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Abstract

Many relational operations are best performed when the relations are stored sorted

over the relevant attributes (e.g. the common attributes in a natural join operation).

However, generally relations are not stored sorted because it is expensive to maintain

them this way (and impossible whenever there is more than one relevant sort key). Still,

many times relations turn out to be nearly-sorted, where most tuples are close to their

place in the order. This state can result from “leftover sortedness”, where originally sorted

relations were updated, or were combined into interim results when evaluating a complex

query. It can also result from weak correlations between attribute values. Currently,

nearly-sorted relations are treated the same as unsorted relations, and when relational

operations are evaluated for them, a generic algorithm is used. Yet, many operations can

be computed more efficiently by an algorithm that exploits this near-ordering.

However, to consistently benefit from using such algorithms the system should also

refrain from using the wrong algorithm for relations which happen not to be sorted at all.

Thus, an efficient test is required, i.e., a very fast approximation algorithm for establishing

whether a given relation is sufficiently nearly-sorted.

In this paper, we provide the theoretical foundations for improving query evaluation

over possibly nearly-sorted relations. First we formally define what it means for a relation

to be nearly-sorted, and show how operations over such relations, such as natural join, set

operations and sorting, can be executed significantly more efficiently using an algorithm

that we provide. If a relation is nearly-sorted enough, then it can be sorted using two

sequential reads of the relation, and writing no intermediate data to disk. We then

construct efficient probabilistic tests for approximating the degree of the near-sortedness

of a relation without having to read an entire file. The role of our algorithms in a database

management system setting is illustrated as soon as the theoretical foundation is laid out.

Finally, we show how our approach can also benefit distributed systems and systems that

use a solid-state drive.

This thesis is organized as follows. In Chapter 2 we provide the framework and

define near-sortedness. In Chapter 3 we outline the suggested strategy. In Chapter 4

we describe in detail the algorithm for the efficient evaluation of the sorting operation

on nearly-sorted relations, where in Chapter 5 we describe how other operations can

be performed efficiently without sorting in advance. In Chapter 6 we present a test

for determining whether relations are nearly-sorted. This is the version that is required

for the strategy outlined in Chapter 3, a tolerant two-parameter test that estimates

what can be performed on the relations with respect to the existing memory constraints.
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Simpler restricted versions of this test appear in the appendix; they may be useful in

some restricted contexts, and their analysis can serve as a warm-up to the analysis of

Chapter 6. Finally, in Chapter 7 we discuss additional issues, as well as some possible

extensions of our algorithms.
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Chapter 1

Introduction

Typically, database query processors handle relations that are stored unsorted on the

disk. When a processor needs to access the tuples of a relation in some specific order,

this can be done through an appropriate index, if such an index exists, or by initially

sorting the relation and then retrieving the tuples. Otherwise the system would have

been required to constantly maintain the relations sorted, and this would cause updates

and insertions to be inefficient. Additionally, if the setting is such that more than one

order is relevant (e.g. if there is more than one index) then of course it is impossible to

maintain the relation sorted for all of them.

However, when querying the data, there are operations whose evaluation is far more

efficient if the relations are sorted. We will refer to such operations as order-preferring

operations. For example, the natural join of two relations that are sorted on their joint

attributes can be done in a single pass over the relations, i.e., a single sequential read

of the files (assuming that every set of tuples with common values in the join attributes

can fit into computer memory), whereas other join methods, such as nested-loop join,

require more than one pass over at least one of the relations [5]. Additional order-

preferring operations include the set operations (union, intersect and except) and

operations whose implementation has to use sorting, e.g., grouping, duplicate elimination

(distinct) and calculating aggregate functions. An index could help to evaluate some

order-preferring operations, but it does not always exist for the attributes that we need,

and creating and maintaining an index is costly.

A simple approach to executing order-preferring operations is to first sort the relations

and then apply the operation. However, the sorting operation itself is expensive and may

require several passes over the relations. In particular, we will show this approach is not

optimal for the nearly-sorted relations that we will consider here.

We define nearly-sorted relations with respect to two parameters k and `. The param-

eter ` tells us how rough is the sorting: a larger ` means that tuples can be further away

1©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



from their in-place position, before they are considered to be out of place. The parameter

k tells us how many tuples are completely out of place, that is, how many tuples need to

be disregarded before the remaining relation conforms with the ` parameter.

Nearly-sorted relations occur in various scenarios. Some examples are (1) a relation

that has been stored as sorted and has been slightly updated (a small number of arbitrary

updates are captured by k, and certain systemic updates are captured by `); (2) a relation

that has been created by a previous operation (such as a join) performed on sorted

relations; (3) a relation that was sorted on one attribute (or on a set of attributes) can be

nearly-sorted on another attribute due to naturally occurring correlations (e.g., weight

to height, apartment size to rental fee and so on).

If the given relation is nearly-sorted then the query processor can execute order-

preferring operations very efficiently. Specifically, in Chapter 4 we show an algorithm

that sorts nearly-sorted relations in at most two sequential reading passes. The algorithm

requires memory of size roughly t(2k + `), where t is the maximal size of a tuple and k, `

are the near-sortedness parameters defined above (we also provide a simpler less efficient

algorithm as a warm-up). In contrast, traditional methods (without prior conditions

on the relations) require more than just two sequential passes over the relation, even

just for sorting (multiway merge sort can usually be done in two “passes”, but one of

them requires fully random access, which is much more expensive than a sequential pass).

Further more, our improved algorithm (Algorithm 2) makes no writes at all to disk (apart

from writing the output itself), a vast improvement over all previous algorithms (including

multiway merge). The reason that we focus first on the sorting operation itself is not

only because it is the easiest to explain among database operations, but also because it

contains the core algorithm. In Chapter 5 we explain how to incorporate this algorithm

into the execution of other operations, such as natural join (equijoin) and set operations

(intersection, etc). The following example illustrates the savings.

Example 1. Consider the natural join of two relations, R1 and R2, that are nearly sorted

on a single shared attribute, in the sense that at most k tuples of each relation violate the

order of the tuples according to this attribute. A naive join of the relations will be to sort

each relation and then to apply a sort-based join. For each relation, sorting it will require

at least two phases of reading all the tuples of the relation and writing all the tuples to the

disk (and possibly more phases if the reads have to be sequential). After sorting, another

pass over the two relations will be needed for the join itself (in some cases the last pass

of the sorting algorithms can can be merged with this one).

However, knowing that the relations are nearly sorted allows to compute the join by

merely two sequential readings of the relations and without writing temporary results to

disk.
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Note that for relations that are much larger than computer memory, a nested-loop

join (the sort-less option) will require more than two sequential readings of the relations.

Similarly, ad-hoc creation of indexes for the join will be more expensive than two sequential

reads of the relations and not viable in most cases.

In many cases, applying order-preferring operations on nearly-sorted relations can be

done even when the number of tuples which violate the order is quite large.

Example 2. If in Example 1 both R1 and R2 have a size of 10 gigabyte and we use a

memory of 2 gigabyte for the join, a computation of a join as described in Example 1 can

be done even when approximately 10% of the tuples in each relation violate the order.

When in Example 1 the relations R1 and R2 are not nearly sorted, the described

algorithm will fail due to lack of memory for keeping the order-violating tuples. In such

a case, the system would need to use a generic join algorithm, i.e., an algorithm that can

join unsorted relations. Actually our algorithm can recover from a failing state and fall

back to a less efficient one, but it is still best to efficiently test whether the given relations

are nearly sorted and choose the appropriate algorithm in advance. Moreover, in order

for the approach to be efficient, this test should only read a small part of the relation.

To test that the relations are nearly sorted we use ideas from the theory of property

testing. In general, property testing refers to the following type of problems: Given

the ability to perform local inspections (here, reading specific tuples) of a particular

object (here, a relation), the goal is to determine whether the object has a predetermined

property (here, one related to being sorted), or is far from having the property. The task

should be performed by inspecting only a small part of the whole object, where a small

probability of failure is allowed. See [3, 9, 10] for surveys on property testing.

In our case, we also require that the computational overhead will be small, and we

deal with two parameters, k and `, rather than just measuring the distance from having

the property (this distance would conform to our k). Most importantly, we require our

tests to be tolerant, because we actually want to guarantee acceptance for small enough

non-zero values of k and `, and not only guarantee rejection for values that are too large,

so as not to miss on any inputs for which our optimization is possible. Also, for practical

applications the number of queries has not only to increase slowly with the input size n,

but to depend not too badly on n/k, where the best possible (which we achieve here) is a

linear dependence. Additionally, the test is non-adaptive, in that it is able to provide all

the locations for the reads ahead of obtaining any answers. This allows modern operating

systems to optimize the reading operations and compensate for possible seek times.

Since the entire relation should be considered by the test, even though not all the

tuples of the relations are being read, the choice of which tuples to read must be prob-
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abilistic. Traditionally, the probability of failure is taken to be at most 1
3
, but it can be

made arbitrarily smaller by applying the test several times. In general, to guarantee a

failure probability of at most δ, we would need to increase the number of tuples being

read by an O(log(1/δ)) factor. For example, if a test requires
√

n inspections where n

is the number of tuples in the relation, then for a relation of 1,000,000 tuples, 1,000

reads determine the property with probability of success 2
3
. By applying an amplification

technique, 6,000 reads provide probability of success 1 − (1
3
)6 which is approximately

0.999.

From the property-testing point of view, the testing algorithms that we develop here

generalize the tolerant monotonicity tests that were developed in [1, 8]. The algorithms

of [1, 8] can only distinguish between almost sorted arrays (in the sense that removing a

few elements makes them completely sorted) and those that are far from being sorted. In

contrast, our testers work with a more relaxed notion of sortedness, where an unbounded

number of elements can be out of order, but not too far from their correct location. As

we explain in Remark 2.4 below, there is no simple relation between these monotonicity

notions that would allow us to use the testers of [1, 8] as they are. The analysis of the

new tests is an important contribution of this thesis.

The thesis is organized as follows. In Chapter 2 we provide the framework and de-

fine near-sortedness. In Chapter 3 we outline the suggested strategy. In Chapter 4 we

describe in detail the algorithm for the efficient evaluation of the sorting operation on

nearly-sorted relations, where in Chapter 5 we describe how other operations can be

performed efficiently without sorting in advance. In Chapter 6 we present a test for de-

termining whether relations are nearly-sorted. This is the version that is required for the

strategy outlined in Chapter 3, a tolerant two-parameter test that estimates what can

be performed on the relations with respect to the existing memory constraints. Simpler

restricted versions of the test appear in the appendix; they may be useful in some re-

stricted contexts, and their analysis can serve as a warm-up to the analysis of Chapter 6.

Finally, in Chapter 7 we discuss additional issues, as well as some possible extensions of

our algorithms.
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Chapter 2

Preliminaries

We consider a relation R as an ordered sequence of tuples t1, . . . , tn. For relations that

are stored in the database, the order is determined according to the order by which tuples

are accessed in a sequential read of the relation. We also refer to R as an array – we

denote by R[i] the tuple ti, and we say that ti appears in location i of R. We denote

by [n] the set {1, . . . , n} of the possible indices in R, and by [n,m] we denote the set

{n, . . . ,m} if m ≥ n, or the empty set if m < n.

A sort key of R is a pair K = (A,≤K) of an attribute A and an anti-symmetric

transitive relation ≤K . A sort key defines a desired order for the tuples of R. In the

desired order, for every two tuples ti and tj, when πA(ti) ≤K πA(tj), the tuple ti should

appear before the tuple tj. We generally use R[i] ≤K R[j] to denote πA(ti) ≤K πA(tj).

When K is clear from the context, we simply say that the tuple ti is lesser than or equal

to the tuple tj and denote this by R[i] ≤ R[j]. We also denote by MIN VALK a tuple with

the smallest possible value (with respect to ≤K) of an attribute A. Again, we may use

simply MIN VAL whenever K is clear from the context. MAX VAL is defined similarly.

The definition of a sort key can be generalized in a natural way to the case where it con-

sists of more than one attribute: K = ((A1, . . . , Ak), (≤K1 , . . . ,≤Kk
)), where A1, . . . , Ak

are attributes in the schema of R. In such a case, the desired order of the tuples is defined

using a lexicographic order.

A relation that complies with the desired order defined by the key is called sorted.

Definition 2.1 (sorted relation). A relation R of n tuples is sorted according to a sort

key K, if for any two indices i, j, where 1 ≤ i < j ≤ n, we have R[i] ≤K R[j].

A relation R is k-close to being sorted when it is possible to remove from it k tuples

to achieve a sorted relation. Or alternatively, when there exists a set of at most k tuples

so that the relation is fully sorted outside of it.
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Definition 2.2 (k-close to being sorted). A relation R of n tuples is k-close to being

sorted according to a sort key K, if there exists a set of indices I, where |I| ≤ k, so that

for any two indices 1 ≤ i < j ≤ n, where i 6∈ I and j 6∈ I, we have R[i] ≤K R[j]. If a

relation is not k-close to being sorted, then we say that it is k-far from being sorted.

A relation R is `-globally sorted according to a sort key K, when for every two tuples

in R that do not comply with the order defined by K, the difference between the locations

of these two tuples is strictly smaller than `.

Definition 2.3 (`-globally sorted). Given a positive integer `, a relation R of n tuples

is `-globally sorted according to K, if for any two indices i, j ∈ [n], where i ≤ j − `, we

have R[i] ≤K R[j].

Remark 2.4. Notice that a relation is 1-globally sorted if and only if it is 0-close to being

sorted (which is equivalent to being sorted). But in general, there is no correspondence

between these two notions. It is an easy exercise to construct: (1) a relation R which is

both 2-globally sorted and n/2-far from being sorted; (2) a relation R which is not even

(n− 2)-globally sorted, but is 1-close to being sorted.

The following final definition combines the relaxation of Definition 2.2 with the relax-

ation of Definition 2.3, and captures the notion of being nearly-sorted as it was discussed

in the introduction.

Definition 2.5 ((k, `)-nearly sorted). Given a nonnegative k and a positive `, we say

that R is k-close to being `-globally sorted according to K, or (k, `)-nearly sorted, if

there exists a set of indices I where |I| ≤ k, so that for any two indices i, j ∈ [n] where

i ≤ j − `, i 6∈ I and j 6∈ I we have R[i] ≤K R[j].

If a relation is not (k, `)-nearly sorted, then we say that it is k-far from being `-globally

sorted. Note that for any k′ ≤ k and `′ ≤ `, a relation that is (k′, `′)-nearly sorted is also

(k, `)-nearly sorted.

Our definitions deviate a little from the standard notion of k-closeness, which requires

the tuples with indices in I to be replaced with alternative tuples for which sortedness

holds for the entire relation. However, by [2, 4, 11], the two definitions are equivalent for

many monotonicity-like properties, including all those defined here.

Lemma 2.6. Let E ⊆ [n] be a set of indices, whose removal makes R `-globally sorted.

There is a way of replacing the tuples in E with new ones (rather than dismissing them)

that will make R into an `-globally sorted relation.
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1 2 3 4 5 6 7 8 9 101 8 3 4 5 6 7 2 9 101 4 3 2 5 6 8 7 9 10R2: 2-close to being sortedR1:  SortedR3: 3-globally sorted9 4 3 2 5 6 8 7 1 10R4: 2-close to being 3-globally sorted
Figure 2.1: Sorted and nearly-sorted relations

Example 3. In Figure 2.1 we illustrate the different definitions of nearly-sorted relations.

In the sketched relations, the cells contain numbers that refer to the keys of the tuples.

Relation R1 is sorted. Relation R2 is 2-close to being sorted, because removing 8 and

2 makes it a sorted relation. Relation R3 is 3-globally sorted, because every two tuples

that the difference between their locations is at least 3 comply with the order of the keys.

Finally, the relation R4 is (2, 3)-nearly sorted, because outside the tuples whose keys are

9 and 1, we actually have a part of R3.

In the sequel we show that nearly sorted relations indeed admit an efficient algorithm

for sorting or computing other operators. But as mentioned earlier, we also need a way to

efficiently decide whether to apply an algorithm tailored for the nearly sorted case. For

this we use a property tester . Rather than provide the standard testing theory definition,

we provide here a specific definition for our application; we also change the terminology

accordingly (e.g., “probe complexity” here is what testing theory refers to as “query

complexity”)

Definition 2.7. Given four integers k′ ≤ k and `′ ≤ `, a ([k′, k], [`′, `])-sortedness test

with probe complexity q and error probability δ is an algorithm making at most q read

operations from the relation (all of them using random access), and satisfying the follow-

ing.

• If the relation is (k′, `′)-nearly sorted, then the algorithm outputs accept with

probability at least 1− δ.

• If the relation is not even (k, `)-nearly sorted, then the algorithm outputs reject

with probability at least 1− δ.
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Note that in 2.7 the parameters may (and will) depend on the size of the relation, n.

The parameter δ will usually be held to the constant 1/3, but making δ smaller with a

logarithmic in 1/δ penalty on q will turn out to be an easy amplification procedure.

The above definition in fact deviates somewhat from the standard testing definition.

In the standard theory an ε-test for being `-globally sorted would correspond to what we

defined here as a ([0, εn], [`, `])-sortedness test. Having a k′ > 0 lower bound makes it

relate to the stronger notion of a tolerant test , and having two instead of one ` parameter

(as we shall see below) will allow us to improve the efficiency of the test considerably, in

fact making its probe complexity independent of `.
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Chapter 3

Outline of the suggested query

evaluation strategy

As mentioned in the introduction, for some useful (small enough with respect to the

computer memory) parameters k0 and `0 a typical relation R is likely to be (k0, `0)-

nearly sorted. Based on this, our first ingredient is an efficient “correction” algorithm –

Algorithm 2 below, that for any two integers k, ` can evaluate the sort operation on a

(k, `)-nearly sorted relation more efficiently than a conventional algorithm given sufficient

memory. We use the sort operation itself as an example because it is relatively simple to

describe, while later we explain how other operations will work by having basically the

same sorting procedures plugged in. The algorithm is also capable of reporting whether

the evaluation succeeded or not, so we know whether a fall-back procedure is needed.

The second ingredient in our strategy is an extremely efficient probabilistic test (Algo-

rithm 3) that for any integers k, ` can distinguish between the case where R is (k, `)-nearly

sorted (“Case Y”) and the case where R is not even (6k, 6`)-nearly sorted (“Case N”).

The exact details on the resources that these algorithms require are given in the

relevant chapters, but for the discussion here we should think of the probabilistic test as

the cheapest algorithm, and of the correction algorithm as significantly cheaper than a

conventional evaluation algorithm.

Suggested strategy:

1. First we apply the test with parameters k0, `0.

2. If the prediction of the test is “Case Y”:

(a) We apply the correction algorithm with parameters 6k0 and 6`0. If the correc-

tion algorithm succeeds, then we are done.
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(b) Otherwise, if we were using Algorithm 2 then we can continue running its

special fall-back mode (see Remark 4.4 below) or decide to start from scratch

with a conventional algorithm, depending on how soon it failed. If we were

using the simpler Algorithm 1 then the fall-back is easier – we can just continue

with a conventional algorithm from where it failed.

3. If the test predicted “Case N”, then we use a conventional evaluation algorithm

without attempting the correction algorithm at all.

By sufficiently amplifying the success probability of our test, reaching Step 2b will be

rare enough so that the average cost of falling back to the fall-back mode of our algorithm

(rather than using a conventional algorithm from the beginning) will be negligible. The

fall-back overhead, while best avoided, is generally within the same order of magnitude

as that of running the algorithm itself. Also, reaching Step 3 with relations that could

have benefited much by our algorithm (again through an error of the testing procedure)

will have a negligible average cost. For relations reaching Step 3 that in fact satisfy Case

N we only have the additional cost of performing the test (when compared to a query

processor that always performs a conventional algorithm); a preliminary experiment (see

Section 7.6) suggests that the percentage of those would typically be small enough to

have an overall average net gain by using our procedure.

Choosing the right candidate parameters k0, `0 can be done empirically, based on past

statistics, but this is not necessary. In Section 7.1 we show a probabilistic algorithm that

with a slight overhead over the original tolerant tester can output a comprehensive set

of candidate pairs (ki, `i) (up-to specified precision) for which the given relation R falls

under Case Y.

In settings where the relations change slowly over time we can also cache the results

of the test for use in future queries, rather than test the relation every time.
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Chapter 4

Exploiting Near Sortedness

In this chapter we first present Algorithm 1, which sorts (k, `)-nearly sorted relations

in two sequential passes. In the first pass Algorithm 1 acts similarly to the well known

Replacement-Selection algorithm (see [6])1, while it also collects a set of misplaced entries

(i.e., a set of at most k tuples that must be removed to make the relation `-globally

sorted). In the second pass, the collected tuples are distributed to their final positions.

Note that although we have a fail state in the description of Algorithm 1, we later discuss

a fall-back mechanism that preserves most of the work already done.

Albeit sometimes useful in itself, the main function of this algorithm is to serve as a

warm-up for the more efficient Algorithm 2, whose analysis is based on the analysis of

Algorithm 1. The main change in Algorithm 2 is that it defers all writing to the second

pass, managing to do away with the writing of an intermediate file. Its fall-back mode is

on the other hand less efficient than that of Algorithm 1, so a property testing procedure

for being (k, `)-nearly sorted is more important there.

Theorem 4.1. If R is a (k, `)-nearly sorted relation, then Algorithm 1 does not reach

its fail state and the resulting relation OUT is strictly sorted. Furthermore, Algorithm

1 makes only two sequential passes on R, uses memory of size O(k + `), and makes

O(n · log(` + k)) computing operations.

Proof. The fact that only two passes are made as well as the bounds on memory size and

the number of computing operations are clear from the description of Algorithm 1. Now

we prove that the algorithm sorts any relation which is (k, `)-nearly sorted.

It is easy to see that if the algorithm did not fail in the first pass, then the intermediate

result (that is written in TMP ) is sorted. If this is the case, then the second pass is just

the standard merge between two sorted lists, and hence the resulting relation (written

1In fact, our algorithm starts out identically to the Replacement-Selection algorithm, but the analysis
given here shows that, specifically for nearly sorted relations, much stronger properties hold.
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Algorithm 1 (Sorts a (k, `)-nearly sorted relation R.)
create two binary heaps S, G
insert the first k + ` + 1 tuples (R[1], . . . , R[k + ` + 1]) into S
iwrite ← 1
for iread = |S|+ 1 to n do {first pass}

if S = ∅ then
FAIL

end if
last written ← min{x ∈ S}
write last written to TMP [iwrite]
S ← (S \ {last written})
iwrite ← iwrite + 1
if R[iread] ≥ last written then

insert R[iread] into S
else

insert R[iread] into G
end if

end for
append all tuples in S to TMP , in sorted order
iwrite ← 1
for iread = 1 to n− |G| do {second pass}

x ← min{y ∈ G}
if x > TMP [iread] then

write TMP [iread] to OUT [iwrite]
else

write x to OUT [iwrite]
G ← (G \ {x}) ∪ {TMP [iread]}

end if
iwrite ← iwrite + 1

end for
append all tuples in G to OUT , in sorted order

to OUT ) will be fully sorted. So, we only need to prove that if R is (k, `)-nearly sorted,

then Algorithm 1 cannot fail. Observe that in every stage of the first pass |S|+ |G| equals

k + ` + 1, and therefore showing that |G| never exceeds k implies that S stays nonempty,

preventing the algorithm from failing.

Let E(R) denote the collection of subsets E ⊆ [n] of at most k indices, such that

for every E ∈ E(R), if we restrict R to indices [n] \ E then we get an `-globally sorted

relation.

Let in addition D = {j ∈ [n] : ∀E ∈ E(R), j ∈ E} denote the set of indices that must

be removed from R in order to make it `-globally sorted by at most k removals. Observe

that |D| ≤ k. With a slight abuse of notation, let us also denote by D the set of tuples

that appear at indices D of the relation R.

We claim that at every stage of the first pass, G ⊆ D and hence |G| ≤ k. To see
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this, notice that whenever a tuple at index i is inserted into G, it is strictly smaller than

last written. Using this observation, we prove the claim G ⊆ D by induction on i.

For i ≤ k + ` + 1 the claim trivially holds (since these indices are unconditionally

inserted into S). Now let i > k+`+1. By the induction hypothesis, before treating R[i] we

had G ⊆ D. If R[i] ≥ last written then G remains the same and we are done. Otherwise,

since R[i] < last written there are at least |S| = k+`+1−|G| ≥ `+1 tuples in S that are

strictly larger than R[i]. All these tuples originally appeared before R[i]. Consequently,

at least |S| − ` ≥ 1 of these tuples appeared in indices lower than i − `. Assume that

i /∈ D and let E ∈ E(R) be such that i /∈ E. Then all the corresponding |S| − ` ≥ 1

indices should be in E, because they form a violation of `-global sortedness together with

i. By the induction hypothesis, G ⊆ D ⊆ E and hence |E| ≥ |G| + |S| − ` ≥ k + 1,

contradicting the fact that |E| ≤ k. Hence i must be in D, concluding the proof.

Remark 4.2. In an actual implementation we can (and should) replace the failure mode

in Algorithm 1 with a fall-back to a traditional sorting algorithm. For example, instead of

failing, the algorithm can just reset last written and start writing another run (monotone

subsequence), repeating this as many times as is necessary. In other words, we just fall-

back to the Replacement Selection algorithm for creating runs that are as long as possible.

Next, instead of moving to the second pass, a traditional merge-sort can be performed.

Implementing a fall-back is necessary in part because of the probabilistic nature of the

testing algorithms. In Section 7.2 below we touch upon the expected amount of overhead

when the k parameter in the near-sortedness of the input is somewhat larger than available

memory, bounding it when the error in the estimation of k is not too large (which will

usually be the case).

Now we present a sorting algorithm which is an improvement over Algorithm 1 as it

saves significantly on write operations, and in fact writes nothing apart from the output

itself. Apart from the clear saving in write operations in itself, not writing any intermedi-

ate result to disk makes the algorithm easier to combine with other database operations,

because its output can be piped directly to the algorithm processing the next operation.

The only disadvantage in the improved algorithm is that sometimes not all of the work

already done upon reaching a failure mode is recoverable, so it is all the more important

to use the test of Chapter 6 first. The analysis of the improved algorithm is based on the

analysis of Algorithm 1.

Theorem 4.3. If R is a (k, `)-nearly sorted relation, then Algorithm 2 does not reach

its fail states and the resulting relation OUT is strictly sorted. Furthermore, Algorithm

2 makes only two sequential passes on R, uses memory of size O(k + `), and makes
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O(n · log(k + `)) computing operations; also, it never writes any intermediate file, only

the sorted output.

Algorithm 2 (Improved sort for a (k, `)-nearly sorted relation R.)
create two binary heaps S, G
insert the first k + ` + 1 tuples (R[1], . . . , R[k + ` + 1]) into S
last handled ← MIN VAL
for iread = |S|+ 1 to n do {first pass}

if S = ∅ then
FAIL

end if
last handled ← min{x ∈ S}
S ← (S \ {last handled})
if R[iread] ≥ last handled then

insert R[iread] into S
else

insert R[iread] into G
end if

end for
empty S
let G[1], . . . , G[|G|] be the sorted order of G’s elements
insert the first k + ` + 1 tuples (R[1], . . . , R[k + ` + 1]) into S
iwrite ← 1, ig ← 1
last handled ← MIN VAL
for iread = |S|+ 1 to n do {second pass}

if S = ∅ then
FAIL

end if
last handled ← min{x ∈ S}
while ig ≤ |G| and G[ig] ≤ last handled do

write G[ig] to OUT [iwrite]
ig ← ig + 1, iwrite ← iwrite + 1

end while
write last handled to OUT [iwrite]
iwrite ← iwrite + 1
S ← (S \ {last handled})
if R[iread] ≥ last handled then

insert R[iread] into S
end if

end for
append {G[ig], . . . , G[|G|]} ∪ S to OUT , in sorted order

Proof. The fact that only two passes are made as well as the bounds on memory size and

the number of computing operations are clear from the description of Algorithm 2. To

prove that the algorithm sorts any relation which is (k, `)-nearly sorted, we use the proof

of Theorem 4.1.
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We note that both passes of our algorithm in fact mimic the first pass of Algorithm

1, so that the analysis there still holds (in fact unless a fall-back was implemented for the

first fail state, our algorithm will never reach the second fail state, whether the input is

(k, `)-nearly sorted or not). The first pass of our algorithm is identical to the first pass

of Algorithm 1, with the only difference being that nothing is written to disk. In the end

we are left with G, which holds up to k tuples of the relation.

The second pass again generally follows the first pass of Algorithm 1, only here tuples

are not inserted to G, because already in the beginning G contains all tuples that would

have been passed to it. Additionally, this pass follows the writing pattern of the first pass

of Algorithm 1, only here we merge the (already known in advance) content of G into the

output stream. Therefore this essentially combines the writing actions of the two passes

of Algorithm 1, resulting in a fully sorted output.

Remark 4.4. In the case where algorithm reaches the fail state in the first pass, the

natural instinct is to continue with algorithm by writing the contents of G to a temporary

file on the disk, clearing it, and then populating S with k+`+1 new tuples from the input

(without resetting last handled). However, this will not work – while out of place tuples

that come “too late” (i.e. well after their position according to the ordered relation) will

not pose a problem here, tuples that come “too early” may set the value of last handled

so high that the rest of the relation will land in G.

There is still a fall back procedure that is more beneficial than just restarting the sort

using a different algorithm when the error in our estimation of k is not too large (e.g.,

whenever the true k still satisfies k = o(n)). See Section 7.3.
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Chapter 5

Evaluating Other Operators

In this chapter we discuss efficient evaluation of some order-preferring operations over

nearly-sorted relations. For all operations here we use at our core Algorithm 2, which

is the one more suited for integration into larger operation. For the purpose here we do

not describe the fall-back procedures in case we reach a fail state, as these would be the

expected ones. We outline the algorithms without formal details whenever these follow

from standard procedures in relational query evaluation.

Intersection and other set operations. Consider the computation of an intersection

of two relations, R1 that is (k1, `1)-nearly sorted and R2 that is (k2, `2)-nearly sorted,

where for both relations the entire schema is the sort key in some order. Suppose that

the memory is large enough to hold 2k1 + `1 tuples of R1, 2k2 + `2 tuples of R2, and

buffers for the input and output.

In the first stage, we just perform the first pass of Algorithm 2 on R1 and R2 (in some

cases, for example if they are on different disks, this is best done in parallel), and obtain

the corresponding heaps G1 for R1 and G2 for R2. Recall that the first pass of Algorithm

2 does not produce any output.

Then we go in parallel over R1 and R2 again, and perform a procedure similar to

the second pass of the sorting algorithm on each of them, but with the following change:

Instead of writing the sorted output to disk, we instead pipe it to the algorithm that

performs intersection using the merge procedure for two sorted relations. In fact, we do

not keep running the second pass of the sorting algorithm over R1 and R2 unconditionally,

but use it as an iterator – we buffer sorted subsequences of R1 and R2, and whenever

a buffer is exhausted by the merge-intersection procedure we run more iterations of the

loop in the sorting algorithm for the corresponding relation so as to fill the buffer again.

Accommodating bag (multiset) intersection is an easy extension of the above proce-

dure, one just needs to keep track also of the original locations in the files of the tuples

that are stored in G1 and G2. If we were using Algorithm 1 instead, we would have
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needed to run over both the result of the intersection from first pass and the original

relations to make sure that we got the correct number of duplicate entries.

Using the above idea (with Algorithm 2) for set union, or set or bag difference, works

in much the same way: running sorting algorithm instances in parallel on R1 and R2

and piping the output of the second stage to the corresponding merging algorithm. Bag

union by itself is not an order preferring operation, but if it is part of a larger expression

involving order preferring operations then it may still be better to combine it with the

sorting procedure so that its output would be sorted.

Natural join (equijoin). The computation of a natural join is performed similarly to

the computation of intersection, but here there is a new issue that many tuples can agree

on the value of the common attributes in the join. Suppose that at most m1 tuples of

R1 can agree at one time on the values of the attributes common to R1 and R2, while

at most m2 tuples of R2 can agree on them. In this case for the merging join algorithm

during the second stage to work, we would need a memory big enough to hold a total of

(2k1 + `1) tuples of R1, (2k2 + `2) tuples of R2, and additionally either m1 tuples of R1 or

m2 tuples of R2 (as well as sufficient buffers). If this does not hold, then we would need

to accommodate for saving and retrieving the state of the second stage sorting algorithm

over (say) R2. Then, given a large subsequence of tuples from R2 that agree on a common

attribute, we can save the state at the beginning of the sequence, and reset the algorithm

to this state for every tuple from R1 that needs to be joined with that subsequence.
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Chapter 6

Testing for Near Sortedness

In this chapter we develop a tolerant sortedness test, namely a ([k, 6k], [`, 6`])-sortedness

test, and prove its correctness. The reason for the test to be tolerant (i.e., use [k, 6k]

rather than [0, k]) is so that more instances for which Algorithm 2 (or Algorithm 1) still

works are accepted by the test.

Some inaccuracy in the k parameter cannot be avoided (i.e., there is no test with [k, k]

parameters), though currently we do not know how much lower than a factor of 6 one

can go. As for the ` parameter, while there is a test that is fully accurate in `, its number

of queries depends badly on `. In contrast, the test in this chapter has no dependency on

` at all. The Appendix contains descriptions and proofs for simpler (non-tolerant) tests,

and it can be read as a warm-up to this chapter.

The test presented here is non-adaptive, meaning that it can decide which tuples

to read before the first reading of a tuple – only the final decision to accept or reject

depends on the actual values read. This can serve to reduce the overhead further: Instead

of reading the queries in the order that they are used in the test (which requires fully

random-access reads), we can first decide the queries and then make them in the order

of their positions in the file. Moreover, modern operating systems can first receive the

entire list of all reads to be made and then optimize their order of execution further for

the file system involved.

Theorem 6.1. Algorithm 3 is a ([k, 6k], [`, 6`])-sortedness test that makes

O(n
k

log n
k

log n log log n) probes and errs with probability at most 1/3.

Notice that the probe complexity is independent of `. In property testing, k is usually

set to εn for some small constant ε. In these terms, the probe complexity of our test

is nearly logarithmic in n, which is known to be optimal even for non-tolerant simple

monotonicity testing [2].

In the description of Algorithm 3 we use an undefined parameter s, the value of
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Algorithm 3 (([k, 6k], [`, 6`])-sortedness test)
a ← 0
for j = 1 to s do

pick ij ∈ [n] uniformly at random
call Algorithm 4 for ij with confidence parameter δ = 1

6s
if ij is reported to be active then

a ← a + 1
end if

end for
if a ≤ s5.5k

n then
return ACCEPT

else
return REJECT

end if

which will be set later in the proof of Theorem 6.1, and call Algorithm 4 that we define

subsequently. It will be clear from the proof that the success probability can be easily

amplified by increasing s. First we need the following definition and lemmas.

In the following we will say that a pair (i, j) violates `-global sortedness if i ≤ j − `

and R[i] > R[j].

Definition 6.2. Let (i, j) be a pair of indices with i < j that violate the `-global sortedness

of R. We say that i is (δ, `)-active with j (for δ > 0) if at least a δ-fraction of the indices

in [i + 1, j] violate `-global sortedness together with i. Similarly, we say that j is (δ, `)-

active with i if at least a δ-fraction of the indices in [i, j − 1] violate `-global sortedness

together with j. We say that an index i is simply (δ, `)-active if it is (δ, `)-active with

some index j ∈ [n] \ {i}.

Lemma 6.3. Let R be a relation and let k, ` be two positive integers. For every δ ∈
(0, 1/2] let d(δ) denote the number of (δ, `)-active indices in R.

• if R is (k, `)-nearly sorted then d(δ) ≤ k + k/δ, and in particular d(1/4) ≤ 5k;

• if R is not (6k, 6`)-nearly sorted then d(1/3) ≥ 6k.

Proof. The proof of second part of the lemma is standard in monotonicity testing: If

(i, j) is a pair violating 6`-global sortedness, then every k between i+ ` and j− ` violates

`-global sortedness with either i or j. Hence, at least one of i or j violates `-global

sortedness with at least j−i−2`
2

≥ j−i
3

indices in the interval, making it 1
3
-active. As the

set of all 1
3
-active indices now intersects all pairs violating 6`-global-sortedness, its size

must be at least the distance 6k.

Assuming that R is (k, `)-nearly sorted, we now prove the first part of the lemma.

For this we will use some methods from [1], together with additional arguments that are
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specific to globally sorted relations. Let E ⊆ [n] be a set of at most k indices, whose

dismissal makes R `-globally sorted. Such a set must exist since we assumed that R is

(k, `)-nearly sorted. By Lemma 2.6 we can fix new values for these indices so that the

resulting relation is `-globally sorted. From now on let us fix a set E as above, and a

sequence of new values for the corresponding tuples as per Lemma 2.6.

Next we are going to label some of the indices of R. For every i ∈ E, we label i as

high if its tuple should be decreased (replaced by one with a lower key value under the

above correction), and we label it as low otherwise. For each (δ, `)-active index i ∈ [n]\E

(we stress that i is not in E) we assign some index ji that witnesses the fact that i is

(δ, `)-active. If ji > i, then the label of i is big; otherwise its label is small. Notice that

each index can have at most one label as above (every i is either high, low, big, small

or has no label at all). Our aim is to bound the number of indices that are (δ, `)-active,

which is upper bounded by the number of labeled indices. By definition, the number of

high and low indices is at most k, so it is enough to show that the number of big and

small indices is at most k/δ. By letting klow and khigh denote the number of low and high

indices (respectively), we show how to bound the number of big indices by klow/δ. An

analogous argument works for bounding the number of small indices by khigh/δ.

We start by assigning weight 1 to every big index. Then, for each big index i, in

decreasing order, we divide the weight of i among all the low indices h such that i ≤ h ≤ ji

and R(h) < R(i). We “spread” the weight of i in a way that maximizes the minimal

weight of the receiving indices (the h’s). Our goal is to show that after this process, no

low index has weight more than 1/δ, and hence the total initial weight of the big indices

(which is exactly equal to their amount) was at most klow/δ as required.

Suppose on the contrary that this is not the case, so that some low index g got weight

(1 + ε)/δ for some ε > 0. Let i be the first (in reverse order) big index that caused g

to reach weight (1 + ε)/δ. By definition, this event happened while the weight of i was

spread among the low indices h such that i < h ≤ ji and R(h) < R(i). Denote their

number by b. From the way the weight is spread, all of these low indices must have weight

at least (1 + ε)/δ. Hence their total weight is at least b((1 + ε)/δ). By the definition of

(δ, `)-active indices, b ≥ δ(ji − i + 1), so their total weight is at least (1 + ε)(ji − i + 1).

Since we iterate on the i’s in decreasing order, none of these h’s could gain any weight

before step ji, and therefore we should have (1 + ε)(ji − i + 1) ≤ ji − i + 1, which is a

contradiction.

The next lemma allows us to distinguish between indices that are (1/3, `)-active and

indices that are not even (1/4, `)-active.

Lemma 6.4. Algorithm 4, given an index i ∈ [n] and confidence parameter δ > 0,
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satisfies the following:

• if i is (1/3, `)-active, it outputs ACTIVE with probability at least 1− δ;

• if i is not even (1/4, `)-active, it outputs INACTIVE with probability at least 1− δ;

• its probe complexity is O(log 1
δ
log n log log n).

The constants α > 0 and t ∈ N in the definition of Algorithm 4 are set later in the

proof.

Algorithm 4 (tests if i is (1/3, `)-active or not even (1/4, `)-active)

for h = dlog1+α(` + 1)e to dlog1+α ne do
left ← 0, right ← 0
for j = 1 to a = t log 1

δ log log n do
pick ij ∈ [` + 1, (1 + α)h] uniformly at random
if R[i] > R[i + ij ] then

right ← right + 1
end if
if R[i] < R[i− ij ] then

left ← left + 1
end if

end for
if right > 2

7a or left > 2
7a then

return ACTIVE
end if

end for
return INACTIVE

Proof. Assume first that i is (1/3, `)-active, and let ji be an index that witnesses this

fact, so there exist at least |ji−i|
3

indices lying between i and ji that violate `-global

sortedness with i. We assume without loss of generality that ji > i. Let h0 ∈ N be

such that (1 + α)h0 ≤ ji − i ≤ (1 + α)h0+1. Then in the interval [i, i + (1 + α)h0+1] at

least a 1/3 − α fraction of the indices violate `-global sortedness with i. We fix α to be

small enough (say 1/100), so that 1/3 − α is much closer to 1/3 than to 2/7. For large

enough t (matching the parameters in Chernoff bounds), after the h0 + 1’th iteration of

the internal loop, with probability at least 1 − δ the value of right will be sufficiently

close to (1/3 − α)(1 + α)h0+1. In particular the value of right will exceed 2
7
(1 + α)h0+1,

hence the outcome will be ACTIVE as required for the first part of the lemma.

To prove the second part of the lemma, we use a similar argument. Namely, if the

index i is not even (1/4, `)-active, then for all h the fraction of violating (with respect

to i) indices between i and i + (1 + α)h (and similarly between i and i− (1 + α)h) is at

most 1/4. But now we must make sure that no error occurred, meaning that the values
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of the counters right and left did not deviate too much in any of the O(log n) iterations

of the outer loop. We can solve this problem by amplifying the success probability to

1− Ω(1/ log n). This is the reason that we have the extra log log n factor in the number

of iterations of the internal loop.

Proof of Theorem 6.1. First notice that the confidence parameter δ in the executions of

Algorithm 4 is set to 1
6s

, so that with probability at least 1− 1/6 Algorithm 4 did not err

during any of the s executions.

If R is (k, `)-nearly sorted, then according to Lemma 6.3 (first item), the number of

(1/4, `)-active indices in R is at most 5k. Conditioned over the event that none of the

executions of Algorithm 4 err (recall that this event occurs with probability at least 5/6)

we have that the expected value of a is at most s5k
n

. The probability that Algorithm 3

returns REJECT in this case is equal to the probability that the random variable a (being

a sum of s independent random variables) deviates from its expectation by a multiplicative

factor of 0.1. This probability can be bounded by 1/6 by taking s = O(n/k), so altogether

Algorithm 3 returns ACCEPT with probability at least 2/3 as required.

If R is 6k-far from being 6`-globally sorted, then according to Lemma 6.3 (second

item), the number of (1/3, `)-active indices in R is at least 6k. Conditioned over the event

that none of the executions of Algorithm 4 err, the expected value of a is at least s6k
n

. So

similarly to the previous case, the probability that the random variable a deviates from

its expectation by a multiplicative factor of 0.08 can be bounded by 1/6, and altogether

Algorithm 3 returns REJECT with probability at least 2/3 as required. The probe

complexity of Algorithm 3 is s ·O(log 1
1/s

log n log log n) = O(n
k

log n
k

log n log log n).
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Chapter 7

Discussion

In the following we touch upon some possible extensions of our methods for detecting

and exploiting near-sortedness, and related issues.

7.1 Testing for several values of k and ` at once

In all of previous chapters we used algorithms that take the values of k and ` in advance.

However, we may be interested in learning actual approximate values of k for many values

of ` at once. First, our computer memory puts constrains only on k + ` (for Algorithm

1) or 2k + ` (For Algorithm 2) and we may want to search for an optimal ` for which this

fits our memory (every input R has for every ` a minimum k for which it is (k, `)-nearly

sorted, the worst case being k = n − 1). Second, sometimes we would like to use our

sorting algorithm even if we know that it may fail (this scenario fits Algorithm 1), because

it could still lead to faster sorting (see Section 7.2 and Section 7.3 below).

There is an easy extension of Algorithm 3 that allows to efficiently test for many values

of k and ` at once. First, we construct Algorithm 5, a version of Algorithm 4 which tests

whether an element is active for every possible ` = cr, where c > 1 is any fixed constant

(that determines the number of different `’s we inspect) and r = 1, 2, . . . , logc n. We

restrict ourselves to powers of c so that this output would be of manageable size, and this

would still give a good approximation of the optimal k and `. The parameters t and α

used below are the same as in Algorithm 4.

Now we can use Algorithm 6, a variant of Algorithm 3. It uses the same s as Algorithm

3, but here it is calculated not as a function of k (which is not provided in advance) but

as a function of a desired approximation parameter k̂, which should be set equal to a

small constant fraction of the available computer memory. Here we also keep count of

every possible ` = cr. In addition, instead of deciding on ACCEPT or REJECT, we just

output all counters after the appropriate normalization.
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Algorithm 5 (tests for every ` = cr if i is (1/3, `)-active or not even (1/4, `)-active)

A[0], A[1], . . . , A[dlogc ne] ← INACTIVE
for h = 1 to dlog1+α ne do

LF [0], LF [1], . . . , LF [dlogc ne] ← 0
RT [0], RT [1], . . . , RT [dlogc ne] ← 0
for j = 1 to a = 2t log 1

δ log log n do
pick ij ∈ [1, (1 + α)h] uniformly at random
if R[i] > R[i + ij ] then

for r = 0 to blog ijc do
RT [r] ← RT [r] + 1

end for
end if
if R[i] < R[i− ij ] then

for r = 0 to blog ijc do
LF [r] ← LF [r] + 1

end for
end if

end for
for r = 0 to dlogc ne do

if RT [r] > 2
7a or LF [t] > 2

7a then
A[r] ← ACTIVE

end if
end for

end for
return A

The running time of Algorithm 6 is Õ(n/k̂), and with probability at least 2
3

it provides

for every ` = cr an approximation k such that R is (6k + k̂, 6`)-nearly sorted while not

being (k − k̂, `)-nearly sorted. The proof is a straightforward extension of the argument

given in Chapter 6, since having the confidence parameter (1 − δ) amplified to (1 −
1/polylog(n)) allows us to simply apply a union bound over all values ` = cr.

Algorithm 6 (approximates k = k(`) for every ` = cr)

B[0], B[1], . . . , B[dlogc ne] ← 0
for j = 1 to b = sdlog ne = O(n log n/k̂) do

pick ij ∈ [n] uniformly at random
call Algorithm 4 with index ij and δ = 1

6b to obtain A
B ← B + A (coordinate-wise)

end for
return n

b B (coordinate-wise)
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7.2 Distances larger than memory

Suppose that there is enough memory for handling a (k, `)-nearly sorted relation, but

we attempt to use Algorithm 1 when the input is in fact not (k, `)-nearly sorted. If we

implement Remark 4.2 then we will fall-back to the Replacement Selection algorithm.

If the input is (k′, `)-nearly sorted for k′ > k, then we can still bound the number of

runs that will be produced – it is not hard to see, by partitioning R into consecutive

subsequences so that each of them is (k, `)-nearly sorted, that the number of runs is at

most k′/k + 1 (the “+1” refers to the tuples remaining in memory in the end). Similarly,

using the fall-back mechanism of Algorithm 2 described below would cause no more than

k′/k overflows (however here more care is needed in handling the overflows).

A more careful analysis of Algorithm 3 would reveal that its probability for a false

positive decays exponentially in k′/k, and so whenever it accepts, the expected risk of

running Algorithm 1 or Algorithm 2 (instead of an algorithm more optimized for the

completely unsorted case) is still small, because we would most likely still have a small

number of runs allowing for an efficient merge. A similar decay in the error probability

holds for Algorithm 6. Finally, note that in some instances it may even be beneficial to

run into the fall-back mode of our sorting algorithm on purpose, if the resulting number

of runs r would be small enough to make an r-way merge more efficient than a multi-pass

sorting algorithm.

7.3 Recovering from a fail mode of the improved sort

algorithm

When Algorithm 2 reaches a failure mode in the first pass (we recall that it will not reach

a failure mode in the second pass unless one was reached in the first pass) we cannot just

dump the contents of G to a temporary file and continue from where we were.

An appealing direction would be then to try to partition to input file into consecutive

segments where on each of them we can run Algorithm 2, and pipe their second phase

input to a merge sort algorithm. This will not work with a multi-way merge sort algorithm

as per [5], but it will work with the iterated 2-way sort algorithm of [6].

To follow on this, when S becomes empty and we reach the fail state of the first pass,

we write G to a temporary file and start over from where we were. We also write down

the location in R where the fail state was reached, and reset last handled to MIN VAL.

Then, for the second pass, we have a partition of the original relation into subsequences,

and a collection of runs from G, so that each pair of an original subsequence and a

corresponding run written from G can be merged into a sorted run as per the second
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stage of Algorithm 2 (without a failure mode being reached). In terms of Section 7.2 we

would have k′/k + 1 such segments, which we pipe in turn to the iterated 2-way merge

sort algorithm.

The reason that this will not work with a multi-way merge algorithm is the memory

requirement of holding O(k + `) tuples for “decoding” each sorted run. The only way

to enable multi-way merge is in effect to revert to Algorithm 1 after the first time a fail

state was reached. Starting from the second run, we just write it in its entirety to a

temporary file. Then, under reasonable memory assumptions we can merge all the runs

at once, with the first run requiring us to hold O(k + l) tuples in memory to decode, and

each subsequent run requiring enough memory to hold the O(1) tuples that are buffered

from the respective file.

7.4 Solid State Drives

Another issue to consider is how our algorithm can perform when the database is not

stored on a traditional harddisk drive, but rather on a Solid State Drive (SSD). While

current SSDs are mostly restricted to small appliance devices and high-end laptops, one

can imagine a time where the technology would advance enough to supplant traditional

drives, so it is not too soon to consider database algorithms designed for this new hardware

profile.

There are two crucial differences between traditional drives and SSDs. The first is

that with an SSD the seek time is negligible, and so a sequential read operation takes

the same time as a random access read operation (however when many operations are

involved, block sizes may become an issue). In fact seek times are recently becoming less

and less relevant also for traditional disk drives under a modern operating system [12].

The second difference is that with some SSD devices writing is very costly relative to

reading.

In this context our algorithm should be compared against the algorithm from [5], which

performs an O(n/`)-way merge sort, where n is the size of R and ` is the size of the runs

produced by using quicksort on consecutive subsequences. This is a 2-pass algorithm

for the practical purposes of current hardware memory size, where the second pass uses

random access reads. In the following we assume that the relations are sufficiently nearly-

ordered for our algorithms to work.

When comparing sort operations, Algorithm 2 outperforms the multi-way merge sort

algorithm. Both our algorithm and the algorithm of [5] perform two passes of reading

the full relation. However, while our algorithm writes nothing on disk apart from the

final output (which can also be piped for further processing), the multiway merge sort
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algorithm has to first rewrite the entire relation as a sequence of sorted runs, which are

then read for the merging stage.

The comparative analysis of Algorithm 2 also holds for the evaluation of other opera-

tors as in Chapter 5. Both the output of Algorithm 2 and the output of (the second stage

of) the multiway merge algorithm can be directly piped to the operation at hand, but our

algorithm saves the writing of the entire relation as sorted runs. In fact the only instance

in which the algorithm of [5] is significantly better is when (say, due to an unlikely error

of the near-sortedness test) we tried to run our algorithm on an input that is Θ(n)-far

from being `-globally sorted.

There is additionally the question of testing whether our algorithm applies to a given

relation, i.e., testing whether the relation is nearly sorted. In SSDs the situation is even

better than that of traditional drives, because the testing algorithm in fact fully depends

on random access read operations.

7.5 Parallel scalability

Our sorting algorithms for nearly sorted inputs can in fact be scaled to a parallel im-

plementation as per the following sketch (we omit the fall-back procedure in case the

algorithm fails).

To further understanding, we present the parallel implementation for Algorithm 1.

A parallel version for Algorithm 2 can be derived from the following in much the same

fashion as the original derivation of Algorithm 2 from Algorithm 1, by deferring all output

to the final stage.

Assume that we have d processors, each with O(k + `) memory (where we need to

sort a (k, `)-nearly sorted file), and with access to the whole file. We also assume that d

is small with respect to k and `, and that all processors are trustworthy. The input file is

partitioned into d consecutive equal size segments, each processor receiving charge of one

segment. Each processor performs an independent run of the sorting algorithm for (k, `)-

nearly sorted input on its segment. However, also the first `+k and the last `+k records

that were supposed to be output (to the respective intermediate file) are not output, but

instead are collected along with the up to k out of order records. Exceptions are the

beginning of the very first segment and the end of the very last segment, that are still

written to their segment’s output. A copy of the first and last record that was output for

each segment is also kept for further checks, and then all segments are considered to be

concatenated (this means that future sequential reads may require up to d− 1 additional

seeks).

If none of the processors failed, we check whether the concatenation of the output
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segments is sorted (for this we kept the first and last record in each segment’s output). If

this check has passed then we may continue. We sort all the records that were not output

yet. This requires Õ(d(k + `)) computation and communication to pass records between

processors so that each processor gets a consecutive segment from the sorted in-memory

records, by proceeding along the following steps:

1. A designated processor chooses uniformly at random t = O(d log d) numbers in

{1, . . . ,m}, where m is the total number of in memory records.

2. The processors holding the corresponding records report them. Let r1, ..., rt denote

the values of their key attributes in sorted order, let r0 = MIN VAL and let rt+1 =

MAX VAL.

3. Each processor reports how many records it holds with key values between ri and

ri+1 for 0 ≤ i ≤ t.

4. A designated processor calculates 0 = i0 < i1 < · · · < id = t + 1 such that there are

O(m/d) records between rij and rij+1
for all 0 ≤ j < d; with high probability such

ij exist, and otherwise Step 1 above is restarted.

5. For every j = 1, . . . , d all processors communicate their records between rij−1
and

rij , which processor j stores in order as its assigned records.

Finally, the records in memory are merged with the previous output. This can also be

parallelized, after a preliminary binary search is performed over the previous intermediate

output to assign to each processor a segment into which its records will be merged (one

would expect the assigned segment boundaries to typically resemble the boundaries of

the original output segments, but this cannot be analytically guaranteed). Note that

although this procedure is only guaranteed for (k, `)-near sorted relations, it may also

work for sufficiently “evenly spread” (O(kd), `)-nearly sorted relations.

7.6 Preliminary experiments about natural occur-

rence of near-sortedness

We built and ran some TPC-C benchmarks according to the guidelines in the TPC-

C standard [7] using a database generated according to Chapter 3 of the “Installation

and User Guide” [7]. During the benchmark runs, we monitored the sort operations,

and for each execution of a sort operation we checked the nearly-sortedness condition

of the relation being sorted for various parameters k and `. Our tests showed that for

28©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



k = ` = d√ne, where n is the number of tuples, more than 90% of the relations were

(k, `)-nearly sorted before the sorting started. These values for k and ` were selected

because they fit the case where for a fixed n they would minimize the required working

memory for the testing algorithm paired with the sorting algorithm; in fact for the current

systems the amount of working memory would accommodate higher values of k. These

are very preliminary experimental results. We intend to build a fuller implementation of

our algorithms inside a working database and report on it in a future work.
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Appendix A

A.1 A simple sortedness test

We present here a simple ([0, k], [`, `])-sortedness test that makes a sub-linear number of

read operations. In the standard terminology of property testing, this is equivalent to a

k/n-tester for the property of being `-globally sorted, that makes a sub-linear number of

queries. While the analysis of Algorithm 3 above is self-contained, this and the following

section can be read as a warm-up for the more complex analysis presented there.

Our testing algorithm, Algorithm 7, outputs ACCEPT (accepts) with probability 1

if the relation R is `-globally sorted, and outputs REJECT (rejects) with probability at

least 2/3 if R is k-far from being `-globally sorted. Since the algorithm always accepts

`-globally sorted inputs, the probability of detecting k-far ones can be amplified easily

by running the algorithm several times and rejecting if any of the runs rejected.

Algorithm 7 is a variant of the algorithms from [11, 2] for testing monotonicity. In

each iteration of the algorithm a center point is selected uniformly at random, and the

algorithm looks for a violation of the monotonicity with this center point. The search

for a violation is done by randomly sampling from growing neighborhoods of the center

point, but without checking neighbors within distance at most `.

Theorem A.1. Algorithm 7 is a ([0, k], [`, `])-sortedness test, that makes O
(

n
k
(log n+`)

)

queries and errs with probability at most 1/3.

To prove this theorem, we need several lemmas and definitions. The following is an

immediate conclusion of Definition 2.5

Lemma A.2. Assume that R is k-far from being `-globally sorted. Let S ⊂ [n] be a set

such that for every violation (i, j) of the `-global sortedness of R either i ∈ S or j ∈ S.

Then |S| > k.
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Algorithm 7 (([0, k], [`, `])-sortedness test)

for 2n/k times do
pick i ∈ [n] uniformly at random
for a = ` + 1 to 3` do

if R[i] < R[i− a] or R[i] > R[i + a] then
return REJECT

end if
end for
for h = blog ` + 1c to dlog ie do

for 21 times do
pick a ∈ [` + 1, 2h] uniformly at random
if R[i] < R[i− a] or R[i] > R[i + a] then

return REJECT
end if

end for
end for

end for
return ACCEPT

Definition A.3. For every pair (i, j) that violates `-global sortedness in R we define two

subsets of indices Aij, Aji ⊆ [i, j] as follows:

Aij , {j′ ∈ [i + `, j] : R[i] > R[j′]}

Aji , {i′ ∈ [i, j − `] : R[i′] > R[j]}

We say that i is active in the violating pair (i, j) if |Aij| > |Aji|, and otherwise we say

that j is active in it.

Notice that by definition, in any violating pair (i, j) one of i or j must be active. We

also have the following lemma.

Lemma A.4. For any violating pair (i, j), we have |Aij|+|Aji| ≥ j−i−2`. Consequently,

if i (respectively j) is active in this pair, then the size of Aij (respectively Aji) is at least
j−i
2
− `.

Proof. Note that the claim trivially holds unless j − i > 2`. Otherwise, it is easy to see

that every k ∈ [i + `, j − `] belongs to Aij or Aji (or both). Hence the claim follows.

We define the active set of R, denoted by A(R), as the set of all entries in R that are

active in some violation. From Lemma A.2 and the observation that in any violating pair

one of the indices is active, we obtain the following lemma.

Lemma A.5. If R is k-far from being `-globally sorted then |A(R)| > k.
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Proof of Theorem A.1. The probe complexity of Algorithm 7 and the fact that every R

that is `-globally sorted is always accepted are clear from its description. To complete the

proof, we assume that R is k-far from being `-globally sorted and show that Algorithm

7 rejects it with probability at least 2/3.

The algorithm may fail to detect that R is not `-globally sorted if either one of the

following two events occurs:

1. None of the 2n/k points sampled by the algorithm is in the active set A(R)

2. The algorithm picked at least one point i ∈ A(R), but failed to detect that i belongs

to some violation.

It is easily verified that the probability of the first event is at most (1 − k/n)2n/k ≤
e−2 < 1/6. We now bound the probability of the second event. By the definition of

A(R), for every i ∈ A(R) there is an index j such that either (i, j) or (j, i) is a violation

of `-global sortedness, and i is active in this violation. Assume without loss of generality

that (i, j) is a violation. If |j − i| ≤ 3` then this violation is discovered with probability

1. Otherwise, since i is active in this pair, by Lemma A.4 we have |Aij| ≥ j−i
2
− ` ≥

j−i
6

. For h = min{b : 2b > j − i}, we claim that at least a 1/12-fraction of the pairs

{(i, c) : i < c ≤ i + 2h} are violating. This is due to the fact that j − i > 2h−1 and

|Aij| ≥ j−i
6

(i.e., for at least a 1/6-fraction of the points c between i and j the pair (i, c)

is a violation). The probability that the algorithm fails to find a violation for this h is

at most (11/12)21 ≤ 1/6, and hence the probability of the second event is at most 1/6,

implying that the total probability that the algorithm will accept an R that is k-far from

being `-globally sorted is at most 1/3.

A.2 A sortedness test with better probe complexity

We can improve the probe complexity of the previous tester to O(n
k

log n), which is

independent of `, if we consider the relaxed task of distinguishing between `-globally

sorted relations and those that are k-far from being 3`-globally sorted. Namely, given

random access to a relation R, the new tester should output ACCEPT if R is `-globally

sorted, and it should output REJECT with probability at least 2/3 if R is k-far from

being 3`-globally sorted.

To achieve the improvement in probe complexity we need to slightly modify Algorithm

7 by removing the procedure that checks for violations between “close” pairs of indices.

The new algorithm is formally described as follows:

Theorem A.6. Algorithm 8 is a ([0, k], [`, 3`])-sortedness test that makes O(n
k

log n)

queries and errs with probability at most 1/3.
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Algorithm 8 (tester for `-global sortedness with improved probe complexity)

for 2n/k times do
pick i ∈ [n] uniformly at random
for h = blog ` + 1c to dlog ie do

for 21 times do
pick a ∈ [` + 1, 2h] uniformly at random
if R[i] < R[i− a] or R[i] > R[i + a] then

return REJECT
end if

end for
end for

end for
return ACCEPT

Similarly to the proof of Theorem A.1, the only non-trivial part that has to be proved

here is that if R is k-far from being 3`-globally sorted then Algorithm 8 rejects it with

probability at least 2/3. But first we need the following lemma, which is almost identical

to Lemma A.4 above.

Lemma A.7. Let i, j ∈ [n] be such that the pair (i, j) violates the 3`-global sortedness of

R. Then there exist sets Aij, Aji ⊆ [i, j] such that

1. For all ai ∈ Aij, the pair (i, ai) violates the `-global sortedness of R.

2. For all aj ∈ Aji, the pair (aj, j) violates the `-global sortedness of R.

3. At least one of Aij or Aji contains at least j−i−2`
2

elements.

Proof. Let (i, j), i ≤ j − 3` be a violating pair, and define Aij and Aji as in Definition

A.3. It is easy to see that every s ∈ [i + `, j− `] belongs to Aij or Aji (or both) as above.

Hence the claim follows since there are j − i− 2` possible values for s

Notice that the sets Aij and Aji are defined with respect to a pair (i, j) that violates

3`-global sortedness, but they contain indices that (together with i or j) violate only

`-global sortedness. As before, we will say that i is active in the pair if |Aij| ≥ |Aji| and

otherwise we say that j is active. Observe that for any pair (i, j) that violates 3`-global

sortedness, one of i or j is active and so the corresponding set Aij or Aji is of size at least
1
6
(j − i). From here, we can complete the proof of Theorem A.6 similarly to the proof of

Theorem A.1.

Proof of Theorem A.6. Assume that R is k-far from being 3`-globally sorted, and consider

the set A of all active indices in the pairs that violate the 3`-global sortedness of R.

According to Lemma A.2, |A| ≥ k. The algorithm may still accept R if either one of the

following two events occurs:
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1. None of the 2n/k points sampled by the algorithm is in the active set A;

2. The algorithm picked at least one point i ∈ A, but failed to detect that i belongs

to some pair that violates the `-global sortedness of R.

Similarly to the proof of Theorem A.1, the probability of the first event is at most 1/6.

Now we bound the probability of the second event. By the definition of A, for every i ∈ A

there is an index j and a set Aij of indices such that

• For all ai ∈ Aij, the pair (i, ai) violates the `-global sortedness.

• All indices ai ∈ Aij reside between i and j.

• The size of Aij is at least |j−i|
6

.

For h = min{b : 2b > |j − i|}, we claim that at least a 1/12-fraction of the pairs

{(i, c) : 0 < |c − i| ≤ 2h} violate `-global sortedness. This is again due to the fact that

|j − i| > 2h−1, and because |Aij| ≥ |j−i|
6

. The probability that the algorithm fails to find

a violation for this h is at most 1/6, and hence the total probability that the algorithm

will accept an R that is k-far from being 3`-globally sorted is at most 1/3.

Remark A.8. It is not hard to see that for any fixed µ > 0, we can also get a ([0, k], [`, (2+

µ)`])-sortedness test that makes O(n
k

log n) queries.
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לזיהוי יעיל של רלציות בדיקת תכונות שימוש ב
 קרובות להיות ממוינותאשר 

 

 

 

 תזה

 

 

 

התואר  תלשם מילוי חלקי של הדרישות לקבל ההוגש
 למגיסטר למדעים

 

 

 שגיא בן משה

 

 

 מכון טכנולוגי לישראל –לסנט הטכניון  ההוגש

 

 

 2010מרץ חיפה    ע    "התש אדר
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המחקר נעשה בהנחיית פרופסור חבר אלדר פישר 
 בפקולטה למדעי המחשב 

 

 

שהנחה אותי במשך ,  אלדר פישר –אני מודה למנחה שלי 
על התמיכה והעידוד שלו ועל , השנתיים האחרונות

אני רוצה גם להודות . הרעיונות וההצעות החשובות שלו
, קרל סטלין, אריה מצליח, ירון קנזה: לשותפי לעבודה

 . אני פישרמ

 

 

 

קרן אני מודה לעזרה הפיננסית הנדיבה של הטכניון ושל 

 ERC-2007-StGהאיחוד האירופי 
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 מההקד

כאשר ניתנות לביצוע יעיל במיוחד של מסד נתונים ( קבצים)על רלציות מרבית הפעולות הנפוצות 

בשאילתה במסדי ( Natural Join)י עצירוף טב, לדוגמה. רלוונטימיון לפי מפתח ממוינות רלציות ה
נתונים ניתן לביצוע על ידי מעבר סידרתי אחד על הרלציות כאשר הרלציות ממוינות לפי התכונות 

העלות בגלל רוב הרלציות לא יכולות להיות שמורות בצורה ממוינת , זאתעם  .המשותפות בצירוף
אפשריים כמה מפתחות מיון של  םהימצאותאו , היקרה של תיחזוק הרלציות בצורה זאת

 . ברלציה

שמורות בצורה לא ממוינת על אשר ברלציות טפל רב לצריכות לשאילתות במבני נתונים , על כן
על ידי זאת בצע הוא יכול לכאשר המעבד צריך גישה לרשומות של הרלציה בסדר מסויים . הדיסק

תה ת היאם המערכ. קודם של הרלציהיון או על ידי מ, אם האינדקס קיים, אינדקסהגישה דרך 
היו הכנסות ועדכונים ברלציה הרלציה בצורה ממוינת באופן קבוע אז לשמור את אמורה 

כלל אפשרית אינה  שמירת הרלציה באופן ממויןלכך בנוסף ו ,מתבצעים בצורה מאוד לא יעילה
 . ן שוניםומפתחות מימספר כאשר יש 

במובן זה שמרבית הרשומות , במציאות להיות ממוינות לציות קרובותרפעמים הרבה שמסתבר 
לדוגמה להיוצר יכולות  ות כאלורלצי. לפי סדר המיון הרצוי" טבעי"יהיו במקום קרוב למקומן ה

  :התרחישים הבאים יעל יד

 . רשומות מספררלציה שנשמרה בצורה ממוינת ועדכנו בה או הוסיפו לה  .1

  . טבעי של רלציות צירוףרלציה שנוצרה מפעולה קודמת כגון  .2

ות שלה כגון ובגלל התאמה טבעית בין התכונ, על מפתח מיון אחד ,רלציה שהיתה ממוינת .3
 . על מפתח מיון אחר קרובה להיות ממוינת, או גובה ומשקל, שכר דירה וגודל

רחוקות הציות לרהקרובות להיות ממוינות והרלציות העבור זהה ההתיחסות היא נכון להיום 
שפעולות על א הוכך מההפסד העיקרי . משים באלגוריתם כללייה משתרלצפעולה על ובכל , מכך

הרבה יותר יעילה על ידי להתבצע בצורה היו יכולות קרובות להיות ממוינות הרלציות ה
במחקר זה אנו מראים בצורה מפורשת אלגוריתם שממיין . זאתהתכונה את השמנצל אלגוריתם 

כאשר ביצוע , ל הרלציהששל קריאה י מעברים סידרתיים נקרובה להיות ממוינת בשהרלציה 
  .באמצעות אלגוריתם כללי דורש משאבים גדולים בהרבהפעולה זאת 

שיודעים לזהות מתי להפעיל את האלגוריתמים גם צריכה בכדי להרויח מתכונה זאת המערכת 
בדיקה הסתברותית יעילה לכן יש צורך ב. כללייםהאלגוריתמים את הלהפעיל מתי וותה אלנצל 

 . ברלציהקיימת המבוקשת האם התכונה שבודקת 

 . lו  kפרמטרים באמצעות שני " קרוב להיות ממוין"אנחנו מגדירים 

גדול יותר אומר שהרשומות יכולות  l, עד כמה מדוייק צריך להיות המיון מגדיר לנו lהפרמטר 
 . הם ברלציה הממוינתיות רחוקות יותר מהמקום הסופי שללה

את אומרת ז, כמה רשומות יכולות להיות מחוץ למקום שלהם באופן מוחלטמגדיר לנו  kהפרמטר 

 . lמכמה רשומות צריך להתעלם לפני שהרלציה מצייתת לפרמטר 

 Property)בדיקת התכונות לבצע את הבדיקה אנחנו משתמשים ברעיונות מתחום על מנת 

Testing.) יא תחום מחקרי העוסק באלגוריתמים שמבססים את הפלט שלהם על בדיקת תכונות ה
עם סיכוי קטן , מבדילים ואלגוריתמים אל(. גישה אקראיתב)קריאת חלק קטן בלבד מהקלט 

 .ן אלו הרחוקים מלקיים את התכונהבין קלטים המקיימים תכונה רצויה לבי, לשגיאה
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אנחנו מתמודדים עם שני . נמוך ככל הניתןהחישוב יהיה זמן שגם במקרה שלנו אנחנו דורשים 

 ,אנחנו דורשים שהבדיקה תהיה סובלניתלכך בנוסף . במקום עם פרמטר אחד lו  kפרמטרים 

 טניםאך עדיין קגדולים מאפס  lו  kוזאת מכיוון שאנחנו רוצים להבטיח קבלה של קלטים שבהם 

דרישה זאת מבטיחה לנו שהבדיקה . מדיגדולים  lו  kולא רק דחייה של קלטים בהם  ,מספיק
שמנצלים את אלגוריתמים להשתמש בוניתן עבורם קלטים שקרובים להיות ממוינים יותר תקבל 

מראש על כל הקריאות להצהיר גם יכול שלנו הבדיקה לבסוף אלגוריתם . התכונה הזאת
 .דבר שמייעל את זמן הגישה הכולל, המתבצעות

 הגדרות פורמליות

ולקבל מהרלציה רשומות  kלהוריד ניתן נת כאשר קרובה להיות ממוי kהיות רלציה מוגדרת ל
 . ינתרלציה ממו

מקיימות את  lכאשר כל שתי רשומות במרחק קטן מ גלובלית ינת ממו l להיות רלציה מוגדרת
 . סדר המיון

כאשר  ,ינתכמעט ממו(-k,l)או בקיצור , גלובליתינת ממו lקרובה להיות  k להיות רלציה מוגדרת

ינת ממו lשמחוץ להן כל הרשומות מקיימות את התנאי עבור רלציה רשומות  kקיימות לא יותר מ 
  .גלובלית

 

  :להגדרותאות דוגמ

 

10 9 8 7 6 5 4 3 2 1 

R1 יןממו 

 

10 9 2 7 6 5 4 3 8 1 

R2 2 יןקרוב להיות ממו 

 

10 9 7 8 6 5 2 3 4 1 

3R 3 גלובלית ןממוי 

 

10 1 7 8 6 5 2 3 4 9 

4R (2,3-)יןכמעט ממו 

 

ינת מכיוון קרובה להיות ממו 2הרלציה השנייה . ינתהרלציה הראשונה ממו, שניתן לראותכמו 
גלובלית ינת ממו 3הרלציה השלישית היא . ממוינתנהיית מהרלציה היא  2ו  8שאם מורידים את 

. את הסדר הנכון מקיימות 3לפחות יהן הוא י רשומות ברלציה שהמרחק בינמכיוון שכל שת
בתנאים היא עומדת  1ואת  9שלמעט הרשומות מכיוון ינת כמעט ממו(-2,3)הרלציה הרביעית היא 

 . ינת גלובליתממו 3להיות 
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([k1,k2],[l1,l2])-קריאה  בודק מיון עם סיבוכיותq  והסתברות לשגיאה δ מוגדר כאלגוריתם

  :קריאות מהקלט ומקיים את התנאים הבאים qהמבצע מקסימום 

בהסתברות של "( כן"עונה )מקבל אז האלגוריתם ינת כמעט ממו-(k1,l1)אם הרלציה היא  .1

  .δ-1לפחות 

"( לא"עונה )דוחה אז האלגוריתם ינת כמעט ממו-(k2,l2)אם הרלציה היא אפילו לא  .2

 .δ-1בהסתברות של לפחות 

 האסטרטגיה

 זיכרון המחשביהיו שמישים ביחס לאשר ) lו  kניתן למצוא כ "בדהקדמה בכתב כמו שנ

האסטרטגיה . ינתכמעט ממו-(k,l) בהרבה מקרים רלציה טיפוסית תהיהעבורם ( שברשותינו
 :במהלך המחקר אותם פיתחנוהבאים תשתמש בכלים לביצוע שאילתות 

מוש בפעולות השי. ינותכמעט ממו-(k,l)עבור רלציות ה יעילה אלגוריתם לביצוע מיון בצור .1
ואנחנו משתמשים בדוגמה זאת מכיוון שהיא הכי קלה להסבר המיון הינו דוגמה אחת 

, וריתם המיון חייב לקחת בחשבון כישלוןשאלגחשוב לזכור . מבין פעולות מסד הנתונים
אלגוריתם המיון הסתברותי ולכן יכול להיווצר מצב בו אותו פיתחנו הוא הבודק מכיוון ש

 . עומד בתנאיםאינו קיבל קלט אשר 

כאשר הרלציה היא מקבל הבודק . ינותמצב של כמעט ממובודק יעיל וסובלני לבדיקת  .2

(k,l)-אדוחה כאשר הרלציה אפילו לוהוא ינת כמעט ממו (6k,6l)-ינתכמעט ממו . 

  :וכל לבצע שאילתות לפי הגישה הבאהעם מרכיבים אלו נ

 .lו k על הרלציה עם פרמטרים הבודק נפעיל את  .1

 . באמצעות האלגוריתם הכללי הרגילמיון לדוחה נעבור אם הבודק  .2

 :מקבלאם הבודק  .3

 .6lו  6kפרמטרים הלגוריתם המיון המיוחד עם נפעיל את א .א

 .סיימנו ,אם אלגוריתם המיון המיוחד הצליח .ב

תוך כדי חזרה לנצל את הפלט שכבר קיבלנו ננסה , אם אלגוריתם המיון נכשל .ג
 . לאלגוריתם הכללי הרגיל

עלות הבודק על רלציות  ,לכךבנוסף . נמוך ביותר (ג) 3הסיכוי להגיע לשלב , כאשר הבודק מופעל

מקדימות שערכנו בהרבה מקרים הרלציות לפי בדיקות ו, היא קטנהנות כמעט ממוי-(k,l)שאינן 

רלציה הרווח על ביצוע מיון ב ,לעומת זאת. lו  kעבור ערכים רלוונטים של  ינותכמעט ממו-(k,l) הן
באסטרטגיה זאת מצדיק את י בשימוש להרווח הכלולכן , ביותרנאים גבוה תשמקיימת את ה

  . העלות הנוספות של הבדיקה

 אלגוריתם המיון 

 . זה לזהאנחנו מציגים שני אלגוריתמי מיון דומים 

. על ידי שני מעברים סידרתיים על הרלציהינת כמעט ממו-(k,l)רלציה ממיין האלגוריתם הראשון 

במעבר זה . Replacement Selectionבמעבר הראשון האלגורים מתנהג בדומה לאלגוריתם הידוע 
ל שלב פולט את הרשומה הנמוכה ביותר ת לזיכרון ובכהאלגוריתם קורא כמה שיותר רשומו

הרשומה הבאה מקובץ תוך כדי קריאת , (לקובץ זמני)שעוד לא נפלטו הרשומות שעדיין גבוהה מ
תוך כדי מעבר על  מוכנסות למיקום הסופי שלהםשנשארו בזיכרון שני הרשומות במעבר ה. הקלט
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מיון של חלק נו מקבלים א( יןכמעט ממו-(k,l) הקלט לא היהכאשר )שהאלגוריתם נכשל במקרה 
בדומה לאלגוריתם , ואפשר עתה להתחיל את האלגוריתם מהמקום בו נעצרנו, מהרשומות

Replacement Selection ולבסוף למיין על ידי מיזוג, רגיל.  

בשלב הראשון . אבל בשינוי מרכזי אחד, ם הראשוןעובד כמו האלגוריתהאלגוריתם השני 
אולם הוא לא כותב , וריתם אוסף את הרשומות שהאלגוריתם הראשון היה משאיר בזיכרוןגהאל
וא פולט את כל אולם עתה ה, השלב האשון בשלב השני האלגוריתם למעשה חוזר על. דיסקלכלל 

האלגוריתם חוסך את כתיבת  ,זאתבצורה . ינת בשילוב אלו שנשמרו בזיכרוןהרשומות בצורה ממו
הפנייה בכך מאפשר וגם  ,מסתפק בשתי קריאות סידרתיות של הקלט בלבדו ים לדיסקינהבי

ת ת הוא הפסד של אופצירון בשיטה זאהחיס. מיידית של הפלט לעיבוד נוסף במידה וזה דרוש
 . ההתאוששות הקלה

 הבודק

ינים ממוינים שאינם כמעט ממוקלטים מקבל גם שהוא  תאומראת ז, בלניוהבודק הינו ס

כמעט -(k,l) רלציה אלגוריתם הבדיקה מבדיל בין. דובעעדיין המיון עבורם אלגוריתם  ,לחלוטין

כמה ניתן לרדת עד אנחנו עדיין לא יודעים . ינתכמעט ממו-(6k,6l) רלציה שאינה לבין ינתממו

לעומת זאת אנחנו יודעים .  בצורה מדוייקת kאבל ברור לנו שלא ניתן להבדיל ב , 6קדם מהמ

ואנו  O(l)תלויה ב תהיה שביידינו סיבוכיות הבודק אבל אז  ,בצורה מדוייקת lשניתן להבדיל ב 
 . וך בעלות זאתסנעדיף לח

רשומות לקרוא לפני לו מה שאומר שניתן להחליט אי, אדפיטיביהבודק אותו פיתחנו הוא לא 
נקראו היא ההחלטה הסופית שההחלטה היחידה שתלויה בערכים . אחתרשומה אפילו שקוראים 

דבר זה מעלה את הביצועים מכיוון שניתן לשלוח את כל בקשות הקריאה . האם לקבל או לדחות
 .דש באופן אופטימליוזו יכולה לסדר אותן מח ,מערכת ההפעלה מראשל

לשם המחשה עבור  lתלויה ב ואינה , O((n/k)log((n/k))log(n)log(log(n)))הבודק היא סיבוכיות 

k=O(n)  ביטוי התלות יתן לנוÕ (log(n)) 

 אספקטים נוספים ותוכניות עתידיות

עלות , (Solid State Drive)דיסק מצב מוצק התקני חומרה חדשים כגון כאשר מסתכלים על 
וההבדל העיקרי בביצועים הוא בין מהירות , אה האקראית יורדת בצורה משמעותיתיהקר

אותו פיתחנו משפר את השני בשיטות אלו אלגוריתם המיון . כתיבההקריאה למהירות ה
האלגוריתם אותו כיוון שבניגוד לכל השיטות הידועות כיום מ ,הביצועים בצורה משמעותית

. שתי קריאות סידרתיות בלבדהוא ממיין את הקלט על ידי ו סקימני לדזמידע ם לא רושפיתחנו 
עלות הבודק  ,מסוג זה התקניםבחשוב לציין שבגלל העלות הזניחה של קריאה אקראית מהקובץ 

  .זולה אף יותראותו פיתחנו 

שבו כל מעבד אחראי , ניתנים להתאמה למודל מבוזרבדיקה והמיון אותם פיתחנו וריתמי האלג
ואת , בשלב המיון הראשון כל מעבד יכול לעבוד על החלק שלו. אחר בקלט( רציף)על חלק 

 . הרשומות הנמצאות מחוץ למקומן המעבדים יעבירו ביניהם כהכנה לשלב השני

דוייק בממטרה לזהות ב ,נתונים מסדיויים נוספים במערכות בצע ניסלהשיטה ואת ממש ברצוננו ל

בפועל למצוא את אחוז השיפור ו ,רלוונטיים kו  lעבור  ינותאת אחוז הרלציות הכמעט ממו
ברצונינו , במישור התיאורטי. המתקבל על ידי השימוש בבודק ובאלגוריתמי המיון המיוחדים

המיון  למצוא דרכים לשיפור זמן, 6לגלות עד כמה נמוך ניתן להוריד את מקדם הבודק מתחת ל 
שניתן ולמצוא תכונות נוספות  ,(במיוחד האלגוריתם השני)כאשר אלגוריתם המיון המיוחד נכשל 

 .פעולות נפוצות במסדי נתונים בכדי לשפר לבדוק ולנצל
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