xw7 217100 DN — 1m>0Nn
Technion — Israel Institute of Technology

[1"1D0N NI"190
The Technion Libraries

011j7'" A NI 2l ['"INX ' Y D'DNOoIN 'TIN'77 1900 N2
Irwin and Joan Jacobs Graduate School

N /

©
All rights reserved

This work, in whole or in part, may not be copied (in any media), printed,
translated, stored in a retrieval system, transmitted via the internet or other
electronic means, except for "fair use" of brief quotations for academic
instruction, criticism, or research purposes only.

Commercial use of this material is completely prohibited.

©
nNmy nridT 7

IX AT 112'N ,01102'X2 Y'9N7 VTN 1AXN2L [ONX7 ,01IN7 ,0'9TN7 ,('"NW?7> N*TNI) 7'NYN7 |'K
IX NI7'2 ,AXIN ,TINY7 NN0A7 112'NN (A 07Y7 0'W07A A win'Y' oyn? ,1nn 77n 7>
.07nN2a 1IoX NT 1IA'NA 71750 11INA "INoN YIN'Y 17NN



Using Property Testing for Efficient
Detection of Nearly-Sorted Relations

Sagi Ben Moshe



Areigiq renuad reyoeA|3 ‘Abojouyossa ] Jo ainiisu| [9eis| - uoluyds | o



Using Property Testing for Efficient
Detection of Nearly-Sorted Relations

Research Thesis

Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science

Sagi Ben Moshe

Submitted to the Senate of the
Technion - Israel Institute of Technology

Adar 5770 Haifa March 2010



Areigiq renuad reyoeA|3 ‘Abojouyossa ] Jo ainiisu| [9eis| - uoluyds | o



The research thesis was done under the supervision of
Assoc. Prof. Eldar Fischer
in the Department of Computer Science.

Acknowledgements

I am grateful to my supervisor - Eldar Fischer, for guiding me devot-
edly for the last two years, for his continued encouragement and for many
invaluable suggestions in this work. I would also like to include my grati-
tude to my collaborators: Yaron Kanza, Arie Matsliah, Carl Staelin, Mani
Fischer.

The generous financial help of the Technion and of the ERC-2007-StG is
gratefully acknowledged



Areigiq renuad reyoeA|3 ‘Abojouyossa ] Jo ainiisu| [9eis| - uoluyds | o



Contents

1 Introduction

2 Preliminaries

3 Outline of the suggested query evaluation strategy

4 Exploiting Near Sortedness
5 Evaluating Other Operators
6 Testing for Near Sortedness

7 Discussion
7.1 Testing for several values of k and ¢ at once .

7.2 Distances larger than memory . . . . . . . ..

7.3 Recovering from a fail mode of the improved sort algorithm . . . . . . ..

7.4 Solid State Drives . . . . . . . . ... ... ..
7.5 Parallel scalability . . ... ... ... . ...

7.6 Preliminary experiments about natural occurrence of near-sortedness

Bibliography

A Appendix
A.1 A simple sortedness test . . . ... ... ...
A.2 A sortedness test with better probe complexity

11

16

18

23
23
25
25
26
27
28

29



Abstract

Many relational operations are best performed when the relations are stored sorted
over the relevant attributes (e.g. the common attributes in a natural join operation).
However, generally relations are not stored sorted because it is expensive to maintain
them this way (and impossible whenever there is more than one relevant sort key). Still,
many times relations turn out to be nearly-sorted, where most tuples are close to their
place in the order. This state can result from “leftover sortedness”, where originally sorted
relations were updated, or were combined into interim results when evaluating a complex
query. It can also result from weak correlations between attribute values. Currently,
nearly-sorted relations are treated the same as unsorted relations, and when relational
operations are evaluated for them, a generic algorithm is used. Yet, many operations can
be computed more efficiently by an algorithm that exploits this near-ordering.

However, to consistently benefit from using such algorithms the system should also
refrain from using the wrong algorithm for relations which happen not to be sorted at all.
Thus, an efficient test is required, i.e., a very fast approximation algorithm for establishing
whether a given relation is sufficiently nearly-sorted.

In this paper, we provide the theoretical foundations for improving query evaluation
over possibly nearly-sorted relations. First we formally define what it means for a relation
to be nearly-sorted, and show how operations over such relations, such as natural join, set
operations and sorting, can be executed significantly more efficiently using an algorithm
that we provide. If a relation is nearly-sorted enough, then it can be sorted using two
sequential reads of the relation, and writing no intermediate data to disk. We then
construct efficient probabilistic tests for approximating the degree of the near-sortedness
of a relation without having to read an entire file. The role of our algorithms in a database
management system setting is illustrated as soon as the theoretical foundation is laid out.
Finally, we show how our approach can also benefit distributed systems and systems that
use a solid-state drive.

This thesis is organized as follows. In Chapter 2 we provide the framework and
define near-sortedness. In Chapter 3 we outline the suggested strategy. In Chapter 4
we describe in detail the algorithm for the efficient evaluation of the sorting operation
on nearly-sorted relations, where in Chapter 5 we describe how other operations can
be performed efficiently without sorting in advance. In Chapter 6 we present a test
for determining whether relations are nearly-sorted. This is the version that is required
for the strategy outlined in Chapter 3, a tolerant two-parameter test that estimates

what can be performed on the relations with respect to the existing memory constraints.
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Simpler restricted versions of this test appear in the appendix; they may be useful in
some restricted contexts, and their analysis can serve as a warm-up to the analysis of
Chapter 6. Finally, in Chapter 7 we discuss additional issues, as well as some possible

extensions of our algorithms.
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Chapter 1
Introduction

Typically, database query processors handle relations that are stored unsorted on the
disk. When a processor needs to access the tuples of a relation in some specific order,
this can be done through an appropriate index, if such an index exists, or by initially
sorting the relation and then retrieving the tuples. Otherwise the system would have
been required to constantly maintain the relations sorted, and this would cause updates
and insertions to be inefficient. Additionally, if the setting is such that more than one
order is relevant (e.g. if there is more than one index) then of course it is impossible to
maintain the relation sorted for all of them.

However, when querying the data, there are operations whose evaluation is far more
efficient if the relations are sorted. We will refer to such operations as order-preferring
operations. For example, the natural join of two relations that are sorted on their joint
attributes can be done in a single pass over the relations, i.e., a single sequential read
of the files (assuming that every set of tuples with common values in the join attributes
can fit into computer memory), whereas other join methods, such as nested-loop join,
require more than one pass over at least one of the relations [5]. Additional order-
preferring operations include the set operations (UNION, INTERSECT and EXCEPT) and
operations whose implementation has to use sorting, e.g., grouping, duplicate elimination
(DISTINCT) and calculating aggregate functions. An index could help to evaluate some
order-preferring operations, but it does not always exist for the attributes that we need,
and creating and maintaining an index is costly.

A simple approach to executing order-preferring operations is to first sort the relations
and then apply the operation. However, the sorting operation itself is expensive and may
require several passes over the relations. In particular, we will show this approach is not
optimal for the nearly-sorted relations that we will consider here.

We define nearly-sorted relations with respect to two parameters k and ¢. The param-

eter ¢ tells us how rough is the sorting: a larger ¢ means that tuples can be further away



from their in-place position, before they are considered to be out of place. The parameter
k tells us how many tuples are completely out of place, that is, how many tuples need to
be disregarded before the remaining relation conforms with the ¢ parameter.

Nearly-sorted relations occur in various scenarios. Some examples are (1) a relation
that has been stored as sorted and has been slightly updated (a small number of arbitrary
updates are captured by k, and certain systemic updates are captured by ¢); (2) a relation
that has been created by a previous operation (such as a join) performed on sorted
relations; (3) a relation that was sorted on one attribute (or on a set of attributes) can be
nearly-sorted on another attribute due to naturally occurring correlations (e.g., weight
to height, apartment size to rental fee and so on).

If the given relation is nearly-sorted then the query processor can execute order-
preferring operations very efficiently. Specifically, in Chapter 4 we show an algorithm
that sorts nearly-sorted relations in at most two sequential reading passes. The algorithm
requires memory of size roughly ¢(2k + ¢), where ¢ is the maximal size of a tuple and k, ¢
are the near-sortedness parameters defined above (we also provide a simpler less efficient
algorithm as a warm-up). In contrast, traditional methods (without prior conditions
on the relations) require more than just two sequential passes over the relation, even
just for sorting (multiway merge sort can usually be done in two “passes”, but one of
them requires fully random access, which is much more expensive than a sequential pass).
Further more, our improved algorithm (Algorithm 2) makes no writes at all to disk (apart
from writing the output itself), a vast improvement over all previous algorithms (including
multiway merge). The reason that we focus first on the sorting operation itself is not
only because it is the easiest to explain among database operations, but also because it
contains the core algorithm. In Chapter 5 we explain how to incorporate this algorithm
into the execution of other operations, such as natural join (equijoin) and set operations

(intersection, etc). The following example illustrates the savings.

Example 1. Consider the natural join of two relations, R and Ry, that are nearly sorted
on a single shared attribute, in the sense that at most k tuples of each relation violate the
order of the tuples according to this attribute. A naive join of the relations will be to sort
each relation and then to apply a sort-based join. For each relation, sorting it will require
at least two phases of reading all the tuples of the relation and writing all the tuples to the
disk (and possibly more phases if the reads have to be sequential). After sorting, another
pass over the two relations will be needed for the join itself (in some cases the last pass
of the sorting algorithms can can be merged with this one).

Howewver, knowing that the relations are nearly sorted allows to compute the join by

merely two sequential readings of the relations and without writing temporary results to

disk.



Note that for relations that are much larger than computer memory, a nested-loop
join (the sort-less option) will require more than two sequential readings of the relations.
Similarly, ad-hoc creation of indexes for the join will be more expensive than two sequential

reads of the relations and not viable in most cases.

In many cases, applying order-preferring operations on nearly-sorted relations can be

done even when the number of tuples which violate the order is quite large.

Example 2. If in Fxample 1 both Ry and Ry have a size of 10 gigabyte and we use a
memory of 2 gigabyte for the join, a computation of a join as described in Example 1 can

be done even when approximately 10% of the tuples in each relation violate the order.

When in Example 1 the relations R; and R, are not nearly sorted, the described
algorithm will fail due to lack of memory for keeping the order-violating tuples. In such
a case, the system would need to use a generic join algorithm, i.e., an algorithm that can
join unsorted relations. Actually our algorithm can recover from a failing state and fall
back to a less efficient one, but it is still best to efficiently test whether the given relations
are nearly sorted and choose the appropriate algorithm in advance. Moreover, in order
for the approach to be efficient, this test should only read a small part of the relation.

To test that the relations are nearly sorted we use ideas from the theory of property
testing. In general, property testing refers to the following type of problems: Given
the ability to perform local inspections (here, reading specific tuples) of a particular
object (here, a relation), the goal is to determine whether the object has a predetermined
property (here, one related to being sorted), or is far from having the property. The task
should be performed by inspecting only a small part of the whole object, where a small
probability of failure is allowed. See [3, 9, 10] for surveys on property testing.

In our case, we also require that the computational overhead will be small, and we
deal with two parameters, k and ¢, rather than just measuring the distance from having
the property (this distance would conform to our k). Most importantly, we require our
tests to be tolerant, because we actually want to guarantee acceptance for small enough
non-zero values of k£ and ¢, and not only guarantee rejection for values that are too large,
so as not to miss on any inputs for which our optimization is possible. Also, for practical
applications the number of queries has not only to increase slowly with the input size n,
but to depend not too badly on n/k, where the best possible (which we achieve here) is a
linear dependence. Additionally, the test is non-adaptive, in that it is able to provide all
the locations for the reads ahead of obtaining any answers. This allows modern operating
systems to optimize the reading operations and compensate for possible seek times.

Since the entire relation should be considered by the test, even though not all the

tuples of the relations are being read, the choice of which tuples to read must be prob-



abilistic. Traditionally, the probability of failure is taken to be at most %, but it can be
made arbitrarily smaller by applying the test several times. In general, to guarantee a
failure probability of at most ¢, we would need to increase the number of tuples being
read by an O(log(1/0)) factor. For example, if a test requires \/n inspections where n
is the number of tuples in the relation, then for a relation of 1,000,000 tuples, 1,000
reads determine the property with probability of success % By applying an amplification
technique, 6,000 reads provide probability of success 1 — (%)6 which is approximately
0.999.

From the property-testing point of view, the testing algorithms that we develop here
generalize the tolerant monotonicity tests that were developed in [1, 8]. The algorithms
of [1, 8] can only distinguish between almost sorted arrays (in the sense that removing a
few elements makes them completely sorted) and those that are far from being sorted. In
contrast, our testers work with a more relaxed notion of sortedness, where an unbounded
number of elements can be out of order, but not too far from their correct location. As
we explain in Remark 2.4 below, there is no simple relation between these monotonicity
notions that would allow us to use the testers of [1, 8] as they are. The analysis of the
new tests is an important contribution of this thesis.

The thesis is organized as follows. In Chapter 2 we provide the framework and de-
fine near-sortedness. In Chapter 3 we outline the suggested strategy. In Chapter 4 we
describe in detail the algorithm for the efficient evaluation of the sorting operation on
nearly-sorted relations, where in Chapter 5 we describe how other operations can be
performed efficiently without sorting in advance. In Chapter 6 we present a test for de-
termining whether relations are nearly-sorted. This is the version that is required for the
strategy outlined in Chapter 3, a tolerant two-parameter test that estimates what can
be performed on the relations with respect to the existing memory constraints. Simpler
restricted versions of the test appear in the appendix; they may be useful in some re-
stricted contexts, and their analysis can serve as a warm-up to the analysis of Chapter 6.
Finally, in Chapter 7 we discuss additional issues, as well as some possible extensions of

our algorithms.



Chapter 2
Preliminaries

We consider a relation R as an ordered sequence of tuples ¢1,...,%,. For relations that
are stored in the database, the order is determined according to the order by which tuples
are accessed in a sequential read of the relation. We also refer to R as an array — we
denote by R[i] the tuple t;, and we say that ¢; appears in location i of R. We denote
by [n] the set {1,...,n} of the possible indices in R, and by [n,m] we denote the set
{n,...,m} if m > n, or the empty set if m < n.

A sort key of R is a pair K = (A, <) of an attribute A and an anti-symmetric
transitive relation <. A sort key defines a desired order for the tuples of R. In the
desired order, for every two tuples ¢; and ¢;, when ma(t;) <x ma(t;), the tuple ¢; should
appear before the tuple ¢;. We generally use R[i] <x R[j] to denote ma(t;) <x ma(t;).
When K is clear from the context, we simply say that the tuple ¢; is lesser than or equal
to the tuple ¢; and denote this by R[] < R[j]. We also denote by MIN_VAL a tuple with
the smallest possible value (with respect to <f) of an attribute A. Again, we may use
simply MIN_VAL whenever K is clear from the context. MAX_VAL is defined similarly.

The definition of a sort key can be generalized in a natural way to the case where it con-
sists of more than one attribute: K = ((Ay,..., Ax), (<K, ..., <k,)), where Ay, ... Ay
are attributes in the schema of R. In such a case, the desired order of the tuples is defined
using a lexicographic order.

A relation that complies with the desired order defined by the key is called sorted.

Definition 2.1 (sorted relation). A relation R of n tuples is sorted according to a sort

key K, if for any two indices i, j, where 1 <i < j <n, we have R[i] <k R[j].

A relation R is k-close to being sorted when it is possible to remove from it & tuples
to achieve a sorted relation. Or alternatively, when there exists a set of at most k tuples

so that the relation is fully sorted outside of it.



Definition 2.2 (k-close to being sorted). A relation R of n tuples is k-close to being
sorted according to a sort key K, if there exists a set of indices I, where |I| < k, so that
for any two indices 1 < i < j <mn, wherei & I and j & I, we have R[i| <x Rl[j]. If a

relation is not k-close to being sorted, then we say that it is k-far from being sorted.

A relation R is £-globally sorted according to a sort key K, when for every two tuples
in R that do not comply with the order defined by K, the difference between the locations

of these two tuples is strictly smaller than ¢.

Definition 2.3 ({-globally sorted). Given a positive integer £, a relation R of n tuples
is (-globally sorted according to K, if for any two indices i,j € [n], where i < j —{, we
have R[i] <k R[j].

Remark 2.4. Notice that a relation is 1-globally sorted if and only if it is 0-close to being
sorted (which is equivalent to being sorted). But in general, there is no correspondence
between these two notions. It is an easy exercise to construct: (1) a relation R which is
both 2-globally sorted and n/2-far from being sorted; (2) a relation R which is not even
(n — 2)-globally sorted, but is 1-close to being sorted.

The following final definition combines the relaxation of Definition 2.2 with the relax-
ation of Definition 2.3, and captures the notion of being nearly-sorted as it was discussed

in the introduction.

Definition 2.5 ((k,¢)-nearly sorted). Given a nonnegative k and a positive ¢, we say
that R is k-close to being (-globally sorted according to K, or (k,{)-nearly sorted, if
there ezists a set of indices I where |I| < k, so that for any two indices i,j € [n] where
i<j—t i¢g I andj ¢ I we have R[i] <k R[j].

If a relation is not (k, £)-nearly sorted, then we say that it is k-far from being (-globally
sorted. Note that for any &' < k and ¢ </, a relation that is (', ¢')-nearly sorted is also
(k, ¢)-nearly sorted.

Our definitions deviate a little from the standard notion of k-closeness, which requires
the tuples with indices in I to be replaced with alternative tuples for which sortedness
holds for the entire relation. However, by [2, 4, 11], the two definitions are equivalent for

many monotonicity-like properties, including all those defined here.

Lemma 2.6. Let E C [n] be a set of indices, whose removal makes R (-globally sorted.
There is a way of replacing the tuples in E with new ones (rather than dismissing them)

that will make R into an £-globally sorted relation.
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Figure 2.1: Sorted and nearly-sorted relations

Example 3. In Figure 2.1 we illustrate the different definitions of nearly-sorted relations.
In the sketched relations, the cells contain numbers that refer to the keys of the tuples.
Relation R, is sorted. Relation Ry 1s 2-close to being sorted, because removing 8 and
2 makes it a sorted relation. Relation Rs 1s 3-globally sorted, because every two tuples
that the difference between their locations is at least 3 comply with the order of the keys.
Finally, the relation Ry is (2,3)-nearly sorted, because outside the tuples whose keys are

9 and 1, we actually have a part of Rs.

In the sequel we show that nearly sorted relations indeed admit an efficient algorithm
for sorting or computing other operators. But as mentioned earlier, we also need a way to
efficiently decide whether to apply an algorithm tailored for the nearly sorted case. For
this we use a property tester. Rather than provide the standard testing theory definition,
we provide here a specific definition for our application; we also change the terminology
accordingly (e.g., “probe complexity” here is what testing theory refers to as “query

complexity”)

Definition 2.7. Given four integers k' < k and ¢’ < ¢, a ([K', k], [¢, {])-sortedness test
with probe complexity ¢ and error probability 0 is an algorithm making at most q read
operations from the relation (all of them using random access), and satisfying the follow-

mg.

o [f the relation is (K',0')-nearly sorted, then the algorithm outputs ACCEPT with
probability at least 1 — .

o [f the relation is not even (k,{)-nearly sorted, then the algorithm outputs REJECT
with probability at least 1 — 9.



Note that in 2.7 the parameters may (and will) depend on the size of the relation, n.
The parameter § will usually be held to the constant 1/3, but making § smaller with a
logarithmic in 1/6 penalty on ¢ will turn out to be an easy amplification procedure.

The above definition in fact deviates somewhat from the standard testing definition.
In the standard theory an e-test for being £-globally sorted would correspond to what we
defined here as a ([0, en], [¢, {])-sortedness test. Having a k" > 0 lower bound makes it
relate to the stronger notion of a tolerant test, and having two instead of one ¢ parameter
(as we shall see below) will allow us to improve the efficiency of the test considerably, in

fact making its probe complexity independent of /.



Chapter 3

Outline of the suggested query

evaluation strategy

As mentioned in the introduction, for some useful (small enough with respect to the
computer memory) parameters ko and fy a typical relation R is likely to be (ko,¢p)-
nearly sorted. Based on this, our first ingredient is an efficient “correction” algorithm —
Algorithm 2 below, that for any two integers k, ¢ can evaluate the sort operation on a
(k, £)-nearly sorted relation more efficiently than a conventional algorithm given sufficient
memory. We use the sort operation itself as an example because it is relatively simple to
describe, while later we explain how other operations will work by having basically the
same sorting procedures plugged in. The algorithm is also capable of reporting whether
the evaluation succeeded or not, so we know whether a fall-back procedure is needed.
The second ingredient in our strategy is an extremely efficient probabilistic test (Algo-
rithm 3) that for any integers k, ¢ can distinguish between the case where R is (k, {)-nearly
sorted (“Case Y”) and the case where R is not even (6k, 6¢)-nearly sorted (“Case N”).
The exact details on the resources that these algorithms require are given in the
relevant chapters, but for the discussion here we should think of the probabilistic test as
the cheapest algorithm, and of the correction algorithm as significantly cheaper than a

conventional evaluation algorithm.

Suggested strategy:
1. First we apply the test with parameters kg, £.
2. If the prediction of the test is “Case Y”:

(a) We apply the correction algorithm with parameters 6k and 6¢,. If the correc-

tion algorithm succeeds, then we are done.



(b) Otherwise, if we were using Algorithm 2 then we can continue running its
special fall-back mode (see Remark 4.4 below) or decide to start from scratch
with a conventional algorithm, depending on how soon it failed. If we were
using the simpler Algorithm 1 then the fall-back is easier — we can just continue

with a conventional algorithm from where it failed.

3. If the test predicted “Case N”, then we use a conventional evaluation algorithm

without attempting the correction algorithm at all.

By sufficiently amplifying the success probability of our test, reaching Step 2b will be
rare enough so that the average cost of falling back to the fall-back mode of our algorithm
(rather than using a conventional algorithm from the beginning) will be negligible. The
fall-back overhead, while best avoided, is generally within the same order of magnitude
as that of running the algorithm itself. Also, reaching Step 3 with relations that could
have benefited much by our algorithm (again through an error of the testing procedure)
will have a negligible average cost. For relations reaching Step 3 that in fact satisfy Case
N we only have the additional cost of performing the test (when compared to a query
processor that always performs a conventional algorithm); a preliminary experiment (see
Section 7.6) suggests that the percentage of those would typically be small enough to
have an overall average net gain by using our procedure.

Choosing the right candidate parameters kg, £y can be done empirically, based on past
statistics, but this is not necessary. In Section 7.1 we show a probabilistic algorithm that
with a slight overhead over the original tolerant tester can output a comprehensive set
of candidate pairs (k;, ¢;) (up-to specified precision) for which the given relation R falls
under Case Y.

In settings where the relations change slowly over time we can also cache the results

of the test for use in future queries, rather than test the relation every time.

10



Chapter 4
Exploiting Near Sortedness

In this chapter we first present Algorithm 1, which sorts (k,¢)-nearly sorted relations
in two sequential passes. In the first pass Algorithm 1 acts similarly to the well known
Replacement-Selection algorithm (see [6])*, while it also collects a set of misplaced entries
(i.e., a set of at most k tuples that must be removed to make the relation ¢-globally
sorted). In the second pass, the collected tuples are distributed to their final positions.
Note that although we have a fail state in the description of Algorithm 1, we later discuss
a fall-back mechanism that preserves most of the work already done.

Albeit sometimes useful in itself, the main function of this algorithm is to serve as a
warm-up for the more efficient Algorithm 2, whose analysis is based on the analysis of
Algorithm 1. The main change in Algorithm 2 is that it defers all writing to the second
pass, managing to do away with the writing of an intermediate file. Its fall-back mode is
on the other hand less efficient than that of Algorithm 1, so a property testing procedure

for being (k, £)-nearly sorted is more important there.

Theorem 4.1. If R is a (k,{)-nearly sorted relation, then Algorithm 1 does not reach
its fail state and the resulting relation OUT is strictly sorted. Furthermore, Algorithm
1 makes only two sequential passes on R, uses memory of size O(k + (), and makes

O(n -log(¢ + k)) computing operations.

Proof. The fact that only two passes are made as well as the bounds on memory size and
the number of computing operations are clear from the description of Algorithm 1. Now
we prove that the algorithm sorts any relation which is (k, £)-nearly sorted.

It is easy to see that if the algorithm did not fail in the first pass, then the intermediate
result (that is written in 7'M P) is sorted. If this is the case, then the second pass is just

the standard merge between two sorted lists, and hence the resulting relation (written

'In fact, our algorithm starts out identically to the Replacement-Selection algorithm, but the analysis
given here shows that, specifically for nearly sorted relations, much stronger properties hold.

11



Algorithm 1 (Sorts a (k, ¢)-nearly sorted relation R.)
create two binary heaps S, G
insert the first k 4+ ¢ + 1 tuples (R[1],..., R[k + ¢+ 1]) into S

—1

iwrite
for i,eqq = |S| + 1 to n do {first pass}
if S =0 then
FAIL
end if
last_written — min{x € S}
write last_written to T M Pliyrite]
S — (S'\ {last_written})
Lwrite < lwrite + 1
if Rlireqq) > last_written then
insert R[iyeqq| into S
else
insert R[iyeqq] into G
end if
end for
append all tuples in S to T'M P, in sorted order
Lwrite < 1
for i,eqq = 1 to n — |G| do {second pass}
z « min{y € G}
if © > TM Pliyeqq) then
write TM Pliyeqd) t0 OUT [iwprite]
else
write z to OUT [iyprite]
G — (G\{z}) U{TMPlircqa] }
end if
lwrite < twrite + 1
end for
append all tuples in G to OUT, in sorted order

to OUT') will be fully sorted. So, we only need to prove that if R is (k,¢)-nearly sorted,
then Algorithm 1 cannot fail. Observe that in every stage of the first pass |S|+ |G| equals
k+ ¢+ 1, and therefore showing that |G| never exceeds k implies that S stays nonempty,
preventing the algorithm from failing.

Let £(R) denote the collection of subsets £ C [n] of at most k indices, such that
for every E € E(R), if we restrict R to indices [n] \ E then we get an (-globally sorted
relation.

Let in addition D = {j € [n] : VE € E(R), j € E} denote the set of indices that must
be removed from R in order to make it /-globally sorted by at most k removals. Observe
that |D| < k. With a slight abuse of notation, let us also denote by D the set of tuples
that appear at indices D of the relation R.

We claim that at every stage of the first pass, G C D and hence |G| < k. To see

12



this, notice that whenever a tuple at index ¢ is inserted into G, it is strictly smaller than
last_written. Using this observation, we prove the claim G' C D by induction on .

For 1 < k4 ¢+ 1 the claim trivially holds (since these indices are unconditionally
inserted into S). Now let i > k+/¢+1. By the induction hypothesis, before treating R[i] we
had G C D. If R[i] > last_written then G remains the same and we are done. Otherwise,
since R[i] < last_written there are at least |S| = k+/{+1—|G| > {+1 tuples in S that are
strictly larger than R[i]. All these tuples originally appeared before R[i]. Consequently,
at least |S| — ¢ > 1 of these tuples appeared in indices lower than i — ¢. Assume that
i ¢ D and let E € £(R) be such that i ¢ E. Then all the corresponding |S| — ¢ > 1
indices should be in F, because they form a violation of ¢-global sortedness together with
i. By the induction hypothesis, G C D C E and hence |E| > |G|+ |S| = > k + 1,
contradicting the fact that |E| < k. Hence ¢ must be in D, concluding the proof. O]

Remark 4.2. In an actual implementation we can (and should) replace the failure mode
in Algorithm 1 with a fall-back to a traditional sorting algorithm. For example, instead of
failing, the algorithm can just reset last_written and start writing another run (monotone
subsequence), repeating this as many times as is necessary. In other words, we just fall-
back to the Replacement Selection algorithm for creating runs that are as long as possible.
Next, instead of moving to the second pass, a traditional merge-sort can be performed.
Implementing a fall-back is necessary in part because of the probabilistic nature of the
testing algorithms. In Section 7.2 below we touch upon the expected amount of overhead
when the k parameter in the near-sortedness of the input is somewhat larger than available
memory, bounding it when the error in the estimation of k is not too large (which will

usually be the case).

Now we present a sorting algorithm which is an improvement over Algorithm 1 as it
saves significantly on write operations, and in fact writes nothing apart from the output
itself. Apart from the clear saving in write operations in itself, not writing any intermedi-
ate result to disk makes the algorithm easier to combine with other database operations,
because its output can be piped directly to the algorithm processing the next operation.
The only disadvantage in the improved algorithm is that sometimes not all of the work
already done upon reaching a failure mode is recoverable, so it is all the more important
to use the test of Chapter 6 first. The analysis of the improved algorithm is based on the
analysis of Algorithm 1.

Theorem 4.3. If R is a (k,{)-nearly sorted relation, then Algorithm 2 does not reach
its fail states and the resulting relation OUT is strictly sorted. Furthermore, Algorithm

2 makes only two sequential passes on R, uses memory of size O(k + {), and makes
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O(n -log(k + £)) computing operations; also, it never writes any intermediate file, only

the sorted output.

Algorithm 2 (Improved sort for a (k, ¢)-nearly sorted relation R.)
create two binary heaps S, G
insert the first k + ¢ + 1 tuples (R[1],..., R[k + ¢+ 1]) into S
last_handled «— MIN_VAL
for i,eqq = |S| + 1 to n do {first pass}
if S =( then
FAIL
end if
last_handled < min{z € S}
S — (S\ {last_handled})
if R[iyeqd] > last_handled then
insert Rliyeqq| into S
else
insert Rliyeqq] into G
end if
end for
empty S
let G[1],...,G[|G|] be the sorted order of G’s elements
insert the first £ 4+ ¢ + 1 tuples (R[1],..., R[k + £+ 1]) into S
lwrite < 1, Z.g —1
last_handled < MIN_VAL
for i,eqq = |S| + 1 to n do {second pass}
if S =0 then
FAIL
end if
last_handled < min{z € S}
while i, < |G| and Giy4] < last_handled do
write G[ig] to OUT [iwrite)
Z‘g — Z'g + 1, dwrite < fwrite T 1
end while
write last_handled to OUT [iyprite]
Lwrite < Twrite + 1
S «— (S'\ {last_handled})
if Rlireqq) > last_handled then
insert R[iyeqq] into S
end if

end for

append {Gli,4),...,G[|G|]} U S to OUT, in sorted order

Proof. The fact that only two passes are made as well as the bounds on memory size and
the number of computing operations are clear from the description of Algorithm 2. To
prove that the algorithm sorts any relation which is (k, £)-nearly sorted, we use the proof
of Theorem 4.1.
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We note that both passes of our algorithm in fact mimic the first pass of Algorithm
1, so that the analysis there still holds (in fact unless a fall-back was implemented for the
first fail state, our algorithm will never reach the second fail state, whether the input is
(k, ¢)-nearly sorted or not). The first pass of our algorithm is identical to the first pass
of Algorithm 1, with the only difference being that nothing is written to disk. In the end
we are left with G, which holds up to k tuples of the relation.

The second pass again generally follows the first pass of Algorithm 1, only here tuples
are not inserted to GG, because already in the beginning G' contains all tuples that would
have been passed to it. Additionally, this pass follows the writing pattern of the first pass
of Algorithm 1, only here we merge the (already known in advance) content of GG into the
output stream. Therefore this essentially combines the writing actions of the two passes

of Algorithm 1, resulting in a fully sorted output. ]

Remark 4.4. In the case where algorithm reaches the fail state in the first pass, the
natural instinct is to continue with algorithm by writing the contents of G to a temporary
file on the disk, clearing it, and then populating S with k+¢+1 new tuples from the input
(without resetting last_handled). However, this will not work — while out of place tuples
that come “too late” (i.e. well after their position according to the ordered relation) will
not pose a problem here, tuples that come “too early” may set the value of last_handled
so high that the rest of the relation will land in G.

There is still a fall back procedure that is more beneficial than just restarting the sort
using a different algorithm when the error in our estimation of k is not too large (e.q.,
whenever the true k still satisfies k = o(n)). See Section 7.3.
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Chapter 5
Evaluating Other Operators

In this chapter we discuss efficient evaluation of some order-preferring operations over
nearly-sorted relations. For all operations here we use at our core Algorithm 2, which
is the one more suited for integration into larger operation. For the purpose here we do
not describe the fall-back procedures in case we reach a fail state, as these would be the
expected ones. We outline the algorithms without formal details whenever these follow

from standard procedures in relational query evaluation.

Intersection and other set operations. Consider the computation of an intersection
of two relations, R; that is (ki,¢;)-nearly sorted and Ry that is (ks, f2)-nearly sorted,
where for both relations the entire schema is the sort key in some order. Suppose that
the memory is large enough to hold 2k; + ¢; tuples of Ry, 2ky + {5 tuples of Ry, and
buffers for the input and output.

In the first stage, we just perform the first pass of Algorithm 2 on R; and Ry (in some
cases, for example if they are on different disks, this is best done in parallel), and obtain
the corresponding heaps GG; for R; and G5 for Ry. Recall that the first pass of Algorithm
2 does not produce any output.

Then we go in parallel over R; and Ry again, and perform a procedure similar to
the second pass of the sorting algorithm on each of them, but with the following change:
Instead of writing the sorted output to disk, we instead pipe it to the algorithm that
performs intersection using the merge procedure for two sorted relations. In fact, we do
not keep running the second pass of the sorting algorithm over R; and Ry unconditionally,
but use it as an iterator — we buffer sorted subsequences of R; and R,, and whenever
a buffer is exhausted by the merge-intersection procedure we run more iterations of the
loop in the sorting algorithm for the corresponding relation so as to fill the buffer again.

Accommodating bag (multiset) intersection is an easy extension of the above proce-
dure, one just needs to keep track also of the original locations in the files of the tuples

that are stored in G; and G,. If we were using Algorithm 1 instead, we would have
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needed to run over both the result of the intersection from first pass and the original
relations to make sure that we got the correct number of duplicate entries.

Using the above idea (with Algorithm 2) for set union, or set or bag difference, works
in much the same way: running sorting algorithm instances in parallel on R; and R,
and piping the output of the second stage to the corresponding merging algorithm. Bag
union by itself is not an order preferring operation, but if it is part of a larger expression
involving order preferring operations then it may still be better to combine it with the

sorting procedure so that its output would be sorted.

Natural join (equijoin). The computation of a natural join is performed similarly to
the computation of intersection, but here there is a new issue that many tuples can agree
on the value of the common attributes in the join. Suppose that at most m; tuples of
R, can agree at one time on the values of the attributes common to R; and R,, while
at most msy tuples of Ry can agree on them. In this case for the merging join algorithm
during the second stage to work, we would need a memory big enough to hold a total of
(2k1 + £1) tuples of Ry, (2ky + ls) tuples of Ry, and additionally either m; tuples of R or
ms tuples of Ry (as well as sufficient buffers). If this does not hold, then we would need
to accommodate for saving and retrieving the state of the second stage sorting algorithm
over (say) Ry. Then, given a large subsequence of tuples from R that agree on a common
attribute, we can save the state at the beginning of the sequence, and reset the algorithm

to this state for every tuple from R; that needs to be joined with that subsequence.
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Chapter 6
Testing for Near Sortedness

In this chapter we develop a tolerant sortedness test, namely a ([k, 6k], [¢, 6/])-sortedness
test, and prove its correctness. The reason for the test to be tolerant (i.e., use [k, 6k]
rather than [0, k]) is so that more instances for which Algorithm 2 (or Algorithm 1) still
works are accepted by the test.

Some inaccuracy in the k& parameter cannot be avoided (i.e., there is no test with [k, k]
parameters), though currently we do not know how much lower than a factor of 6 one
can go. As for the ¢ parameter, while there is a test that is fully accurate in ¢, its number
of queries depends badly on ¢. In contrast, the test in this chapter has no dependency on
¢ at all. The Appendix contains descriptions and proofs for simpler (non-tolerant) tests,
and it can be read as a warm-up to this chapter.

The test presented here is non-adaptive, meaning that it can decide which tuples
to read before the first reading of a tuple — only the final decision to accept or reject
depends on the actual values read. This can serve to reduce the overhead further: Instead
of reading the queries in the order that they are used in the test (which requires fully
random-access reads), we can first decide the queries and then make them in the order
of their positions in the file. Moreover, modern operating systems can first receive the
entire list of all reads to be made and then optimize their order of execution further for

the file system involved.

Theorem 6.1. Algorithm 3 is a ([k,6k],[(,6(])-sortedness test that makes
O(% log 7 lognloglogn) probes and errs with probability at most 1/3.

Notice that the probe complexity is independent of . In property testing, k is usually
set to en for some small constant €. In these terms, the probe complexity of our test
is nearly logarithmic in n, which is known to be optimal even for non-tolerant simple
monotonicity testing [2].

In the description of Algorithm 3 we use an undefined parameter s, the value of
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Algorithm 3 (([k, 6k], [¢, 6¢])-sortedness test)

a0

for j =1to s do
pick i; € [n] uniformly at random
call Algorithm 4 for i; with confidence parameter § = 6%
if 7; is reported to be active then

a—a+1

end if

end for

if a < s% then
return ACCEPT

else
return REJECT

end if

which will be set later in the proof of Theorem 6.1, and call Algorithm 4 that we define
subsequently. It will be clear from the proof that the success probability can be easily
amplified by increasing s. First we need the following definition and lemmas.

In the following we will say that a pair (7, j) violates (-global sortedness if i < j — ¢
and R[i] > R][j].

Definition 6.2. Let (i, j) be a pair of indices with i < j that violate the (-global sortedness
of R. We say that i is (6, ¢)-active with j (for § > 0) if at least a §-fraction of the indices
in [i + 1, 7] violate £-global sortedness together with i. Similarly, we say that j is (0, )-
active with ¢ if at least a 0-fraction of the indices in [i,j — 1] violate £-global sortedness
together with j. We say that an index i is simply (§,{)-active if it is (0, {)-active with
some index j € [n] \ {i}.

Lemma 6.3. Let R be a relation and let k, ¢ be two positive integers. For every § €
(0,1/2] let d(5) denote the number of (4, {)-active indices in R.

o if R is (k,{)-nearly sorted then d(0) < k+k/d, and in particular d(1/4) < 5k;
e if R is not (6k,6¢)-nearly sorted then d(1/3) > 6k.

Proof. The proof of second part of the lemma is standard in monotonicity testing: If
(7,7) is a pair violating 6/-global sortedness, then every k between i+ ¢ and j — ¢ violates
(-global sortedness with either 7 or j. Hence, at least one of ¢ or j violates f-global
sortedness with at least HT_% > ]%Z indices in the interval, making it %—active. As the
set of all %-active indices now intersects all pairs violating 6/-global-sortedness, its size
must be at least the distance 6k.

Assuming that R is (k,¢)-nearly sorted, we now prove the first part of the lemma.

For this we will use some methods from [1], together with additional arguments that are
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specific to globally sorted relations. Let F C [n] be a set of at most k indices, whose
dismissal makes R /-globally sorted. Such a set must exist since we assumed that R is
(k,0)-nearly sorted. By Lemma 2.6 we can fix new values for these indices so that the
resulting relation is /-globally sorted. From now on let us fix a set E as above, and a
sequence of new values for the corresponding tuples as per Lemma 2.6.

Next we are going to label some of the indices of R. For every i € E, we label ¢ as
high if its tuple should be decreased (replaced by one with a lower key value under the
above correction), and we label it as low otherwise. For each (9, )-active index i € [n|\ E
(we stress that i is not in F) we assign some index j; that witnesses the fact that 7 is
(0, ¢)-active. If j; > i, then the label of i is big; otherwise its label is small. Notice that
each index can have at most one label as above (every i is either high, low, big, small
or has no label at all). Our aim is to bound the number of indices that are (4, ¢)-active,
which is upper bounded by the number of labeled indices. By definition, the number of
high and low indices is at most k, so it is enough to show that the number of big and
small indices is at most k/0. By letting ki, and kp;gn denote the number of low and high
indices (respectively), we show how to bound the number of big indices by ki, /0. An
analogous argument works for bounding the number of small indices by kpigp/0.

We start by assigning weight 1 to every big index. Then, for each big index i, in
decreasing order, we divide the weight of 7 among all the low indices h such that ¢« < h < j;
and R(h) < R(i). We “spread” the weight of ¢ in a way that maximizes the minimal
weight of the receiving indices (the h’s). Our goal is to show that after this process, no
low index has weight more than 1/, and hence the total initial weight of the big indices
(which is exactly equal to their amount) was at most ki, /0 as required.

Suppose on the contrary that this is not the case, so that some low index g got weight
(1 +¢€)/0 for some € > 0. Let ¢ be the first (in reverse order) big index that caused g
to reach weight (1 + €)/d. By definition, this event happened while the weight of i was
spread among the low indices h such that ¢ < h < j; and R(h) < R(i). Denote their
number by b. From the way the weight is spread, all of these low indices must have weight
at least (1 + €)/0. Hence their total weight is at least b((1 + €)/d). By the definition of
(0, ¢)-active indices, b > 6(j; — i + 1), so their total weight is at least (1 + €)(j; — i + 1).
Since we iterate on the i’s in decreasing order, none of these h’s could gain any weight
before step j;, and therefore we should have (1 +€)(j; —i+ 1) < j; — i+ 1, which is a

contradiction. O

The next lemma allows us to distinguish between indices that are (1/3,¢)-active and

indices that are not even (1/4, ¢)-active.

Lemma 6.4. Algorithm 4, given an index i € [n] and confidence parameter 6 > 0,
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satisfies the following:
e ifi is (1/3,0)-active, it outputs ACTIVE with probability at least 1 — §;
e if i is not even (1/4,0)-active, it outputs INACTIVE with probability at least 1 — 6;
e its probe complezity is O(log % lognloglogn).

The constants a > 0 and ¢ € N in the definition of Algorithm 4 are set later in the

proof.

Algorithm 4 (tests if 7 is (1/3, ¢)-active or not even (1/4, ¢)-active)
for h = [logy (¢ +1)] to [log;,,n]| do
left — 0, right — 0
for j=1toa= tlog%loglogn do
pick i; € [( + 1, (1 + a)"] uniformly at random
if R[i] > R[i+ i;] then
right <« right + 1
end if
if R[i] < R[i —i;] then
left —left+1
end if
end for
if right > %a or left > %a then
return ACTIVE
end if
end for
return INACTIVE

Proof. Assume first that i is (1/3,¢)-active, and let j; be an index that witnesses this
fact, so there exist at least % indices lying between ¢ and j; that violate ¢-global
sortedness with 7. We assume without loss of generality that j; > i. Let hy € N be
such that (1 + a)h < j; —i < (1 + a)™*1. Then in the interval [i,i + (1 + «)™*1] at
least a 1/3 — « fraction of the indices violate ¢-global sortedness with i. We fix a to be
small enough (say 1/100), so that 1/3 — a is much closer to 1/3 than to 2/7. For large
enough ¢ (matching the parameters in Chernoff bounds), after the hg + 1'th iteration of
the internal loop, with probability at least 1 — § the value of right will be sufficiently
close to (1/3 — a)(1 + o). In particular the value of right will exceed 2(1 + a)hot!,
hence the outcome will be ACTIVE as required for the first part of the lemma.

To prove the second part of the lemma, we use a similar argument. Namely, if the
index ¢ is not even (1/4,¢)-active, then for all h the fraction of violating (with respect
to 4) indices between i and i + (1 + )" (and similarly between i and i — (1 + a)") is at

most 1/4. But now we must make sure that no error occurred, meaning that the values

21



of the counters right and left did not deviate too much in any of the O(logn) iterations
of the outer loop. We can solve this problem by amplifying the success probability to
1 —Q(1/logn). This is the reason that we have the extra loglogn factor in the number

of iterations of the internal loop. Il

Proof of Theorem 6.1. First notice that the confidence parameter ¢ in the executions of
Algorithm 4 is set to 6—15, so that with probability at least 1 —1/6 Algorithm 4 did not err
during any of the s executions.

If R is (k,{)-nearly sorted, then according to Lemma 6.3 (first item), the number of
(1/4, ¢)-active indices in R is at most 5k. Conditioned over the event that none of the
executions of Algorithm 4 err (recall that this event occurs with probability at least 5/6)
we have that the expected value of a is at most s%. The probability that Algorithm 3
returns REJECT in this case is equal to the probability that the random variable a (being
a sum of s independent random variables) deviates from its expectation by a multiplicative
factor of 0.1. This probability can be bounded by 1/6 by taking s = O(n/k), so altogether
Algorithm 3 returns ACCEPT with probability at least 2/3 as required.

If R is 6k-far from being 6/-globally sorted, then according to Lemma 6.3 (second
item), the number of (1/3, ¢)-active indices in R is at least 6k. Conditioned over the event
that none of the executions of Algorithm 4 err, the expected value of a is at least sil—k. So
similarly to the previous case, the probability that the random variable a deviates from
its expectation by a multiplicative factor of 0.08 can be bounded by 1/6, and altogether
Algorithm 3 returns REJECT with probability at least 2/3 as required. The probe
complexity of Algorithm 3 is s - O(log %/S lognloglogn) = O(% log 7 lognloglogn). O
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Chapter 7
Discussion

In the following we touch upon some possible extensions of our methods for detecting

and exploiting near-sortedness, and related issues.

7.1 Testing for several values of k£ and ¢ at once

In all of previous chapters we used algorithms that take the values of k£ and ¢ in advance.
However, we may be interested in learning actual approximate values of k for many values
of ¢ at once. First, our computer memory puts constrains only on k + ¢ (for Algorithm
1) or 2k + ¢ (For Algorithm 2) and we may want to search for an optimal ¢ for which this
fits our memory (every input R has for every ¢ a minimum & for which it is (k, £)-nearly
sorted, the worst case being k = n — 1). Second, sometimes we would like to use our
sorting algorithm even if we know that it may fail (this scenario fits Algorithm 1), because
it could still lead to faster sorting (see Section 7.2 and Section 7.3 below).

There is an easy extension of Algorithm 3 that allows to efficiently test for many values
of k and ¢ at once. First, we construct Algorithm 5, a version of Algorithm 4 which tests
whether an element is active for every possible ¢ = ¢", where ¢ > 1 is any fixed constant
(that determines the number of different ¢’s we inspect) and r = 1,2,...,log.n. We
restrict ourselves to powers of ¢ so that this output would be of manageable size, and this
would still give a good approximation of the optimal k£ and ¢. The parameters ¢t and «
used below are the same as in Algorithm 4.

Now we can use Algorithm 6, a variant of Algorithm 3. It uses the same s as Algorithm
3, but here it is calculated not as a function of k£ (which is not provided in advance) but
as a function of a desired approximation parameter k, which should be set equal to a
small constant fraction of the available computer memory. Here we also keep count of
every possible ¢ = ¢". In addition, instead of deciding on ACCEPT or REJECT, we just

output all counters after the appropriate normalization.
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Algorithm 5 (tests for every ¢ = ¢" if i is (1/3, ¢)-active or not even (1/4, £)-active)
A0], A[1], ..., A[[log.n]] < INACTIVE
for h =1 to [log;,,n]| do

LF[0], LF[1],..., LF[[log,n]] « 0
RT[0], RT[1],..., RT[[log,n]] « 0
for j=1toa= 2tlog%loglogn do
pick i; € [1, (1 + «)"] uniformly at random
if R[i] > R[i+ i;] then
for r =0 to |logi;] do
RT[r] — RT[r] + 1
end for
end if
if R[i] < R[i —i;] then
for » =0 to [logi;| do
LF[r]| — LF[r]+1
end for
end if
end for
for » =0 to [log.n] do
if RT[r] > 2a or LF[t] > 2a then
Alr] — ACTIVE
end if
end for
end for

return A

The running time of Algorithm 6 is 5(71 / l%), and with probability at least % it provides
for every ¢ = ¢" an approximation k such that R is (6k + k, 6¢)-nearly sorted while not
being (k — l%, ¢)-nearly sorted. The proof is a straightforward extension of the argument
given in Chapter 6, since having the confidence parameter (1 — §) amplified to (1 —

1/polylog(n)) allows us to simply apply a union bound over all values ¢ = ¢.

Algorithm 6 (approximates k = k(¢) for every { = ")

B[0], B[1],..., B[[log.n]] < 0

for j =1 to b= s[logn] = O(nlogn/k) do
pick i; € [n] uniformly at random
call Algorithm 4 with index i; and 6 = é to obtain A
B — B + A (coordinate-wise)

end for

return 7B (coordinate-wise)
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7.2 Distances larger than memory

Suppose that there is enough memory for handling a (k, ¢)-nearly sorted relation, but
we attempt to use Algorithm 1 when the input is in fact not (k,¢)-nearly sorted. If we
implement Remark 4.2 then we will fall-back to the Replacement Selection algorithm.
If the input is (K, ¢)-nearly sorted for &’ > k, then we can still bound the number of
runs that will be produced — it is not hard to see, by partitioning R into consecutive
subsequences so that each of them is (k, £)-nearly sorted, that the number of runs is at
most k'/k+1 (the “+1” refers to the tuples remaining in memory in the end). Similarly,
using the fall-back mechanism of Algorithm 2 described below would cause no more than
k' /k overflows (however here more care is needed in handling the overflows).

A more careful analysis of Algorithm 3 would reveal that its probability for a false
positive decays exponentially in &’/k, and so whenever it accepts, the expected risk of
running Algorithm 1 or Algorithm 2 (instead of an algorithm more optimized for the
completely unsorted case) is still small, because we would most likely still have a small
number of runs allowing for an efficient merge. A similar decay in the error probability
holds for Algorithm 6. Finally, note that in some instances it may even be beneficial to
run into the fall-back mode of our sorting algorithm on purpose, if the resulting number
of runs r would be small enough to make an r-way merge more efficient than a multi-pass

sorting algorithm.

7.3 Recovering from a fail mode of the improved sort

algorithm

When Algorithm 2 reaches a failure mode in the first pass (we recall that it will not reach
a failure mode in the second pass unless one was reached in the first pass) we cannot just
dump the contents of G to a temporary file and continue from where we were.

An appealing direction would be then to try to partition to input file into consecutive
segments where on each of them we can run Algorithm 2, and pipe their second phase
input to a merge sort algorithm. This will not work with a multi-way merge sort algorithm
as per [5], but it will work with the iterated 2-way sort algorithm of [6].

To follow on this, when S becomes empty and we reach the fail state of the first pass,
we write G' to a temporary file and start over from where we were. We also write down
the location in R where the fail state was reached, and reset last_handled to MIN_VAL.
Then, for the second pass, we have a partition of the original relation into subsequences,
and a collection of runs from G, so that each pair of an original subsequence and a

corresponding run written from G can be merged into a sorted run as per the second
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stage of Algorithm 2 (without a failure mode being reached). In terms of Section 7.2 we
would have £k'/k + 1 such segments, which we pipe in turn to the iterated 2-way merge
sort algorithm.

The reason that this will not work with a multi-way merge algorithm is the memory
requirement of holding O(k + ¢) tuples for “decoding” each sorted run. The only way
to enable multi-way merge is in effect to revert to Algorithm 1 after the first time a fail
state was reached. Starting from the second run, we just write it in its entirety to a
temporary file. Then, under reasonable memory assumptions we can merge all the runs
at once, with the first run requiring us to hold O(k + 1) tuples in memory to decode, and
each subsequent run requiring enough memory to hold the O(1) tuples that are buffered

from the respective file.

7.4 Solid State Drives

Another issue to consider is how our algorithm can perform when the database is not
stored on a traditional harddisk drive, but rather on a Solid State Drive (SSD). While
current SSDs are mostly restricted to small appliance devices and high-end laptops, one
can imagine a time where the technology would advance enough to supplant traditional
drives, so it is not too soon to consider database algorithms designed for this new hardware
profile.

There are two crucial differences between traditional drives and SSDs. The first is
that with an SSD the seek time is negligible, and so a sequential read operation takes
the same time as a random access read operation (however when many operations are
involved, block sizes may become an issue). In fact seek times are recently becoming less
and less relevant also for traditional disk drives under a modern operating system [12].
The second difference is that with some SSD devices writing is very costly relative to
reading.

In this context our algorithm should be compared against the algorithm from [5], which
performs an O(n/{)-way merge sort, where n is the size of R and ¢ is the size of the runs
produced by using quicksort on consecutive subsequences. This is a 2-pass algorithm
for the practical purposes of current hardware memory size, where the second pass uses
random access reads. In the following we assume that the relations are sufficiently nearly-
ordered for our algorithms to work.

When comparing sort operations, Algorithm 2 outperforms the multi-way merge sort
algorithm. Both our algorithm and the algorithm of [5] perform two passes of reading
the full relation. However, while our algorithm writes nothing on disk apart from the

final output (which can also be piped for further processing), the multiway merge sort
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algorithm has to first rewrite the entire relation as a sequence of sorted runs, which are
then read for the merging stage.

The comparative analysis of Algorithm 2 also holds for the evaluation of other opera-
tors as in Chapter 5. Both the output of Algorithm 2 and the output of (the second stage
of) the multiway merge algorithm can be directly piped to the operation at hand, but our
algorithm saves the writing of the entire relation as sorted runs. In fact the only instance
in which the algorithm of [5] is significantly better is when (say, due to an unlikely error
of the near-sortedness test) we tried to run our algorithm on an input that is O(n)-far
from being /-globally sorted.

There is additionally the question of testing whether our algorithm applies to a given
relation, i.e., testing whether the relation is nearly sorted. In SSDs the situation is even
better than that of traditional drives, because the testing algorithm in fact fully depends

on random access read operations.

7.5 Parallel scalability

Our sorting algorithms for nearly sorted inputs can in fact be scaled to a parallel im-
plementation as per the following sketch (we omit the fall-back procedure in case the
algorithm fails).

To further understanding, we present the parallel implementation for Algorithm 1.
A parallel version for Algorithm 2 can be derived from the following in much the same
fashion as the original derivation of Algorithm 2 from Algorithm 1, by deferring all output
to the final stage.

Assume that we have d processors, each with O(k + ¢) memory (where we need to
sort a (k, ¢)-nearly sorted file), and with access to the whole file. We also assume that d
is small with respect to k£ and ¢, and that all processors are trustworthy. The input file is
partitioned into d consecutive equal size segments, each processor receiving charge of one
segment. Each processor performs an independent run of the sorting algorithm for (k, ¢)-
nearly sorted input on its segment. However, also the first £+ k and the last £+ k records
that were supposed to be output (to the respective intermediate file) are not output, but
instead are collected along with the up to k out of order records. Exceptions are the
beginning of the very first segment and the end of the very last segment, that are still
written to their segment’s output. A copy of the first and last record that was output for
each segment is also kept for further checks, and then all segments are considered to be
concatenated (this means that future sequential reads may require up to d — 1 additional
seeks).

If none of the processors failed, we check whether the concatenation of the output
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segments is sorted (for this we kept the first and last record in each segment’s output). If
this check has passed then we may continue. We sort all the records that were not output
yet. This requires O(d(k + ¢)) computation and communication to pass records between
processors so that each processor gets a consecutive segment from the sorted in-memory

records, by proceeding along the following steps:

1. A designated processor chooses uniformly at random ¢ = O(dlogd) numbers in

{1,...,m}, where m is the total number of in memory records.

2. The processors holding the corresponding records report them. Let rq, ..., denote
the values of their key attributes in sorted order, let 7o = MIN_VAL and let r;,; =
MAX_VAL.

3. Each processor reports how many records it holds with key values between r; and
riy1 for 0 <4 <t.

4. A designated processor calculates 0 =iy < iy < --- < ig =t + 1 such that there are
O(m/d) records between r;, and r; , for all 0 < j < d; with high probability such

i; exist, and otherwise Step 1 above is restarted.

5. For every j = 1,...,d all processors communicate their records between r;, , and

1

ri;, which processor j stores in order as its assigned records.

Finally, the records in memory are merged with the previous output. This can also be
parallelized, after a preliminary binary search is performed over the previous intermediate
output to assign to each processor a segment into which its records will be merged (one
would expect the assigned segment boundaries to typically resemble the boundaries of
the original output segments, but this cannot be analytically guaranteed). Note that
although this procedure is only guaranteed for (k,¢)-near sorted relations, it may also

work for sufficiently “evenly spread” (O(kd), ¢)-nearly sorted relations.

7.6 Preliminary experiments about natural occur-

rence of near-sortedness

We built and ran some TPC-C benchmarks according to the guidelines in the TPC-
C standard [7] using a database generated according to Chapter 3 of the “Installation
and User Guide” [7]. During the benchmark runs, we monitored the sort operations,
and for each execution of a sort operation we checked the nearly-sortedness condition

of the relation being sorted for various parameters k and ¢. Our tests showed that for
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k = ¢ = [\/n], where n is the number of tuples, more than 90% of the relations were
(k, ¢)-nearly sorted before the sorting started. These values for k and ¢ were selected
because they fit the case where for a fixed n they would minimize the required working
memory for the testing algorithm paired with the sorting algorithm; in fact for the current
systems the amount of working memory would accommodate higher values of k. These
are very preliminary experimental results. We intend to build a fuller implementation of

our algorithms inside a working database and report on it in a future work.

29



Bibliography

1]

[10]

N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Estimating the distance to a
monotone function. Random Struct. Algorithms, 31(3):371-383, 2007.

F. Ergiin, S. Kannan, R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers.
J. Comput. Syst. Sci., 60(3):717-751, 2000.

E. Fischer. The art of uninformed decisions: A primer to property testing. In
G. Paun, G. Rozenberg, and A. Salomaa, editors, Current Trends in Theoretical
Computer Science: The Challenge of the New Century, volume I, pages 229-264.
World Scientific Publishing, 2004.

E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and
A. Samorodnitsky. Monotonicity testing over general poset domains. In STOC,
pages 474-483, 2002.

H. Garcia-Molina, J. D. Ullamn, and J. Widom. Database Systems, section 15.4.1,
Two-Phase, Multiway Merge-Sort, pages 723 — 725. Prentice Hall, New Jersey, 2009.

D. E. Knuth. The art of Computer Programming, section 5.4.1, Multiway Merging
and Replacement Selection, pages 252 — 263. Addison Wesley, third edition, 1998.

D. R. Llanos. Tpcc-uva: An open-source tpc-c implementation for global perfor-
mance measurement of computer systems. ACM SIGMOD Record, December 2006.
ISSN 0163-5808.

M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance ap-
proximation. J. Comput. Syst. Sci., 72(6):1012-1042, 2006.

D. Ron. Property testing (a tutorial). In S. Rajasekaran, P. M. Pardalos, J. H. Reif,
and J. D. P. Rolim, editors, Handbook of Randomized Computing. Kluwer Press,
2001.

R. Rubinfeld. Sublinear time algorithms. In International Congress of Mathemati-

cians, volume III, pages 1095-1110. European Mathematical Society, 2006.

30



[11] E. K. S. Halevy. Distribution-free property testing. In Proc. RANDOM, pages 302—
317, 2003.

[12] C. Staelin. Disk I/O in Linux. Technical Report HPL-2002-352, Hewlett-Packard
Laboratories, 2002.

31



Appendix A

A.1 A simple sortedness test

We present here a simple ([0, k], [¢, £])-sortedness test that makes a sub-linear number of
read operations. In the standard terminology of property testing, this is equivalent to a
k /n-tester for the property of being ¢-globally sorted, that makes a sub-linear number of
queries. While the analysis of Algorithm 3 above is self-contained, this and the following
section can be read as a warm-up for the more complex analysis presented there.

Our testing algorithm, Algorithm 7, outputs ACCEPT (accepts) with probability 1
if the relation R is ¢-globally sorted, and outputs REJECT (rejects) with probability at
least 2/3 if R is k-far from being ¢-globally sorted. Since the algorithm always accepts
(-globally sorted inputs, the probability of detecting k-far ones can be amplified easily
by running the algorithm several times and rejecting if any of the runs rejected.

Algorithm 7 is a variant of the algorithms from [11, 2] for testing monotonicity. In
each iteration of the algorithm a center point is selected uniformly at random, and the
algorithm looks for a violation of the monotonicity with this center point. The search
for a violation is done by randomly sampling from growing neighborhoods of the center

point, but without checking neighbors within distance at most /.

Theorem A.1. Algorithm 7 s a ([0, kl, [¢, {])-sortedness test, that makes O(%(log n—{—é))

queries and errs with probability at most 1/3.

To prove this theorem, we need several lemmas and definitions. The following is an

immediate conclusion of Definition 2.5

Lemma A.2. Assume that R is k-far from being (-globally sorted. Let S C [n] be a set

such that for every violation (i,j) of the £-global sortedness of R either i € S or j € S.
Then |S| > k.
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Algorithm 7 (([0, k|, [¢, £])-sortedness test)

for 2n/k times do
pick ¢ € [n] uniformly at random
for a =¢+1to 3¢ do
if R[i] < R[i — a] or R[i] > R[i + a] then
return REJECT
end if
end for
for h = [log? + 1] to [logi| do
for 21 times do
pick a € [¢ + 1,2"] uniformly at random
if R[i] < R[i —a] or R[i] > R[i + a] then
return REJECT
end if
end for
end for
end for
return ACCEPT

Definition A.3. For every pair (i, ) that violates £-global sortedness in R we define two
subsets of indices A;j, Aj; C i, 7] as follows:

Ay £{j € li+ 5] Rli] > R[j']}

Aji £{d € li,j — (] R[] > R[j]}

We say that i is active in the violating pair (i,7) if |Ai;| > |Aji|, and otherwise we say

that 7 is active in it.

Notice that by definition, in any violating pair (7, j) one of i or 7 must be active. We

also have the following lemma.

Lemma A.4. For any violating pair (i, j), we have |A;;|+|A;i| > j—i—2L. Consequently,
if i (respectively j) is active in this pair, then the size of A;; (respectively Aj;) is at least

izt
=)

Proof. Note that the claim trivially holds unless j — i > 2¢. Otherwise, it is easy to see
that every k € [i + ¢, j — {] belongs to A;; or Aj; (or both). Hence the claim follows. [

We define the active set of R, denoted by A(R), as the set of all entries in R that are
active in some violation. From Lemma A.2 and the observation that in any violating pair

one of the indices is active, we obtain the following lemma.

Lemma A.5. If R is k-far from being (-globally sorted then |A(R)| > k.
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Proof of Theorem A.1. The probe complexity of Algorithm 7 and the fact that every R
that is ¢-globally sorted is always accepted are clear from its description. To complete the
proof, we assume that R is k-far from being ¢-globally sorted and show that Algorithm
7 rejects it with probability at least 2/3.

The algorithm may fail to detect that R is not ¢-globally sorted if either one of the

following two events occurs:

1. None of the 2n/k points sampled by the algorithm is in the active set A(R)

2. The algorithm picked at least one point ¢ € A(R), but failed to detect that i belongs

to some violation.

It is casily verified that the probability of the first event is at most (1 — k/n)?>"/* <
e 2 < 1/6. We now bound the probability of the second event. By the definition of
A(R), for every i € A(R) there is an index j such that either (¢, ) or (j,) is a violation
of f-global sortedness, and i is active in this violation. Assume without loss of generality
that (,7) is a violation. If |j — ¢| < 3¢ then this violation is discovered with probability
1. Otherwise, since ¢ is active in this pair, by Lemma A.4 we have |A;;| > 32;’ — 0>
It For h = min{b : 2° > j — i}, we claim that at least a 1/12-fraction of the pairs
{(i,c) : i < ¢ < i+ 2"} are violating. This is due to the fact that j — i > 2"~ and
|Ajj| > L2 (i.e., for at least a 1/6-fraction of the points ¢ between i and j the pair (4, c)
is a violation). The probability that the algorithm fails to find a violation for this A is
at most (11/12)*' < 1/6, and hence the probability of the second event is at most 1/6,
implying that the total probability that the algorithm will accept an R that is k-far from
being (-globally sorted is at most 1/3. O]

A.2 A sortedness test with better probe complexity

We can improve the probe complexity of the previous tester to O(%logn), which is
independent of ¢, if we consider the relaxed task of distinguishing between /¢-globally
sorted relations and those that are k-far from being 3/¢-globally sorted. Namely, given
random access to a relation R, the new tester should output ACCEPT if R is ¢-globally
sorted, and it should output REJECT with probability at least 2/3 if R is k-far from
being 3/-globally sorted.

To achieve the improvement in probe complexity we need to slightly modify Algorithm
7 by removing the procedure that checks for violations between “close” pairs of indices.

The new algorithm is formally described as follows:

Theorem A.6. Algorithm 8 is a ([0, k], [(,3(])-sortedness test that makes O(} logn)

queries and errs with probability at most 1/3.

34



Algorithm 8 (tester for ¢-global sortedness with improved probe complexity)

for 2n/k times do
pick ¢ € [n] uniformly at random
for h = [log¢+ 1| to [logi] do
for 21 times do
pick a € [¢ + 1,2"] uniformly at random
if R[i]| < R[i — a] or R[i] > R[i + a] then
return REJECT
end if
end for
end for
end for

return ACCEPT

Similarly to the proof of Theorem A.1, the only non-trivial part that has to be proved
here is that if R is k-far from being 3/-globally sorted then Algorithm 8 rejects it with
probability at least 2/3. But first we need the following lemma, which is almost identical

to Lemma A.4 above.

Lemma A.7. Leti,j € [n]| be such that the pair (i, j) violates the 3¢-global sortedness of
R. Then there exist sets A;j, A;; C i, j] such that

1. For all a; € A;j, the pair (i,a;) violates the {-global sortedness of R.

2. For all a; € Aj;, the pair (a;,j) violates the (-global sortedness of R.

j—i—20

5 elements.

3. At least one of A;j or Aj; contains at least

Proof. Let (4,j), i < j — 3¢ be a violating pair, and define A4;; and Aj; as in Definition
A.3. It is easy to see that every s € [i + ¢, j — (] belongs to A;; or A;; (or both) as above.

Hence the claim follows since there are j — i — 2¢ possible values for s n

Notice that the sets A;; and A;; are defined with respect to a pair (7, j) that violates
3(-global sortedness, but they contain indices that (together with ¢ or j) violate only
(-global sortedness. As before, we will say that ¢ is active in the pair if |4;;| > |A;;| and
otherwise we say that j is active. Observe that for any pair (7, j) that violates 3¢-global
sortedness, one of i or j is active and so the corresponding set A;; or A;; is of size at least
%( j —1). From here, we can complete the proof of Theorem A.6 similarly to the proof of
Theorem A.1.

Proof of Theorem A.6. Assume that R is k-far from being 3/-globally sorted, and consider
the set A of all active indices in the pairs that violate the 3/-global sortedness of R.
According to Lemma A.2, |A| > k. The algorithm may still accept R if either one of the

following two events occurs:

35



1. None of the 2n/k points sampled by the algorithm is in the active set A;

2. The algorithm picked at least one point ¢ € A, but failed to detect that i belongs

to some pair that violates the ¢-global sortedness of R.

Similarly to the proof of Theorem A.1, the probability of the first event is at most 1/6.
Now we bound the probability of the second event. By the definition of A, for every i € A

there is an index j and a set A;; of indices such that
e For all a; € A;;, the pair (4, a;) violates the ¢-global sortedness.
e All indices a; € A;; reside between 7 and j.
e The size of A;; is at least ”G%Z'

For h = min{b : 2° > |j — i|}, we claim that at least a 1/12-fraction of the pairs
{(i,¢) : 0 < |c —i| < 2"} violate (-global sortedness. This is again due to the fact that
|j —i] > 2"71 and because |4;;| > |J6;’| The probability that the algorithm fails to find
a violation for this A is at most 1/6, and hence the total probability that the algorithm
will accept an R that is k-far from being 3¢-globally sorted is at most 1/3. [

Remark A.8. It is not hard to see that for any fixed p > 0, we can also get a ([0, k], [¢, (2+
p)l])-sortedness test that makes O(% logn) queries.
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71791 792 IWANND DN, TA52 VYPN HY NPNITO MNP YNV PONDN) POYTO D»1IAN
THNAIN DY TOAN NI NNT DOV PNIDNN . WINT NN DTN GO TIDYD VO DY MTHN
9PN MYWINDAN

27Aan

D191 DINY DIINN LYND DXODP D) HAPN NINY NIIN NNT D0 N PN
VYNI-(k,1) MNP DTN NPYTAN OIINVION T2 PYTY 1PN ONINON DN ,PLWND
NTI2 N NN TY OOWT KD PITY NN . NPINN VYNI-(6k,61) NPRY XD PAY NN
DOV NNIN NNT NP NPT NNSA k 257305 100 Xov 1o 92 YA L6 DTpnnnm

NN O(1) 2 75N NN DTV PTIAN NP0 IN DAN NN NNNA |2 D>71and v
INY MDY TIOND 9 TY)

99 NIIPY MMV 1IN VIINND INNIY ININY NN PDVOTR KD XN NN NN PTIAN
TADN NVINNN NN INIPIY DDA MIONY DTN NVINNN .NNX NNIYI 1PN DIRNPY
NNIPN MYPA DI IR MOYY INNIY NPIN DIWNXIAN NN NOYN N 12T .1INTY IX 5IPD OND
SOPVAN DN WTNN ININ ITOD NI I, WNRIN NOYONN NIIVND

2y nwnnn owd |2 mn nory,0((n/k)log((n/k))log(n)log(log(n))) non pTan nyo0
O (log(n)) 19 1> Mmb5nn »v>a k=0(n)

DYTHY NMOIM B399 DIVPION

Moy ,(Solid State Drive) pX1 280 POYT 11D DOWTN NN NPNN HY DY9ONDN TUND
NN P2 XN OMNINAIIPOYN DTINT, TPNIVOYNI NNXL NTI THIRIPRD INIPN

TN 99VN NN ININ MDY PHN DMININ DX MYV .NDNIN MPNND IRIPN

IMN DNINIRND DPD MY MIVIVN YO TINMIAY )YIN ,1OMYNYN NI DOWNINIIN
.T252 NPNITO MNP ONY T DY VOPN NN PN NIN POITD NNT YT DY KD NN
PTIAN MDY ,NT NON ONIPNNA NIPNN THIXIPNR NRMIP DY NNMITN MOYN D)W PO 1wN
AN QN DI NN ININ

MNINN TAVN D12V, DTIID NNPRNND DNMN NNNPS OMIN NN NPYTAN MDMINON
NNY, IOV PONN YY TIaYD 5127 Tayn 5D NYURIN 1NN 2OV VYD INX (X)) PHN Y
WM ADWH MIOND DN 1Y DYTIVNHN YIIPNY NINHD NINSDIN NIMIYIN

PM1TR2 MNY NIVNI,DXNNI STON MDIWNI DXIDN DMD) Y¥I) NVIWN DK WNHNY NMINI

51192 99OWN HINK NN NINNDY,0»0MPT k1 1912y 121N VYN NPISIN NN NN
171N PVNNONN NN . DX TNPNN 1IN MNNINONIY PTIAT VIOV YT Y Dapnnn
NN PYIT NOWH DYIT RINAD L6 D NNNN PTIAN OTPN DX TND N TN NND TY MDD
MY MO MNON XINDY (MWD DNPININRN TNPHNI) TWI) TAPNN 11NN DNINON TUND
.DMIN) YTON2 M) MW 9WD »T51 DN PrTaY





