¢ for fragments inside B;_1, and there are less than |B;_1|?
relevant fragments (all possible restrictions of w* to subsets of size at most ¢ of B;_1).

The fourth item is by basic numeric induction. O
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Now we finally have all the components for proving Theorem 5.5.

Proof of Theorem 5.5. We take 8 = 3(5q) ", where r = 1/p(e/2) and n is assumed to be large
enough so that n=1/2 < €/2. By Lemma 5.7.15, with probability 1 — o(1) the R-reduction of
the test will include also its generational reduction, i.e. it will be a reduction also of Zg. To
conclude we prove that such an R is necessarily a witness against the input. Let us assume on
the contrary that the R-reduction, and hence also Zg, does not contain the null fragment.

We refer to the construction of Definition 5.7.17. The choice of parameters above and Lemma
5.7.18 ensure that |B,| < en/2, and so all the inputs wo, ..., w, are €/2-close to w and hence
are €/2-far from the property. Hence the original g-test and its generational reduction have to
reject each of those inputs with probability at least p(e/2). However, this means that in Z¢
there are r + 1 disjoint subsets Z1,...,E, 1 that are all probabilities of at least p(e/2) by the
generational reduction, which is the contradiction to the sum of all probabilities being 1. O

5.8 Highly decomposable properties

We prove here Theorem 5.7. The property that we will use will be the following one of being
k-paritic.

Definition 5.8.1 (k-paritic). A string w = (wy,...,w,) € {0,1}" is called k-paritic if there
exist i1, ..., 4 for which iy =1, i; + n/2k < ij4q for all 1 < j < k and iy, + n/2k < n, such that
for every 0 <r < n/2k we have @?:1 Wi+ = 0.

For fixed i1,. .., as above, we let P, ;, denote the property of satisfying @;‘?:1 Wi;4r =0
for every 0 < r < n/2k (for these particular i,..., ).

Theorem 5.7 then immediately follows from Lemma 5.8.2 and Lemma 5.8.4 below.

Lemma 5.8.2. The property of being k-paritic is decomposable to at most n*~1 many properties,
so that each of them has a proximity-oblivious 1-sided k-test with detection function p(e) = Q(ke).

Proof. We decompose the property of being k-paritic to the properties F;, . (as in Definition

5.8.1), where 41, ..., are any indexes such that iy =1, i; + n/2k <i;4; forall 1 < j < k and

k-1

ix +n/2k < n (note that these properties need not be disjoint). There are less than n”~* such

properties (i1 has one value and every other i; can have less than n possible values), and their
union is clearly the property of being k-paritic.

The proximity-oblivious k-test for every property F;, . ;. is done by taking a uniformly

k
drawn value from {0,...,[n/2k] — 1} for r, and checking that the requirement @;’?:1 Wi+ =0

is satisfied (which uses k queries). To get at the Q(ke) bound on the detection function, we note

that for w to be e-far from P, at least en values of the possible [n/2k| values for » must be

)

such that @?:1 w;,+r = 1, so the probability to get such a value for r is at least ne/gk = Q(ke).I

Before continuing we show that being k-paritic is not too dense.

Lemma 5.8.3. For every fized k, a uniformly random member of {0,1}" (each bit being chosen
uniformly and independently) is 1/5k-far from being k-paritic with probability 1 — o(1).

Proof. First we consider a property P, . ;, for specific i1, ...,%; as in Definition 5.8.1. For every
0 < r < n/2k, the probability for @?:1 w;;+r = 1 is exactly %, and these events are completely
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independent for different values of r. Hence, by a straightforward large deviation inequality,
with probability at least 1 — 27"/100% it holds that we have a set R C {0,..., [n/2k] — 1} of
size at least n/5k so that for every r € R we have @?:1 w;;+r = 1. When this occurs the word

w = (wi,...,wy) is clearly 1/5k-far from P;, ;.
The lemma now follows from a union bound over all properties P, ; (whose number is at
most nF~!, see Lemma 5.8.2). O

The following now concludes the proof of Theorem 5.7

Lemma 5.8.4. For any fized k, The property of being k-paritic in itself cannot be 1/5k-tested
using o(n*~Y*) many queries (not even by 2-sided adaptive algorithms).

Proof. Here we use Lemma 2.0.10. We will assume that n = 2kl for some integer [, as the move
from this to general n involves simple padding. We define two distributions.

e The distribution Dp starts by first choosing uniformly and independently index values
20 — 1)+ 1 <45 <20(j — 1) + 1 for every 1 < j < k, setting iy = 1. Then we take
w € {0,1}" to be a uniformly random member of P; _; , the corresponding property
defined in the proof of Lemma 5.8.2 (out of the 2"~! members thereof).

e The distribution Dy is just the uniform distribution over {0, 1}".

It is clear that an input drawn according to Dp is always k-paritic. Also, by Lemma 5.8.3 we
have that with probability 1 — o(1) an input drawn according to Dy is 1/5k-far from being
k-paritic.

Also note that for every v € {0,1}9 and every index set @ C {1,...,n} of size ¢, the
probability of a word w drawn according to Dy to agree with v over @) is exactly 279. To
complete the argument, by Lemma 2.0.10, it remains to show that for every v € {0,1}7 and every
Q C{1,...,n} of size ¢ where ¢ = o(nlfl/ k), the probability for such an agreement according
to Dp is at least (1 —o(1))27%.

Let E be the event that there is no 0 < r < [ for which {i; +7,...,ix +7} C Q. Conditioned
on F, the probability of w to agree with v over @ is exactly 279, so it remains to show that £
occurs with probability 1 —o(1). Let sq,. .., sx be members of Q). The only case where there can
be a positive probability for the equalities i1 +7 = s1,... iy +7r = s, is if 2[(j —1)+1 < s5; < 2lj
for every 1 < j < k. In this case the equalities can happen for at most one value of r (since i; is
always 1), and then their probability is bounded by I'~* = (2k/n)'=* (as 4s,..., i) are chosen
independently).

The number of possible eligible k-tuples sq,...,s; in @Q is at most (¢/k)*. By the union
bound the probability for £ not to occur is then bounded by (2¢/n)*~'(¢q/k). For a fixed k, if
q= o(nlfl/ k) then this probability bound evaluates to o(1), concluding the proof. ]

It would be interesting to find out whether there exists a property decomposable into a
relatively small number (some power of n) of testable properties that in itself requires a linear
number of queries to test. The following standard proposition shows that for being k-paritic,

our lower bounds are about as far they can go.

Proposition 5.8.5. The property of being k-paritic is testable by a non-adaptive 1-sided test,
with query complexity of O(n*=/*(log(n)/€)'/*), which detects e-far inputs with constant proba-
bility.
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Proof. We will use the following algorithm:

e Choose a query set @) by choosing for every 1 < j < n independently whether j € (), where
this occurs with probability (10kn~"log(n)/e)'/*.

o If |Q| > 2n(10kn~"'log(n)/e)'/* then accept the input without making any queries (by a
large deviation inequality this occurs with probability o(1)).

e Otherwise, make all the queries in (), and accept the input if and only if there exists a
k-paritic word u € {0,1}" whose restriction to @) agrees with all queries made to the input
word w.

Clearly, if the input word w is k-paritic then it will always be accepted, either arbitrarily in the
second step or by u = w in the third step. It now remains to prove that e-far words are rejected
with high probability. The second step assures that the number of queries is always at most
2n(10kn~log(n)/€)/* = O(n'~*(log(n)/e)'/*¥) (rather than being so only with probability
1—o0(1)).

We may safely ignore the case where there is acceptance in the second step as it occurs
with probability o(1), and henceforth analyze the algorithm as if this step was removed from
it. We start by analyzing the property F;, _ ; for specific iy,...,7; as in Definition 5.8.1. If
w is e-far from P;, _;,, then there is a set R C {0,...,[n/2k] — 1} of size at least en so that
for every r € R we have 69?:1 wi;+r = 1. For every fixed r € R, the probability to query its
corresponding witness of not being in P, ;, , i.e. the probability for {iy +r,...,ix +7} € Q, is
10kn~1log(n)/e.

The above means that for the specific property P;, . ;. , the probability of not detecting a
witness for the input not being in the property is at most (1 — 10kn ! log(n)/€)"* which is upper
bounded by exp(—10klog(n)) = o(n*~1). All that remains to do is perform a union bound over
all properties P;, . ;,, whose union is the property of being k-paritic (see Lemma 5.8.2 and its
proof), to see that with probability 1 — o(1) our query set is such that there is no k-paritic word
u whose restriction to () agrees with the queries made to w. ]
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Chapter 6

Distribution Testing with
Conditional Samples

6.1 Introduction

In this chapter we study testing of distribution properties in a model where the samples that
are obtained from the unknown distribution can be conditioned over specified subsets of the
domain. In our setting, we assume that a sampling oracle to the unknown distribution yu over
the discrete domain [n] = {1,...,n} is provided, that allows us to sample random (according to
) elements conditioned on any specified subset S C [n]. If the original distribution is described
by the probabilities pi,...,p, (where the probability for obtaining ¢ € [n] is p;), then when
restricting to S the probability of sampling i € [n] is pi/(3";cgpy) if i € S and 0 otherwise (see
the formal definition of the model and corresponding testers in Section 6.2).

In various scenarios, conditional samples can be obtained naturally, or come at a low cost
relative to that of extracting any sample — see some illustrating examples in Section 6.1.1. This
leads to the following natural question: can we reduce the sample complexity of distribution-
property testers using conditional samples?

Indeed, conditional sampling is more powerful than the traditional model: We show that
with conditional samples several natural distribution properties, such as uniformity, can be
tested with a constant number of samples (compared to (:)(\/ﬁ) unconditional samples even for
uniformity [GR11, BFR"10]). The most general result of this chapter (Section 6.6) is that any
label-invariant property of distributions (a symmetric property in the terminology of [Valll])
can be tested using poly(logn) conditional samples.

On the other hand, there are properties for which testing remains almost as hard as possible
even with conditional samples: We show a property of distributions that requires at least Q(n)
conditional samples to test (Section 6.8).

Another feature that makes conditional-samples interesting is that in contrast to the testers
using ordinary samples, which are non-adaptive by definition, adaptivity (and the algorithmic

aspect of testing) in the conditional-sampling model plays an important role. For instance,

"We say that f(a,...,a;) = poly(gi(ai,...,a1),...,gr(ca,...,q;)) if there exists a polynomial p(x1, ..., zs)
such that f < p(g1,...,gx) for all values of ai,...,q; in their respective domains.
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the aforementioned task of testing uniformity, while still possible with a much better sampling
complexity than in the traditional model, cannot be done non-adaptively with a constant number
of samples (see Section 6.7.2).

Before we move to some motivating examples, let us address the concern of whether arbitrary
conditioning is realistic: While the examples below do relate to arbitrary conditioning, sometimes
one would like the conditioning to be more restricted, in some sense describable by fewer than
the n bits required to describe the conditioning set S. In fact, many of our algorithms require
less than that. For example, the adaptive uniformity test takes only unconditional samples and
samples conditioned on a constant size set, so the description size per sample is in fact O(logn),

O() possibilities. The adaptive general label invariant property tester takes only

as there are n
samples conditioned to dyadic intervals of [n], so here the description size is O(logn) as well.
The non-adaptive tests do require general conditioning, as they pick uniformly random sets of

prescribed sizes.

6.1.1 Some motivating examples

Lottery machines

The gravity pick lottery machine is the most common lottery machine used worldwide to pick
random numbers. A set B of balls, each marked with a unique number ¢ € N, are dropped into
the machine while it is spinning, and after certain amount of time the machine allows a single
ball to drop out. Ensuring that such a machine is fair is an important real-life problem.?
Suppose that, given a machine and set of balls, we wish to test them for being fair. Specifically,

we would like to distinguish between the following cases:

e The machine picks the balls uniformly at random, that is, for any subset B’ C B of balls
dropped into the machine, and for each i € B’, the probability that the machine picks i is
1/|B'[;

e The distribution according to which the balls are picked is e-far from uniform (where € > 0
is some fixed constant, and the distance we consider is the standard variation distance
defined above).

Suppose furthermore that we wish to distinguish between those cases as quickly as possible, and
in particular, within few activations of the machine. Compare the following solutions.

We can use the uniformity tester [GR11] for this task. Obtaining each sample from the
underlying distribution requires one activation of the machine (with the entire set B), and we
can complete the test using ©(,/[B]) activations.

Alternatively, using the algorithm we present in Section 6.3.1, using conditional samples
we can complete the test using O(1) activations only (the number of activations only has a
polynomial dependency on € and is logarithmic in the confidence parameter). Assuming that

the drawing probabilities depend only on the physical characteristics of every ball separately, a

2As was demonstrated in the the Pennsylvania Lottery scandal, see e.g.
http://en.wikipedia.org/w/index.php?title=1980_Pennsylvania_ Lottery_scandal&oldid=496671681
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conditional sample here corresponds to activating the machine with a specific subset of the balls
rather than the entire set B.

This is for testing uniformity. Using the algorithm from Section 6.6, we could also test for
any label-invariant property with poly(log |B|) activations, which would allow us for example to

give an estimation of the actual distance of the distribution from being uniform.

Asymmetric communication scenarios

Suppose that two computers A and B are linked with an asymmetric communication link, in
which transmitting information in one of the directions (say from A to B) is much easier than
in the other direction (consider e.g. a spacecraft traveling in remote space, with limited energy,
computational power and transmitting capability; actually numerous examples of asymmetric
communications also exist here on earth). Now assume that B has access to some large data
that can be modeled as collection of samples coming from an unknown distribution p, while A
wants to learn or test some properties of u. We could simulate the standard testing algorithms
by sending a request to B whenever a random sample from p is needed. Assuming that the most
important measure of efficiency is how much information is sent by B, it would translate to the
sample complexity of the simulated algorithm.

However, if B can also produce conditional samples (for example if it has nearly unlimited
cost-free access to samples from the distribution), then any property that is significantly easier

to test with conditional samples can be tested with fewer resources here.

Political polls

We mention these here because the modern-day practice of polling actually uses conditional
sampling. Rather than taking a random sample of all willing potential participants, the polling
population is usually first divided to groups according to common traits, and then each such

group is polled separately before the results are re-integrated into the final prediction.

6.1.2 Informal description of results

In all sample-complexity upper bounds listed below there is a hidden factor of log(6~!), where &
is the maximal failure probability of the tester. Also, all lower bounds are for a fixed (and not

very small) e. The results are summarized in Tables 6.1 and 6.2.

Conditioned upon sets

Testing algorithms in the conditional sampling model may be categorized according to the
types of sets they condition upon. This is in addition to the questions of adaptivity and query
complexity. The simplest types of sets would be constant sized sets. Another simple type of
sets arises when we can endow the probability space with some linear order over the elements,
and then only condition on sets which are intervals in this linear order. Actually, all of our
adaptive testing algorithms use one of these types of sets. On the other hand, the non-adaptive

algorithms seem to require the full generality of the model. This distinction was also made in
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[CRS14] (see below about this related work). The different types of sets used for conditional

sampling are also summarized in Table 6.1.

Adaptive testing

The first result we prove is that uniformity, and more generally identity to any distribution that
is very close to uniform in the /s, norm, can be tested (adaptively) with poly(¢~!) conditional
samples (Theorem 6.4 and Theorem 6.5, respectively). This is done by capturing (for far
distributions) both “light” and “heavy” elements in the same small set and then conditioning
over it. Our next result is that identity to any known distribution can be tested adaptively with
poly(log* n,e~!) conditional samples, where n is the size of the domain (Theorem 6.6). This
uses the uniformity result with the bucketing technique of [BFR10] together with a recursive
argument.

A core result is that adaptive conditional samples are enough to construct an explicit
persistent sampler. Such a sampler is essentially a way to simulate (unconditional) samples from
a distribution & that is close to u, and for which we can also provide exact probability queries
like the oracle of [BDKRO5].

From the construction of the explicit persistent sampler we derive our most general result that
any label-invariant (i.e. invariant under permutation of the domain) property of distributions
can be tested adaptively with poly(logn,e™!) conditional samples (Theorem 6.1). In fact, we
go further to prove the following stronger result: with poly(logn,e=! log(6~1)) conditional
samples taken from p, it is possible to compute a distribution g’ that is e-close to u up to some

permutation of the domain [n| (Theorem 6.2).

Non-adaptive testing

We prove that uniformity can be tested non-adaptively with poly(logn,e~!) conditional samples.
Here too the tester enjoys a certain degree of tolerance, in the sense that it is possible to test
identity with any distribution that is close enough to uniform (see Theorems 6.7 and 6.8). This
is done by first proving (through bucketing) that a portion of the “total difference” of u from

being uniform is in relatively equal-probability members of [n], and then trying to capture just

Upper bounds Adaptive

Sample complexity Conditioned sets
Uniformity poly(e~1) Constant size
Identity to known dist. | poly(log*n,e~1) | poly(log* n,e~!) size
Label-invariant prop. poly(logn, e 1) Dyadic intervals

Non-adaptive

Sample complexity Conditioned sets
Uniformity poly(logn, e 1) General
Identity to known dist. poly(logn, e 1) General

Table 6.1: Summary of our upper bounds.
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a few of them in a random set of an appropriate size. We also prove (from the uniformity test
through standard bucketing arguments) that identity to any known distribution can be tested

non-adaptively with poly(logn,e~!) conditional samples (Theorem 6.9).

Lower bounds

As already mentioned in the introduction, adaptivity is useful when we have access to conditional
sampling. We demonstrate this by proving that testing uniformity non-adaptively requires
Q(loglog n) conditional samples, for some fixed € > 0 (Theorem 6.17). We also prove that the
tester for any label-invariant property (from our main result) cannot be improved to work with
a constant number of conditional samples: There is a label invariant property which requires
Q(v/Toglogn) samples to test, whether adaptively or not (Theorem 6.19). Our third lower bound
shows that for some properties conditional samples do not help much: There are distribution
properties that cannot be tested (even adaptively) with o(n) conditional samples (Theorem 6.1).
The first two lower bounds are through a special adaptation of Yao’s method, while the last one
is through a reduction to general properties of Boolean strings, of which maximally untestable

examples are known.

6.1.3 Related work

Independently, Cannone et. al. [CRS14] formulated the distribution testing with conditional
samples model as well. In their work they achieve several results. Some of their results overlap

with those of this chapter, but most of their work takes a different direction and emphasis.

Uniformity Cannone et. al. give an algorithm for testing uniformity using 0(6_2) samples,
and also give a lower bound of Q(e~2). It is interesting to note that their upper bound only uses

conditioning on sets of size 2.

Identity to a known distribution For this problem, Cannone et. al. demonstrate that
conditioning on arbitrary sets is stronger than conditioning on sets of size 2. They give an
upper bound of O(e~*log* n) and a lower bound of (\ / lolgi%) for testing identity to a known
distribution using samples conditioned on sets of size 2, and an upper bound of 0(6_4) for

testing it using samples on arbitrary sets.

Identity between two unknown distributions The case of testing identity between two

unknown distributions is an especially interesting one, as it showcases what seems to be a

Lower bounds Adaptive Non-adaptive
Uniformity and identity — Q(loglogn)
Any label-invariant prop. | Q(y/loglogn) | (follows uniformity)
General properties Q(n) (follows adaptive)

Table 6.2: Summary of our lower bounds.
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profound characteristic of the conditional sampling model. In developing an algorithm for this
problem, Cannone et. al. introduce the notion of an “approximate EVAL oracle”. Such an oracle
is given some element i € [n] and should return a good estimate of the probability of i, while
allowed to fail for some small fixed subset of [n]. This notion is somewhat reminiscent of the
notion of an explicit persistent sampler used in Section 6.6.3 Using this construction they give
an algorithm that uses 0(6_4 log® n) conditional samples to test identity between two unknown
distributions. They also give an algorithm that uses 0(6_21 log® n) samples, but only conditions

on sets of size 2.

Estimating the distance from uniformity Cannone et. al. give an algorithm using 0(6*20)
samples conditioned on sets of size 2 to give an additive approximation for the distance of an
unknown distribution from uniformity. It is interesting to note that this is a case of a label
invariant property, but for this property their result it outperforms the general algorithm for

testing label invariant properties given in this chapter.

Conditional samples over structured domains An interesting research direction arises
when one tries to impose some sort of structure on the sets conditioned upon. The simplest
case is when limiting their size, but one can imagine other cases. Cannone et. al. consider the
case where the universe of elements is linearly ordered, and one may obtain samples conditioned

on intervals. For this setting, they give an upper bound of 0(6_3 log® n) samples and a lower

bound of Q2 (lolgoi gn) samples for testing uniformity. It is interesting to note that our explicit
persistent sampler construction is also based only on samples conditioned on intervals (in fact,

on the restricted set of dyadic intervals).

Later results Since the research in this chapter was first published, there was a significant
amount of follow up work.

Ron and Tsur [RT14] studied the problem of hidden set size approximation. In the relevant
variant of this problem, the task is approximating the size of an unknown set S in a known
universe U. The algorithm may specify a subset T' C U, and if T NS # () the algorithm gets
a uniform sample in T'N S. This is essentially a special case of the problem of approximating
the support size of a distribution. Note that this problem can be solved using the explicit
persistent samplers developed in this chapter with sample complexity polylogarithmic in n and
the approximation parameter. Ron and Tsur give an adaptive algorithm, polyloglogarithmic
in the hidden set size, and a nonadaptive upper bound polylogarithmic in the hidden set size.
They also give stronger bounds for the case of interval queries.

Acharya, Cannone and Kamath [ACK14] expand on Cannone et. al’s results regarding
testing identity between two unknown distributions, giving a a lower bound of Q(y/loglogn) on

the sample complexity in the conditional samples model. Acharya et. al. also expand on Ron

3A major difference is that our explicit persistent sampler will with high probability conform to exactly one
distribution j that is close to u, rather than just give approximate probability values for pu.
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and Tsur’s results achieving the same complexity bounds for the general problem of support size
estimation.

Cannone [Canl5] studied the problem of testing monotonicity of distributions in this model.
In particular, they give an upper bound of 0(6*22) for testing distribution monotonicity with

conditional samples.

6.2 Preliminaries

6.2.1 The conditional distribution testing model

Let p be a distribution over {1,...,n}, its probabilities denoted by p1, ..., py,, where p; = Pr,[i].
We will also write () for Pry,[i] where we deal with more then one distribution. The distribution
1 is not known to the algorithm explicitly, and may only be accessed by drawing samples. A
conditional distribution testing algorithm may submit any set A C {1,...,n} and receive a
sample ¢ € A that is drawn according to p conditioned on A (and independent of any previous
samples).

Thus when a sample is drawn according to p conditioned on A, the probability of getting j
is Pr[j|A] = p;j/ (> icapi) for j € Aand 0 for j & A. If 37, s pi = 0 then we assume (somewhat
arbitrarily) that the algorithm obtains a uniformly drawn member of A.4

We measure distance using the variation distance (recall Definition 2.0.6): We say that p is
e-far from a property P of distributions over {1,...,n}, if for every u’ that satisfies P and is
described by pi,...,pl, we have dpy (u, ') = %Z?zl lpi — pli| > e

We will consider two types of conditional distribution testing algorithms. Non-adaptive
testers, which must decide the conditioned sets to sample from before getting any samples, and

adaptive testers, which have no such restriction.

Definition 6.2.1 (Non-adaptive tester). A non-adaptive distribution tester for a property P
with conditional sample complexity t : R x R x N — N is a randomized algorithm, that receives
€,0 > 0, n € N and a conditional sampling oracle to a distribution p over [n], and operates as
follows.

1. The algorithm generates a sequence of ¢ < t(e,d,n) sets Ay,..., Ay C [n] (possibly with

repetitions).
2. Then it calls the conditional oracle ¢ times with Aq,..., A; respectively, and receives
Ji,---,Jt, where every j; is drawn according to the distribution p conditioned on A;,

independently of ji,...,7;—1 and any other history.

3. Based on the received elements 71, ..., j; and its internal coin tosses, the algorithm accepts
or rejects the distribution pu.

If p satisfies P then the algorithm must accept with probability at least 1 — 4, and if p is e-far
from P then the algorithm must reject with probability at least 1 — §.

4See the beginning of Section 6.7 for how to essentially reduce a model without this assumption to this model.
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Definition 6.2.2 (Adaptive tester). An adaptive distribution tester for a property P with con-
ditional sample complexity t : R x R x N — N is a randomized algorithm that receives €, > 0,
n € N and a conditional sampling oracle to a distribution u over [n] and operates as follows.

1. For i € {1,...,t}, where t = t(e,d,n), at the ith phase the algorithm generates a set
A; C [n], based on ji,...,ji—1 and its internal coin tosses, and calls the conditional oracle
with A; to receive an element j;, drawn according to the distribution ;4 conditioned on A;,
independently of ji,...,j;—1 and any other history.

2. Based on the received elements ji, ..., j: and its internal coin tosses, the algorithm accepts
or rejects the distribution pu.

If u satisfies P then the algorithm must accept with probability at least 1 — §, and if p is e-far
from P then the algorithm must reject with probability at least 1 — 4.

As is standard in the field of property testing, the primary measure of efficiency of these

testers is their sample complexity t(e, 0, n).

6.2.2 Tools from previous works

Our algorithms will make use of the Identity Tester of Batu et. al. [BFR™10] (though it is
important to note that this result is used mainly as a “primitive” and can be replaced in the
sequel with just making enough samples to fully approximate the distribution).

Theorem 6.1 (Identity Tester). There is an algorithm T for testing identity between an un-
known distribution p' and a known distribution u, both over [n], with (ordinary) sample complexity
t = O(y/npoly(e 1) log(61)). Namely, T accepts with probability 1 — & if ' = p and rejects
with probability 1 — & if ' is e-far from u, based on t(e,d,n) independent unconditional samples
from p.

Bucketing

Bucketing is a general tool, introduced in [BFR*10], that decomposes any explicitly given
distribution to a collection of distributions that are almost uniform. In this section we recall the

bucketing technique and lemmas from [BFR10] that we will need for our proofs.

Definition 6.2. Given a distribution p over [n], and M C [n] such that p(M) > 0, the restriction
W [ar is the distribution over M with p [ar () = w(i)/u(M) (this is the the same as the
conditioning of x on B, only here we also change the domain).

Given a partition M = { My, M1,..., My} of [n], we denote by ppq) the distribution over
{0} U [k] in which ppq (i) = u(M;). This is the coarsening of p according to M.

Definition 6.3. Given an explicit distribution p over [n], Bucket(u, [n],€) is a procedure that
generates a partition {My, My, ..., My} of the domain [n], where k = logzglﬁe) < 2log(n). This
partition satisfies the following conditions:

o My={jeln|nulj)<+h

)ifl

e forall i € [k], M; = {j € [n] | (HGT < u(j) < (14:)1'}.



Lemma 6.2.3 (Lemma 8 in [BFR"10]). Let p be a distribution over [n] and let the buckets be
{My, M, ..., My} < Bucket(u,[n],€). Then for alli € [k], ||u s, =U Tam;lloo < €/m.

Lemma 6.2.4 (Lemma 6 in [BFR"10]). Let u, i’ be two distributions over [n] and let the se-
quence of sets M = {My, My, ..., My} be a partition of [n]. If dpy(p [am, —1' [a,) < €1 for
every i € [k] and dTV(u<M>, M(M)) < €2, then dpy (p, 1) < €1 + €2. Furthermore, we have the
bound drv (i, 1) < Yo<i<p H(Mi)dry (1 Tags 1 Tar,) + €2.

We reproduce the proof to obtain the “furthermore” claim:

Proof. This results from the following.

2y (i) = D D> () =Dl = D0 D (M) - T, () — 1/ (M) - ' Tag ()]

0<i<k jEM; 0<i<k jEM,
Do (M) - pag (5) — (M) - ' T, (5)]
0<i<k jEM,
+ >0 (M) T () — (M) - i T ()]
0<i<k jEM;
= >0 > uMG) A Tan () = # T, DI+ DS D W T (5) - (M) — i/ (M)
0<i<k jEM; 0<i<k jEM;
0<i<k 0<i<k
<2 p(My)dpy (i T 1 Tag,) + €2
0<i<k

This provides the “furthermore” claim. To obtain from the above the original claim note that
23 0<i<k M(M;) Y jens, drv (i Tar, () 1 Tar; () < Xo<ick (Mi)er = €1 O

6.3 Adaptive testing for uniformity and identity

In the following we formulate our testing algorithms to have a polynomial dependence on log(5~1).
To make it linear in log(6~!) we can first run the algorithm 100log(6~!) times with a fixed %

confidence parameter and then take the majority vote.

6.3.1 Testing uniformity

Theorem 6.4. There is an (adaptive) algorithm testing uniformity using poly(e ™!, log(671))
conditional samples independently of n.

In fact we will prove something slightly stronger, which will be useful in the next sections:

Theorem 6.5 (Near Uniformity Tester). Let p be a known distribution over [n] such that
[ = Unlloo < 1057~ Identity with p can be tested using only poly(e~!,log(671)) conditional
samples by an adaptive algorithm.

Proof. This follows from Algorithm 6.1 by Lemmas 6.3.1, 6.3.2 and 6.3.6 below. O
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Let 1/ be the unknown distribution that is to be sampled from.

Algorithm 6.1 Near Uniformity Tester
Input: Known distribution u, distance parameter €, confidence parameter § and universe size n.
Output: “ACCEPT” or “REJECT”.
1: Take S to be k = (6/¢)log(6~!) independent samples according to ' (unconditioned).
2: Take U to be k members of {1,...,n} chosen uniformly at random.
3: Invoke the Identity Tester of Theorem 6.1 to check whether ' [yug is Wz,l)—close to
i [yus over U U S with confidence parameter /3, and answer as the tester did.

Lemma 6.3.1. The sample complexity of Algorithm 6.1 is poly(e~!,log(671)).

Proof. The algorithm draws k samples, and then invokes the closeness tester on a set of size 2k
and an error parameter polynomial in e~!. Since the sample complexity of the closeness tester is
polynomial in the support size and the error parameter, and k = (6/¢)log(6!), the total sample
complexity of Algorithm 6.1 is poly(e~!,log(d71)). O

Lemma 6.3.2. If dry(p, ') = 0 then Algorithm 6.1 accepts with probability at least 1 — 9.

Proof. If || — /|l1 = 0 then ||x [vus —#' Tvuslli = 0 and then the algorithm will accept if the

closeness tester does, which will happen with probability at least 1 — g. ]

Let the individual probabilities for the distribution g be denoted by pi,...,p, and the
probabilities for the distribution u/ denoted by pi,...,pl,. We first note that

n
2dpy (i) = |l =l =D lpi—pil =2 > (i —pi) =2 > (0 —ps)
=1

P, <p; Pi>p;
Assume from now on that this distance is at least 2e (which corresponds to variation distance

at least €).

Lemma 6.3.3. With probability at least 1 — /3 we have an i € S for which (p; — p;) > 5.

Proof. Clearly Y (p, — pi) < %e. Therefore:

Pi <p,<pi+e/2n
1

Yooi> Y Wi-p)= Y W-p)- > (pg—pi)>§e

P;>pite/2n P;>pite/2n P;>Dp; Pi<pj<pi+e/2n

This means that after (6/¢)log(d~!) samples, with probability at least 1 —§/3 we will get an
i with such a p into S. O

Lemma 6.3.4. With probability at least 1 — §/3 we have an i € U for which p} < p;.

Proof. Note that 33, -, (pi — p}) < |{i: p; < pi}| - max{p;}. Now since max;{p;} < (14 &)
there are at least (¢/2)n such i. A uniformly random choice of (6/¢)log(6~!) indexes will get
one with probability at least 1 — /3. O

Lemma 6.3.5. When both events above occur, ' [yus is at least Wz(&_l)-far from u Tyus
over UUS.
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Proof. Note that |[SUU| = 2k = 2 - (6/¢)log(d~1), and that the two events above mean that

14¢/2

there are ¢ and j in this set such that p} > p;-. Denoting the conditional probabilities

T+¢/100
¢ = pi/p(SUU) and ¢, = p,/1/ (SUU), we note that we obtain ¢, > 1}:;{(2)0 qj, while both ¢; and
¢; are bounded between ;Zﬁggi and }fzﬁggz—lk Therefore, either g; > g; + 55z or ¢} < ¢; — 15+
Either way, drv (1 [vus, ¢’ Tvus) > 1565, Which concludes the proof. a

This concludes the soundness proof, as the last step of the algorithm checks the closeness of

i Tuus to p [yus with this approximation parameter. Thus we obtain:

Lemma 6.3.6. Let p1 be a known distribution over [n]. Then if ||p—Unlloo < 105 and

100n
dry (p, ') > € then Algorithm 6.1 rejects with probability at least 1 — 0.

Proof. Follows from a union bound for the events of Lemma 6.3.3 and Lemma 6.3.4, and the
failure probability of the test invoked in the last step of the algorithm (due to Lemma 6.3.5).0]

6.3.2 Testing identity to a known distribution

Recall that if we define log(® (n) = n and by induction log*+1) (n) = log(log®)(n)), then the
log* function is defined by log*(n) = min{k : log®)(n) < 1}.

Theorem 6.6. Testing identity with a known distribution can be done by an adaptive algorithm
using poly(log* n,e~!,log(671)) conditional samples.

Proof. This follows from Algorithm 6.2 by Lemmas 6.3.11, 6.3.8 and 6.3.10 below. O

Let p be the known distribution and y’ be the unknown distribution that is accessed by
sampling. The following is an algorithm for testing identity to the known distribution p over [n].
In the initial run we feed it m = n, but in the recursive runs it keeps track of m as the “original

7

n-.
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Algorithm 6.2 Identity Test
Input: Known distribution u, distance parameter €, confidence parameter §, initial universe

size m, current universe size n.

Output: “ACCEPT” or “REJECT”.
1: if n < (%g(l/e) log* m)3 then
2:  {Perform a brute-force test}
3. Take 100log(1/6)e~?n?log n samples to write a distribution /i that is §-close to x/ (with

probability 1 — §)

4 if dT\/(ﬂ, [,L) < % then

5 return ACCEPT

6: else

7 return REJECT

8: Let M = {Mo, My, ..., My} < Bucket(p, [n], 55155777 )-

9: for every bucket M; € M do

10:  Test using the Near Uniformity Test (Theorem 6.5) whether dpy (i [ar,, 1/ [ar,) >

o™

log*m

with confidence parameter 5oz (Wf)elog( 5Ty
11: if dTV(,U rMi,/L, TMI) > m then
12: return REJECT.
13: Recursively test if drv (uovy, W vy) < € (1 - log%m) with confidence parameter g. If not
then REJECT else ACCEPT.

First, we bound the number of recursion levels that can occur.

Lemma 6.3.7. Algorithm 6.2 never enters more than 2log*(n) recursion levels from the initial
n=m call.

Proof. Note that in the first 21log™(n) recursion levels, the distance parameter that is passed is

2log* (n
still at least € (1 L ) g ()

" log*n

> 5, so we will prove the bound on the number of levels even if

this is the distance parameter that is used in all but the first level. If log(n) < (w log™ m)

then after at most one recursion level the test goes to the brute force procedure in Step 3 and
400e2 log(n) log* (m) < log3

. < log’(n), and
"< 1200¢2 log log(n) log* (m)

ends. Otherwise, note that the recursive call now receives n’ <

that call itself will make a recursive call with universe size n <logn

€
(unless it already terminated for some other reason). This is sufficient for the bound. O

Lemma 6.3.8. If dpy (u, ') = 0 then Algorithm 6.2 accepts with probability at least 1 — 4.

Proof. The base case where n < (%g(l/e) log* m)3 is clear. Otherwise, if dpy (u, ') = 0 then
for all buckets M; we have drv (u [ar;, 1" Tar;) = 0 and dry (b agy, M,<M>) = 0. From Lemma 6.2.3
we know that [|p [ar, —=U Tagilleo < so15877m - 1< 105(,)”, where €’ is the distance parameter fed to
the Near Uniformity Tester, and hence the Near Uniformity tester (Theorem 6.5) is applicable

and will accept with probability 1 —

. Taking the union bound over the number

)
12log* (m)Elog(é— )
of samples taken and the probability of failure for the recursive call (recall that a recursive call

adds a % factor to 0) gives us the desired bound. O]

For soundness we need the following lemma.

Lemma 6.3.9. If dpy(p, p') > € then for any t at least one of the following two will happen:
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1. Z{l drv (pl a1 T ) >e€/t} p(M;) > e/t
2. drv () 1 (py) = (1= 1/8)

Proof. Recall Lemma 6.2.4:

dpy (i) <> (M) - dpy (e Tag 1 Tan) + dov (o 1 o)
0<z<k

Thus if dry (v, W ovmy) < €(1 = 1/t) and YXgiapy ur g, i’ T, )€/} pu(M;) < €/t then since
always dpry (p [ar, 14 Tar,) < 1 we sum up to obtain dry (i, 1) < €, a contradiction. O

Lemma 6.3.10. If dpy (u, p') > € then Algorithm 6.1 rejects with probability at least 1 — 4.

Proof. The base case of n < (wlog*m ’ is clear. Refer now to Lemma 6.3.9, tak-
ing t = log*m. Assume that we are in the first case of the lemma, that is the case that
D {isdpy (ul wioi! T, ) e/} w(M;) > €/t. therefore, the probability of sampling an index for which
the test in Line 10 should reject is at least m. This implies that the probability that one of
the sampled elements is such is at least §/3, and since the probability that all calls to the Near
Uniformity Test fail is at most /3 as well, we accept with probability at most 26/3.

Now assuming that we are in the second case of Lemma 6.3.9, by the induction hypothesis
we reject with probability at least §/3. Thus the overall confidence parameter is at most 6. [J

Lemma 6.3.11. The sample complexity of Algorithm 6.2 is poly(log* n, et log(671)).

Proof. If n < %g(l/s) log™ m)3 then it is polynomial in € and log* m, and so is the result of
substituting it in the number of queries of the brute force check of Step 1, which means that
q(€,0,n) = 1001og(1/6)e 2n?logn. For analyzing the sample complexity when the above does
not hold for m = n, let ¢q(e,d,n,m) denote the sample complexity of the algorithm. By the
algorithm’s definition, we have the following formula, where ¢, is the sample complexity of the
Near Uniformity Tester:

de
< 4 log* (m) log (6~ (1 u( ¢ ))
q(€,6,n,m) < 4e” " log*(m)log(6™") (1+¢ log” m’ 12log"(m) log(6-1)""

1 0 4001 log*

(1 k). 3, st g )
log*m /) "3 €

According to Lemma 6.3.7, after at most 2log™ n recursion levels from the initial n = m,

the right hand side is now within the realm of the brute force check, and we get a summand

* o € * 3 * — —
bounded by gy(e/e2,6 - 372108 n, (Meg(l/)log n) ) = poly(log* n, e, 1log(671)). Therefore:

.5 37210g*m
5 < 8¢ (log* m)2log(5~1) [ 1 ‘ ‘
Q(67 7n7m) > o€ (Og m) Og( ) +q’u 262 log*m’4062(log*m)2 log(é*_l)’n

+poly(log* n, ¢!, log(671))

Since by Lemma 6.3.1, the Near Uniformity Tester has sample complexity polynomial in the
distance parameter and polylogarithmic in the confidence parameter, we obtain the statement of
the lemma. 0
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6.4 Non-adaptive testing for uniformity and identity

Recall that a non-adaptive tester must be able to produce all the conditioned upon sets in
advance. In this section we show that these weaker testers can still beat testers without

conditional sampling.

6.4.1 Testing uniformity

Theorem 6.7. Testing uniformity can be done using poly(logn,e=1 log(6~1)) non-adaptive
conditional samples.

Again, we will actually prove the following stronger statement:

Theorem 6.8 (Nonadaptive Near Uniformity Tester). Let u be a known distribution over [n].
If | — Unlloo < €/8n then identity with yu can be tested using poly(logn, et log(6~1)) conditional
samples by a non-adaptive algorithm.

Proof. For 6 = 1/3, this follows from Algorithm 6.3 by Lemmas 6.4.2, 6.4.1 and 6.4.5 below.
For general § we use a standard amplification technique: We repeat the algorithm ©(log(5~1))
times (with independent probabilities) and take the majority vote. This obviously incurs a
multiplicative factor of ©(log(d~!)) in the sample complexity. O

Let i/ denote the unknown distribution, to which the algorithm has nonadaptive conditional

sample access.

Algorithm 6.3 Non-Adaptive Near Uniformity Tester
Input: Known distribution u, distance parameter €, confidence parameter § and universe size n.
Output: “ACCEPT” or “REJECT”.
1: for [log(2000e %1og®(n))] < j < [log(n)] do
2:  Set U; to be a uniformly random set of min{n, 2’} indices.
3: for U; do
4:  Perform 64¢~2log?(n) conditional samples.
5
6
7

if the same index was drawn twice then
return REJECT
. Uniformly pick a random set U of 9000 % log®(n) elements, and invoke the Identity Tester of
Theorem 6.1 to test whether y [y= p [y or dry (i v, p [u) > ﬁU\ with success probability
%. In the latter case REJECT.
8: return ACCEPT {unless any of the above testers rejected}

Lemma 6.4.1. If dpy (u, ') = 0 then Algorithm 6.1 accepts with probability at least 2/3.

Proof. Since ||t — Uy |loo < €/8n, the probability that an element will be drawn twice in the jth
_ 2 .
iteration of Line 4 is at most (646 212°g2(")) : (%) -272J, Summation over all values of j gives
us less than 1/9.
Since p =/, i’ J[y= p v for any U C [n], and the probability that Line 7 rejects is at most

1/9. This obtains the confidence parameter in the lemma. O

The following is immediate from the algorithm statement and Theorem 6.1:
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Lemma 6.4.2. The sample complezity of Algorithm 6.2 is poly(logn,e™1).

Proof. This follows from the number of samples used in Lines 4 and 7 and the fact that Line 4
is iterated at most logn times. O

In the following we assume that dry (i, p') > €.
Let My, My, ..., My be the bucketing of p and Mg, Mq,. .., M the bucketing of ', both
with €/3. Denote the individual probabilities by p1,...,p, and pi,...,p, respectively.

Lemma 6.4.3. Assuming dpy (u, 1) > €, then |M, U M{| > en and there exists 2 < j < k such
2

that | Mj| > 96(1+:/z?)]’ Togn "
Proof. Note that [n] = My U M; by our requirement from pu. Now following Lemma 6.3.4,
Sop<p; (i — i) < [{i 2 pl < pi}| - max{p;}. Now since max;{p;} < (1 + €/8)% there are at least
(¢/2)n such 1.

For the second part we will adapt the proof of Lemma 6.3.3. Clearly we have the inequality
Zpi<p;<pi+11€/12n(pg —pi) < %6. Therefore:

1
Z p; > Z (i —pi) = Z (P — i) — Z (i — pi) > 1€
pi>pi+1le/12n pi>pi+1le/12n pi>pi pi<pl<pi+1le/12n
Since p; > 17;/8, we know that the p) in the left hand side have (assuming e < 1/10)

o> 1—6/8+&: 1+ 19¢/24 . (1+¢/3)?
n 12n n n

and therefore all these p;s are in buckets M for 2 < j < k.

Since k = bgg%/:&)? there exists some 2 < j < k such that u/(M]) > %;;{3). By the
.. A elog(1+€/3) 2
definition of the buckets this gives [M}| > =55 - (1+l”/3)j > 96(1+:/§L)j Togm O

Lemma 6.4.4. Given a set B of size I, a set U of min{n, 3"} indices chosen uniformly at

random will with probability more than % contain a member of B.

Proof. The probability is lower bounded by the probability for 3n/l indexes chosen uniformly
3n

and independently with repetitions from [n] to intersect B, whichis 1 — (1 —1/n)7 > 3. O

Lemma 6.4.5. Let p1 be a known distribution over [n]. If |u — Uylloo < €/8n and dpy (p, p') > €
then Algorithm 6.1 rejects with probability at least 2/3.

Proof. We partition into cases according to the j guaranteed by Lemma 6.4.3.
51, SO by Lemma 6.4.4 with probability 1—8 the

If (14 §)7 < 40~ log" n, then [M]| > g 1
set U in Line 7 will contain a member h of M;. Note that j > 2 and therefore x/'(h) > %
By the first part of Lemma 6.4.3 with probability % (actually much more than that) we
will also sample an element | € M) U M{. Thus we have p/(h) > (1 + ¢/3)u/(1), and also

W o (h) > (14¢€/3)u’ [v (1), while both u [ (h) and p [ (1) are restricted between };zgﬁ
1+¢/8 1

and =g 7. Therefore, either w Ty (h) > p ly (h) + =07 OF Wl (D) < plu ) - =0
Either way dpv (¢ v, p [u) > ﬁ, which will be identified by the tester of Theorem 6.1 with

probability %. Thus in total we get a rejection probability greater than g.
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Otherwise, let i be such that the value 2 is between min{n,300¢ ?logn(1 + £)’} and
2min{n, 300e 2 logn(1+§)’} (recall the lower bound on (145)7). In that case the U; in Line 4 will
with probability at least % contain a member a of M j’ Additionally, the expected value of ' (U;)
is min{1, %} < min{1, %e”(l—k%)j logn}, thus by Markov’s inequality, with probability at least
8 we will have ¢/(U;) < min{1, ®®e2(1 + £)logn}. Therefore, i/ [y, (a) > m.

Thus the expected number of times a is sampled is at least ligg and therefore by Lemma 2.0.1
with probability 1 —2 exp(—lgg(;‘ ) we will sample a at least twice. Thus in total we get a rejection

probability greater than % for n > 2253 (this lower bound can be reduced for the price of a higher

degree polynomial dependence on logn). O

6.4.2 Testing identity to a known distribution

Theorem 6.9. Identity to a known distribution can be tested using poly(logn, et log(671))
non-adaptive conditional samples.

Proof. This follows from Algorithm 6.4 by Lemmas 6.4.7, 6.4.6 and 6.4.8 below. O

Let p be the known distribution and y’ be the unknown distribution that is accessed by

sampling. The following is an algorithm for testing identity with the known distribution p over

[n]:

Algorithm 6.4 Non-Adaptive Identity Test
Input: Known distribution p, distance parameter €, confidence parameter § and universe size n.

Output: “ACCEPT” or “REJECT".
1: Let M = {My, My, ..., My} < Bucket(p, [n], §).
2: for every bucket My,..., M} do
3:  Test using the Nonadaptive Near Uniformity Test (Theorem 6.8) to check whether
i Tar; = Tarsll1 > €/2 with confidence parameter %;’:/8)
if any test rejects.
4: Invoke the Identity Tester of Theorem 6.1 to test if || ng) — 1/ (agll1 < €/2 with confidence

, rejecting immediately

parameter ¢/2, answering as the test does.

Lemma 6.4.6. If dpy (p, 1') = 0 then Algorithm 6.4 accepts with probability at least 1 — 0.

Proof. In this case, for all buckets || [ar; —' [ar;]l1 = 0 and [[pngy — 1/ agll1 = 0, and thus by
the union bound we obtain the statement. O

Lemma 6.4.7. The sample complexity of Algorithm 6.2 is poly(logn, =1 log(671)).

logn . :
Tog(11e/8) times, and invoke the Closeness

Tester with a distribution of support size logﬁ%' Therefore by Lemma 6.4.2 and Theorem 6.1

Proof. We invoke the Nonadaptive Near Uniformity Test

we obtain the bound in the statement. O
Lemma 6.4.8. If dpy (u, 1) > €, then Algorithm 6.4 rejects with probability at least 1 — 4.

Proof. Assume that the test accepted. If no error was made, then by Lemma 6.2.4 we have that
dry (p, i1') < €. By the union bound the probability of error is at most §. O
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6.5 Explicit persistent samplers

We exhibit here the strength of the conditional sampling oracle, using it to implement explicit

persistent samplers as defined below.

Definition 6.10. Given a distribution over distributions M, a (6, s)-explicit persistent sampler
is an algorithm that can be run up to s times (and during each run may store information to
be used in subsequent runs), that in every run returns a pair (¢,7). It must satisfy that with
probability at least 1 — ¢, the 4’s for all s runs are independent samples of a single distribution i
that in itself was drawn according to the distribution over distributions M, and every output
pair (i,n) satisfies n = fi(4).

The goal of this section is to construct, for every distribution p, an explicit persistent sampler
for a distribution over distributions that are all close to p, which uses a conditional sampling
oracle for p.

Note that although the definition does not require it, the explicit persistent samplers we
construct will also be able to answer oracle queries of the form “what is the probability of ¢7”.

In all the following we assume that n is a power of 2, as otherwise we can “pad” the probability

space with additional zero-probability members.

6.5.1 Ratio trees and reconstituted distributions

The main driving force in our algorithm for constructing an explicit sampler is a way to estimate
the ratio between the distribution weight of two disjoint sets. To make it into a weight oracle for
a value i € [n], we will use successive partitions of [n], through a fixed binary tree. Remember
that here n is assumed to be a power of 2.

We first define how to “reconstruct” a distribution from a tree with ratios, and afterward

show how to put the ratios there.

Definition 6.11. Let T be a (full) balanced binary tree with n leaves labeled by [n]. Let U be
the set of non-leaf nodes of the tree, and assume that we have a function o : U — [0, 1]. For
u € U denote by L(u) the set of leaves that are descendants of the left child of u, and by R(u)
the leaves that are descendants of the right child of w.

The reconstituted distribution according to « is the distribution & that is calculated for every
i € [n] as follows:

o Let ui, ..., Ug(n)4+1 be the root to leaf path for i (so in particular Ulog(n)+1 = i).

e For every 1 < j <logn, set p; = a(uy) if i is a descendant of the left child of u; (that is if
i € L(u;)), and otherwise set p; = 1 — a(u;).

~/ 1
o Set (i) = 15" pj.

For intuition, note the following trivial observation.

Observation 6.12. If for a distribution p we set a(u) = m, using an arbitrary value

(say 3) for the case where u(L(u)) + p(R(u)) = 0, then the reconstituted distribution f is
identical to pu.
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However, if we only have conditional oracle access to p then we cannot know the values
m. The best we can do the the following.
Definition 6.13. An (e,0)-ratio estimator for T and a distribution p is an algorithm A that

given a non-leaf vertex u € U outputs a number r, such that with probability 1 — § we have that
p(L(v)) << u(L(v)) +e
#(L(v))+u(R(v)) = = pL@)+u(R(v)) :

The algorithm is given conditional sample access to a distribution .

Algorithm 6.5 Ratio Estimator
Input: A balanced binary tree T" with n leaves, a non-leaf vertex u € U distance parameter e

and confidence parameter 6.
Output: Real number.
1: Sample t = 2¢ 21og(6 1) elements according to IL(w)UR(u), and let s be the number of
samples that are in L(u).
2: return the ratio 7 of the samples that are in L(u) to the total number of samples.

Lemma 6.5.1. For any €, Algorithm 6.5 is an (e,0)-ratio estimator for T and p which uses
t = 2¢ 21og(67Y) non-adaptive conditional samples from p.

Proof. The number of samples used is immediate. Let us now proceed to show that this is
. _ . . s - w(L(u))
indeed an (e, ) rat'lo estlrr.lator. The expe.c’.ced value of 3 1§ AW+ R

By Chernoff’s inequality, the probability that 3 deviates from its expected value by an
additive term of more than e is at most 2exp(—2¢2 - t). By our choice of ¢t we obtain the

statement. OJ

If we could “populate” the entire tree T' (through the function «) by values that do not
deviate by much from the corresponding ratios, then we would be able to create an estimate for

w that is good for most values.

Definition 6.14. The function o : U — [0, 1] is called e-fine if |a(u) — u(L(Z)()L—iEZ)&%(u))‘ < (21();@))2
for every u € U.
We call a distribution fi e-fine if there exists a set B such that u(B) < €, and additionally

f(i) = (1 £ €)u(i) for every i € [n] \ B.

Lemma 6.5.2. If a is e-fine then the reconstituted distribution fi is e-fine.

Proof. To define the set B, for every i consider the p1, ..., piogn that are set as per Definition

6.11, and set i € B if and only if there exist some p; that is smaller than ﬁg(n). Next,
. 9 : . w(L(uy)) LT .

denote by gq1,...,qr the “intended” values, that is ¢; = M(L(uj))ﬂj(R(uj)) if 1 € L(u;) and

L #(R(u;))
U= WLy +a(Ruy)
an induction over logn (the height of T) gives that 1 — u(B) is at least (1 — )87 > 1 —e.

otherwise. Noting that p; does not deviates from ¢; by more than (W)Q,

~ logn
For i € [n] \ B, we note that in this case p; = (1 £ 575:7)q;, and hence we deduce that
iy 1 1 4
() =TI pj = (1% gp5) 8" T2 g5 = (1 £ €)u(d). O

We should note here that it is not hard to prove that an e-fine distribution fi is of distance
not more than 4e from the original p. However, we will in fact refer to yet another distribution

which will be easier to estimate, so we will show closeness to it instead.
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Definition 6.15. Given an e-fine distribution & and its respective set B, its e-trimmed distribution
7 is a distribution over [n] U {0} defined by the following.

e Foric BU{i: (i) < £} we set fi(i) = 0. For such i we also set j; = 0.

e For all other ¢ € [n] we set j; to be the largest integer for which %e < i1(7), and set
—. 1+e€ Ji—1
i) = B,

e Finally set (0) = 1—>"1", 7i(7); note that fi(i) < ji(¢) for all 1 <14 < n and hence 7i(0) > 0.

The e-renormalized distribution fi over [n] is just the conditioning 7z [

It will be important later to note that the renormalized distribution is in fact (a permutation of)
the tentative distribution according to mo, ..., my, where for 0 < j < k we set m; = [{i : j; = j}|,

as per Definition 6.6 below.

Lemma 6.5.3. The renormalized distribution [i corresponding to an e-fine distribution [ is
5e-close to p.

Proof. First we consider the trimmed distribution 7, and its distance from p (when we extend it
by setting 1(0) = 0). Recalling that this variation distance is equal to 3= ¢;70) <)y (1(2) — (%)),
we partition the set of relevant i’s into two subsets.

e For those ¢ that are in B (for which fi(i) = 0), the total difference is pu(B) < e.

e Fori ¢ B where fi(i) < u(i) and i > £, note that (i) > = fi(i) > 155u(i) > (1—3€)pu(i).
This means that the sum over differences for all such ¢ is bounded by 3e.

e For i ¢ B where fi(i) < pu(i) and i < +, the total difference is no more than e.

e We never have 1(0) < u(0).

Thus the distance between & and p is not more than 4e. As for fi, the sum of differences over ¢
for which fi(7) < p(i) is only made smaller (the conditioning only increases the probability for
every i > 0), and so the 4e bound remains. O

6.5.2 Distribution samplers and learning

To construct an explicit sampler we need to not only sample from the distribution u, but to
be able to “report” (i) for every i thus sampled. This we cannot do, but it turns out that
we can sample from a close distribution g while reporting fi(7). In fact we will sample from a

distribution that in itself will be drawn from the following distribution over distributions.

Definition 6.16. The (¢, d)-condensation of u is the distribution over e-fine distributions (with
respect to u) that is defined by the following process.

e Let T be a (full) balanced binary tree whose leaves are labeled by [n], and U be its set of
internal nodes.

e For every u € U, let a(u) be the (randomized) result of running the corresponding

((ﬁg(n))% d)-Ratio Estimator (Algorithm 6.5), when conditioned on this result indeed

being of distance not more than (ﬁg(n))2 away from L(u’; ()I;J(:L"()gz(uj)). This is done

independently for every w.
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e The drawn distribution i is the reconstituted distribution according to T" and «

The algorithm that we define next is an explicit persistent sampler: It is explicit in that
it relays information about fi(i) along with 4, and persistent in that it simulates (with high
probability) a sequence of s independent samples from the same fi. It operates given conditional

sample access to a distribution p.

Algorithm 6.6 Persistent Sampler

Input: Repetition parameter s, universe size n, distance parameter ¢ and confidence parameter
0.
Output: Anindex ¢ € [n] and a real number.
1: On the initial run, set 7" to be a full balanced binary tree with n leaves labeled by [n]. Let v
denote the root vertex and U denote the set of non-leaf vertices. « is initially unset.

2: On all runs, set u; = v.
3: forl=1,...,logn do
4: If a(u) is not set yet, set it to the result of the ((ﬁg(n))a ﬁ)—Ratio Estimator

(Algorithm 6.5); run it independently of prior runs.

5. Independently of any prior choices, and without sampling from p, with probability o/(u;)
set u;y1 to be the left child of u; and p; = a(vy;), and with probability 1 — a(u;) set w41
to be the right child of w; and p; = 1 — a(wy).

: Set i to be the label of the leaf ujogn+1 and n = ]_[%Ozgln Pl

return (i,7)

N o

Lemma 6.5.4. For any €,6 and s, Algorithm 6.6 is a (9, s)-explicit persistent sampler for the
(e, ﬁ)—condensation of . It uses a total of 2° - e *log® n - log(sé~'logn) many adaptive
conditional samples from u to output a sample.

Proof. The calculation of the number of samples is straightforward (but note that these are
adaptive now). During s runs, by the union bound with probability at least 1 — ¢ all of the calls to
the ((ﬁg(n))a ﬁ)-R&tio Estimator produced results that are not more than ( (ﬁg(n))laway
from the actual rations.

Conditioned on the above event, the algorithm acts the same as the algorithm that first
chooses for every u € U the value a(u) according to a run of the ((ﬁg(m)27 ﬁ)—Ra‘cio
Estimator conditioned on it being successful, and only then traverses the tree T for every
required sample. The latter algorithm is identical to picking a distribution & according to the

(e, ﬁ)—condensation of u, and then (explicitly) sampling from it. O

6.6 Testing any label-invariant property

We show here the following “universal testing” theorem for label-invariant properties.

Theorem 6.1. Fvery label-invariant property of distributions can be tested adaptively using at
most poly(logn, et log(671)) conditional samples.

It is in fact a direct corollary of the following learning result.
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Theorem 6.2. There exist an algorithm that uses poly(logn, e 1, log(6~1)) adaptive conditional
samples to output a distribution i over [n], so that with probability at least 1 —3§ some permutation
of i will be e-close to p.

Proof. The required algorithm is Algorithm 6.8 below, by Lemma 6.6.2. O

To derive Theorem 6.1, use Theorem 6.2 to obtain a distribution f that is €/2-close to a
permutation of p, and then accept p if and only if fi is €/2-close to the tested property.

In a similar manner, one can also derive the following corollaries:

Corollary 6.3. There exist an algorithm that uses poly(logn, e !, log(6~!)) adaptive conditional
samples to test whether two unknown distributions are identical up to relabeling.

Corollary 6.4. For every label-invariant property P, there exist an algorithm with adaptive
sample complexity poly(logn,e!,log(67!)) that accepts any distribution €/2-close to P with
probability at least 1 — § and rejects any distribution e-far from P with probability at least 1 — 6.

Remark. The above can be proved to be true for every 7, € such that n < e. That is, there exists
an algorithm that accepts any distribution n-close to P and with probability at least 1 — § and
rejects any distribution e-far from P with probability at least 1 — 4.

The main idea of the proof of Theorem 6.2 is to use a bucketing, and try to approximate the
number of members of every bucket, which allows us to construct an approximate distribution.
However, there are some roadblocks, the foremost being the fact that we cannot really query the

value p(i). Instead we will use an explicit persistent sampler as introduced in Section 6.5.

6.6.1 Bucketing and approximations

We need a bucketing that also goes into smaller probabilities than those needed for the other

sections.

Definition 6.5. Given an explicit distribution p over [n|, Bucket'(u,[n], €) is a procedure that
-1

generates a partition { My, My, ..., M} of the domain [n], where k = %- This partition

satisfies the following conditions:

o My={jeln|uld)<gh

e forall i € [k], M; = {j € [n] | M9 < 4(5) < <1+e)i€}.

n

In the rest of this section, bucketing will always refer to this version. Also, from here on we
fix e and k = % as above (as well as mostly ignore floor and ceiling signs). We also
assume that € is small enough, say smaller than ﬁ.

Suppose that we have my, ..., my, where m; = | M;| is the size of the i’th set in the bucketing
of a distribution p. Then we can use these to construct a distribution that is guaranteed to be

close to some permutation of .

Definition 6.6. Given my, ..., m; for which Z?:o m; = n and €, the tentative distribution over
[n] is the one constructed according to the following.
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(1+e)i—1

o Setry,...,rys0that [{i:r; =0} =mgand [{i:r; = —

(the order of r1,...,r, is arbitrary).

et =mj forevery 1 < j <k

e Set a distribution fi over [n] by setting (i) equal to r;/ > % 7y

To gain some intuition, note the following.

Observation 6.7. If My, ..., My is the bucketing of p and i is the tentative distribution according
to mo = |Mo|, ..., my = | Mg]|, then fi is 2e-close to some permutation of u.

Proof. We assume that we have already permuted i so that each fi(7) refers to an r; set according
to the bucket M; satisfying ¢ € M; (such a permutation is possible because here we used the
actual sizes of the buckets).

We recall that the distance is in particular equal to 3 ;.50 <)y (1(4) — fi(i)). Referring
to the r; of the definition above, we note that in this case > - qr; < >, u(i) = 1 and hence
(i) > ri. For i ¢ My, this means that (i) > (1 — €)u(z). For the rest we just note that
> iem, (i) < e. Together we get the required bound. O

The above observation essentially states that it is enough to find the numbers my, ..., mg
associated with u. However, the best we can hope for is to somehow estimate the size, or total

probability, of every bucket. The following shows that this is in fact sufficient.

Definition 6.8. Given ay, ..., ay for which Z?:o a; = 1, the bucketization thereof is the sequence
of integers my, ..., ny defined by the following.

e For any 1 < j <k let m; be the integer closest to nay, (where an “exact half” is arbitrarily
rounded down).

o If Z§:1 m; > n, then decrease the m; until they sum up to n, each time picking j to be
the smallest index for which 7, > 0 and decreasing that quantity by 1.

e Finally set mg=n — Z§:1 my.
We say that the bucketization has failed if in the second step we had to decrease any m; for

which Me > i

n

Lemma 6.6.1. Suppose that my,...,mk, q,...,a are such that :
k
° ijo m; =n

k 14¢)i—1
* > i mj%e <1

° |mj—aj|we<if0rall1§j§k

n

and let Mo, . .., My be the bucketization of ag, ..., . Then Mo, ..., My are all well defined (the
bucketization process did not fail), and additionally if fi is the tentative distribution according
to mog,...,my and [i is the tentative distribution according to my,..., My, then the distance
between fi and fi (after some permutation) is at most 4e.
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Proof. The first thing to note is that m; = m; for all j for which At > 1, before the

n
decreasing step, so there will be no need to decrease these values and the bucketization will not

fail.

For all j > 1, before decreasing some of the m; we have that |m; — mﬂ%e < 5 (f
(14¢)7 1

n
follows from m; = m;). Since the bucketization did not fail, the decreasing step only affects

o . 14¢)i—1
values m; for which %

than & (as the rounding in the first step of the bucketization added no more than 1 to each of
i—1
them), we obtain the total bound Z?Zl |mj — mj\%e < 2e.

€ < ¢ then the distance is not more than doubled by the rounding, and otherwise it

€ < 1, and the total required decrease in them was by not more

Let r; denote the corresponding values in the definition of f being the tentative distribution
according to my, ..., mg, and 7; be the analog values in the definition of fi being the tentative
distribution according to my, ..., M. By what we already know about E?zl |m; — 1| (H;)]_l
we have in particular > 7' ; 7 = > 1" | ; £ 3e. Combined with the known bounds on ;" ; r;, we
can conclude by finding a permutation for which we can bound Y ;" |r; — 7| by 3¢, which will

give the 4e bound on the distribution distance § > |fi(i) — fi(i)|.

The permutation we take is the one that maximizes the number of i’s for which r; = 7;; for
(1+e)/ !
n
worst case is that whenever r; # 7; one of them is zero (sometimes the realizable worst case is in

fact not as bad as the hypothetical one). Thus the Z§:1 |m; — mj|%e < 3¢ bound leads to
the 4e bound on the distribution distance. O

the value e we can find min{m;, m;} such i’s (for every 1 < j < k), and the hypothetical

A problem still remains, in that sampling from p will not obtain a value «; close enough

to the required m; %e. The variations in the p(i) inside the bucket M; itself could be

higher than the 57 that we need here. In the next subsection we will construct not only a
“bucket identifying” oracle, but tie it with an explicit persistent sampler that will simulate the

approximate distribution rather than the original pu.

6.6.2 From bucketing to learning

An explicit persistent sampler is almost sufficient to learn the distribution. The next step would
be to estimate the size of a bucket of the e-fine distribution fi by explicit sampling (i.e. getting
the samples along with their probabilities). However, Lemma 6.6.1 requires an approximation
not of fi(M;) (where M; is a bucket of fi) but rather of |M]|%e In other words, we really

need to approximate fi(M;), where [ is the corresponding trimmed distribution.

Therefore we define the following explicit sampler for an e-trimmed distribution. We “bend”
the definition a little, as this sampler will not be able to provide the corresponding probability

for ¢ = 0. It is given conditional sample access to a distribution p.
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Algorithm 6.7 Trimming Sampler
Input: Repetition parameter s, universe size n, distance parameter ¢ and confidence parameter

J.

Output: Anindex i € [n] and a real number.

1: Run the Persistent Sampler (Algorithm 6.6) with parameters €, and s to obtain ¢ and n;
additionally retain pi,...,plogn as calculated during the run of the Persistent Sampler.
: if there exists [ for which p; < 5 ( ) then
return “0”
if n < then
return “0”
: Let 7 be the largest integer for which
: With probability 1 — '/n return “0”, and with probability 7'/n return (i,7) (where j
corresponds to (i) = 1').

a +e) (1+e)] e

€<77 and set ' =

The following observation is now easy.

Observation 6.9. The trimming sampler (Algorithm 6.7) is a (0, s)-persistent sampler, and explicit

whenever the returned sample is not 0, for the distribution over distributions that results from

taking the e-trimming of an e-fine distribution [ and its corresponding B that was drawn according
)

to the (e, Togn)

many adaptive conditional samples from g to output a sample.

-condensation of p. The algorithm uses in total 2° - e~*1log® n - log(s6~ ' logn)

Proof. The number of samples is inherited from Algorithm 6.6 as no other samples are taken.
The algorithm switches the return value to “0” whenever ¢ € B (as defined in the proof of
Lemma 6.5.2), and otherwise returns “0” exactly according to the corresponding conditional
probability difference for i between fi (as in the definition of a reconstituted distribution) and 7
(as in the definition of the corresponding trimmed distribution). Finally, whenever the returned
sample is ¢ > 0 the algorithm clearly returns the corresponding j; (see Definition 6.15). O

We are now ready to present the algorithm providing Theorem 6.2. It is given conditional

sample access to a distribution p.

Algorithm 6.8 Distribution Approximation

Input: Distance parameter € and confidence parameter 6.

Output: Anindex ¢ € [n] and a real number.
_ - log nlog(12¢~1
1: Set s = 22 *log?(n)log(6~ '), and k = %5.
2: Take s samples through the (¢/12,6/2, s)-Trimming Sampler.

3: Denote by sg the number of times that the sampler returned “0”, and for 1 < 5 < k denote
by s; the number of times that the sampler returned (i, j) for any 1.

4: Let my, ..., mj, be the bucketization of ag = %2,..., ap = &,
5: return the tentative distribution according to my, ..., m}.

Lemma 6.6.2. The Distribution Approximation algorithm (Algorithm 6.8) will with probability
at least 1 — & return a distribution that is e-close to a permutation of p. This is performed using
at most O(e3log" nlog(6~1)) conditional samples.
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Proof. The number of samples is immediate from the algorithm statement and Observation 6.9.

By Observation 6.9, with probability at least 1 —4/2 all samples of the Trimming Sampler will
be from one €/12-trimming of some €/12-fine distribution @. Set mg = [{1 <@ <n: (i) = i}|
and for 1 < j < ksetm; = |[{i: (i) = (ILG}\ Recall that the €/12-renormalized distribution
corresponding to @ is in fact the tentative distribution according to my,...,mr. By Lemma
6.5.3, this distribution is €/2-close to p.

Note now that for every 1 < j < k the expectation of a; is exactly m]Me/m By
virtue of a Chernoff bound and the union bound, our choice of s implies that with probability
1—0/2 (conditioned on the previous event) we get values such that |m;—o;| % €/12 < E/ 12
for every 1 < j < k. This satisfies the assertions of Lemma 6.6.1, and thus the tentatlve
distribution according to my, ..., m}, will be €/2-close to the tentative distribution according to
mo, . .., Mk, and hence will be e-close to u. ]

Note that if we were to use this algorithm for testing purposes, the dependence on 6! can
be made logarithmic by setting it to 1/3 and repeating the algorithm log(6~!) times, taking the

majority vote (but this may not be possible if we are interested in [ itself).

6.7 Lower bounds for label invariant properties

In this section we prove two sample complexity lower bounds for testing label-invariant distribu-
tion properties in our model. The first is for testing uniformity, and applies to non-adaptive
algorithms. The second bound is for testing whether a distribution is uniform over some subset
U C{1,...,n} of size exatcly 22* for some k, and applies to general (adaptive) algorithms.
The analysis as it is written relies on the particular behavior of our model when conditioning
on a set of probability zero, but this can be done away with: Instead of a distribution
with probabilities p1, ..., p, over [n], we can replace it with the o(1)-close distribution /i with
probabilities py,...,p; where p; = # +(1- %)pZ The same analysis of why an algorithm will

fail to correctly respond to p will pass on to fi, which has no zero probability sets.

6.7.1 Preliminary definitions

We start with some definitions that are common to both lower bounds.

First, an informal reminder of Yao’s method for proving impossibility results for general
randomized algorithms: Suppose that there is a fixed distribution over “positive” inputs (inputs
that should be accepted) and a distribution over “negative” inputs, so that no deterministic
algorithm of the prescribed type can distinguish between the two distributions. That is, suppose
that for every such algorithm, the difference in the acceptance probability over both input
distributions is o(1). This will mean that no randomized algorithm can distinguish between
these distributions as well, and hence for every possible randomized algorithm there is a positive
instance and a negative instance so that it cannot be correct for both of them.

In our case an “input” is a distribution p over {1,...,n}, and so a “distribution over inputs”
is in fact a distribution over distributions. To see why a distribution over distributions cannot

be replaced with just a single “averaged distribution”, consider the following example. Assume
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that an algorithm takes two independent samples from a distribution p over {1,2}. If u is with
probability % the distribution always giving 1, and with probability % the distribution always
giving 2, then the two samples will be either (1,1) or (2,2), each with probability % This
can never be the case if we had used a fixed distribution for u, rather than a distribution over
distributions.

What it means to be a deterministic version of our testers will be defined below; as with
other settings, these result from fixing in advance the results of the internal coin tosses of the
randomized testers. The following are the two distributions over distributions that we will use
to prove lower bounds (a third one will simply be “pick the uniform distribution over {1,...,n}
with probability 17).

Definition 6.10. Given a set U C {1,...,n}, we define the U-distribution to be the uniform
distribution over U, that is we set p; = 1/|U] if i € U and p; = 0 otherwise.
The even uniblock distribution over distributions is defined by the following:

1. Uniformly choose an integer k such that %logn <k< %log n.

2. Uniformly (from all possible such sets) pick a set U C {1,...,n} of size exactly 22¥.

3. The output distribution p over {1,...,n} is the U-distribution (as defined above).
The odd uniblock distribution over distributions is defined by the following:

1. Uniformly choose an integer k such that %logn <k< %log n.

2. Uniformly (from all possible such sets) pick a set U’ C {1,...,n} of size exactly 22+,
3. The output distribution p over {1,...,n} is the U’-distribution.

Finally, we also identify the uniform distribution with the distribution over distributions that
picks with probability 1 the uniform distribution over {1,...,n}.

For these to be useful for Yao arguments, we first note their distance properties.

Observation 6.11. Any distribution over {1,...,n} that may result from the even uniblock

distribution over distributions is i-far from the uniform distribution over {1,...,n}, as well as

%—far from any distribution that may result from the odd uniblock distribution over distributions.

Proof. This follows directly from a variation distance calculation. Specifically, the variation
distance between a uniform distribution over U and (a permutation of) a uniform distribution
over V with |V| > |U| (which is minimized when we make the permutation such that U C V) is
at least (|V| — |U])/|V]. In our case we always have |V| > 2|U|, and hence the lower bound. [

All throughout this section we consider properties that are label-invariant (such as the
properties of being in the support of the distributions defined above). This allows us to simplify
the analysis of our algorithms.

First, some technical definitions.
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Definition 6.12. Given Ay,..., A, C{1,...,n}, the atoms generated by Ay, ..., A, are all non-
empty sets of the type (;_; C; where every Cj is one of Aj or {1,...,n}\ A;. In other words,
these are the minimal (by containment) non-empty sets that can be created by boolean operations
over Ay,...,A,. The family of all such atoms is called the partition generated by Aq, ..., Ay;
when r = 0 that partition includes the one set {1,...,n}.

Given Ay,..., A, and j1, ..., j, where j; € A; for all ¢, the r-configuration of ji, ..., j, is the
information for any 1 < [,k < r of whether j; € A; (or equivalently, which is the atom that
contains ji) and whether ji = j;.

The label-invariance of all properties discussed in this section will allow us to “simplify” our
algorithms prior to proving lower bounds. We next define a simplified version of a non-adaptive

algorithm.

Definition 6.13. A core non-adaptive distribution tester is a non-adaptive distribution tester,
that in its last phase bases its decision to accept or reject only on the t(€)-configuration of its
received samples and on its internal coin tosses.

For a core non-adaptive tester, fixing the values of the internal “coins” in advance gives a
very simple deterministic counterpart (for use in Yao arguments): The algorithm now consists
of a sequence of fixed sets Ai, ..., Ay), followed by a function assigning to every possible
t(e)-configuration a decision to accept or reject.

We note that indeed in the non-adaptive setting we only need to analyze core algorithms:

Observation 6.14. A non-adaptive testing algorithm for a label-invariant property can be con-
verted to a corresponding core algorithm with the same sample complexity.

Proof. We start with the original algorithm, but choose a uniformly random permutation o
of {1,...,n} and have the algorithm act on the correspondingly permuted input distribution,
rather than the original one. That is, every set A; that the algorithm conditions on is converted
to {o(k) : k € A;}, while instead of j; the algorithm receives 0 ~1(j;). This clearly preserves the
guaranteed bounds on the confidence parameter if the property is label-invariant.

To conclude, note that due to the random permutation, all outcomes for ji, ..., j; that satisfy
a given configuration are equally likely, and hence can be simulated using internal coin tosses
once the configuration itself is made known to the algorithm. O

For an adaptive algorithm, the definition will be more complex. In fact we will need to
set aside some “external” coin tosses, so that also the “deterministic” counterpart will have a

probabilistic element, but it will be a manageable one.

Definition 6.15. A core adaptive distribution tester is an adaptive distribution tester, that acts
as follows.

e In the ¢’th phase, based only on the internal coin tosses and the configuration of the sets
Ay,...,A;_1 and ji,...,J;—1, the algorithm assigns a number k4 for every atom A that
is generated by Aq,..., A;_1, between 0 and |A\ {ji1,...,Ji—1}|- If all provided k4 are 0
then K; may not be empty. Additionally the algorithm provides K; C {1,...,i — 1}.
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e A set B; C {1,...,n}\ {J1,...,Ji—1} is drawn uniformly among all such sets whose
intersection with every atom A as above is of size k4, and A; is set to B; U {ji : k € K;}.
The random draw is done independently of prior draws and the algorithm’s own internal
coins, and A; is not revealed to the algorithm (however, the algorithm will be able to
calculate the sizes of the atoms in the partition generated by A ..., A; using the i — 1-
configuration, and the numbers provided based on it and the internal coin tosses).

e A sample j; is drawn according to u conditioned over A;, independently of all other draws.
Ji is not revealed to the algorithm, but the new i-configuration is revealed (in other words,
the new information that the algorithm receives is whether j; € Ay and whether j; = ji
for each k < 7).

e After t(e) such phases, the algorithm bases its decision to accept or reject only on the
t-configuration of its received samples and on its internal coin tosses.

Note that also a “deterministic” version of the above algorithm acts randomly, but only in
a somewhat “oblivious” manner. The sets A; will still be drawn at random, but the decisions
that the algorithm is allowed to make about them (through the k4 numbers and the K; sets) as
well as the final decision whether to accept or reject will all be deterministic. This is since a
deterministic version fixes the algorithm’s internal coins and only them.

Also for adaptive algorithms we need to analyze only the respective core algorithms.

Observation 6.16. An adaptive testing algorithm for a label-invariant property can be converted
to a corresponding core algorithm with the same sample complexity.

Proof. Again we use a uniformly random permutation o of {1,...,n}. Regardless of how the
original set A; was chosen, now it will be chosen uniformly at random among all sets satisfying
the same intersection sizes with the atoms of the partition generated by Ai,...,A;_1 and the
same membership relations with ji,...,j;_1. Hence the use of a uniformly drawn set based on
the k4 numbers and Kj; is justified, and since o is not revealed to the algorithm, the particular
resulting set A; is not revealed.

Also, the probability for a particular value of j; now can depend only on the resulting
i-configuration, and hence it is sufficient to reveal only the configuration to the algorithm — the
algorithm can then use internal coin tosses to simulate the actual value of j; (uniformly drawing
it from all values satisfying the same configuration). The same goes for the decision whether to
accept or reject in the end.

To further illustrate the last point, note that the analysis does not change even if we assume
that at every phase, after choosing A; we also draw a new random permutation, chosen uniformly
at random among all those that preserve ji,...,j;—1 and the atoms of Ay,..., A; (but can
“reshuffle” each atom internally). Then the “position inside its atom” of j; will be completely
uniform among those of the same configuration (if the configuration makes it equal to a previous
Jr then there is only one choice for j; anyway). O

6.7.2 Uniformity has no constant sample non-adaptive test

Theorem 6.17. Testing uniformity requires at least Q(loglogn) non-adaptive conditional sam-
ples (for some fized €).

Proof. This follows from Lemma 6.7.5 below. O
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To prove this lower bound, we show that for any fixed ¢ and large enough n, no deterministic
non-adaptive algorithm can distinguish with probability % between the case where the input
distribution is the uniform one (with probability 1), and the case where the input distribution
is drawn according to the even uniblock distribution over distributions. Recall that such
a deterministic algorithm is in fact given by fixed sets Ay,...,4; C {1,...,n} and a fixed
acceptance criteria based on the t-configuration of the obtained samples (to see this, take a core
non-adaptive testing algorithm and arbitrarily fix its internal coins).

We now analyze the performance of a deterministic non-adaptive tester against the even

uniblock distribution. Asymptotic expressions are for an increasing n.

Definition 6.18. We callaset A C {1,...,n} largeif |A| > n2V'°8™/|U|, where U is the set chosen
in the construction of the even uniblock distribution. We call A small if |A| < n2VIos"/|U|.

Lemma 6.7.1. With probability at least 1 — \/2% over the choice of U, all atoms in the partition
generated by Ay, ..., As are either large or small.

Proof. There are at most 2 atoms. An atom A is neither large nor small if two inequalities
both hold: n2~VIen < |A||U| < n2V1°8" Recall that |U] = 22% where 1logn < k < 3logn is
chosen uniformly. Therefore, for a fixed A, there are at most y/logn values of & which will make
it neither large nor small. Since the range of k is of size ilog n, we get that with probability at

most \/13711 the atom A is neither large nor small. Taking the union bound over all atoms gives
the statement of the lemma. O

Lemma 6.7.2. With probability at least 1 — 2=VI8" " no small atom intersects U.

Proof. Given a fixed k, for any small set A the probability of it intersecting U is clearly bounded
by 27VI°8”  We can now conclude the proof by union-bounding over all small atoms, whose
number is bounded by 2¢. O

Lemma 6.7.3. With probability 1 — exp (t — 2. 2vl°g”/2_1>, for every large atom A, we have

ANU| = (1+ Wﬁ) Al - |U|/n.
Proof. This is by a large deviation inequality followed by a union bound over all atoms. Note
first that if instead of U we had a uniformly random sequence w1, ..., uq2r (chosen with possible
repetitions), then this would have been covered by Lemma 2.0.1. However, U is a random set of
fixed size instead. For this we appeal to Section 6 of [Hoe63], where it is proved that moving
from a Binomial to a Hypergeometric distribution (which corresponds to choosing the set U
with the fixed size) only makes the distribution more concentrated. The rest follows by the fact
that A is large. O

Now we can take t < %log logn and put forth the following lemma, which implies that
the even uniblock distribution over distributions is indeed indistinguishable from the uniform

distribution by a deterministic non-adaptive core algorithm using only ¢ samples.

Lemma 6.7.4. Fort < ilog logn, with probability 1 — o(1), the distribution over {1,...,n}
obtained from the even uniblock distribution over distributions, is such that the resulting distribu-
tion over the configurations of ji,...,J: is o(1)-close in the variation distance to the distribution
over configurations resulting from the uniform distribution over {1,...,n}.
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Proof. With probability 1 — o(1) all of the events in Lemmas 6.7.1, 6.7.2 and 6.7.3 occur. We
prove that in this case the two distributions over configurations are o(1)-close. Recall that
the uniform distribution over the set U (resulting from the uniblock distribution) is called the
U-distribution. The lemma follows from the following:

e A sample taken from a set A; that contains only small atoms will be uniform from this set
(and independent of all others), both for the uniform distribution and the U-distribution.
For the U-distribution it follows from U not intersecting A; at all (recall that in our model,
a conditional sample from a set of zero probability returns a uniformly random element
from that set).

e A sample taken from a set A; that contains some large atom will not be identical to
any other sample with probability 1 — o(1) for both distributions. This follows from the
birthday paradox: Setting A to be the large atom contained in A;, recall that we have
|ANU| = (1 + 103%1//44) |A| - |U|/n. This quantity is w ((loglogn)?). Thus for a fixed i
the probability for a collision with any other j is o(1/loglogn) (regardless of whether A;
contains a large atom), and hence with probability 1 — o(1) there will be no collision for

any ¢ for which A; contains a large atom.

e For a set A; containing a large atom, the distribution over the algebra of the events
Ji € A, (which corresponds to the distribution over which atom in the partition generated
by Aj,...,A; contains j;) are o(1/loglog(n)) close for both distributions. To show this
we analyze every atom A generated by Ajp,...,A; that is contained in A; separately.
If A is small, then for the uniform distribution, j; will not be in it with probability
1—o0(1/loglog(n)) (a small atom is in particular of size o(|A;|/loglog(n)) since A; contains
a large atom as well), while for the U-distribution this is with probability 1 (recall that
we conditioned on the event of U not intersecting any small atom). If A is large, then

we have [ANU| = (1 + 1028;&%%4) |A| - |U|/n, implying that the probabilities for j; € A

for the U-distribution and the uniform one are only o(1/(loglog(n))?) apart, implying an
0(1/loglog(n)) difference in the distributions over the identity of A.

The items above allow us to conclude the proof. They mean that for both the |U|-distribution
(conditioned on the events in Lemmas 6.7.1, 6.7.2 and 6.7.3) and the uniform distribution, the
resulting distributions over configurations are o(1)-close to the one resulting by setting the
following;:

1. First for every i for which A; contains only small atoms, uniformly pick j; € A; indepen-
dently of all other random choices; write down the equalities between these samples and
the atoms to which these samples belong.

2. Then, for every ¢ for which A; contains a large atom, write j; as having no collisions
with any other sample; then pick the atom containing j; from all atoms contained in A;
according to their relative sizes, in a manner independent of all other random choices. [J

Lemma 6.7.4 allows us to conclude the argument by Yao’s method.

Lemma 6.7.5. All non-adaptive algorithms taking t < ilog logn conditional samples will fail
to distinguish the uniform distribution from the even uniblock distribution over distributions
(which are all %—far from uniform) with any probability more than o(1).
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Proof. By Observation 6.14 it is enough to consider core non-adaptive algorithms, and by Yao’s
argument it is enough to consider deterministic ones.

For any deterministic non-adaptive core algorithm (characterized by Aj,..., A; and a func-
tion assigning a decision to every possible configuration), by Lemma 6.7.4 the even uniblock
distribution with probability 1 — o(1) will choose a U-distribution, which in turn will induce a
distribution over configurations that is o(1)-close to that induced by the uniform distribution
over {1,...,n}. This means that if we look at the distribution over configurations caused by
the even uniblock distribution over distributions, it will also be o(1)-close to the one induced
by the uniform distribution. Therefore the acceptance probabilities of the algorithm for both
distributions over distributions are o(1)-close. O

6.7.3 A label-invariant property with no constant sample adaptive test

Theorem 6.19. There exists a label invariant property such that any adaptive testing algorithm
for it must use at least Q(\/loglogn) conditional samples (for some €).

Proof. This follows from Lemma 6.7.9 below. O

The property will be that of the distribution being the possible result of the even uniblock
distribution over distributions. In other words, it is the property of being equal to the U-
distribution over some set U of size 22# for some %logn <k< %log n.

We show that no “deterministic” adaptive core algorithm can distinguish between the even
and odd uniblock distributions using o(y/loglogn) samples, while by Observation 6.11 a proper
%—test must distinguish between these. Considering such algorithms, we first note that they can
be represented by decision trees, where each node of height ¢ corresponds to an i — 1-configuration
of the samples made so far. An internal node describes a new sample, through the numbers k4
provided for every atom A of Ay,..., A; (where the atoms are labeled by their operations, as
the A; themselves are not revealed to the algorithm), and the set K;. All these parameters can
be different for different nodes of height i. A leaf is labeled with an accept or reject decision.

The basic ideas of the analysis are similar to those of the previous subsection, but the analysis
itself is more complex because we have to consider the “partition generated by the samples so
far” in every step of the algorithm. The first thing to note is that there are not too many nodes

in the decision tree.

Observation 6.20. The number of nodes in a decision tree corresponding to a t-sample algorithm
is less than ¢22°.

Proof. A configuration can be described by assigning each of the i samples with a vector of
length 2i, indicating which sets do they belong to and which of the other samples are they
equal to. This gives an 7 x 27 binary matrix, where every possible i-configuration for i samples
corresponds to some such matrix. That gives us at most 22 possible i-configurations. Summing
for all ¢ < t gives the bound in the statement. O

From now on we will always assume that n is larger than an appropriate fixed constant.
For the analysis, we consider two input distributions as being drawn at once, one according to

the even uniblock distribution and the other according to the odd uniblock distribution. We
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first choose %logn <k< %logn uniformly at random, and then uniformly choose a set U of
size 22F and a set U’ of size 22t1. We then set p to be the U-distribution and p/ to be the
U’-distribution.

We will now show that the fixed decision tree accepts with almost the same probability when
given either p or p/, which will allow us to conclude the proof using Yao’s argument. We start
with a notion of “large” and “small” similar to the one used for non-adaptive algorithms, only

here we need it for the numbers themselves.

Definition 6.21. We call a number b large with respect to U if b > n2V'°8™/|U|. We call b small
with respect to U if b < n27V1°8™/|U|. We make the analogous definitions with respect to U’.

193242

Lemma 6.7.6. With probability at least 1 — NI all “k4” numbers appearing in the decision

tree are either small with respect to both U and U’, or large with respect to both U and U’.

Proof. By Observation 6.20 the total of different “k4” numbers is no more than #23t” (the number
of nodes times 2! — the bound on the size of the partition generated by Aj, ..., A; in every node).
We can conclude similarly to the proof of Lemma 6.7.1 that since |U| and |U’| differ by a factor
of 2, there are at most /logn values of k for which some fixed number k4 will not be either
large with respect to both or small with respect to both. The bound in the statement then
follows by union bound. O

From now on we assume that the event of Lemma 6.7.6 has occurred, and fix & (that is, the
following will hold not only for the entire distributions, but also for the conditioning on every
specific k£ for which the event of Lemma 6.7.6 is satisfied). The following lemma is analogous to
the non-adaptive counterparts Lemma 6.7.2 and Lemma 6.7.3, but here it is proved by induction
for every node that is reached while running the decision tree over the distribution drawn
according to either p or i/, where the inductive argument requires both statements to hold. This
lemma will essentially be used as a warm-up, since the final proof will refer to the proof and not

just the statement of the lemma.

Lemma 6.7.7. Assuming that t < 1/% loglogn, and conditioned on that the events of Lemma

6.7.6 have occurred, for every 1 < i <t, with probability at least 1 — %, the following occur.
o All small atoms in the partition generated by A1,...,A; contain no members of either U
or U’ outside (possibly) {j1,...,Ji-1}-

e For every large atom B in the partition generated by the sets Ai,...,A;, we have both
BNU|= (1% wkfﬁ“) |B| - [U]/n and [BOU'| = (1% -2 ) [B| - [U"|/n.

2 logn/4

Proof. We shall prove the lemma not only conditioned on the event of Lemma 6.7.6, but also
conditioned on any fixed |U| (and |U’| = 2|U]|) for which Lemma 6.7.6 is satisfied. We assume
by induction that this occurs for the atoms in the partition generated by Ai,..., A; 1 with

probability at least 1 — %, and prove it for Ay,..., A; with probability at least 1 — \?%.

Recall that the way A; is generated, the algorithm in fact specifies how many members of it
will appear in A\ {j1,...,ji—1} for every atom A of the partition generated by Ap,..., A;—1
(while specifying exactly which of ji,...,j;—1 will appear in it), and then the actual set is drawn
uniformly at random from those that satisfy the specifications.
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We show the conclusion of the lemma to hold even if U and U’ are held fixed (as long as they
satisfy the induction hypothesis and their sizes satisfy the assertion of Lemma 6.7.6). Let B be
an atom of Aq,...,A; and let A be the atom of Ay,...,A;_1 so that B C A. We have several
cases to consider, conditioned on the fact that the event in the statement does occur for 7 — 1.

e If A is small, then so is B. By the induction hypothesis A\ {j1,...,j;—1} has no members
of U or U’, and hence so does B. This happens with (conditional) probability 1

e If the atom A is large but the atom B is small, by the induction hypothesis we have
that both [ANU| = (1+ 2@/4) Al [U]/n and [ANU"] = (14 QﬁU/) Al - |U'|/n.
When this happens, as B\ {j1,...,7;—1} is in fact chosen uniformly from all subsets of

A\{j1,...,7i—1} of the same size (either k4 or |A\ {j1,...,Ji—1}| — ka), and since B is

small, we can use a union bound to see that no member of either U or U’ is taken into B,
with probability at least 1 — 21~ Vloan,

e If the atom B is large (and hence so is A), then again by the induction hypothesis both

1) 1)
[AnU| = (1% 2<ﬁ/) Al [U]/n and [AN U] = (1% 2<ﬁ/) |A| - |U"|/n. We also
note that since B is large we have in particular ¢ < 5 \/110/% 7 |B|. We can now use a large

deviation inequality (as in Lemma 6.7.3) to conclude the bounds for |[BNU| and |BNU’|
with probability 1 — 2 exp(—2viosn/2-2),

Thus in all cases the statement will not hold with probability at most \/ﬁﬂ for n large enough.
By taking the union bound over all possibilities for B (up to 2i events in total) we get that with

probability at least \/@ ..., A;, conditioned on
the event occurring for Ay,..., A;—1. A union bound with the event of the induction hypothesis
happening for Ay, ..., A;_1 gives the required probability bound. O

We now prove the lemma showing the indistinguishability of the distrbituion g from g’
whenever t < \/3—12 loglog n, conditioned on the event of Lemma 6.7.6. We assume without loss
of generality that the decision tree of the algorithm is full and balanced, which means that the
algorithm will always take t samples even if its output was already determined before they were

taken.

Lemma 6.7.8. Assuming that t < \/é loglogn and that the event of Lemma 6.7.6 has occurred,

consider the resulting distributions of which of the leaves of the algorithm was reached. These

two distributions, under p compared to under p', are at most \2/% apart from each other.

Proof. The proof is reminiscent of the proof of Lemma 6.7.4 above, but requires more cases to
be considered, as well as induction over the height of the nodes under consideration. Denoting
this height by 4, we shall prove by induction that the distributions over which of the height 4

lo
We shall use the induction hypothesis that the corresponding distributions of the node of

nodes was reached, under p compared to 4/, are only at most 1 — % apart from each other.

height ¢ — 1 (the parent of the node that we consider now) are at most 1 — \2/% apart, and
then show that the variation distance between the distributions determining the transition from

a particular parent to a child node is no more than \/12T which when added to the difference

in the distributions over the parent nodes gives required bound.
The full induction hypothesis will include not only the bound on the distributions of the
parent nodes, but also a host of other assumptions, that we prove along to occur with probability
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93i+1

Vlogn
re-prove it here. Hence the induction hypothesis also includes that all of the events proved

at least 1 — . In particular, instead of using the statement of Lemma 6.7.7, we essentially

during the inductive proof of Lemma 6.7.7 hold here with respect to Ai,..., A;—1. Also, as in

the proof of Lemma 6.7.7, the conditional probability of them not holding for Ay, ..., A; is at
21

Vlogn

of the hypothesis failing for any single atom A). Therefore, we assume that additionally the

most (by the union bound done there for every atom generated by Aq, ..., A; of the event

inductive hypothesis used in the proof of Lemma 6.7.7 has occurred for Ay, ..., A;, and prove

that with probability at least 1 — \/% all other assertions of the inductive hypothesis occur

as well as that the variation distance between the distributions over the choice of the child
22i
Viegn®
31
large probability event” argument), this will give us the 1 — \/%oin bound that we need for the
induction. Recall that the choice of child node depends deterministically on the question of
which atom of Aq,..., A; contains the obtained sample j;, so in fact we will bound the distance

between the distributions of the atom in which j; has landed.

node is at most By a union bound argument (and for the variation distance, a “common

Additionally, we define by induction over i the following notion: An index i is called smallish
if all the “k4” numbers relating to it are small, and additionally K; contains only smallish
indexes (recall that K; C {1,...,7 —1}). A final addition to our induction hypothesis is that

with probability at least 1 — j?;jgjz’ in addition to all our other assertions, the following occur

for every i’ < i.

e The sample jy is in U or respectively U’ if and only if i’ is not smallish (note that the
assignment of smallish indexes depends on the parent node).

e If 7' is not smallish but all its corresponding “k4” numbers are small, then j; is equal to
some j; where [ is a non-smallish index smaller than 7.

e If there exists a large “k4” number for 7/, then j; is not equal to j; for any [ < ¢/, and
additionally j; lies in some atom A’ for which the corresponding k4 is not small (it is
allowed that A" = A).

We now work for every possible parent node of height ¢ — 1 separately. Note that we restrict
our attention to nodes whose corresponding (i — 1)-configurations satisfy the induction hypothesis.
Recall that we assume that the induction hypothesis in the proof of Lemma 6.7.7 has occurred

%;n “failure probability” bound. We separate to cases according

for Ay,...,A;, and aim for a
to the nature of Aq,..., A;.

e A sample taken from a set A;, where ¢ is smallish, will be uniform and independent of
other samples, for both the U-distribution and the U’-distribution. Moreover, this j; in
itself will not be a member of U or respectively U’. This is since A; \ {ji : k € K;} does
not intersect U or U’, together with the induction hypothesis for {ji : k € K;} (so also A;
does not intersect U or U’). So conditioned on the entire induction hypothesis for i — 1
and the hypothesis in the proof of Lemma 6.7.7 for Ay,..., A;, all assertions for ¢ will
occur with probability 1, and the distributions for selecting the height i node given this
particular parent node are identical under either p or p'.

e A sample taken from a set A;, where the k4 numbers are all small but 7 is not smallish,
will be a member of U or respectively U’, chosen uniformly (and independently) from
{jk : k € K|}, where K| denotes the (non-empty) set of all non-smallish indexes in Kj;.
This is since {ji : k € K[} is exactly the set of members of U or respectively of U’ in 4;
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(by the hypothesis for Ay, ..., A; there will be no member of U or U in A; \ {jx : k € K;},
and the rest follows from the induction hypothesis concerning smallish indexes). Again
the assertions for i follow with probability 1 (conditioned on the above hypotheses), and
the distributions for selecting the height i node are identical.

e If a sample is taken from A; where at least one of the k4 numbers is not small, then the
following occur.

— Since A; in particular contains A, and both |[ANU| = (1 + 2\/;?/4) |A] - |U|/n
and |[ANU'| = (1 + ﬁ) |A| - |U’|/n by the assertion over Aq, ..., A; relating to
Lemma 6.7.7, we note that in particular ¢ = o(ﬁ\AiﬁU\) and i = o(ﬁMlﬂU’]),
so with probability less than Jléﬂ (for n larger than some constant) we will get

under either p or p/ a sample that is identical to a prior one.

— By the assertion over Aq,...,A;, an atom B inside A; for which the corresponding
kp is small will not contain a member of U or U’, and so j; will not be in such an
atom (in the preceding item we have already established that there are members of
U and respectively U’ in A;).

— By the assertion over Aj,..., A;, for every large atom B inside A; we have both
BAU| = (1+ m) |B|-|U]/nand |BAU'| = (1 + m) |B|-|U’| /n, implying
that |E|;B|U| = (1 + 2\/102'?/5> |B|2€]‘/| (for large enough n). Also, every small atom C
inside A; contains no members of U or U’, so summing over all atoms of A; we obtain
‘Ar(?'U' = (1 + 5 \/1OZE /5) lAli(?,[‘] |, and thus for every atom B of 4; (large or small) we

finally have Hf?%“ = (1 + ; \/JH ; 6) Hf%%l,” (for small atoms both sides are zero).

Te final thing to note is that ‘|£r;](lJ]|| and respectively ‘f{%%/)' equal the probabilities

of obtaining a sample from B under u and respectively p/. Summing over all atoms
contained in A; (of which there are 20=1) we obtain a difference over these distributions
that is bounded by \/1201@, which satisfies the requirements (also after conditioning on

that the events related to the rest of the induction hypothesis have occurred).

Having covered all cases, this completes the proof that the inductive hypothesis follows to ¢, and
thus the proof of the lemma is complete. O

Now we can conclude the argument by Yao’s method to prove the following lemma that

implies the theorem.

Lemma 6.7.9. All adaptive algorithms taking t < 1/3% loglogn conditional samples will fail to
distinguish the even uniblock distribution over distributions from the odd one (whose outcomes
are always %—far from those of the even distribution) with any probability larger than o(1).

Proof. By Observation 6.16 it is enough to consider only core adaptive algorithms, and then by
Yao’s argument it is enough to consider “deterministic” ones (the quote marks are because the
external coin tosses are retained as per the definitions above). We now consider the decision
tree of such an algorithm, and feed to it either pu or u’ that are drawn as per the definition

02
above. With probability at least 1 — t?;;%:

and conditioned on this event (or even if we condition on particular U and U’), Lemma 6.7.8

=1—o0(1) the event of Lemma 6.7.6 has occurred,
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provides that the variation distance between the resulting distributions over the leafs is at most
\2/?% = o(1). In particular this bounds the difference between the (conditional) probabilities of

the event of reaching an accepting leaf of the algorithm.

Since we have an o(1) difference when conditioned on a 1 — o(1) probability event, we also
have an o(1) difference on the unconditional probability of reaching an accepting leaf under p
compared to p/. This means that the algorithm cannot distinguish between the two corresponding
distributions over distributions. O

6.8 A lower bound for testing general properties of distributions

For properties that are not required to be label-invariant, near-maximal non-testability could

happen also when conditional samples are allowed.

Theorem 6.1. Some properties of distributions over [n] require Q(n) conditional samples to
test (adaptively or not).

Proof. We assume that n is even. We reduce the problem of testing general n/2-bit binary
string properties P C {0,1}™?2 to the problem of testing properties of distributions over [n]
using conditional samples, through Lemma 6.8.1 below. Then the lower bound of the theorem
follows by the existence of hard properties P C {0, 1}”/ 2 that require Q(n) queries to test, such
as the original one of [GGR98] or the one of [BSHRO05]. O

The reduction proved in Lemma 6.8.1 is probabilistic in nature, succeeding with probability
1 — o(1) (which is sufficient for the hardness arguments to work), and only incurs an additional
O(1) factor in the query complexity. This means that every conditional sample made by
the distribution tester is translated into (expected) O(1) queries to the input binary string
x € {0,1}™2. The rest of this section is devoted to its proof.

6.8.1 The reduction lemma

We start with a few definitions. A string y € {0, 1}" is balanced if it has the same number of 0s
and 1s (in particular we assume here that n is even). For z € {0,1}"/2, let b(x) € {0,1}" be the
string obtained by concatenating = with its bitwise complement (in which every original bit of =
is flipped). Clearly b(x) is balanced for all x.

For a property P C {0,1}"/2, define b(P) C {0,1}" as b(P) £ {b(x) : z € P}.

Observation 6.2. For all z,y € {0,1Y"2, dpy (z,y) = dry (b(z), b(y)).

Proof. Follows from the fact that if z and y differ in dry (z,y) - § entries, then b(x) and b(y)
differ in dpy (z,y) - n entries. O

Observation 6.3. For all P and € > 0, e-testing b(P) requires at least as many queries as e-testing
P.

0

Next, for every balanced string « € {0,1}" we define a distribution u, on [n] as follows:
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o If z; = 0 then y, (i) = o

2n”
o if z; = 1 then (i) = 2.

Note that since x is balanced p; is indeed a distribution as Y i ; pa(7) = 1.
Extending this definition further, for every property P C {0, 1}"/ 2 we define a property Pp
of distributions over [n] as follows: Pp = {p, : © € b(P)}.

Observation 6.4. For all z,y € {0,1}"/2, dry (b(x),b(y)) = 2 - drv (fe(z)s Hy(y)), Where the first
distance refers to the normalized Hamming distance between binary strings, and the second is
the variation distance between distributions.

O

Lemma 6.8.1. For all P and € > 0, if e-testing P with success probability 3/5 requires at least
q queries, then €/2-testing Pp with success probability 2/3 requires at least q/100 conditional
samples.

Proof. By Observation 6.4, for all = € {0,1}"/2, if 2 € P then to(z) € Pp, and if dry (v, P) > €
then dTV(Mb(I),PP) > ¢/2. Now we show how to reduce the task of testing P to testing Pp.
Let T be a tester for Pp making at most ¢/100 conditional samples. Given an oracle access
to the input string x € {0, 1}”/2, which is to be tested for membership in P, we simulate each
conditional sample () # Q C [n] to ju(,) made by T as follows:

Algorithm 6.9 Sampler
Input: Set § # Q C [n].
Output: An index i € Q.
1: Pick ¢ € @ uniformly at random. If i < n/2 query z; and set v; < x;. Else, query z;_, /2

and set v; <= 1 —x; ;0.
2: if v; =1 then
3: return ¢
4: else
5. With probability 1/3 output 4, and with the remaining probability go to Step 1.

It is clear that whenever Sampler outputs ¢ with v; = 1, then i is distributed uniformly
among all indices {j € @ : v; = 1}. The same is true for ¢ such that v; = 0. So, to show that
Sampler simulates conditional samples correctly, it remains to prove that the ratio between the
probability of outputting ¢ with v; = 1 and the probability of outputting ¢ with v; = 0 is correct.

Let g1 = |[{i € Q:v; =1} and qo = |{i € Q : v; = 0}|]. According to our distribution u;(z),
the distribution of indices in @ corresponding to the conditional sample is as follows:

In particular, the probability of selecting ¢ such that v; = 1 is 3¢1/qo times the probability of
selecting ¢ with v; = 0.

Let us now analyze what is the probability with which Sampler outputs (eventually) an index
1 € Q with v; = 1, and with v; = 0, respectively. At every round, an index i with v; = 1 is output
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with probability —2— and an index ¢ with v; = 0 is output with probability ~—2—. With the
p Y @i+ 3(q1+40)
%

remaining probability (of M) no index is output, and the process repeats independently
of all previous rounds. Hence the ratio of the probability of outputting ¢ such that v; =1 to
the probability of outputting ¢ with v; = 0 is 3¢1/qo, as required. Note also that the expected
number of rounds (and so queries to x) per one execution of Sampler is (1 — 3(q21(f£q0))_1 < 3.
The last ingredient in the reduction is a total-query counter, that makes sure that the number
of queries to = does not exceed ¢ (the lower bound). If so, the reduction fails. Since Sampler is
called at most ¢/100 times (the query complexity of T'), a 3/100 < 1/15 bound on the failure
probability follows by Markov’s inequality, and we are done (the bound on the success probability
follows even if we assume that the distribution tester “magically” guesses the correct answer

whenever the reduction to the string property fails). O

126



Chapter 7

Open Questions

In this thesis we have covered a range of results, but also introduced new models and avenues
for research, many of them yet untapped. In this chapter we will suggest several intriguing open

problems and paths for further research.

7.1 Testing formula satisfaction

In Section 3.7, we proved a lower bound against testing of formulas with non-boolean alphabets.

This begs the following question:

Open Problem 7.1. Is there a sublinear upper bound for testing any fixed alphabet bounded
arity formula?

Another interesting path is extending the techniques in Section 3.5, where we give a quasipoly-

nomial upper bound for and-or formulas.

Open Problem 7.2. Is there a polynomial upper bound for testing formulas containing only
and/or gates?

Open Problem 7.3. Can the techniques of Section 3.5 be extended to formulas containing also
parity gates? what about 3-majority gates?

7.2 Partial property testing

The model of partial testing is gaining much interest, as evident by the independent work of
Gur and Rothblum [GR15], and the follow up work of Goldreich, Gur and Rothblum [GGR15].
There is still a wealth of open problems left. One important issue is whether good paritions
imply testability (to which we gave a positive answer for the case of proximity oblivious testable

subproperties in Sections 5.6 and 5.7):

Open Problem 7.4. Let P be a property that can be partitioned into subsets Py, ..., P; such
that P is P;-partially testable using g queries for every 1 < ¢ < k, what upper bound can we
give on the query complexity for testing P (in terms of n,k and ¢)?
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There is also the converse direction, of whether testability imply the existence of a good

partition:

Open Problem 7.5. Let P be a property testable with r queries. Is it true that we can partition P
into subsets P, ..., P such that P is P;-partially testable using O(1) queries for every 1 <i < k
and k is bounded by some moderate function of k£ and r?

Theorem 5.1 implies that for some “hard” properties, a decomposition may have to be as
large as 29("/9) Tt is not clear whether this value of k can always be obtained. The trivial upper
bound for every property is by partitioning into 2”77 subsets of size 2¢. Are there properties for

which this is required?

Open Problem 7.6. Does there exist a “natural” property P such that for every P’ C P where
P is P'-partially testable with ¢ queries we also have |P'| < |P[20(@)=0()?

In [GR15] there is a non-constructive proof (by counting the number of possible algorithms)
that there is a property that is not partitionable to less than 20 =9 properties admitting

partial tests with g queries, but the question of a constructive proof is still open.

7.3 Distribution testing with conditional samples

This model also saw an independent introduction by Cannone et. al. [CRS14] and several
follow-up works [RT14, ACK14, Canl5], yet there are many basic questions left unanswered.

The first order of business is closing the gaps between upper and lower bounds in Chapter 6.

Open Problem 7.7. Close the gaps between the upper and lower bounds for non-adaptive unifor-
mity testing and adaptive testing of label invariant properties.

Another interesting direction is that of demanding certain structure for the conditioned upon
sets. Cannone et. al. [CRS14] considered the case where the subsets must be intervals, and our

upper bound for label invariant properties also only demands conditioning upon dyadic intervals.

Open Problem 7.8. What other results can be obtained where the conditioned upon sets must
have a certain structure? Possible structures are intervals in an order, affine subspaces of a
vector space, subgroups of a group, etc.

Chapter 6 deals with sampling oracles that are guaranteed to give independent samples. It

would be interesting to see if anything can be discerned when this is no longer guaranteed.

Open Problem 7.9. What results can be obtained for distribution sampling with non-i.i.d. ora-
cles? One possible model can be where the sampling is the current state of a markov chain.
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