

 מכון טכנולוגי לישראל–הטכניון

Technion – Israel Institute of Technology

 ספרית הטכניון
The Technion Library

 ייקובס'ואן ג'ש ארווין וג"ע בית הספר ללימודי מוסמכים
Irwin and Joan Jacobs Graduate School

©
All rights reserved

This work, in whole or in part, may not be copied (in any media), printed,
translated, stored in a retrieval system, transmitted via the internet or other
electronic means, except for "fair use" of brief quotations for academic
instruction, criticism, or research purposes only.
Commercial use of this material is completely prohibited.

©

 כל הזכויות שמורות

, להפיץ באינטרנט, לאחסן במאגר מידע, לתרגם, להדפיס,)במדיה כלשהי(אין להעתיק
, למעט שימוש הוגן בקטעים קצרים מן החיבור למטרות לימוד, חיבור זה או כל חלק ממנו

 .ביקורת או מחקר, הוראה
 .שימוש מסחרי בחומר הכלול בחיבור זה אסור בהחלט

Topics in Property Testing over
Massively Parameterized Models

Orly Yahalom

Topics in Property Testing over
Massively Parameterized Models

Research Thesis

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Orly Yahalom

Submitted to the Senate of the
Technion - Israel Institute of Technology

Av 5768 Haifa August 2008

The research thesis was written under the supervision of
Assoc. Prof. Eldar Fischer

in the Department of Computer Science.

Acknowledgements

I am deeply grateful to my supervisor, Eldar Fischer, for his
dedicated guidance, encouragement and patience throughout the

years. Eldar has always been there for me, and I was tremendously
enlightened by our discussions as well as enjoyed them.

I also thank our collaborators: Oded Lachish, Ilan Newman and Arie
Matsliah, for the pleasant and fruitful work together.

I am indebted to many people in the Computer Science Department,
who have helped me through the course of my research, as well as to
my friends inside and outside the Technion, who have made my life

easier and happier.

Finally, I thank my dear family, and mostly my mother, Neta, for
her endless encouragement and support, both during this research

and in all the preceding years.

The generous financial help of the Technion is gratefully acknowledged.

Contents

Abstract iv

1 Introduction 1
1.1 Property testing . 1
1.2 Standard models for testing graph properties 3
1.3 Massively parameterized property testing 4
1.4 Overview of the thesis . 5
1.5 Global definitions and notations . 6

I Testing for Forbidden Posets in Forest Colorings 7

2 Introduction 8
2.1 Testing for forbidden posets . 8
2.2 The vertex coloring model . 9
2.3 Convex colorings . 9
2.4 Variants of convexity . 10
2.5 Testing for forbidden posets in ordered rooted forests 11
2.6 Our results . 12

3 Testing Convexity in Trees 14
3.1 A distribution-free convexity test for trees 14

3.1.1 Implementing the computation step in Algorithm 3.1.1 18
3.1.2 Testing convexity with constraints 23

3.2 A lower bound for testing convexity on trees 24
3.3 A convexity test for paths . 29

4 Variants of The Convexity Property 35
4.1 A quasi-convexity test for trees . 35

4.1.1 Implementation of the computational step in Algorithm 4.1.1 . 41
4.1.2 Testing quasi-convexity under constraints 43

4.2 Relaxed convexity properties . 47
4.2.1 `-convexity of trees . 48
4.2.2 `-quasi-convexity of trees . 55
4.2.3 List convexity and list quasi-convexity of trees 59

i

5 Testing for Forbidden Posets in Ordered Rooted Forests 60
5.1 A test for a set of chains . 61

5.1.1 A non-adaptive chain test . 65
5.2 A test for a forbidden forest . 66

5.2.1 A non-adaptive forest test . 68
5.3 Discussion . 69

II Testing Graph Orientations for Being Eulerian 70

6 Introduction 71
6.1 Testing in the orientation model . 71
6.2 Eulerian graphs and Eulerian orientations 72
6.3 Our results . 73

7 Basic Definitions and Lemmas 75
7.1 Preliminaries . 75
7.2 Correction subgraphs and p-tests . 76
7.3 β-correction subgraphs and (p, β)-tests 78
7.4 A linear lower bound for 1-sided tests 80

8 Upper Bounds 84
8.1 Generic tests . 84

8.1.1 A 2-sided p-test . 84
8.1.2 (p, β)-tests . 86

8.2 Testing graphs with high average degree 90
8.3 Testing orientations of an expander graph 93
8.4 Testing orientations of “lame” directed expanders 97
8.5 General tests based on chopping . 104
8.6 Discussion . 110

9 Lower Bounds for Bounded-Degree Graphs 111
9.1 A 2-sided lower bound . 111

9.1.1 Preliminaries . 112
9.1.2 Defining auxiliary distributions 113
9.1.3 Defining the main distributions 114
9.1.4 Bounding the variation distance 117

9.2 A 1-sided lower bound . 120

III Bibliography 126

ii

Abstract

Property testing deals with the following relaxation of decision problems: Given a

property P and an input structure S, distinguish with high probability between the

case where S satisfies the property P and the case where S is “far” from satisfying

P . A tester is a randomized algorithm which answers such a question by reading

only a small part of the input S, using retrieval procedures that we call queries.

Property testing normally deals with very large input structures and/or with costly

queries, and thus, the query complexity is assumed to be the most limited resource,

rather than the computation time. As decision problems cannot be solved without

reading the entire input, our algorithms give approximate results, in the sense that

inputs close to satisfying the property P may also be accepted.

A great deal of research in property testing is dedicated to graph properties. In

the standard models, a graph is considered far from satisfying a property P if many

edges must be added or removed from it in order to make it satisfy P . We consider

two models of property testing in which a fixed graph G is given in advance as a

parameter to the tester. This means that the answer has to be exact with respect

to G, and may be approximated only with respect to some additional input, such

as a coloring of G. In the first model, we test vertex colorings of G, and in the

second model, we test edge orientations of G, following the work of [30]. The graph

G itself may not be altered. This definition of the distance function gives us a rich

setting for studying various graph properties, devising tests that depend strongly

on the structure of the parameter graph but are independent of technicalities such

as representation issues.

In the vertex colorings model, we consider several problems of testing for forbid-

den partially ordered sets. In particular, we study several variations of the convexity

property, where a coloring satisfies the property if it induces connected color compo-

nents. This property is related to the study of phylogenetic trees in genetics. As for

the orientation model, we investigate the well studied property of being Eulerian,

iii

and consider general graphs as well as important special cases such as dense graphs

and expander graphs. For these properties we give several upper and lower bounds.

In particular we show that convexity can be tested with a number of queries inde-

pendent of the input size. On the other hand, while being Eulerian can always be

tested in a sub-linear number of queries, a constant query algorithm does not exist.

iv

Chapter 1

Introduction

In this chapter we provide general background on massively parameterized property

testing. We also give a brief overview of this thesis and refer to our papers on which

it is based.

1.1 Property testing

Property testing deals with the following relaxation of decision problems: Given a

property P and an input structure S, distinguish with high probability between the

case where S satisfies the property P and the case where S is “far” from satisfying P .

The power of property testing lies in the ability to design algorithms, or property

testers, which read only a small fraction of the input structure. We assume that

our algorithms access the input structure using retrieval procedures that we call

queries. The answer to each query is a value in the input structure. For example,

if our inputs are binary vectors of a fixed length n, then a query to an input vector

would be an index i, where the answer is the ith element of the vector.

Property testing was initiated in the work of Blum, Luby and Rubinfeld [10], and

given a general formulation by Rubinfeld and Sudan [47]. The latter were interested

mainly in algebraic properties (such as linearity) of functions over finite fields and

vector spaces. The study of property testing for combinatorial objects, and mainly

for labelled graphs, was introduced by the seminal paper of Goldreich, Goldwasser

and Ron [25]. A property in this respect is a collection of functions from a fixed

combinatorial object to a finite set of labels, often {0, 1}, but in our work we consider

larger finite sets as well.

1

Property testing has since become quite an active research area, see e.g. the

surveys [46] and [16]. As property testing focuses on algorithms that read only a

small fraction of the input, it appeals to many contemporary research areas involv-

ing large datasets, such as data mining and bioinformatics. Property testing also

emerges in the context of program checking [24, 47, 10], probabilistically checkable

proofs [5, 8] and approximation algorithms [25].

Denoting our set of inputs by I, a property P is a subset of I. We have a distance

function dist : I ×I → [0, 1], which is some fixed metric on I. Two input structures

S, S ′ ∈ I are said to be ε-close to each other for some ε ∈ [0, 1] if dist(S, S ′) ≤ ε.

Otherwise, if dist(S, S ′) > ε, then we say that S and S ′ are ε-far from each other.

We say that an input structure S ∈ I is ε-close to satisfying property P (or simply

ε-close to P) if there exists S ′ ∈ I that satisfies P and is ε-close to S. Otherwise,

if every input that satisfies P is ε-far from S, then we say that S is ε-far from

satisfying property P (or simply ε-far from P).

Given a property P ⊆ I and parameters ε, q > 0, we say that a (randomized)

algorithm A is an (ε, q)-test for P if the following hold for every input structure

S ∈ I :

1. A accesses S using at most q queries;

2. If S satisfies P then A accepts with probability least 2
3
, and if S is ε-far from

satisfying P then A rejects with probability at least 2
3
.

Depending on the context, we may also use the terms ε-test and test for an algorithm

which satisfies Item 2 above.

If there exists an (ε, q)-test for a property P then we say that P is (ε, q)-testable.

If a property P is (ε, q)-testable with q = q(ε) (i.e. q is a function of ε only, and is

independent of n) then we say that P is ε-testable. If P is ε-testable for every fixed

ε > 0 then we say that P is testable.

We refer to the (asymptotic) number of queries required by a given test as its

query complexity. Property testing normally deals with very large inputs and/or

costly retrieval procedures. We thus assume that the query complexity is the most

limited resource, rather than the computation time.

Furthermore, a test is called 1-sided if every input that has the property is

accepted with probability 1. Otherwise, it is called 2-sided. A test is said to be

adaptive if some of the choices of the locations for which the input is queried may

2

depend on the values (answers) of previous queries. Otherwise, the test is called

non-adaptive.

1.2 Standard models for testing graph properties

A model for testing properties in a certain set I of inputs is characterized by the

distance function dist on I and by the type of queries allowed to access the input.

We are interested mainly in testing of graph properties, i.e., properties defined on a

set I which is a class of graphs.

Goldreich, Goldwasser and Ron [25] introduced the dense graph model, in which

the input is a simple undirected graph represented by its adjacency matrix. A query

in this model is a pair of vertex indices, and the answer is the corresponding entry

in the adjacency matrix, which indicates whether these two vertices are neighbors

or not. The distance between two graphs in this model is the fraction of adjacency

matrix entries on which they differ. The dense graph model has been studied ex-

tensively (e.g. [1, 27, 15, 2]). It has also inspired several generalized models, such

as for directed graphs [4] and hypergraphs [20].

Although quite natural when the input graph is dense, the dense graph model is

in a sense too lenient for some graphs. Considering an n-vertex graph, the distance

function of the dense graph model allows adding and removing o(n2) edges, regard-

less of the number of actual edges in the graph. Thus, many interesting properties,

such as connectivity, are trivially testable in this model, as all graphs are close to

satisfying the property.

Researchers have studied several alternative models for graph testing. Notably,

in the bounded-degree graph model of [26], the graph is assumed to be represented

by adjacency lists of bounded length. A query in the model is of the form (v, i),

where v is a vertex and i is an index no larger than the maximum degree in the

graph. An answer to such a query would be the ith neighbor of the vertex v. In

the general density model (also called the mixed model) of [43] and [34] no specific

representation is assumed. The model allows querying for the degree of a vertex v as

well as for the ith neighbor of a vertex v, for any i that is no larger than the degree

of v. In both of the above models, the distance function allows edge insertions and

deletions whose number is at most a fraction of the number of the edges in the

original graph, regardless of the number of vertices. This means that properties

such as connectivity are not trivial for testing anymore.

3

1.3 Massively parameterized property testing

In this thesis we study models of property testing that we call massively parameter-

ized. In such models, the tested property is characterized by a complex parameter

which is fixed and fully known. For example, Newman [42] studied the property of

being accepted by a given bounded-width branching program B. In this case, B is

a “massive” parameter given to the testing algorithm in advance, whereas the input

to the tester is a word given as an input to B. Hence, the approximation allowed to

the tester is only with respect to the input word, while the branching program B is

exact. Another example of a massively parameterized testing model is the general

poset domain model introduced by Fischer et. al [18], who consider monotonicity

properties of labelling functions on some partially ordered domain. An important

case is where the domain is a directed graph and the labelling function is a vertex

coloring. There, the structure of the graph is fixed and given to the algorithms in

advance, and the input is its vertex coloring.

The models that we discuss in this thesis can be thought of as variants of the

general poset domain. In Part I we consider properties of vertex colorings of trees

and ordered forests (in the latter case, there are two orders on the domain). In

Part II, we study the orientation model introduced by Halevy, Lachish, Newman

and Tsur [30]. There, the input is an orientation of the edges in a directed graph

whose underlying undirected graph is fixed and known. In all of these models, the

distance function depends only on the values of the labelling function on which two

given graphs differ, i.e. vertex colors or edge orientations; insertions or deletions of

vertices or edges are forbidden.

As massively parameterized property testing (MPPT) requires full knowledge

of a large parameter, such as the structure of a graph, it may sometimes not lead

to algorithms with a running time to match their low query complexity. On the

other hand, MPPT has several appealing characteristics. Focusing on graph proper-

ties, the distance function in MPPT models depends heavily on the structure of the

underlying graph. As a result, the study of MPPT may reveal interesting combina-

torial details of the underlying graph, with graph theoretic results that could be of

independent interest. Moreover, the distance function in MPPT models is usually

very strict (namely, edge insertions and deletions are forbidden) and independent of

representation details, which allows for a ‘clean’ study of graph properties. We be-

lieve that MPPT is a fertile ground for research, which challenges the development

4

of new methods and techniques.

Goldreich and Trevisan [27] have proved that any property that is testable in

the dense graph model can be tested by uniformly selecting a set of vertices and

considering the subgraph that it induces. For massively parameterized models,

in contrast, this is generally not the case. Indeed, unlike in many other areas of

property testing, many of the algorithms developed for massively parameterized

models are non-trivial in construction, and not just in their analysis.

1.4 Overview of the thesis

This thesis is dedicated to the study of various properties in massively parameterized

models in which the domain is a (directed or undirected) graph.

In Part I we study properties of vertex colorings in what we call the vertex

coloring model. The distance between two vertex colorings of the given domain

graph is a weighted sum of the vertices for which they differ.

A great deal of Part I is dedicated to variations of the convexity property. A

vertex coloring is said to be convex if it induces connected color components. We

study this property for domain graphs that are trees, an important subcase which is

motivated by the study of phylogenetic (evolutionary) trees. We show that all the

convexity properties that we have considered are testable, providing 1-sided ε-tests,

some of which are also non-adaptive. The common feature of all our tests is that

they do not necessarily find a direct witness that an input coloring is not convex, but

instead they use the knowledge of the domain graph in order to infer the existence

of such a witness.

The query complexity of all our tests depends only on the number of colors and on

ε. The computational complexity of our tests is polynomial in the size of the graphs,

but for most of the tests even this can be avoided if we allow a polynomial time

preprocessing stage. On the negative side, we provide a lower bound for the query

complexity of testing the convexity property, which applies also for trees which are

unweighted paths. The gap between our general upper bound and our lower bound

is quadratic. However, we provide a convexity test for paths which is optimal (in its

dependence on the number of colors) up to a power of 1/ε.

The convexity and convexity variants results are given in Chapters 3 and 4 and

are based mainly on [21].

In Chapter 5 we consider more general properties of vertex colorings. The domain

5

graph that we consider is a rooted ordered forest, namely, a rooted forest in which

a linear order is defined on the set of children of every node. We consider testing

vertex colorings of such forests for not containing a set of forbidden induced forests.

We provide 1-sided tests for two subcases of this property, whose query complexity

is independent of the size of the domain forest.

In Part II we consider testing of orientations of an undirected domain graph for

being Eulerian. Using the orientation model introduced in [30], the distance between

two orientations of the domain graph is the percentage of edges on which they differ.

Although the property of being Eulerian is of a local nature, it appears to be

quite involved for testing, since an orientation that is far from being Eulerian might

have only a few witnesses of small size. Hence, our results are established through a

careful analysis of the characteristics of orientations that are far from being Eulerian.

We provide efficient tests for dense graphs and bounded degree graphs. For general

graphs, we give a sub-linear algorithm which uses a variation of the expander test

as a subroutine. On the negative side, we give super-constant lower bounds for the

query-complexity of such tests, which applies also for bounded-degree graphs. Part

II is based mainly on [17].

1.5 Global definitions and notations

Graphs. For a graph G = (V, E), we denote the number of vertices in G by

n
def
= |V | and the number of edges in G by m

def
= |E|, unless specified otherwise.

Asymptotic notations. Throughout the thesis, we make no attempt to optimize

the coefficients of our bounds for the query complexity and computational complex-

ity.

Given a function f on the natural numbers, the notation Õ(f(n)) is equivalent to

O(f(n) · g(n)), where g is some function that is polylogarithmic in f . The notation

poly(f(n)) denotes any function that is polynomial in f .

Other notations. log denotes the logarithm with base 2, whereas ln denotes the

natural logarithm. For any positive integer k, we set [k]
def
= {1, . . . , k}.

6

Part I

Testing for Forbidden Posets in

Forest Colorings

7

Chapter 2

Introduction

2.1 Testing for forbidden posets

As said in Chapter 1, combinatorial property testing is concerned with functions

from some fixed combinatorial structure S to a finite set of labels. A large class of

interesting combinatorial properties are characterized by a set of forbidden induced

partially ordered sets, or posets. A forbidden poset P is given as a set U of points

together with a partial order ≤P on U and a labelling function f : U → L, where

L is a finite set of labels. A set F of forbidden posets defines a property PF of

labelling functions on S, as follows. A labelling function f satisfies PF if it does

not induce any forbidden poset P ∈ F in S. For example, when testing strings of

length n over some finite alphabet Σ, the structure S can be represented as a vector

of length n where the input is a labelling function f : [n]→ Σ. In this case, the set

F of forbidden posets consists of strings over Σ. An input string w ∈ Σ∗ satisfies

PF if an only if it does not contain any of the strings in F as a subsequence. Such

a property of strings is a special case of a regular language, and as such it is known

to be testable [3].

Another classical example of testing for forbidden posets is the well-studied

‘monotonicity’ property, where the forbidden posets are all the pairs of points

{x1, x2} such that x1 ≤P x2 and f(x1) > f(x2). A variety of tests, as well as lower

bounds, have been devised for monotonicity testing on integer sequences [16, 14], la-

belled matrices [13], and general poset domains [18]. More general properties defined

by forbidden posets have been studied for the matrix domain [19].

8

2.2 The vertex coloring model

In this part of the thesis we study testing for forbidden posets in several versions of

what we call the vertex coloring model. This model considers properties of vertex

labellings, or colorings, of a fixed and known graph, referred to as the domain

graph. Our testers access the input coloring by querying one vertex at at time, and

the distance between two colorings of the domain graph is a weighted sum of the

vertices in which they differ. The monotonicity property has already been studied

on this model (with a uniform weight function) by Fischer et. al [18], who provided

efficient tests for several classes of graphs.

Formally, throughout Part I we assume that µ : V → R is a fixed weight function

on the vertices of our domain graph, satisfying µ(v) ≥ 0 for every v ∈ V and∑
v∈V µ(v) = 1. For convenience, define µ(U) =

∑
v∈U µ(v) for any U ⊆ V . The

distance between two colorings c1 and c2 of V is defined as µ(∆c1,c2), where ∆c1,c2 =

{v ∈ V | c1(v) 6= c2(v)}. The weight function µ may represent the importance of

certain vertices, the cost of modifying them, or the reliability of querying for their

color.

In Section 3.1 we consider a stricter model, where the weight function over the

vertices is unknown. Such a model is called distribution-free, a concept that was

introduced in [25] and developed by Halevy and Kushilevitz [29, 28]. A distribution-

free test may attain a sample of the points of the domain of the input according to

a fixed yet unknown distribution function µ (where each value obtained this way

counts as a query). Since µ determines the weight of every vertex with respect to

the distance function, the distance between two inputs is equal to the probability of

obtaining a point on which they differ.

2.3 Convex colorings

Given a graph G = (V, E) and an integer k, a vertex coloring c : V → [k] is called

a k-coloring, or simply, a coloring of G. Given a k-coloring c of a graph G and

i ∈ [k], let Vi be the set of vertices v in V such that c(v) = i. We say that c is

a convex coloring of G if all the Vi’s are connected sets (i.e., c induces connected

subgraphs of G). If G is a tree, then c is not convex if and only if there exists

three distinct vertices u, w, v ∈ V such that w is on the path between u and v and

c(u) = c(v) 6= c(w). Such three vertices consist a forbidden poset (subpath) of c.

9

We consider testing for convexity as defined above (Chapter 3) and several vari-

ants of this problem (Chapter 4), on trees. A central motivation for this subcase is

the study of phylogenetic (evolutionary) trees, which originated in genetics [40, 51],

but appears also in other areas, such as historical linguistics (see [41]). Whether

our subjects of interest are biologic species, languages, or other objects, a phyloge-

netic tree specifies presumed hereditary relationships, representing different features

with different colors. A convex coloring is a positive indication for the reliability

of a phylogenetic tree, as it shows a reasonable evolutionary behavior. Namely, a

feature (color) is either inherited from a direct ancestor or appears spontaneously,

in case of a mutation, but the same mutation does not normally occur in separate

(i.e. disconnected) parts of the tree. We note that although phylogenetic trees are

rooted trees, the convexity property does not depend on the identity of the root.

Moran and Snir [39] studied recoloring problems, where the input is a colored

tree and one has to find a close convex coloring of the tree. They gave several

positive and negative results on exact and approximate algorithms. Our results are

the first, to the best of our knowledge, which approach the property testing aspect

of convex colorings.

2.4 Variants of convexity

In Chapter 4 we study several variants of the convexity property defined above, the

first of which is quasi-convexity.

Given a graph G = (V, E) and an integer k, a vertex coloring c : V → {0, . . . , k}
is called a quasi k-coloring of G. Note that the difference between a k-coloring

and a quasi k-coloring is the use of an additional color marked as 0, whose role is

explained below. Whenever the context is clear, we may refer to such a function c

simply as coloring. Given a quasi k-coloring c of a graph G and i ∈ {0, . . . , k}, let

Vi be the set of vertices v in V such that c(v) = i. We say that c is quasi-convex if

the color components Vi are connected for colors i ≥ 1 (while V0 is not necessarily

connected). This property arises in various cases in which we are interested only in

the connectivity of some of the color classes (where all the others may be considered

as colored with 0, or simply uncolored).

In addition, we consider variants of the convexity and quasi-convexity properties,

where we relax our requirement of having at most one color component from every

color. A k-coloring is called `-convex if the total number of color components that

10

it induces is at most `. Similarly, a quasi k-coloring is called `-quasi-convex if it

induces a total of at most ` color components for all colors i > 0. Similarly we

discuss list convexity (and list quasi-convexity) where we have lists of upper bounds

on the numbers of connected components of every color (or some of the colors). In

testing all these relaxed properties we use generalizations of our tests for convexity

and quasi-convexity, where a set D of “constraint” vertices is given. A (quasi) k-

coloring c is considered close to a property P under the set D if it is close to a

coloring c′ which satisfies P and agrees with c on the values of all the vertices in D.

2.5 Testing for forbidden posets in ordered rooted

forests

In Chapter 5 we consider testing vertex colorings of a fixed ordered rooted forest.

A rooted forest is a collection of rooted trees. A root of a tree in a rooted forest is

referred to as a root in the forest. An ordered rooted forest is a rooted forest in which

a linear order is defined on the set of children of every node, as well as on the set of

trees in the forest. Therefore, an ordered rooted forest induces two partial orders on

its nodes: The familiar “ancestry” relation, in which the comparable node pairs are

those lying on a simple path to the root; and a “left-to-right” order, in which the

comparable pairs are those which are incomparable with respect to ancestry. For

two vertices u and v, we say that u is left of v if any of the following applies: 1. u

and v are children of the same node w and u precedes v in the order defined on w’s

children; 2. u ∈ T1 and v ∈ T2, where T1 and T2 are two trees such that T1 precedes

T2 in the order defined on trees in the forest; 3. There exist two vertices a, b such

that u is a descendant of a, v is a descendant of b and a is left of b.

When considering vertex colorings of ordered rooted forests, a forbidden poset

is a colored rooted ordered forest, specifying a forbidden setting of ancestry and

left-to-right relation pairs over a set of colored vertices. We examine two subcases

of this property. In the first case, the forbidden set consists of (ancestral) chains,

and in the second case, it consists of one general ordered rooted forest.

We note that properties of ordered labelled trees have been studied by [37]. How-

ever, they do not assume knowledge of the tree structure, while on the other hand,

their distance function allows moves of an entire subtree, insertions and deletions,

while we only allow recoloring vertices.

11

2.6 Our results

Testing convexity in trees (Chapter 3). We show that convexity of tree color-

ings is testable, providing a 1-sided, non-adaptive, distribution-free ε-test for every

ε > 0. The query complexity of our test for k-colorings is O(k/ε), and the additional

time complexity is O(n). We show that the time complexity can be reduced to be

quasilinear in the query complexity (assuming that a query takes constant time) by

allowing a preprocessing stage of time O(n).

We further provide an alternative 1-sided, non-adaptive test for the non

distribution-free model where the tree is a path, with query complexity O(
√

k/ε3)

and additional time complexity Õ(
√

k/ε3).

On the negative side, we prove a lower bound of Ω(
√

k/
√

ε) on the query com-

plexity of testing convexity of paths even in the unweighted model.

Variants of convexity in trees (Chapter 4). We show that quasi-convexity

of tree colorings is testable, giving a 1-sided, non-adaptive (but not distribution-

free) ε-test for every ε > 0. The query complexity of our tests for quasi k-colorings

is O(k/ε2) and the additional time complexity O(kn/ε). We show that the time

complexity can be reduced to be quasilinear in the query complexity (assuming that

a query takes constant time) by allowing a preprocessing stage of time O(n2).

As for testing for convexity and quasi-convexity under a set D of constraint

vertices, we show that for both properties, it is enough to augment the query set

of our regular tests with the constraint vertices, and therefore, the addition to the

query and computational complexity is O(|D|).
Finally, we provide 1-sided ε-tests for every ε > 0 for the relaxed convexity

properties. For `-convexity we give a test with query complexity Õ(`/ε) and time

complexity O(`n). For `-quasi-convexity we provide a test with query complexity

Õ(`/ε2) and time complexity O(`n). Given a list of integers ci, let ` denote their

sum. Our test for list convexity has query complexity Õ(`/ε) and computational

complexity O(`n). For list quasi-convexity, let ` denote the sum of ci’s only for the

colors for which they are defined. For that property we also give a test with query

complexity Õ(`/ε2) and computational complexity O(`n).

Forbidden posets in ordered forests (Chapter 5). We provide 1-sided, non-

adaptive ε-tests for every ε > 0 for both subcases that we have studied. For the case

where the set of forbidden posets consists of (ancestral) chains, the query complexity

12

is poly
(

1
ε

)
and the additional time complexity is O(n), in a preprocessing stage. For

the case where the forbidden set consists of one general ordered forest, the query

and time complexity are both poly
(

1
ε

)
. Moreover, our complexity bounds for both

cases are independent of the number of colors k.

13

Chapter 3

Testing Convexity in Trees

Throughout this chapter, our domain graph is a fixed tree T = (V, E) and our input

is a k-coloring c : V → [k] of T . Vertices u, w, v in T form a forbidden subpath if

w is on the (simple) path between u and v and c(u) = c(v) 6= c(w). Clearly, c is a

convex coloring of T if and only if it does not contain any forbidden subpath.

Recall that for every color i ∈ [k], Vi is the set of vertices u ∈ V such that

c(u) = i. We refer to vertices in Vi as i-vertices and to other vertices as non-i-

vertices. For any subset U ⊆ V , let the i-weight of U be the total weight of all

i-vertices in U , and denote it by µi(U)
def
= µ(Vi ∩ U). We refer to the total weight of

non-i-vertices in a set U , namely µ(U)− µi(U), as its non-i-weight.

Finally, for any two distinct vertices u and v, we denote the connected component

of V \ {u} that contains v by C
(v)
u . Note that if u and v are neighbors then C

(v)
u and

C
(u)
v form a bipartition of V .

3.1 A distribution-free convexity test for trees

Below we provide a simple test for convexity, which samples vertices according to

the weight function µ on V and then queries their colors. Our test is distribution-

free (see Section 2.2), as it uses the distribution µ as a black-box only. We note

that the standard definition of distribution-free testing allows in addition queries

for the color of determined vertices, but our test will do better and use only sample

vertices. To reject the input, the sample does not necessarily need to contain a

forbidden subpath. Instead, the algorithm uses the information supplied by the

queried vertices, together with the knowledge of the structure of the tree T , to

infer the existence of a forbidden subpath. The main idea behind the algorithm

14

is that if a coloring is ε-far from being convex, then, with high probability, either

a forbidden subpath is sampled or there exists a vertex which is a “crossroad” of

sampled subpaths with conflicting colors.

Algorithm 3.1.1.

1. Query
⌈

8k ln 12
ε

⌉
vertices, where each vertex is independently chosen according

to the distribution µ. Let X denote the sample.

2. If X includes a forbidden subpath, reject.

3. Otherwise, if there exists w ∈ V such that any value of c(w) implies a forbidden

subpath, reject. In other words, reject if there exist w ∈ V and u1, u2, v1, v2 ∈ X

such that c(u1) = c(u2) 6= c(v1) = c(v2), and w belongs to both the path between

u1 and u2 and the path between v1 and v2.

4. Otherwise, accept.

Theorem 3.1.2. For every ε > 0, Algorithm 3.1.1 is a 1-sided ε-test for convexity

of k-colorings of trees. The query complexity of the test is O(k/ε) and the time

complexity is O(n). This can be implemented in running time Õ(|X|) = Õ(k/ε)

using a preprocessing stage of time O(n).

It is easy to see that the query complexity is as stated. We show how to im-

plement the stated computational steps under the time complexity requirements in

Subsection 3.1.1. Clearly, a convex coloring is always accepted by Algorithm 3.1.1,

as it does not contain forbidden subpaths. Thus, it remains to show that every

coloring which is ε-far from being convex is rejected with probability at least 2
3
.

A color i ∈ [k] is called abundant if µi(V) ≥ ε/2k. For an abundant color i, we

say that a vertex u ∈ V is i-balanced if the set {C(v)
u |(u, v) ∈ E} may be partitioned

into two subsets, where the i-weight of the union of each subset is at least ε/8k. We

say that a vertex v is heavy if µ(v) ≥ ε/8k.

Lemma 3.1.3. For every abundant color i, there exists a vertex u ∈ V which is

either i-balanced, or is a heavy i-vertex (or both).

Proof. Assume that there exists an abundant color i such that no u ∈ V is

i-balanced and there are no heavy i-vertices. Note that in this case every u ∈ V has

a neighboring vertex v such that C
(v)
u is of i-weight larger than ε/4k (as otherwise

15

u is easily seen to be i-balanced). Consider neighboring vertices u and v such

that C
(v)
u is of minimum i-weight among those whose i-weight is larger than ε/4k,

and with a minimum number of vertices among the minimal weight C
(v)
u ’s. There

exists a neighbor w of v such that C
(w)
v is of i-weight larger than ε/4k. Due to the

minimality of C
(v)
u , we must have w = u. Thus C

(u)
v is of i-weight larger than ε/4k,

and, since there are no heavy i-vertices, the i-weight of C
(u)
v \ {u} is at least ε/8k.

Therefore, both C
(v)
u and V \ {C(v)

u ∪ {u}} have i-weight of at least ε/8k, and hence

u is i-balanced. A contradiction.

For every abundant color i, define the set Bi to be the union of i-balanced vertices

and heavy i-vertices. By the lemma above, Bi is non-empty for every abundant

color i.

Lemma 3.1.4. Bi is a connected set for every abundant color i.

Proof. Assume that there exist two vertices u, v ∈ Bi, and let w be on the

path between u and v. Assuming that w is not a heavy i-vertex, we show that w

is i-balanced. If u is a heavy i-vertex, then clearly µi(C
(u)
w) ≥ ε/8k. Otherwise,

u is i-balanced, and thus, V \ {u} may be partitioned into two sets of connected

components, the i-weight of each of which is at least ε/8k. One of these sets does

not contain C
(w)
u . Thus, µi(C

(u)
w) ≥ ε/8k. Similarly, it follows that µi(C

(v)
w) ≥ ε/8k,

and hence w is i-balanced.

Proposition 3.1.5. For every k-coloring c of T that is ε-far from being convex,

there exist two different abundant colors i and j such that Bi ∩Bj 6= ∅.

Proof. Note first that there must be at least two abundant colors. Otherwise,

the total weight of the vertices of non-abundant colors is smaller than ε, and we

may obtain a convex coloring of T by recoloring all of them with the only abundant

color.

Suppose that the connected sets Bi are all disjoint. We show a convex k-coloring

c′ of T that is ε-close to c, which leads to a contradiction. Define c′ as follows. For

every vertex v and abundant color i, let d(v, Bi) denote the “walking” distance on

T between v and Bi, i.e. the length of the path from v to (the connected) Bi. Color

every vertex v with i such that d(v, Bi) is minimal, choosing the minimal index i in

case of a tie. In particular, we color all the vertices in Bi with i.

We claim that c′ is convex. First, consider two neighboring vertices u and w

such that c′(u) = i and c′(w) = j for i 6= j. We show that Bi ⊆ C
(u)
w . By

16

Lemma 3.1.4, Bi is connected. By the definition of c′, w /∈ Bi, and thus either

Bi ⊆ C
(w)
u or Bi ∈ C

(u)
w . Assume that Bi ⊆ C

(w)
u . Then d(u, Bi) = d(w,Bi) + 1

and d(u, Bj) ≤ d(w,Bj) + 1. But from the way u and w are colored by c′ we have

d(u, Bi)− d(u, Bj) < d(w, Bi)− d(w, Bj), a contradiction. Hence, Bi ⊆ C
(u)
w .

Now, assume that the set of vertices colored with i is not connected. Then there

exist vertices u and v (by taking them as the endpoints of the shortest forbidden

subpath) such that c′(u) = c′(v) = i and c′(w1), c
′(w2) 6= i, where w1 is the neighbor

of u on the path between u and v and w2 is the neighbor of v on the path between

u and v (w1 could be equal to w2). By the above, we have Bi ⊆ C
(u)
w1 and Bi ⊆ C

(v)
w2 ,

a contradiction.

We now show that c′ is ε-close to c. Consider a vertex w whose color has been

changed from one abundant color i into another (abundant) color j. Surely w /∈ Bi.

Furthermore, either Bj is on the path between Bi and w or w is on the path between

Bi and Bj. Consider the edge (u, v) on the path between Bi and Bj where u ∈ Bi and

v /∈ Bi. We call (u, v) the ij-bridge. Then w ∈ C
(v)
u . Now, let (u, v) be the ij-bridge

where i and j are some two distinct abundant colors. Suppose that µi(C
(v)
u) ≥ ε/4k.

By the definition of Bi, v is not a heavy i-vertex, and thus µi(C
(v)
u \ {v}) > ε/8k.

Since v is not i-balanced, we have µi(C
(u)
v) < ε/8k, but this is impossible, as u is

i-balanced or heavy. We thus conclude that µi(C
(v)
u) < ε/4k for every ij-bridge

(u, v).

Let T ′ be the tree created from T by contracting every set Bi into a single vertex

and removing all vertices which do not belong to a path between two Bi’s. Let Di

be the degree of Bi in T ′. Clearly, for every abundant color i, Di is the number of ij-

bridges. Assume, without loss of generality, that the abundant colors are numbered

i = 1, . . . , ` for ` ≤ k.

Claim 3.1.6.
∑`

i=i Di ≤ 2(`− 1) ≤ 2(k − 1).

Proof. By the definition of T ′, all its leaves are Bi’s. We now prove the claim

by induction on `. For ` = 1, T ′ consists of a single Bi, and the claim is trivially

true. Assume that the claim is true for every `′ < ` where ` > 2. Now remove one

of the leaves of T ′. If the resulting tree has a new leaf which is not a Bi, remove it,

and repeat this operation until we get a tree, T ′′, whose leaves are all Bi’s. By the

induction hypothesis, the sum of the degrees of Bi’s in T ′′ is at most 2(`− 2). Now,

in creating T ′′ from T ′ we have removed one Bi of degree 1 and possibly, reduced

the degree of another Bi by 1 (as after removing an edge adjacent to a Bi we stop

17

removing leaves). Thus,
∑`

i=i Di ≤ 2(`− 2) + 2 = 2(`− 1).

From the discussion above, it follows that the total weight of recolored vertices

among those whose original color was abundant is less than
∑`

i=i Di(ε/4k) ≤ 2(k−
1)(ε/4k) < ε

2
. As non-abundant colors are of weight smaller than ε/2k each, their

total weight is smaller than ε/2. Thus, c′ is ε-close to c.

Proof of Theorem 3.1.2. We have shown that for every k-coloring c that is ε-far

from being convex, there exist i, j and a vertex w such that w ∈ Bi ∩ Bj. Clearly

w must be i-balanced or j-balanced or both. Suppose that w is not balanced with

respect to one of the colors, say i. Then w must be a heavy i-vertex and j-balanced.

In such a case µ(w) ≥ ε/8k and there exist two disjoint sets W j
1 , W j

2 ⊆ Vj, each of

weight at least ε/8k, such that every path between a pair of vertices v1 ∈ W j
1 and

v2 ∈ W j
2 passes through w. Hence, if the sample X contains w and at least one vertex

from each of the sets W j
1 and W j

2 , then Algorithm 3.1.1 rejects the input in Step

2. Now, the probability for any of the sets W j
1 and W j

2 or of w to not intersect the

sample set X, is at most (1− ε/8k)
8k ln 12

ε . Thus, by the union bound, the algorithm

will fail with probability at most 3(1− ε/8k)
8k ln 12

ε < 3 exp(− ln 12) = 1/4.

Otherwise, if w is both i-balanced and j-balanced, then there exist two disjoint

sets W i
1, W

i
2 ⊆ Vi, each of weight at least ε/8k, and two disjoint sets W j

1 , W j
2 ⊆ Vj,

each of weight at least ε/8k, where every path between a pair of vertices u1 ∈ W i
1

and u2 ∈ W i
2 passes through w and every path between a pair of vertices v1 ∈ W j

1

and v2 ∈ W j
2 passes through w. Hence, if the sample X contains at least one vertex

from each of the sets W i
1, W

i
2, W

j
1 , W j

2 , Algorithm 3.1.1 rejects the input in Step

3. The probability for any given set of the above to not intersect X is at most

(1− ε/8k)
8k ln 12

ε . Thus, by the union bound, the algorithm will fail with probability

at most 4(1− ε/8k)8k ln 12/ε < 4 exp(− ln 12) = 1/3.

3.1.1 Implementing the computation step in Algorithm

3.1.1

We now specify a procedure implementing Steps 2 and 3 of Algorithm 3.1.1 in time

O(n), where the constants are independent of k and ε. Later we show how this

procedure can be executed in time Õ(|X|) = Õ(k/ε) if we allow a preprocessing

stage of time O(n). For every color i ∈ [k], let qi be the number of vertices of color

i in the sample X. Clearly, the qi’s can be computed in time O(|X|). Next, we

arbitrarily select a root r for T and obtain a topological ordering of the vertices

18

using a Depth First Search from r, which can be done in time O(n) (see e.g. [35]).

We now consider the nodes of T in reverse topological order. This can be viewed as

“trimming” leaves from the tree one by one. For each vertex v we hold a variable

m(v), which can receive either the value “null” or the value of a color. Initially, if

v ∈ X then m(v) holds its color, and if v /∈ X then m(v) is null. m(v) will receive

the value i if and only if i is the only color for which X contains i-vertices both

inside and outside the subtree rooted in v. If there is more than one such color, we

deduce that a forbidden subpath exists and reject. In addition, we assign for every

vertex v a variable a(v) which will be 0 if m(v) is null, and otherwise will hold the

number of vertices of color m(v) in the subtree rooted in v.

Procedure 3.1.7. For every v in reverse topological order, do:

• If v ∈ X then set a(v) = 1; otherwise set a(v) = 0.

• If v ∈ X then set m(v) = c(v); otherwise set m(v) to be null.

• For every child u of v such that m(u) is not null:

1. If m(v) is not null and m(v) 6= m(u) then reject the input and terminate.

2. Otherwise, set m(v) to m(u) and a(v) to a(v) + a(u).

• If m(v) is not null and a(v) = qm(v) then set m(v) to be null and a(v) = 0.

If the algorithm did not reject after going over all vertices, then accept.

Since for every vertex v the running time is proportional to the number of its

children, the total running time is O(n). We now prove that Procedure 3.1.7 imple-

ments Steps 2 and 3 of Algorithm 3.1 correctly.

Lemma 3.1.8. For every vertex v the following holds:

1. If Procedure 3.1.7 rejects in the iteration of v, then v is a middle vertex of a

forbidden subpath, where if v ∈ X then the forbidden subpath includes v as its

middle vertex, and, otherwise, there exist vertices a1, a2, b1, b2 ∈ X such that

c(a1) = c(a2) 6= c(b1) = c(b2) and v belongs to the path between a1 and a2 as

well as to the path between b1 and b2.

2. If Procedure 3.1.7 completes the iteration of v without rejecting it, then v is

not a middle vertex of a forbidden path as above.

19

3. If the processing of v is completed, then, in its end, m(v) = i if and only if X

includes i-vertices both inside and outside the subtree rooted in v. In such a

case, a(v) is equal to the number of i-vertices of X in the subtree rooted in v.

If m(v) is null then a(v) = 0.

Proof. The claim is easily proved for the case where v is a leaf. Let v be a vertex

and assume the correctness of the claim for all the children of v.

1. For the proof of the first part, notice that if v ∈ X, then the procedure

rejects if and only if there exists a child u of v such that m(u) is not null

and m(u) 6= c(v). By Part 3 of the induction hypothesis, this implies that

X includes m(u)-colored vertices both inside and outside the subtree rooted

in u. Thus, v is a middle vertex of a forbidden subpath of X. If v /∈ X,

then the procedure rejects if and only if there exist children u1, u2 of v such

that m(u1) and m(u2) are both not null with m(u1) 6= m(u2). By Part 3 of

the induction hypothesis, this implies that there exist a1, a2 ∈ X such that

c(a1) = c(a2) = m(u1), where a1 is a descendant of u1 and a2 is not. Similarly,

there exist b1, b2 ∈ X such that c(b1) = c(b2) = m(u2), where b1 is a descendant

of u2 and b2 is not. Clearly, v belongs both to the path between a1 and a2 and

to the path between b1 and b2.

2. Suppose that v is a middle vertex in a forbidden subpath in X. Then there

exist two vertices a, b ∈ X such that c(a) = c(b) 6= c(v) and v is on a simple

path between a and b. It must be the case that at least one of a and b, say a, is

a descendant of v. Therefore, unless the algorithm has already rejected before

reaching v, for the child u of v which is an ancestor of a, we have m(u) = c(a)

by Part 3 of the induction hypothesis (note that b cannot be a descendant of

u so qm(u) > a(u)). However, as m(v) is set to c(v), we are ensured that the

procedure will reject when the child u is examined (if not earlier). Similarly,

suppose that v /∈ X and that there exist vertices a1, a2, b1, b2 ∈ X such that

c(a1) = c(a2) 6= c(b1) = c(b2) and v belongs to the path between a1 and a2

as well as to the path between b1 and b2. Then at least one of a1 and a2

and at least one of b1 and b2 are descendants of v, and therefore, v has two

children u1 and u2 such that m(u1) 6= m(u2) (noting that qm(u1) > a(u1) and

qm(u2) > a(u2)). One can now see that the procedure will reject in the iteration

of v.

20

3. If m(v) is null after examining all the children of v (before checking whether

av = qm(v)), then v /∈ X and m(u) is null for every child u of v. By the

induction hypothesis, there exists no color i such that X contains i-vertices

both inside and outside subtrees rooted in v’s children. As v /∈ X, it follows

that there is no color i such that X contains i-vertices both inside and outside

the subtree rooted in v. Therefore, m(v) and a(v) correctly attain their initial

values. If after examining v’s children we have m(v) = i for some color i, then

m(u) = i for every child u of v such that m(u) is not null, and if v ∈ X then

c(v) = i. Thus one can see that after examining v’s children, a(v) correctly

holds the number of i-vertices in X in the subtree rooted in v. In that case,

a(v) = qi if and only if there are no i-vertices in X outside the subtree rooted

in v, and so the last step in the iteration provides the correct value for m(v).

From the lemma above, it follows that Procedure 3.1.7 is correct, as it rejects

any sample X containing or implying a forbidden subpath, and accepts otherwise.

Note that Procedure 3.1.7 performs significant processing only in nodes which

are in X or are Least Common Ancestors (LCA’s) of two or more members of X.

Other nodes are just assumed to be colored as their closest descendants. This gives

rise to the possibility of running the procedure over a set which includes X and the

least common ancestors of vertices in X, instead of over the entire set V of vertices.

Let X̂ be the union of X and the set of all vertices w such that w = LCA(u, v) for

some u, v ∈ X.

Observation 3.1.9. X̂ is closed under the LCA operation. That is, for every

u, v ∈ X̂, LCA(u, v) ∈ X̂. 2

Consider the directed tree TX = (X̂, Ê), with (u, v) ∈ Ê if and only if v is the

uppermost proper descendant of u in X̂ with respect to the directed T . From the

discussion above, it is enough to use TX instead of T in the procedure defined earlier.

We will build TX using an algorithm which computes the LCA of two nodes in a

tree in constant time, after a preprocessing stage of time O(n) (see [32], [48]). After

yielding the set X, we build the tree TX using the following procedure.

Procedure 3.1.10.

1. Sort the vertices in X according to their preorder indexes, i.e., their indexes in

a particular DFS traversal of T , computed as part of the preprocessing stage.

21

Let us denote the vertices of X as u1, u2, . . . , u|X| according to this order. For

i = 1, . . . , |X| − 1 we let zi = LCA(ui, ui+1).

2. Compute Y = X ∪ {zi | i = 1, . . . , |X| − 1} using the constant time LCA

algorithm. We shall later prove that Y = X̂.

3. Sort the vertices in Y according to their preorder indexes. Denote the vertices

of Y according to this order by v1, v2, . . . , v|Y |. Set v1 as the root of TX .

4. For every j = 1, . . . , |Y | − 1 do:

• Compute LCA(vj, vj+1).

• If LCA(vj, vj+1) = vj (that is, vj is an ancestor of vj+1) then add vj+1 to

TX as the rightmost child of vj.

• Otherwise, search in TX upwards among vj’s proper ancestors, until dis-

covering one that is an ancestor of vj+1 and add vj+1 as its rightmost

child.

As running Procedure 3.1.7 on TX would require time O(|X̂|), the next lemma

proves that the total running time in this case is Õ(|X|).

Lemma 3.1.11. Procedure 3.1.10 computes the tree TX in time Õ(|X|). Further-

more, |X̂| ≤ 2|X|.

Proof. We show that Y = X̂. Specifically, we consider the set Xk = {u1, . . . , uk}
and show that X̂k = Xk∪{zi | i = 1, . . . , k−1} for every k = 1, . . . , |X|−1. The claim

is trivial for k = 1. Assuming that for a specific k we have X̂k−1 = Xk−1 ∪ {zi | i =

1, . . . , k− 2}, we now consider Xk ∪ {zi | i = 1, . . . , k− 1} = X̂k−1 ∪ {uk, zk−1}. The

claim is proved by observing that for every i = 1, . . . , k − 1, if LCA(ui, uk) 6= zk−1

then LCA(ui, uk) = LCA(ui, uk−1) ∈ X̂k−1.

Clearly, |X̂| ≤ 2|X|, by the way we have built X̂. To complete the proof of

the lemma, we show that the total running time of all the iterations of Step 4 in

Procedure 3.1.10 is O(|X̂|) = O(|X|). Now, for a certain vertex vj+1, the running

time is proportional to the number of ancestors being examined. However, notice

that once a vertex w has been found not to be an ancestor of a certain vj+1, it will

not be examined anymore, as vj+1 will be attached as a child of a proper ancestor

of w, and the remaining examinations will be done only on its ancestors. Therefore,

the total number of ancestor examinations is O(|X|), and hence, this is the total

running time of Procedure 3.1.10.

22

3.1.2 Testing convexity with constraints

Given a graph G = (V, E), a set D ⊆ V of “constraints”, a weight function µ :

V \D → R, and a k-coloring c : V → [k], we say that c is ε-close to convexity under

D if there exists a convex k-coloring c′ : V → [k] which agrees with c on the values

of the vertices in D and whose restriction to V \D is ε-close to that of c. If c is not

ε-close to convexity under D, then we say that c is ε-far from convexity under D.

We now show that for a domain tree T = (V, E), it is enough to test for convexity

under a set of constraints D by simply adding D to the query set and then searching

for a forbidden subpath as in Algorithm 3.1.1.

Algorithm 3.1.12. Identical to Algorithm 3.1.1, except that in the end of Step 1

we also query all the constraint vertices in D.

Note that Algorithm 3.1.12 still follows the common definition of being

distribution-free.

Proposition 3.1.13. Algorithm 3.1.12 is a 1-sided ε-test for convexity of k-

colorings of trees under a set of constraints D. The query complexity of the test

is O(k/ε + |D|) and the time complexity is O(n). This can be implemented in time

Õ((k/ε + |D|)) using a preprocessing stage of O(n).

Proof. Clearly, the computational complexity corresponds to that of Algorithm

3.1.1 (see Section 3.1.1). If we use preprocessing, the complexity now depends on

the size of the query set plus the constraint set, whereas, without preprocessing,

the complexity depends only on the number of vertices in the tree. Hence, the

computational complexity demands are satisfied. Clearly, Algorithm 3.1.12 always

accepts a convex k-coloring. We now show that every k-coloring which is ε-far from

convexity under D is rejected by the algorithm with probability at least 2/3.

Define the sets Bi of i-balanced vertices and heavy i-vertices as in the proof of

Theorem 3.1.2. Note that the weight function µ is defined only on V \ D. We

have seen that for every i-balanced vertex w, with high probability we sample two

i-vertices u and v such that w is on the path between u and v. Therefore, if the Bi’s

are not disjoint, then Algorithm 3.1.1 rejects with high probability, as shown in its

proof of correctness. In addition, if there exists an i-vertex w ∈ D such that w ∈ Bj

for i 6= j, then, clearly, with high probability, Algorithm 3.1.1 finds a forbidden

subpath and rejects.

23

Assume now that the Bi’s are disjoint, and that every constraint vertex w ∈
D∩Bi is an i-vertex. Consider the tree T ′ created from T by contracting every set Bi

into a single vertex and removing all vertices which do not belong to a path between

Bi’s and/or constraint vertices. We refer to the Bi’s and the constraint vertices

as special vertices in T ′. Suppose that T ′ contains either (a) a forbidden subpath

comprised of special vertices; or (b) a “critical” vertex w and special vertices u1,

u2, v1, v2 such that c(u1) = c(u2), c(v1) = c(v2) and w is both on the path between

u1 and u2 and on the path between v1 and v2. One can prove that Algorithm 3.1.1

rejects with probability at least 2/3 in either case, using the same techniques as in

the proof of Theorem 3.1.2. Note that the constraint vertices are sampled by the

algorithm with probability 1.

On the other hand, suppose that T ′ does not contain a forbidden subpath of

special vertices or a critical vertex as above. Then we may enlarge the Bi’s by

adding to every Bi all the i-colored constraint vertices and the vertices on the paths

to them. For constraint vertices colored with a non-abundant color i, we create a

new set Bi containing all the i-colored constraint vertices and the paths between

them. We now have at most one set Bi for every color i, and all the sets are disjoint.

Thus, we can define a convex coloring c′ of T in the same way as was done in the

proof of Proposition 3.1.5.

To prove that the restriction of c′ to V \D is ε-close to that of c, we again use

the fact that for every Bi, we have only recolored i-vertices which are in C
(v)
u , where

(u, v) is an ij-bridge (as defined in the proof of Proposition 3.1.5). For abundant

colors i, we have shown that for an ij-bridge (u, v) we have µi(C
(v)
u) < ε/4k. Note

that in the proof we have only used the fact that each Bi contains all the i-balanced

vertices and the heavy i-vertices, and therefore we may also apply it here, regardless

of whether j is an abundant color or not. Hence, we obtain the same upper bounds

for the weight of recolored vertices of both abundant and non abundant colors, and

thus, c′ is ε-close to c on V \D. We conclude that if c is ε-far from convexity under

D then Algorithm 3.1.1 rejects with probability at least 2/3.

3.2 A lower bound for testing convexity on trees

Theorem 3.2.1. For every 0 < ε < 1/8, every (adaptive) ε-test for convexity of

k-colorings of trees must use more than
√

3 (k−1)
64ε

queries in the worst case. This is

specifically true for the case where T is a path and µ is a uniform distribution.

24

Proof. Let T be a path of length n. According to Yao’s theorem [53], it is enough

to provide a distribution of input colorings, such that any deterministic algorithm

whose inputs are chosen according to that distribution and uses q ≤
√

3(k−1)
64ε

queries

will fail to give the correct answer with probability larger than 1
3
. More precisely,

we will present two distributions of inputs. DP will be a distribution of convex k-

colorings of T and DN will be a distribution of k-colorings of T which are ε-far from

being convex. We will prove that any deterministic algorithm using q ≤
√

3(k−1)
64ε

queries has an error probability larger than 1
3

when trying to distinguish between

DP and DN .

Assume that k divides n. In both distributions we divide T into k intervals of

size n/k each, such that all the vertices in each interval are colored with the same

color. Without loss of generality, we can assume that the testing algorithm queries

at most one vertex from every interval.

Definition 3.2.2. Let DP be the distribution of k-colorings defined by uniformly

choosing a permutation of all k colors and coloring the intervals accordingly.

Clearly, all colorings in DP are convex. To define the distribution DN of ε-far

colorings, we use an auxiliary distribution D̃N over colorings which are ε-far from

being convex with high probability.

Definition 3.2.3. Let D̃N be the distribution of k-colorings selected by uniformly

choosing (1− 8ε)k colors to appear in one interval and 4εk colors to appear in two

intervals. The placements of the colors are then chosen uniformly at random.

Definition 3.2.4. Let DN be the conditional distribution of D̃N on the event that

the coloring chosen by D̃N is ε-far from being convex.

The main idea of the proof is based on the birthday problem. A test can distin-

guish DP from DN only if at least one of the query sets includes some color more

than once. We show that a test that uses q queries is likely to fail in discovering a

collision in a uniformly sampled set of colors, and thus cannot distinguish DP from

DN .

Consider a (possibly adaptive) deterministic algorithm A that uses q queries.

For any k-coloring c of T , let PrP [c] be the probability of c according to DP , and

let PrN [c] be the probability of c according to DN . Without loss of generality, every

deterministic algorithm with q queries takes the shape of a decision tree, which is a

complete balanced k-ary tree of height q, where every non-leaf node corresponds to

25

a query location with its children being labelled according to the possible outcomes

of the query. Every leaf node corresponds to an answer sequence g ∈ [k]q with its

acceptance or rejection decision. For a k-coloring c, we denote the answer sequence

of our algorithm by A(c). For any answer sequence g ∈ [k]q, let PrA,P [g] be the

probability that the answer sequence is g for a coloring selected from DP . Formally,

PrA,P [g]
def
=
∑

c:A(c)=g PrP [c]. Define PrA,N [g] similarly as the probability that the an-

swer sequence is g for a coloring selected from DN , or PrA,N [g]
def
=
∑

c:A(c)=g PrN [c].

Now let aP denote the probability that the algorithm accepts an input chosen accord-

ing to DP , and let aN be the probability that the algorithm accepts an input chosen

according to DN . To prove the theorem, it is enough to show that |aP − aN | < 1
3
.

See [16] for details.

Lemma 3.2.5. A coloring chosen from D̃N is ε-far from being convex with proba-

bility larger than 3
4
.

Proof. For the analysis, we tag differently each appearance of colors that appear

twice in a coloring chosen from D̃N . The total number of possible colorings in this

distribution is k!. In colorings that are ε-close to convexity, however, at least 2εk

colors that appear twice must appear on adjacent intervals. Otherwise, there are

more than 2εk pairs of intervals of the same color which are separated by interval(s)

of different colors. Thus, at least one interval must be recolored for every such pair

to achieve a convex coloring. It is easy to see that, in the best case, changing the

color of an interval from i to j can solve the problem for both colors i and j, but not

for any other color ` 6= i, j. Hence, if there are more than 2εk colors that appear

each on two non-adjacent intervals, then the coloring is ε-far from being convex.

The number of colorings in D̃N that are ε-close to convexity is thus at most(
4εk

2εk

)
22εk((1− 2ε)k)! = exp(k)((1− 2ε)k)!

for choosing the 2εk colors which appear consecutively among those who appear

twice, choosing the order of the intervals in every such pair, and then choosing the

order of all intervals, where each consecutive pair is now counted as a single interval.

Hence the probability of a coloring in D̃N to be ε-close to convexity is at most

exp(k)((1− 2ε)k)!

k!
≤ exp(k)

((1− 2ε)k)2εk
,

which is smaller than 1
4

for a sufficiently large k.

26

Let Pr eN [c] denote the probability of a k-coloring c when chosen from the distri-

bution D̃N and let PrA, eN [g]
def
=
∑

c:A(c)=g Pr eN [c]. We complete the proof by showing

that the distributions DP and DN satisfy the required condition |aP −aN | < 1
3
. The

main idea is to show that with high probability, an answer sequence of size q will

not contain two appearances of the same color for both distributions, and in such a

case, the algorithm will be unable to distinguish between them. We note that the

proof of the farness of inputs drawn according to D̃N also holds for quasi-convexity,

and so the proof here provides a lower bound for testing quasi-convexity as well.

Observation 3.2.6. For any answer sequence g we have

PrA,N [g] <
4

3
PrA, eN [g].

Proof. Let C be the set of all the colorings which are chosen with positive

probability according to D eN . Let Cε be the subset of C containing colorings which

are ε-far from being convex.

By definition,

PrA,N [g] =
∑

c∈Cε:A(c)=g

Pr N [c].

Since D eN is a uniform distribution over C and DN is a uniform distribution over

Cε, and, by Lemma 3.2.5, |Cε| > 3
4
|C|, for every coloring c ∈ Cε we have PrN [c] <

4
3
Pr eN [c]. Therefore,

PrA,N [g] =
∑

c∈Cε:A(c)=g

Pr N [c] <
4

3

∑
c∈Cε:c(A)=g

Pr eN [c] ≤ 4

3
PrA, eN [g].

Let g ∈ [k]q be an answer sequence. We say that g is colorful if there exists no

color that appears twice in g. Otherwise, we say that g is degenerate.

Lemma 3.2.7. Let αN be the probability that the answer sequence is degenerate when

the input is chosen from DN . In other words, let αN =
∑

g is degenerate PrA,N [g].

Then αN < 1
4
.

Proof. We first compute α eN , namely, the probability that the answer sequence is

degenerate when the input is chosen from D̃N . From symmetry arguments, as long

as the algorithm has not queried two segments of the same color, we may perceive the

27

querying process as choosing elements, one by one, without repetitions, from the set

of colors (some of which appear twice). Therefore, the probability that at least one

color is queried twice within q queries is no larger than the probability of choosing

a color twice when the set of q locations is predetermined. Thus, the number of

possibilities in which at least one color appears twice in the answer sequence is at

most 4εkq(q − 1)
(

k−2
q−2

)
(q − 2)!, as there are 4εk colors with two segments, and after

choosing such a color and choosing its positions in the answer sequence, we are left

to choose the other (q − 2) positions among (k − 2) other segments. We have that

the probability of having a color appearing twice in the answer sequence is at most

4εkq(q − 1)
(

k−2
q−2

)
(q − 2)!(

k
q

)
q!

=
4εq(q − 1)

k − 1
.

As q(q − 1) < q2 ≤ 3(k−1)
64ε

, we obtain α eN < 3
16

.

From Observation 3.2.6, for any answer sequence g we have PrA,N [g] <
4
3
PrA, eN [g]. Thus, by summing for all degenerate answer sequences, we have that

αN < 4
3
α eN < 1

4
.

Lemma 3.2.8. For any colorful answer sequence g ∈ [k]q,

PrA,N [g] ≤ PrA,P [g] <
4

3
PrA,N [g].

Proof. From symmetry arguments, the probabilities of all colorful answer se-

quences are equal when the input is chosen from DN , as well as when the input is

chosen from DP (for which the answer sequence is always colorful). Thus

PrA,P [g] = PrA,N [g| the answer sequence is colorful] =
PrA,N [g]

1− αN

.

Hence the first inequality in the statement of the lemma is trivially correct, and the

second is derived from Lemma 3.2.7.

We now complete the proof of Theorem 3.2.1 by showing that |aP − aN | < 1
3
.

Let ac
N be the probability that an input from DN is accepted based on a colorful

answer sequence. Let ad
N be the probability that an input from DN is accepted while

a degenerate answer sequence was obtained. Thus aN = ac
N + ad

N . From Lemma

3.2.8, 0 ≤ PrA,P [g]−PrA,N [g] < 1
3
PrA,N [g] for any colorful answer sequence. Thus,

0 ≤ aP − ac
N < 1

3
. In addition, from Lemma 3.2.7, 0 ≤ ad

N ≤ αN < 1
4
. Hence

28

|aP − aN | < 1
3
.

3.3 A convexity test for paths

We now present a standard (non distribution-free) convexity test for the special

case where the tree T = (V, E) is a path, whose performance is better than that

of Algorithm 3.1.1 when the number of colors k is large enough with respect to

1/ε3. We note that a colored path is essentially a string. The convexity property on

strings is a special case of a regular language, and thus is known to be testable by

Alon et. al [3]. However, the query complexity obtained there, though polynomial

in 1
ε
, is exponential in the size of the DFA accepting the language, and in the case

of the convexity of a string over k colors, it can be seen that the size of the DFA

must be exponential in k. We provide a more efficient algorithm for this property.

Actually, by the lower bound that we have established in Section 3.2, our algorithm

is optimal up to a power of 1
ε
.

We view one of the two leaves of T , denoted vL, as the “leftmost” vertex and

the other one, denoted vR, as the “rightmost” vertex, thereby defining a linear left-

to-right order on V . Henceforth, for every v1, v2 ∈ V , the closed interval [v1, v2]

denotes the subset of V which contains v1, v2 and all the vertices which are right of

v1 and left of v2. The open interval (v1, v2) denotes the set of all the vertices which

are right of v1 and left of v2.

Algorithm 3.3.1.

1. Query q ≥ 1280
√

k
ε2 vertices, where every vertex is chosen independently accord-

ing to the weight function µ. Let v1, . . . , vr be the vertices queried, numbered

from left to right (for some r ≤ q).

2. For every 1 ≤ i < r, if there are vertices in the open interval (vi, vi+1), query

z ≥ 5
ε
ln 12 vertices in (vi, vi+1), where every vertex is chosen independently

according to µ conditioned on this interval.

3. Reject if and only if the resulting sample contains a forbidden subpath.

Note that Algorithm 3.3.1 is non-adaptive, since the distribution of the queries

in Step 2 depends only on the positions of the queries of Step 1, rather than their

answers. On the other hand, note that Algorithm 3.3.1 does not generate directly to

29

a distribution-free test, as the samples in Step 2 are performed in specific intervals,

whose total weight might be arbitrarily small.

Theorem 3.3.2. For every ε > 0, Algorithm 3.3.1 is a 1-sided ε-test for convex-

ity of k-colorings of paths, with query complexity O(
√

k/ε3). The additional time

complexity is Õ(
√

k/ε3) if the labels of the vertices in the path are sorted, and O(n)

otherwise.

The query complexity is clearly as stated. To implement Step 3, we scan the

vertices queried in Steps 1 and 2 from left to right while searching for a forbidden

path (sorting the sampled vertices would take us Õ(
√

k/ε3) time if the vertices in

the path are already sorted, and O(n) time otherwise; these bounds also apply to

sorting the vertices queried in Step 1 in order to compute the intervals sampled in

Step 2). Each time we arrive at the end of a segment of a certain color, we add it

to a list. A forbidden subpath exists in the sample if and only if we read a vertex

in a color already in the list. Thus the time complexity requirement is fulfilled.

Clearly, a convex coloring of T is accepted by the algorithm with probability 1,

as it does not contain any forbidden subpaths. Therefore, it remains to show that

every coloring which is ε-far from being convex is rejected with probability at least 2
3
.

For every color i such that µi(V) > 0, let li be the leftmost vertex such that

µi([vL, li]) ≥ εµi(V)/4. Let Li
def
= [vL, li] be called i’s left side. Equivalently, let ri be

the rightmost vertex such that µi([ri, vR]) ≥ εµi(V)/4. Let Ri = [ri, vR] be called i’s

right side. Note that li and ri are both i-vertices. We refer to the (possibly empty)

open interval (li, ri) as i’s middle. We say that i is bad if the non-i-weight of i’s

middle is at least εµi(V)/4. Otherwise, we say that i is good. Define i’s extended

middle to be the closed interval Mi
def
= [li, ri]. Note that due to the minimality of i’s

left side and right side, we have µi(Mi) > (1− ε/2)µi(V).

We say that a color i ∈ [k] is abundant if µi(V) ≥ ε/8k, and otherwise we say

that i is non-abundant. Let A ⊆ [k] be the set of all abundant colors, and let

NA = [k] \ A be the set of all non-abundant colors. Note that Σi∈NAµi(V) < ε/8.

We further denote the set of all abundant good colors with Agood and the set of all

abundant bad colors with Abad.

Lemma 3.3.3. If c is ε-far from being convex then
∑

i∈Abad
µi(V) ≥ ε

8
.

Proof. Assume on the contrary that
∑

i∈Abad
µi(V) < ε

8
. We define a convex

coloring c̃ of T in two phases. In Phase 1 we color all the vertices that belong to

30

some Mi for all the colors i which are abundant and good. We do so by examining

the li’s from left to right. For every i ∈ Agood we color with i all the vertices in

Mi that have not yet been colored in earlier stages. These vertices must belong to

one consecutive interval. Otherwise, there exists a color j such that Mj is contained

within Mi and is colored before Mi is. However, this is impossible, since we consider

the li’s from left to right and lj is to the right of li. Hence, by the end of Phase 1

we have a partial convex coloring defined on all the Mi’s of abundant good colors.

In Phase 2 we extend this partial convex coloring into a complete convex coloring,

by assigning to each uncolored segment one of the colors of its neighboring colored

segments.

We now show that c̃ is ε-close to c, which contradicts the assumption that c is

ε-far from being convex. By definition, for every good color i, the non-i-weight of

Mi is smaller than εµi(V)/4. Hence, the non-i-weight of every interval colored with

i in Phase 1 is smaller than εµi(V)/4, and thus the total weight of vertices colored

in Phase 1 differently than c is less than ε/4. On the other hand, since for every

good color i we have µi(Mi) > (1 − ε/2)µi(V), the total weight of vertices colored

in Phase 1 is ∑
i∈Agood

µ(Mi) ≥
∑

i∈Agood

µi(Mi) >
∑

i∈Agood

(1− ε/2)µi(V)

= (1− ε/2)

(
1−

∑
i∈Abad

µi(V)−
∑
i∈NA

µi(V)

)
≥ (1− ε/2)(1− ε/4) > 1− 3ε

4
.

Hence, the total weight of vertices colored in Phase 2 is smaller than 3ε/4. We thus

conclude that the distance between c and c̃ is smaller than ε.

Lemma 3.3.4. Suppose that c is ε-far from being convex. Then with probability

greater than 3
4
, there exists an abundant bad color i such that Step 1 of Algorithm

3.3.1 queries at least one i-vertex from each of i’s sides.

Proof. We first prove the claim for the case where k < 16. From Lemma 3.3.3

we have
∑

i∈Abad
µi(V) ≥ ε

8
> 0. Let i be a color in Abad. By the definition of Li, we

have µi(Li) ≥ εµi(V)/4, and since i is abundant, we have µi(Li) ≥ ε2/32k > ε2/512.

Thus, the probability of not choosing an i-vertex in Li in step 1 is smaller than

(
1− ε2

512

)1280
√

k/ε2

< exp

(
−1280

512

)
< 0.1.

31

Similarly, the probability of not choosing an i-vertex in Ri in Step 1 is smaller than

0.1. Therefore, the probability of not sampling an i-vertex from at least one of Li

and Ri is at most 0.2.

Suppose now that k ≥ 16. Consider the half-closed interval S = [0, 1)

of real numbers. Suppose that we partition S into half-closed vertex intervals

IvL
, . . . , IvR

of length µ(v) for each Iv according to the left to right order, that

is, IVL
= [0, µ(vL)), . . . , IvR

= [1 − µ(vR), 1). Note that uniformly selecting a point

x ∈ S and then choosing the vertex corresponding to the interval containing x is

equivalent to selecting a vertex in V according to the distribution µ. We henceforth

view the sample in Step 1 of the algorithm as a sample of points in S. We say that

a point x ∈ S is an i-point if x ∈ Iv for some i-vertex v.

Let τi be the minimum point in S such that µi([0, τi]) = εµi(V)/4, and denote

Li = [0, τi]. Let ηi be the maximum point in S such that µi([ηi, 1)) = εµi(V)/4,

and denote Ri = [ηi, 1). Clearly, Li and Ri are disjoint intervals. Moreover, note

that sampling a point in Li leads to selecting a vertex in Li and sampling a point

in Ri leads to selecting a vertex in Ri. We prove the lemma by showing that, with

probability at least 3/4, there exists a color i ∈ Abad such that the sample in Step

1 contains an i-point x ∈ Li and an i-point y ∈ Ri.

For every i ∈ Abad, we consider the color set Ii, created from the union of the

(parts of) vertex intervals of i-points in Li. Clearly, µ(Ii) = µi(Li) = εµi(V)/4.

We now define b64µi(Li)k
ε2 c disjoint subsets of Ii of measure ε2

64k
each, which we call

subcolor sets. Note that a subcolor set may intersect several vertex intervals, and

vice versa. However, this will not be a problem for us, as we are interested in the

sampling of points.

For the sake of the analysis, we partition the points sampled in Step 1 into

two disjoint sets, X1 and X2, where |X1| ≥ 256
√

k/ε2 and |X2| ≥ 1024
√

k/ε2.

We next prove that, with high probability, X1 contains samples from at least
√

k

distinct subcolor sets in Li. For all colors i ∈ Abad we have µi(Li) = ε
4
µi(V),

and since these colors are abundant, we have µi(Li) ≥ ε2

32k
. From Lemma 3.3.3

we have
∑

i∈Abad
µi(V) ≥ ε

8
, and thus

∑
i∈Abad

µi(Li) ≥ ε2

32
. Note that for every

i ∈ Abad, the part of the color set Ii that is not contained within subcolor sets is

of measure smaller than ε2

64k
. Hence, the total measure of subcolor sets is greater

than ε2

32
− k ε2

64k
= ε2

64
, and thus, the expected number of points in X1 that are within

subcolor sets (henceforth subcolor points) is greater than 4
√

k. By the Chernoff

bound, the probability that X1 contains less than 2
√

k subcolor points is smaller

32

than p1 = exp(−
√

k
2

) ≤ exp(−2) < 1/6.

Suppose that X1 contains at least 2
√

k subcolor points. Since all the subcolor

sets are of equal measure, the probability of containing a subcolor point in X1, given

that event, is equal for all subcolor sets. Let k̃ be the number of subcolor sets. Note

that the subcolor sets cover more than half of the measure of the Li’s, and therefore

k̃ >
∑

i∈Abad

µ(Li)/2

ε2/64k
=

32k

ε2

∑
i∈Abad

εµi(V)

4
≥ k,

where the last inequality follows from Lemma 3.3.3.

Now, given that X1 contains at least 2
√

k subcolor points, the probability that

these samples come from less than
√

k subcolor sets is at most

p2 =

(
k̃√
k

)(√
k

k̃

)2
√

k

≤

(
ek̃√
k

)√k(√
k

k̃

)2
√

k

=

(
e
√

k

k̃

)√k

.

As k̃ > k, we obtain that p2 <
(

e√
k

)√k

, which can be shown to be smaller than 1/4

for any k ≥ 16.

Suppose now that X1 contains samples from at least
√

k subcolor sets. Let C be

the set of colors i ∈ Abad for which X1 contains a sample in Li. Since the measure

of every subcolor set is ε2

64k
, we have Σi∈Cµi(Li) ≥ ε2

64
√

k
. By definition, it follows that

Σi∈Cµi(Ri) ≥ ε2

64
√

k
. Hence, the probability that X2 does not contain any i-point for

some i ∈ C is at most

p3 =

(
1− ε2

64
√

k

) 1024
√

k
ε2

< exp

(
− ε2

64
√

k

1024
√

k

ε2

)
= exp

(
−1024

64

)
< 10−6.

Summing the probabilities p1, p2, and p3, we obtain that the probability of not

sampling i-points x ∈ Li and y ∈ Ri for any bad abundant color is smaller then 1
4
.

Proof of Theorem 3.3.2. Assume that the input coloring c is ε-far from being

convex. According to Lemma 3.3.4, with probability greater than 3
4
, there exists a

bad abundant color i such that two i-vertices are queried in Step 1, belonging to

two different i-sides. Suppose that there exists such a bad abundant color i. Fix

two i-vertices which were queried from two different i-sides in Step 1, and call the

interval between them the special interval. Clearly, if a non-i-vertex in the special

33

interval is queried in Step 1, then the algorithm rejects. We hence assume that only

i-vertices, if any, are queried in the special interval in the Step 1. Note that the

special interval contains i’s middle, and thus its non-i-weight is at least εµi(V)/4

(as i is a bad color). Obviously, the i-weight of the special interval is at most µi(V).

Therefore, the relative weight of non-i vertices in the special interval is at least

ε/(4(1 + ε/4)) ≥ ε/5. It is easy to see that even if we have queried additional i-

vertices in the special interval in Step 1, then there still exists a pair of consecutive

i-vertices in the sample such that the relative weight of non-i-vertices between them

is at least ε/5. Since in Step 2 we query z ≥ 5
ε
ln 12 vertices between every pair

of consecutive vertices, the probability of not discovering a non-i-vertex in such an

interval is at most 1/12.

Combining all the above, we have that an ε-far coloring is accepted with proba-

bility smaller than 1/4 + 1/12 = 1/3.

34

Chapter 4

Variants of The Convexity

Property

Throughout the chapter, our domain is a fixed tree T = (V, E), and our input is

either a k-coloring or a quasi k-coloring, denoted by c in both cases. As in Chapter

3, for every color i, we define Vi to be the set of vertices v in V such that c(v) = i.

i-vertices, non-i-vertices,i-weight ,non-i-weight and the components C
(v)
u are defined

as in Chapter 3.

4.1 A quasi-convexity test for trees

Given a quasi k-coloring c : V → {0, 1, . . . , k} of the domain tree T , we say that

a vertex c ∈ V is colored if c(v) > 0. Otherwise, we say that v is uncolored. c is

said to be quasi-convex if Vi is connected for i = 1, . . . , k. Alternatively, vertices

u, w, v in T form a forbidden subpath if w is on the (simple) path between u and v,

c(u) = c(v) > 0 and c(w) 6= c(v). Clearly, c is quasi-convex if and only if it contains

no forbidden subpaths as defined above.

Algorithm 4.1.1.

1. Query d48k/εe vertices, where each vertex is independently chosen according

to the distribution defined by µ. Let X denote the sample.

2. If X includes a forbidden subpath, reject.

3. Otherwise, if there exists w ∈ V such that any value of c(w) implies a forbidden

subpath, reject. In other words, reject if there exist w ∈ V and u1, u2, v1, v2 ∈ X

35

such that c(u1), c(u2), c(v1), c(v2) > 0 and c(u1) = c(u2) 6= c(v1) = c(v2), where

w belongs both to the path between u1 and u2 and to the path between v1 and

v2.

4. Otherwise, repeat the following d16/εe times independently:

• Choose a vertex w according to the distribution defined by µ and query

it. If w is colored, do nothing.

• Otherwise, if w is uncolored, define a subtree T i
w for every color i such that

there are i-vertices in X, as follows. Let vi be the neighbor of w that is on

a path between w and an i-vertex in X (vi is unique, as X does not contain

a forbidden subpath). Now denote T i
w

def
= C

(w)
vi for every such vi. Query

dlog1/(1−ε/8) 8e vertices in each T i
w, where each vertex is independently

chosen according to the distribution defined by µ conditioned on T i
w.

5. If the union of X and vertices queried in Step 4 includes a forbidden subpath,

then reject. Otherwise, accept.

Theorem 4.1.2. For every ε > 0, Algorithm 4.1.1 is a 1-sided ε-test for quasi-

convexity of quasi k-colorings of trees, with query complexity O(k/ε2). The time

complexity of the test is O(kn/ε), and can be implemented in time Õ(k/ε2) with a

preprocessing stage of time O(n2).

Note that for ε small enough, we have log1/(1−ε/8) 8 < ln 8
ε/16

. Thus, it is easy to

see that the query complexity is as stated. In Section 4.1.1 we show how to detect

forbidden subpaths, as done in Steps 2,3 and 5 of the Algorithm, in time O(n), or

Õ(k/ε2) with a preprocessing stage of time O(n). In Step 4, a time of O(n) is used

for each subtree T i
w

def
= C

(w)
vi to compute the distribution µ conditioned on T i

w, using

a BFS traversal. We can reduce the running time by computing the conditioned

distributions for all subtrees C
(w)
vi at the preprocessing stage. This requires listing

the probabilities for every vertex relative to every subtree. Since every such tree is

defined by an edge in the tree T and one of its vertices, there are O(n) such subtrees,

and hence, a preprocessing time of O(n2) would be enough to compute and store all

the required distributions.

Clearly, if c is quasi-convex then it is always accepted by Algorithm 4.1.1, since it

does not contain any forbidden subpaths. Therefore, it remains to show that every

36

quasi k-coloring c that is ε-far from being quasi-convex is rejected with probability

at least 2
3
.

Here we say that a color i ∈ [k] is abundant if µ(Vi) ≥ ε/4k. For an abundant

color i, we say that a vertex u ∈ V is i-balanced if the set {C(v)
u |(u, v) ∈ E} may be

partitioned into two subsets, where the total i-weight of the union of each subset is

at least ε/16k. We say that a vertex v is heavy if µ(v) ≥ ε/16k.

For every abundant color i, we define the set Bi as the union of i-balanced

vertices and heavy i-vertices. Assume, without loss of generality, that the abundant

colors are numbered i = 1, . . . , `. The proof of the following lemma is identical to

the proofs of Lemma 3.1.3 and Lemma 3.1.4.

Lemma 4.1.3. Bi is non-empty and connected for every abundant color i.

Observation 4.1.4. If ` = 0 then c is ε-close to being quasi-convex.

Proof. Clearly, in such a case, the total weight of colored vertices is at most ε/4,

and hence we may obtain an ε/4-close quasi-convex coloring by setting all colored

vertices to be uncolored.

Suppose now that ` > 0 and the Bi’s are all disjoint. We say that a vertex v

is an outsider if it does not belong to any Bi or to a path between two Bi’s, and,

moreover, none of the vertices on the path between v and its closest Bi belongs to a

path between two Bi’s. For every abundant color i, let Mi be the union of Bi and of

all the outsider vertices whose closest Bj is Bi. Clearly, all the Mi’s are connected

and disjoint. The proof for the following lemma is based on ideas similar to those

used in the proof of Proposition 3.1.5.

Lemma 4.1.5.
∑`

i=1 µi(V \Mi) ≤ ε/4.

Proof. First note that if ` = 1 then for the only abundant color we have V \M1 =

∅, so the lemma is trivially true. We thus may assume that ` > 1. As in the proof of

Proposition 3.1.5, for every two distinct abundant colors i and j, let the ij-bridge be

the edge (u, v) on the path between Bi and Bj in which u ∈ Bi and v /∈ Bi (clearly,

v /∈ Mi). Observe that, for every abundant color i, the set V \Mi is the union of

the components C
(v)
u for all ij-bridges (u, v).

Suppose that µi(C
(v)
u) ≥ ε/8k for some abundant color i and some ij-bridge

(u, v). As v /∈ Bi, v is not a heavy i-vertex, and thus µi[C
(v)
u \ {v}] > ε/16k. Since v

is not i-balanced, we have µi[C
(u)
v] < ε/16k, but this is impossible, as u is i-balanced

or a heavy i-vertex. We conclude that µi(C
(v)
u) < ε/8k for every ij-bridge (u, v).

37

Now, let T ′ be the tree created from T by contracting every set Mi into a single

vertex. Let Di be the degree of Mi in T ′. Note that by the definition of T ′, all its

leaves are Mi’s. Clearly, for every abundant color i, Di is the number of ij-bridges.

Similarly to Claim 3.1.6, we have that

∑̀
i=i

Di ≤ 2(`− 1) ≤ 2(k − 1) < 2k.

From the discussion above,

∑̀
i=1

µi(V \Mi) =
∑̀
i=1

∑
(u, v) is an

ij − bridge

µi(C
(v)
u) <

∑̀
i=1

Di(ε/8k) <
ε

4
.

Let F be the rooted forest consisting of all outsider vertices, such that the root

of every tree is a vertex r adjacent to some Bi. We say that such a vertex r is

associated with i. We also say that i is the color associated with every descendant v

of such an r in F . An outsider vertex is said to be an i-satellite, for some abundant

color i, if it is an i-vertex associated with i. We call a vertex a satellite if it is an

i-satellite for some abundant color i.

F is said to be monotone if it contains only uncolored and satellite vertices, and

furthermore no uncolored vertex is an ancestor of a satellite vertex. If F can be

made monotone by changing the color of satellite and uncolored vertices of weight

at most ε/4, and any amount of other vertices in F , then we say that F is good.

Otherwise, we say that F is bad.

We call an uncolored vertex w in F good if µi(Tw) ≤ ε
8
µ(Tw), where Tw is the

subtree of F rooted in w and i is the abundant color associated with w. Otherwise,

we say that such an uncolored w is bad.

Lemma 4.1.6. If the total weight of bad vertices in F is at most ε/8, then F is

good.

Proof. The proof is very similar to the one presented in [18] for the test of

monotonicity over rooted trees. Define a monotone coloring of F as follows. Let U

be the set of all good uncolored vertices in F . Let Ur be the set of topmost vertices

in U . Set all the descendants of vertices in Ur to be uncolored, and color the rest

38

of the vertices in F with the color associated with them. Clearly, in the obtained

coloring, all the vertices in F are either uncolored or satellites, and no uncolored

vertex is an ancestor of a satellite vertex. Thus, F is monotone.

Now, the only uncolored vertices that we have colored are bad ones, whose weight

is at most ε/8. As for satellite vertices, we have only changed the color of ones within

subtrees of good uncolored vertices whose roots are in Ur. Since these subtrees are

disjoint, and the weight of satellite vertices is a fraction of at most ε/8 of the weight

of any good subtree, the total weight of satellite vertices thus changed is at most ε/8.

Hence, we have changed a weight of at most ε/4 uncolored and satellite vertices,

and therefore F is good.

Lemma 4.1.7. If ` > 0 and all of the following conditions apply:

(a) The Bi’s are all disjoint;

(b) The total weight of uncolored vertices inside Bi’s is at most ε/4;

(c) F is good;

then the input coloring c is ε-close to being quasi-convex.

Proof. We show that in such a case, there exists a quasi-convex coloring c′ of

T that is ε-close to c. Define c′ as follows. For every abundant color i, color all

the vertices of Bi with i. Then choose a monotone coloring for F which changes

a minimum weight of uncolored and satellite vertices. Finally, set the rest of the

vertices to be uncolored. One can see that c′ is quasi-convex.

We now show that c′ is ε-close to c. First, consider vertices of abundant colors,

excluding satellites, whose color has been changed. From Lemma 4.1.5, the total

weight of such vertices is at most ε/4. Now consider uncolored vertices inside Bi’s.

From Condition (b), the total weight of such vertices is at most ε/4. As for satellites

and uncolored vertices in F , from Condition (c), the total weight of these is at most

ε/4. Finally, for non-abundant colors, since they are of weight smaller than ε/4k

each, their total weight is smaller than ε/4. We conclude that c′ is ε-close to c.

To complete the proof of Theorem 4.1.2, we need the next three lemmas.

Lemma 4.1.8. If ` > 0 and the Bi’s are not disjoint, then the input is rejected by

Step 2 or Step 3 of Algorithm 4.1.1 with probability at least 2/3.

39

Proof. The proof is similar to the main proof of Theorem 3.1.2. Let w be a

vertex such that w ∈ Bi ∩Bj for i 6= j. Clearly, w must be i-balanced or j-balanced

or both. Suppose that w is not balanced with respect to one of the colors, say, i.

Then w must be a heavy i-vertex and j-balanced. In such a case µ(w) ≥ ε/16k and

there exist two disjoint sets W j
1 , W j

2 ⊆ Vj, each of weight at least ε/16k, such that

every path between vertices v1 ∈ W j
1 and v2 ∈ W j

2 passes through w. Hence, if the

sample X contains w and at least one vertex from each of the sets W j
1 and W j

2 , then

Algorithm 4.1.1 rejects the input in Step 2. Now, the probability for each of W j
1 ,

W j
2 , or w to not intersect X is at most (1 − ε/16k)

48k
ε < exp(−3). By the union

bound, the algorithm will fail with probability at most 3 exp(−3) ≤ 1/4.

Otherwise, if w is both i-balanced and j-balanced, then there exist two disjoint

sets W i
1, W

i
2 ⊆ Vi, each of weight at least ε/16k, and two disjoint sets W j

1 , W j
2 ⊆ Vj,

each of weight at least ε/16k, where every path between vertices u1 ∈ W i
1 and

u2 ∈ W i
2 passes through w and every path between vertices v1 ∈ W j

1 and v2 ∈ W j
2

passes through w. Therefore, if the sample X contains at least one vertex from

each of the sets W i
1, W

i
2, W

j
1 , W j

2 , then Algorithm 4.1.1 rejects the input in Step 3.

Now, the probability for any specific set of the above to not intersect X is at most

(1 − ε/16k)
48k
ε = exp(−3). Thus, by the union bound, the algorithm will fail with

probability at most 4 exp(−3) ≤ 1/3.

Lemma 4.1.9. If ` > 0 and the total weight of uncolored vertices inside Bi’s is larger

than ε/4, then the input is rejected by Step 2 of Algorithm 4.1.1 with probability at

least 2/3.

Proof. For the analysis, we partition X into two sets, a set X1 with 16k/ε

vertices, and a set X2 with 32k/ε vertices. Note that X1 and X2 are independently

random.

The probability that X1 does not contain any uncolored vertex inside some Bi is

at most (1− ε/4)16k/ε < exp(−4). Suppose that X1 contains an uncolored vertex w

inside a Bi. There exist two disjoint sets V1, V2 ⊆ Vi, each of weight at least ε/16k,

such that every path between two vertices v1 ∈ V1 and v2 ∈ V2 passes through w. It

is enough to sample one vertex from each of these sets in order to reject the input

in Step 2. The probability that at least one of these sets does not intersect X2 is

at most 2(1− ε/16k)
32k
ε < 2 exp(−2). Thus, by the union bound, the algorithm will

fail with probability at most exp(−4) + 2 exp(−2) < 1/3.

40

Lemma 4.1.10. If ` > 0, the Bi’s are disjoint, F is bad, and the input is not rejected

in Step 2 or 3 of Algorithm 4.1.1, then it is rejected in Step 5 with probability at

least 2/3.

Proof. Since F is bad, by Lemma 4.1.6, the weight of bad vertices in F is at

least ε/8. Thus, the probability of not querying a bad vertex w in F in Step 4 is at

most (1− ε/8)16/ε < exp(−2) < 1
7
.

Suppose now that we have chosen a bad vertex w in Step 4. Let i be the abundant

color associated with w and let Tw be the subtree in F whose root is w. Note that

Bi ⊆ V \ Tw and hence, µi(Tw) < ε
16k

, as otherwise w would have been i-balanced.

We thus have µi(V \ Tw) > ε
4k
− ε

16k
> ε

8k
, and hence the probability that X does

not contain an i-vertex outside Tw is at most (1− ε/8k)48k/ε < exp(−6) < 1
400

.

Suppose that X contains an i-vertex outside Tw. Then Tw is one of the trees

T i
w sampled in Step 4. As w is bad, the probability that the sample of Tw does not

contain an i-vertex is at most (1− ε/8)log1/(1−ε/8) 8 = 1
8
.

To conclude, we can expect a bad vertex w associated with an abundant color i

to be chosen in Step 4, with an i-vertex queried outside Tw in Step 1 and an i-vertex

queried inside Tw in Step 4. In such a case the algorithm will detect a forbidden

subpath and reject the input in Step 5. By the union bound, the probability of

failure in this is at most 1
7

+ 1
400

+ 1
8

< 1
3
.

Proof of Theorem 4.1.2. Lemmas 4.1.7, 4.1.8, 4.1.9, 4.1.10, together with

Observation 4.1.4, yield that every quasi k-coloring that is ε-far from being quasi-

convex is rejected by the algorithm with probability at least 2/3, which completes

the proof.

4.1.1 Implementation of the computational step in Algo-

rithm 4.1.1

The procedure for detecting forbidden subpaths with respect to quasi-convexity is

very similar to the one presented in Section 3.1.1 for the convexity test. The only

difference is that an uncolored vertex can only be a middle vertex in a forbidden

subpath. Therefore, when considering a vertex v, we only need to check its colored

children. In the following, a null value and a value of 0 for m(v) are not the same.

A null value of m(v) means that the color of v is unknown or irrelevant, whereas

m(v) = 0 indicates that v was queried and found to be uncolored.

41

Procedure 4.1.11. For every v in reverse topological order, do:

• If v ∈ X then set a(v) = 1; otherwise set a(v) = 0.

• If v ∈ X then set m(v) = c(v); otherwise set m(v) to be null.

• For every child u of v such that m(u) is not null and m(u) > 0:

1. If m(v) is not null and m(v) 6= m(u) then reject the input and terminate.

2. Otherwise, set m(v) = m(u) and a(v) = a(v) + a(u).

• If m(v) is not null, m(v) > 0, and a(v) = qm(v), then set m(v) to be null and

a(v) = 0.

If the algorithm did not reject after going over all vertices, then accept.

We prove the correctness of the procedure with the next lemma, whose proof is

very similar to that of Lemma 3.1.8.

Lemma 4.1.12. For every vertex v the following holds:

1. If Procedure 4.1.11 rejects in the iteration of v, then v is a middle vertex of

a forbidden subpath, where if v ∈ X then the forbidden subpath includes v as

its middle vertex, and, otherwise, there exist colored vertices a1, a2, b1, b2 ∈ X

such that c(a1) = c(a2) 6= c(b1) = c(b2), and v belongs to the path between a1

and a2 as well as to the path between b1 and b2.

2. If Procedure 4.1.11 completes the iteration of v without rejecting it, then v is

not a middle vertex of a forbidden path as above.

3. If the processing of v is completed, then, in its end, m(v) = i for i > 0 if and

only if X includes i-vertices both inside and outside the subtree rooted in v.

In such a case, a(v) is equal to the number of i-vertices of X in the subtree

rooted in v. Also, if m(v) is null then a(v) = 0.

As we did for Procedure 3.1.7, we may run Procedure 4.1.11 on a tree which

contains only the queried vertices and all the vertices which are least common an-

cestors of two queried vertices. This reduces the running time of the implementation

to Õ(k/ε2) (quasi-linear in the maximum sample size), if we use a preprocessing stage

of time O(n). See Section 3.1.1 for details.

42

4.1.2 Testing quasi-convexity under constraints

We now discuss the problem of testing for quasi-convexity with constraints, as we

did for convexity in Section 3.1.2.

Given a graph G = (V, E), a quasi k-coloring c : V → {0, . . . , k}, a set D ⊆ V of

“constraints” and a weight function µ : V \D → R, then we say that c is ε-close to

quasi-convexity under D if there exists a quasi-convex coloring c′ : V → {0, . . . , k}
which agrees with c on the values of the vertices in D and whose restriction to V \D
is ε-close to that of c. If c is not ε-close to quasi-convexity under D, we say that c

is ε-far from quasi-convexity under D.

Similarly to testing convexity under constraints, we show that for a domain tree

T = (V, E), it is enough to test for quasi-convexity under a set of constraints D

by adding D to the query set of the quasi-convexity algorithm (Algorithm 4.1.1).

We also need to increase our sample sizes by constant factors, since the presence of

uncolored constraint vertices makes testing for farness a bit more delicate.

Algorithm 4.1.13. Identical to Algorithm 4.1.1, except for the following:

• The size of the sample set X in Step 1 is d96k/εe.

• At the end of Step 1 we also query all the constraint vertices in D.

• In Step 4 we sample d32/εe vertices w independently.

• For every uncolored vertex w queried in Step 4, we sample dlog1/(1−ε/16)8e
vertices in each tree T i

w.

Proposition 4.1.14. For every ε > 0, Algorithm 4.1.13 is a 1-sided ε-test for

quasi-convexity of quasi k-colorings of trees under a set of constraints D. The query

complexity of the test is O (k/ε2 + |D|) and the time complexity is O(kn/ε). This

can be implemented in time Õ (k/ε2 + |D|) with a preprocessing stage of time O(n2).

Clearly, the computational complexity corresponds to that of Algorithm 4.1.1

(see Section 4.1.1). If we use preprocessing, then the computational complexity

now depends on the size of the query set plus the constraint set, whereas, without

preprocessing, the complexity depends only on the number of vertices in the tree.

Hence, the computational complexity demands are satisfied. Also, Algorithm 4.1.13

never rejects a quasi-convex coloring.

43

The proof that every coloring which is ε-far from quasi-convexity under D is

rejected by the algorithm with probability at least 2/3 is similar to that of Theorem

4.1.2, while using ideas from the proof of Proposition 3.1.13. Define the sets Bi of

balanced vertices as in the proof of Theorem 4.1.2. Note that the weight function

is defined only on V \D. Lemma 4.1.3 and Observation 4.1.4 are clearly also true

here.

Now, as in the proof of Proposition 3.1.13, one can see that Algorithm 4.1.13

rejects with high probability if the sets Bi are not disjoint or if there exists an i-vertex

w ∈ D such that w ∈ Bj for i 6= j. Also similar to that proof, the algorithm rejects

with high probability if the set of Bi’s and constraint vertices implies a forbidden

subpath (now in its quasi-convexity sense). Otherwise, we augment every Bi with

all the i-colored constraint vertices and the vertices on the paths from Bi to them.

For constraint vertices colored with a non-abundant color i, we create a new set Bi

containing all the i-colored constraint vertices and the paths between them. Note

that we do not do this for uncolored constraint vertices. We now have at most

one set Bi for every color i, where the sets are disjoint and every Bi contains only

i-colored constraint vertices.

Lemma 4.1.15. If the total weight of uncolored vertices inside the extended Bi’s is

larger than ε/4, then the input is rejected in Step 2 with probability at least 2/3.

Proof. Similar to that of Lemma 4.1.9. Again we show that with high probability,

an uncolored vertex w in Bi is sampled. If w is i-balanced, then the proof is identical

to that of Lemma 4.1.9. Otherwise, w is on a path between two i-colored constraint

vertices, or between an i-balanced vertex and an i-colored constraint vertex, which

can only increase the probability of discovering a forbidden subpath, leading to

rejection.

Now, enumerate the Bi’s as B1, . . . , B`. Clearly, if ` = 0 then the restriction

of c to V \ D is ε-close to the quasi-convex coloring in which all the vertices are

uncolored. We now assume that ` > 0. For every Bi, define Mi, as in the proof of

Algorithm 4.1.13, to be the extension of Bi with “outsider” vertices. We have

Lemma 4.1.16. ∑
i is abundant

µi(V \Mi) ≤ ε/4.

Proof sketch. The proof is essentially the same as that of Lemma 4.1.5. Note

that the proof relies only on the fact that for every abundant color i, Mi contains all

44

the i-balanced vertices and heavy i-vertices. Therefore, the proof applies also here.

We now define the forest F , as in the proof of Theorem 4.1.2, to be the forest

consisting of all outsider vertices. We define good uncolored vertices in F and the

monotonicity of F as we did there. However, when considering whether F can be

made monotone, we must take the uncolored constraint vertices possibly in F into

account (recall that colored constraint vertices are all contained in the Bi’s and

therefore are not in F). Therefore, F is called good if it can be made monotone by

changing the color of satellite and uncolored vertices of weight at most ε/4, and any

amount of other vertices in F , excluding constraint vertices. Otherwise, we say that

F is bad.

We say that an uncolored vertex w in F is good if µi(Tw) ≤ ε
16

µ(Tw), where Tw

is the subtree of F rooted in w and i is the color associated with w. Otherwise we

say that w is bad. We say that a satellite vertex w in F is an obstacle if w has a

constraint uncolored vertex in F as an ancestor.

Lemma 4.1.17. If the total weight of bad uncolored vertices in F is at most ε
16

and

the total weight of obstacle vertices is at most ε
8

then F is good.

Proof. Define a monotone coloring of F as follows. Let U be the set of all

constraint (uncolored) vertices and good uncolored vertices in F . Let Ur be the

set of the topmost vertices in U . Set all the descendants of vertices in Ur to be

uncolored. Color the rest of the vertices in F with the color associated with them.

Clearly, in the obtained coloring, all the constraint vertices remain uncolored, all

the vertices in F are either uncolored or satellites, and no uncolored vertex is an

ancestor of a satellite vertex. Thus, F is monotone.

Now, the only uncolored vertices we have colored are bad ones, whose weight is

at most ε/16. As for satellite vertices, we have only changed the color of ones within

subtrees of uncolored vertices whose roots are in Ur. Among these, the weight of

obstacle vertices is at most ε/8. The others are in subtrees rooted in good uncolored

vertices. Since these subtrees are disjoint, and the weight of satellite vertices is a

fraction of at most ε/16 of the weight of any good subtree, the total weight of

satellite vertices thus changed is at most 3ε/16. Hence, we have changed a total

weight of at most ε/4 of uncolored and satellite vertices, and therefore F is good.

45

Lemma 4.1.18. If ` > 0, the Bi’s are disjoint, and F is bad, then the algorithm

rejects with probability at least 2/3.

Proof. By Lemma 4.1.17, either the weight of obstacle vertices in F is larger

than ε/8 or the weight of bad uncolored vertices in F is larger than ε/16.

If the weight of obstacle vertices in F is larger than ε/8, then clearly an obstacle

vertex u is sampled in Step 1 with probability larger than 2/3. Recall that there

exists an uncolored constraint vertex w, which is an ancestor of u in F , that is

sampled in Step 1 with probability 1. Let i be the color of u. Note that if i is a non-

abundant color then w is on the path between u and an i-colored constraint vertex

v, and thus the algorithm will certainly reject the input in Step 2, after discovering

the forbidden subpath 〈u, w, v〉. Therefore, the presence of obstacle vertices of non-

abundant colors only increases the probability for rejection.

Now, assume that all the obstacle vertices are of abundant colors. For the anal-

ysis, we partition the sample set of Step 1 (excluding constraint vertices), X, into

two sets, a set X1 with 48k/ε vertices, and a set X2 with 48k/ε vertices. Note that

X1 and X2 are independently random. The probability that X1 does not contain

any obstacle vertex is at most (1− ε/8)48k/ε < exp(−6k) ≤ exp(−6). Suppose that

X1 contains an obstacle vertex u, and let w be an uncolored constraint vertex which

is an ancestor of u in F . Then, clearly, since w is an outsider vertex of a Bi of an

abundant color, µi(V \ Tw) > ε/8k. Therefore, the probability that X2 does not

contain an i-vertex v outside Tw is at most exp(−6). Hence, with probability at

least 2/3, a forbidden subpath 〈u, w, v〉 is discovered and the algorithm rejects in

Step 2.

If the weight of bad uncolored vertices in F is larger than ε/16, then the lemma

is proved almost identically to Lemma 4.1.10.

To complete the proof of Proposition 4.1.14, we now establish a lemma similar

to Lemma 4.1.7.

Lemma 4.1.19. If ` > 0 and all of the following conditions apply:

(a) The Bi’s are all disjoint;

(b) There is no uncolored constraint vertex inside a Bi ;

(c) The set of extended Bi’s and constraint vertices does not imply a forbidden

subpath;

46

(d) The total weight of uncolored vertices inside extended Bi’s is at most ε/4;

(e) F is good;

then c is ε-close to quasi-convexity under D.

Proof. The proof is very similar to that of Lemma 4.1.7.

We show that there exists a quasi-convex coloring c′ of T which agrees with c on

D and whose restriction to V \ D is ε-close to that of c. Define c′ as follows. For

every extended Bi, color all the vertices of the extended Bi with i. Then choose a

monotone coloring of F which changes a minimum weight of uncolored and satellite

vertices without coloring constraint vertices. Finally, set the rest of the vertices to

be uncolored. One can see that c′ is quasi-convex and agrees with c on D.

We now show that c′ is ε-close to c. First, consider vertices of abundant colors,

excluding satellites, whose color has been changed. From Lemma 4.1.16, the total

weight of such vertices is at most ε/4. Now consider uncolored vertices inside ex-

tended Bi’s. From Condition (d), the total weight of such vertices is at most ε/4.

As for satellites and uncolored vertices in F , from Condition (e), the total weight

of these is at most ε/4. Finally, for non-abundant colors which may have changed,

since they are of weight smaller than ε/4k each, their total weight is smaller than

ε/4. We conclude that c′ is ε-close to c.

Proof of Proposition 4.1.14. As discussed in the beginning of the proof, Algo-

rithm 4.1.13 rejects the input with probability at least 2/3 if any of the conditions

(a)-(c) in Proposition 4.1.19 is not satisfied. By Lemmas 4.1.15 and 4.1.18, it does

so also if conditions (d) or (e), respectively, are not satisfied. Therefore, Algorithm

4.1.13 rejects every ε-far input with probability at least 2/3.

4.2 Relaxed convexity properties

Given a tree T = (V, E) and an integer ` > 0, we say that a k-coloring c : V → [k] of

T is `-convex if it induces at most ` color components. We say that a quasi k-coloring

c : V → {0, . . . , k} of T is `-quasi-convex if it induces at most ` components of colors

i > 0. Given a list L = 〈l1, . . . , lk〉 of integers we say that a vertex coloring of T is

convex with respect to L if it induces at most li color components of every color i.

If we allow some of the li’s to be ∞, we then say that the coloring is quasi-convex

with respect to L.

47

In the next subsection we present a 1-sided test for `-convexity on a domain

tree T = (V, E), and later we explain how to transform it into a test for `-quasi-

convexity, list convexity and list quasi-convexity. Note that the query complexity

and time complexity of all our tests is independent of k.

4.2.1 `-convexity of trees

This subsection is dedicated to the proof of the following theorem.

Theorem 4.2.1. There exists a 1-sided test for `-convexity of k-colorings of trees

with query complexity Õ(`/ε) and time complexity O(`n).

First, we give a few definitions to be used in the sequel. Consider the domain

input tree T . A vertex w is said to be between the vertices u and v if it is an

intermediate vertex on the (only) path between u and v. For any three distinct

vertices u, v, w ∈ V , we define the junction Junc(u, v, w) of u, v, and w as follows.

If any of the vertices in {u, v, w} is between the other two, then Junc(u, v, w) is

defined to be that vertex. Otherwise, Junc(u, v, w) is the unique vertex that lies

in the intersection of the three simple paths between u and v, v and w, and u and

w, respectively. A set U is closed under junctions if for any three distinct vertices

u, v, w ∈ U we also have Junc(u, v, w) ∈ U . Note that if a set U is closed under

junctions then all paths between pairs of adjacent vertices in U intersect each other

only on members of U . We say that two vertices are adjacent in a set U if they are

both in U and there are no other vertices in U between them.

We now characterize subtrees of T with respect to an input coloring c. A subtree

is called i-homogenous if all its vertices are i-vertices, and homogenous if it is i-

homogenous for some color i. We say that a subtree is {i, j}-homogenous if all

its vertices are either i-vertices or j-vertices (if i = j, then clearly such a tree is i-

homogenous). Given two vertices u, v ∈ V , we say that a subtree is {u, v}-compatible

if it is both {c(u), c(v)}-homogenous and convex. Note that when saying that a

subtree T ′ of T is close to (resp. far from) satisfying any of the above properties,

we mean that that the restriction of c to T ′ is close to (resp. far from) satisfying it.

Before giving our algorithm for `-convexity, we explain its main ideas. Through-

out the algorithm we maintain a set IT of interesting trees, containing subtrees of

T to be examined. We define the interesting trees using a set X of queried vertices.

We create X in such a way that it is always closed under junctions. We ensure

48

that the intersection between every two distinct subtrees in IT is either empty or

consists of a single vertex in X. Let TX be the spanning tree of X, that is, the

tree comprised of all the simple paths between vertices in X. We use TX to define

interesting trees of two types: A pinned tree is defined by two vertices u, v which

are adjacent in X but not in V . It contains the path between u and v, as well as

all the vertices whose nearest neighbor in TX is between u and v (but is not u or v

themselves). Equivalently, T(u,v)
def
=
(
C

(v)
u ∩ C

(u)
v

)
∪{u, v}. A dangling tree is defined

by a vertex u ∈ X, and it contains u as well as all the vertices not in TX whose

nearest neighbor in TX is u. Namely: Tu
def
= V \

⋃
v∈X,v 6=u C

(v)
u .

Using the set X we can infer a lower bound on the number of color components

in T , by assuming that every two adjacent vertices in X belong to the same color

component if and only if they are colored with the same color. This could be the

case because we may e.g. extend the coloring of X into a coloring of V by coloring

every vertex with the color of its nearest neighbor in X. On the other hand, it can

be easily seen that no coloring of V would give a smaller number of components for

any of the colors.

In order to discover more color components, we examine pinned and dangling

interesting subtrees of T one by one. For u, v which are adjacent in X and colored

with the same color, we test T(u,v) for being c(u)-homogenous. If the test accepts,

we remove T(u,v) from the set of interesting trees, as it is unlikely to provide us with

more information on the color components in T (we shall later see that, in such a

case, T(u,v) is “irrelevant”). Otherwise, we augment X with a witness for the non-

homogeneity of T(u,v) (while keeping it closed under junctions), and replace T(u,v) in

IT with its subtrees. Similarly, we test dangling subtrees Tu for c(u)-homogeneity.

For u and v which are adjacent in X and colored with different colors, we test T(u,v)

for being {u, v}-compatible under the constraint set D = {u, v}. That is, we test

whether there is an ε-close convex coloring of T(u,v) that agrees with c on the colors of

u and v. Again, if the test accepts then we discard T(u,v), and otherwise we proceed

and divide it into smaller interesting trees. If at some point we have discovered

more than ` color components, then the algorithm rejects the input. Otherwise, the

algorithm terminates and accepts when there are no interesting trees left.

Note that, since we use the convexity testing algorithm as a subroutine for de-

termined subtrees and accordingly sample from conditioned distributions, we loose

its distribution-free quality.

We next introduce the subroutines used for testing interesting trees.

49

Observation 4.2.2. Given a subtree T ′ of T , a color i and 0 < p < 1, there exists

an algorithm whose query and computational complexity are both O(log(1/p)ε−1),

such that: If T ′ is i-homogenous then the algorithm accepts with probability 1; and if

T ′ is ε-far from being i-homogenous then, with probability at least 1−p, the algorithm

rejects and finds a witness for its non homogeneity (i.e., a non-i-vertex).

Proof. Given T ′, ε and p as above, query 2ln(1/p)ε−1 vertices in T ′ independently

at random using the conditional distribution of µ to T ′. If a vertex w has been found

such that c(w) 6= i then reject and return w as a witness, and otherwise accept. It

is trivial to see that this algorithm satisfies the stated requirements.

Lemma 4.2.3. Given a pinned subtree T(u,v) of T with c(u) 6= c(v) and 0 < p < 1,

there exists an algorithm with query complexity O(log(1/p)ε−1) and computational

complexity linear in the size of T(u,v) such that: If T(u,v) is {u, v}-compatible, then

the algorithm accepts with probability 1; if T(u,v) is ε-far from being {u, v}-compatible

under {u, v}, then, with probability at least 1 − p, the algorithm rejects and finds a

witness for the incompatibility. Furthermore, the witness is either a vertex w with

c(w) 6= c(u), c(v) or a pair of vertices (x, w) such that x is between u and v, w has

the same color as u or v, and c(x) 6= c(w).

Proof. We use Algorithm 3.1.12 with k = 2 and D = {u, v}. For clarity, we first

give a multi-phase algorithm, and later show how to perform it in one phase.

Given T(u,v) and p as above, repeat the following for log3(1/p) times:

1. Query 8 ln 12ε−1 vertices independently uniformly at random. Let W be the

union of {u, v} and the set of queried vertices.

2. If W includes a vertex w such that c(w) 6= c(u), c(v), then reject and return w.

3. Otherwise, if W includes a forbidden subpath 〈w1, w2, w3〉, then for every i we

have either c(wi) = c(u) or c(wi) = c(v), as otherwise Case 2 applies.

(a) Assume that one of the vertices in the forbidden subpath is either u or

v. Since u and v are leaves and c(u) 6= c(v), we can only have one of the

end vertices in the subpath be u or v. Assume without loss of generality

that w1 = u. Let x = Junc(u, v, w2). Since u and v are not adjacent, x is

between u and v. Query x.

• If c(x) 6= c(u), c(v) then set w = x and return w as in Case 2.

50

• Otherwise, if c(x) = c(w2) then clearly 〈u, x, w3〉 is a forbidden sub-

path and thus we set w = w3.

• Otherwise, c(x) = c(u) 6= c(v), and thus 〈v, x, w2〉 is a forbidden

subpath. We therefore set w = w2.

• Return x and w.

(b) Otherwise, if both w1 and w3 are between u and v then so is w2. Without

loss of generality, assume that w1 is between u and w2 and w3 is between

w2 and v.

• If c(w2) = c(u) then 〈u, w1, w2〉 is a forbidden subpath, and thus we

set x = w1 and w = w2.

• If c(w2) 6= c(u) then 〈u, w2, w3〉 is a forbidden subpath, and thus we

set x = w2 and w = w3.

• Return x and w.

(c) Now assume that both w1 and w3 are different from u and v and either

w1 or w3 is not between u and v. Let x = Junc(u, v, w2). Since u and v

are not adjacent, x is between u and v. Query x.

• If c(x) = c(w2) then c(x) 6= c(w1) = c(w3). Let w be either w1 or w3

such that w is not between u and v. Then either 〈u, x, w〉 or 〈v, x, w〉
is a forbidden subpath.

• If c(x) 6= c(w2) then, in particular, x 6= w2 and hence, x is both be-

tween u and w2 and between v and w2. Either 〈u, x, w2〉 or 〈v, x, w2〉
is a forbidden subpath. We therefore set w = w2.

• Return x and w.

4. Otherwise, if W includes vertices w1, w2, w3, w4 such that c(w1) = c(w2) 6=
c(w3) = c(w4) and there exists a vertex w̃ which is both between w1 and w2

and between w3 and w4, then let w̃ = Junc(w1, w2, w3) be such a vertex. Query

it.

• If c(w̃) 6= c(u), c(v) then set w = w̃ and return w as in Case 2.

• Otherwise, either 〈w1, w̃, w2〉 or 〈w3, w̃, w4〉 is a forbidden subpath. Per-

form the same operations with the forbidden subpath as done in Case 3.

If the input has not been rejected in any of the iterations, accept. In this case T(u,v)

is marked as “not interesting”.

51

The above is the same as repeatedly running Algorithm 3.1.12 with k = 2 and

D = {u, v}, except for the steps taken in order to find a witness of the desired form

once T(u,v) is known not to be {u, v}-compatible. Clearly, these modifications do

not change the fact that the algorithm always accepts a {u, v}-compatible input. It

is easy to see that if T(u,v) is ε-far from {c(u), c(v)}-homogeneity, then it is rejected

with probability at least 2/3 in any given iteration. Assume that T(u,v) is ε-close

to {c(u), c(v)}-homogeneity but ε-far from convexity under {u, v}. Then clearly by

Proposition 3.1.13 T(u,v) is rejected with probability at least 2/3 in any given itera-

tion. As the iterations are independent, an ε-far input is rejected with probability

at least 1 − p. One can see that in Steps 3 and 4 of the algorithm, a forbidden

subpath is found with either u or v as an endpoint.

Note that using a single sample of 8 log3(1/p) ln 12ε−1 vertices selected uniformly

and independently, one can only increase the probability of finding a witness for far-

ness, while still maintaining the 1-sidedness of the algorithm. Performing a single

sample enables us to check for a forbidden subpath only once with time complexity

linear in the size of T(u,v) (see Section 3.1.1). Moreover, it can be seen that the junc-

tion of every three vertices in T(u,v) may be computed using a naive DFS algorithm

in time linear in the size of T(u,v). Since we compute at most two junctions, the

computational upper bound hold.

We now present our main test for `-convexity.

Algorithm 4.2.4.

• Let X = {u}, where u is any vertex in V , and query it. Set IT = {Tu} = {T}.
Set CC = 1.

• While IT 6= ∅ and CC ≤ `, repeat:

1. Consider a tree T ′ ∈ IT . Set IT = IT \ {T ′}.

2. Perform a test with error probability p = 1/3` as follows:

– If T ′ = T(u,v) for u, v ∈ X such that c(u) 6= c(v), perform a {u, v}-
compatibility test.

– Otherwise, if T ′ = T(u,v) for u, v ∈ X such that c(u) = c(v), perform

a c(u)-homogeneity test.

– Otherwise, if T ′ = Tu for u ∈ X, perform a c(u)-homogeneity test.

3. If the test has accepted, return to Step 1.

52

4. Otherwise,

(a) If T ′ = T(u,v) for u, v ∈ X such that c(u) = c(v) and a witness w has

been found such that c(w) 6= c(u):

– Let x = Junc(u, v, w). Query x, and add x and w to X.

– If c(x) 6= c(u) set CC = CC + 2.

– If c(x) 6= c(w) set CC = CC + 1 (independently of the previous

step).

– If x is not a leaf, add Tx to IT .

– If w is not a leaf, add Tw to IT .

– If u and x are not adjacent in T , add T(u,x) to IT .

– If v and x are not adjacent in T , add T(v,x) to IT .

– If w 6= x and w and x are not adjacent in T , add T(w,x) to IT .

(b) If T ′ = T(u,v) for u, v ∈ X such that c(u) 6= c(v) and a witness w has

been found such that c(w) 6= c(u), c(v):

– Let x = Junc(u, v, w). Query x, and add x and w to X.

– If c(x) 6= c(u) and c(x) 6= c(v) set CC = CC + 1.

– If c(x) 6= c(w) set CC = CC + 1 (independently of the previous

step).

– Add the new (non-degenerate) interesting trees into IT similarly

to Case (a).

(c) Otherwise, if T ′ = T(u,v) for u, v ∈ X and witnesses x, w have been

found such that x is between u and v, c(x) 6= c(w) and either c(w) =

c(u) or c(w) = c(v):

– Add x and w to X.

– Set CC = CC + 1.

– If c(x) 6= c(u) and c(x) 6= c(v) set CC = CC + 1.

– Add the new (non-degenerate) interesting trees into IT similarly

to Case (a).

(d) Otherwise, T ′ = Tu for u ∈ X and a witness w has been queried such

that c(w) 6= c(u):

– Add w to X.

– Set CC = CC + 1.

53

– If w is not a leaf, add Tw to IT .

– If u and w are not adjacent in T , add T(u,w) to IT .

• If CC > `, reject. Otherwise, if CC ≤ ` and IT = ∅, accept.

To prove the correctness of the algorithm, we need several lemmas.

Lemma 4.2.5. Consider an iteration of the while loop in Algorithm 4.2.4. Let `′

be the value of CC when the iteration begins. Then:

1. Given X, `′ is the minimum number of color components in V .

2. Suppose that:

• All the pinned trees T(u,v) (u, v ∈ X) with c(u) 6= c(v) are ε-close under

{u, v} to being {u, v}-compatible.

• All the pinned trees T(u,v) (u, v ∈ X) with c(u) = c(v) are ε-close to being

c(u)-homogenous .

• All the dangling trees Tu (u ∈ X) are ε-close to being c(u)-homogenous.

Then c is ε-close to being `′-convex.

Proof. Part 1 of the lemma is easily proved by induction on `′. As for Part 2,

consider colorings of the pinned and dangling trees which are ε-close to the restriction

of c to these trees and are convex or homogenous under their defining vertices. The

intersections between the trees consist only of vertices in X, which are not recolored

by any of theses close colorings. Therefore, we may combine them into a coloring of

our entire tree T , which is ε-close to c and can be easily seen to be `′-convex.

Lemma 4.2.6. The while loop of Algorithm 4.2.4 runs at most 5` times.

Proof. Since in every time the test of Step 2 rejects, CC is incremented, Step 4

can be applied at most ` times. Note that at most 5 new interesting trees are added

in any single iteration of Step 4. Therefore, we may perform the test in Step 2 on

at most 5` trees.

Proof of Theorem 4.2.1. By the first part of Lemma 4.2.5, CC is a tight lower

bound for the number of color components in T , and therefore, the algorithm never

rejects an `-convex input.

54

Assume now that the input coloring c is ε-far from being `-convex. Then, by the

second part of Lemma 4.2.5, in any stage of the algorithm where CC ≤ `, at least one

of the interesting dangling trees Tu is ε-far from being c(u)-homogenous or at least

one of the pinned trees T(u,v) is ε-far under {u, v} from being {u, v}-compatible.

After discovering the farness of ` interesting trees, the algorithm rejects. As the

probability of not discovering the farness of a certain interesting tree is at most

1/3`, the total failure probability is at most 1/3. Therefore, Algorithm 4.2.4 is a

1-sided test for `-convexity.

By Observation 4.2.2 and Lemma 4.2.3, the test in Step 2 can be implemented

with query complexity O(log(`)/ε). Therefore, the total query complexity of the

algorithm is O(` log(`)/ε). The computational complexity follows from Observation

4.2.2 and Lemmas 4.2.3 and 4.2.6.

4.2.2 `-quasi-convexity of trees

In this subsection we prove the following theorem.

Theorem 4.2.7. There exists a 1-sided test for `-quasi-convexity of quasi k-

colorings of trees whose query complexity is Õ(`/ε2) and whose time complexity

is O(`n).

Our test for `-quasi-convexity is similar to that for `-convexity. However, instead

of using the test for convexity with constraints or the test for homogeneity as a

subroutine, we use the test for quasi-convexity with constraints (see Section 4.1.2)

with k = 2 when we have two different colors in the vertices defining the subtree, and

with k = 1 when we have only one defining color. We only use the homogeneity test

for interesting trees defined by uncolored vertices. We refer to the quasi-convexity

property for k = 1 as monotonicity. In particular, we say that a dangling tree Tu

is monotone if it is {c(u), 0}-homogenous and quasi-convex. Such a tree has only

c(u)-colored and uncolored vertices, where no colored vertex is a descendant of an

uncolored vertex. This complies with the common notion of monotonicity over trees

for functions with two values, where an i-vertex is considered of “smaller” value

than an uncolored vertex.

Observation 4.2.8. Given a dangling subtree Tu of T and 0 < p < 1, there exists

an algorithm whose query and computational complexity are both O(log(1/p)ε−2),

such that: If T ′ is monotone then the algorithm accepts with probability 1; if T ′ is

55

ε-far from being monotone then, with probability at least 1− p, the algorithm rejects

and finds a witness for the lack of monotonicity. Moreover, the witness is either a

vertex w such that c(w) > 0 and c(w) 6= c(u), or vertices u, x, w such that 〈u, x, w〉
is a forbidden subpath.

Proof. As in the proof of Lemma 4.2.3, we run Algorithm 4.1.1 for k = 1 with a

sample set whose size is increased by a factor of O(log(1/p)). The algorithm rejects

or accepts as required, due to Proposition 4.1.14. Finding the required witnesses is

done with techniques similar to those used in Lemma 4.2.3.

We say that a subtree T ′ of T is {i, j}-quasi-homogenous if all its vertices are

either uncolored or colored with either i or j. Given two distinct vertices u and v,

we say that the pinned tree T(u,v) is {u, v}-quasi-compatible if it is {c(u), c(v)}-quasi-

homogenous and quasi-convex (clearly, if c(u) = c(v) then T(u,v) is monotone).

Lemma 4.2.9. Given a pinned subtree T(u,v) of T and 0 < p < 1, there exists an

algorithm with query complexity O(log(1/p)ε−2) and computational complexity linear

in the size of T such that: If T(u,v) is {u, v}-quasi-compatible, then the algorithm

accepts with probability 1; if T(u,v) is ε-far under {u, v} from being {u, v}-quasi-
compatible, then, with probability at least 1 − p, the algorithm rejects and finds a

witness for the incompatibility. Furthermore, a witness for the fact that T(u,v) is

not {u, v}-quasi-compatible will be either a colored vertex w with c(w) 6= c(u) and

c(w) 6= c(v), or a pair of vertices x, w such that x is between u and v, w is colored

and has the same color as u or v, and c(x) 6= c(w).

Proof. Follows from Proposition 4.1.14. in a similar manner as Lemma 4.2.3

follows from Proposition 3.1.13. As before we select only the desired witnesses,

although others may also be discovered.

Note that here when rejecting an interesting tree, some of the witnesses may be

uncolored. In such a case we do not account for the newly discovered uncolored

components in our color components counter. However, we do add trees defined by

uncolored vertices to our set of interesting trees, as we need to test them further in

order to search for additional color components.

We are now ready to give our test for `-quasi-convexity.

Algorithm 4.2.10. The algorithm is the same as Algorithm 4.2.4, except for the

following:

56

• In the initialization step, if u is uncolored then we set CC to 0 rather than 1.

• In Step 2 of the while loop:

– For a pinned tree T(u,v) with colored u and v and c(u) 6= c(v) we perform

a test for {u, v}-quasi-compatibility under {u, v}.

– For a tree defined by uncolored vertices, i.e., a pinned tree T(u,v) with

uncolored u and v or a dangling tree Tu with u uncolored, we perform a

0-homogeneity test.

– For other interesting trees (i.e., a pinned tree T(u,v) with colored u and v

and c(u) = c(v), a pinned tree T(u,v) with colored u and uncolored v, or

a dangling tree Tu with colored u) we perform a monotonicity test, under

the respective defining vertices as constraints.

• We update our counter CC differently, so that it is a lower bound for the

number of color components of colored vertices only. That is, when our wit-

ness for rejecting an interesting tree includes an uncolored vertex, we do not

increment CC to account for the newly discovered uncolored component, but

only for components of colored vertices.

Lemma 4.2.11. Consider an iteration of the while loop in Algorithm 4.2.10. Let `′

be the value of CC when the iteration begins. Then:

1. Given X, `′ is the minimum number of color components of colored vertices

in V .

2. Suppose that:

• All the interesting trees defined by uncolored vertices are ε-close to being

0-homogenous.

• All the dangling trees Tu (c(u) > 0) are ε-close to being monotone.

• All the trees T(u,v) with c(u) 6= c(v) and c(u), c(v) > 0 are ε-close under

{u, v} to being {u, v}-quasi-compatible.

• All the other pinned trees T(u,v) are ε-close to being monotone under their

respective constraints.

Then c is ε-close to being `′-quasi-convex.

57

Proof. Similar to the proof of Lemma 4.2.5.

Lemma 4.2.12. The while loop of Algorithm 4.2.4 runs at most 5` times.

Proof. As in the case of Algorithm 4.2.4, at most 5 new interesting trees are

added in any single iteration of Step 4, so CC is linear in the number of iterations.

Moreover, CC is incremented every time the test in Step 2 rejects. To see this,

note that in every rejection we either have a colored witness defining a new colored

component inside an interesting tree, or a forbidden subpath with respect to quasi-

convexity. In the latter case, the endpoints of the forbidden subpath originally

belonged to the same presumed color component. Finding the forbidden subpath

reveals that there are at least two color components instead of the original presumed

one. Hence, CC is incremented after discovering the forbidden subpath.

Concluding, Step 4 may be applied only 5` times before either CC exceeds ` or

all interesting trees are exhausted and the loop ends.

Proof of Theorem 4.2.7. We show that Algorithm 4.2.10 satisfies the stated

requirements.

By the first part of Lemma 4.2.11, CC is a tight lower bound for the number

of color components (of colored vertices) in T , and therefore, the algorithm never

rejects an `-quasi-convex coloring c.

Assume that c is ε-far from being `-quasi-convex. Then, by the second part of

Lemma 4.2.11, in any stage of the algorithm where CC ≤ `, at least one of the

interesting subtrees is ε-far from the property it is being tested for in Step 2 of the

algorithm. After discovering the farness of ` interesting trees, the algorithm rejects.

As the probability of not discovering the farness of a certain interesting tree is at

most 1/3`, the total failure probability is at most 1/3. Therefore, Algorithm 4.2.10

is a 1-sided test for `-quasi-convexity.

By Observation 4.2.8 and Lemma 4.2.9, the test in Step 2 can be implemented

in query complexity O(log(`)/ε2). Therefore, the total query complexity of the al-

gorithm is O(` log(`)/ε2). The computational complexity follows from Observation

4.2.8 and Lemmas 4.2.9 and 4.2.12. Note that computing the distribution µ condi-

tioned on a dangling tree or on a pinned tree can be done in time O(n) using an

appropriate BFS traversal.

58

4.2.3 List convexity and list quasi-convexity of trees

Theorem 4.2.13. Given a list L = 〈l1, . . . , lk〉 of integers, there exists a 1-sided

test for convexity with respect to L on trees, with query complexity Õ(`/ε) and com-

putational complexity O(`n), where ` =
∑

i=1,...,k li.

Theorem 4.2.14. Given a list L = 〈l1, . . . , lk〉 where every li is either an in-

teger or ∞, there exists a 1-sided test for quasi-convexity with respect to L on

trees, with query complexity Õ(`/ε2) and computational complexity O(`n), where

` =
∑

1≤i≤k, li<∞ li.

The tests used to prove both theorems above are almost identical to our tests for

`-convexity and `-quasi-convexity, respectively. The only difference is that instead

of the counter CC of the total number of color components discovered, we keep a

counter CCi for every color i with li <∞.

59

Chapter 5

Testing for Forbidden Posets in

Ordered Rooted Forests

In this chapter, our domain tree is a rooted ordered forest F = (V, E) (see Section

2.5). We henceforth omit the word “rooted”, as we only discuss rooted forests.

Throughout the chapter, our input is a k-coloring c : V → [k] of F . Given a set S of

forbidden posets (namely, every poset is an ordered forest with a k-coloring), we are

interested in the property of not containing an induced subposet from S, denoted

by PS.

A subforest of F is an induced subgraph of F which preserves all the ancestry

and left-to-right relation pairs. For any v ∈ V , let Tv be the subtree of F rooted in

v. Let Fv be the subforest obtained from Tv by removing v. We call Fv the subforest

of v. We further define the rightforest of v, denoted by FR
v , as the subforest of F

comprising of all the vertices that are incomparable to v and are positioned right

of v.

Given a subforest F ′ in F , let c|F ′ denote the restriction of the coloring c to

F ′. As our tests are recursive, we often consider properties of restrictions of c to

subforests of F . Hence, for clarity, instead of saying that a coloring c′ of a subforest

F ′ satisfies (or close to, or far from) a property PS′ , we say that (F ′, c′) satisfies (or

close to, or far from) PS′ . Whenever c′ is obvious, we may abuse notation and refer

to F ′ instead of (F ′, c′).

60

5.1 A test for a set of chains

In this section we consider a set S of forbidden chains with respect to the ancestry

relation. In other words, (F, c) satisfies PS if and only if it does not contain a chain

in S as a subpath of a path from a root to a leaf. We note that monotonicity is a

special case of such a property, and our algorithm is in some sense a generalization

of the one presented in [18] for Boolean monotonicity in rooted trees.

Denote S = {s1, . . . , sm} and S = Σm
j=1|sj|. For every j ∈ [m], let rj denote the

color of the first (top) node of sj. Let R
def
=
⋃

j=1,...,S{rj}. A vertex v ∈ V is called

an i-vertex if c(v) = i and an R-vertex if c(v) ∈ R. For every i ∈ [k], let S(i) be the

set derived from S by removing the first node of all chains beginning in i. Formally,

S(i) def
= {sj | rj 6= i} ∪ {xj | sj = ixj}.
In the following recursive algorithm we assume that we can determine the highest

root in F in time O(1). In addition, for every vertex v in F , we assume that we

can determine a highest root of a tree in Fv in time O(1). This information can be

stored in a preprocessing stage of traversing the forest in time O(n).

We first present an adaptive algorithm, and later show how to transform it into

a non-adaptive one, while maintaining a query complexity that is similar to that of

the adaptive test.

Algorithm 5.1.1. Chain-Test(F , S, ε, c)

1. If S includes an empty chain, reject.

2. Otherwise, if F or S is empty, accept.

3. Otherwise, if there exists b ∈ [k] such that b /∈ R: Query 32
ε

vertices in F ,

where each vertex is independently chosen according to the distribution defined

by µ. Reject if there exists a sampled vertex v which is an i-vertex v for some

i ∈ R and for which Chain-Test(Fv, S(i), ε/2, c|Fv) has rejected. Otherwise,

accept.

4. Otherwise, if R = [k]: Query 32
ε

roots in F . The roots will be chosen indepen-

dently, with possible repetitions, where the probability of selecting a certain root

R is proportional to the total weight of vertices in Tr. In addition, query the

root of a highest tree in the forest, i.e., a tree containing a longest path from

the root to a leaf. Reject if the sample contains an i-vertex v for some i ∈ [k],

such that Chain-Test(Fv, S(i), ε/2, c|Fv) has rejected, and accept otherwise.

61

Theorem 5.1.2. Chain-Test is a 1-sided ε-test for PS for every ε > 0. The query

complexity is

ε−S · 2S2/2+O(S)

and is independent of the number of colors k. The time complexity of the algorithm

is O(n) for the preprocessing stage plus the time it takes to make the queries.

Proof. We begin by proving the complexity bounds. Let Q(S, ε) be a bound on

the number of queries performed when the algorithm is called with parameters S

and ε such that the sum of chain lengths in S is S, and assume that Q is monotone

in S. It is easy to see that for S > 0 we have Q(S, ε) ≤
(

32
ε

+ 1
) (

Q
(
S − 1, ε

2

)
+ 1
)
,

and since ε ≤ 1 we have Q(S, ε) ≤ 33
ε

(
Q
(
S − 1, ε

2

)
+ 1
)
. For the sake of clarity,

we assume that Q(0, ε) = 1 for every ε > 0 (although in the algorithm above the

actual number of queries for S = 0 is zero), and therefore Q(S, ε) ≥ 1 for every

S ≥ 0, ε > 0. Hence we obtain

Q (S, ε) ≤ 66

ε
Q
(
S − 1,

ε

2

)
≤ 66

ε

66

ε/2
Q
(
S − 2,

ε

4

)
≤ 66

ε

66

ε/2

66

ε/4
Q
(
S − 3,

ε

8

)
≤ · · · ≤

(
66

ε

)j

21+2+...+(j−1) ·Q
(
S − j,

ε

2j

)
.

Substituting for j = S we have

Q (S, ε) ≤
(

66

ε

)S
2(S−1)(S−2)/2 = ε−S · 2S2/2+O(S).

The dominant element in the time complexity of the algorithm is the prepro-

cessing traversal of the tree in time O(n). The time complexity of other operations

is the same as the time required for making the queries (we neglect the time for

calculating S(i) from S). Therefore, the complexity requirements are fulfilled.

We prove the correctness of the algorithm by induction on S. The induction is

trivial for Cases 1 and 2, so we will next prove it for Cases 3 and 4.

Lemma 5.1.3. If the input coloring c satisfies PS then Chain-Test accepts with

probability 1.

Proof. Suppose that the input was rejected. Whether the algorithm has executed

Case 3 or 4, an i-vertex v was found for some i ∈ [k] such that Chain-Test(Fv, S(i),

ε/2, c|Fv) has rejected. By the induction hypothesis, Fv does not satisfy PS(i) and

62

thus contains a chain x ∈ S(i). It clearly follows that F contains a chain ix ∈ S,

and hence does not satisfy PS.

An i-vertex v is called bad if Fv is ε
2
-far from PS(i) . Otherwise it is called good.

The next two lemmas deal with Case 3 of the algorithm.

Lemma 5.1.4. If the total weight of bad R-vertices is less than ε/2 and Case 3 of

the algorithm applies, then (F, c) is ε-close to PS.

Proof. Let G be the set of good R-vertices in F . Let MG be the set of vertices

in G which have no proper ancestors in G.

We now show that there exists a coloring c′ of F that is ε-close to c such that

(F, c′) satisfies PS. By definition, for every i-vertex v ∈ MG, there exists a coloring

cv of Fv which is ε/2-close to c|Fv , such that (Fv, cv) satisfies PS(i) . Since no vertex

in MG is an ancestor of another, the Fv’s are all disjoint. We thus set c′(u) = cv(u)

for any proper descendant u of v ∈ MG. Clearly, this changes the color vertices

within subforests of good R-vertices, whose total weight is at most ε/2.

For every bad R-vertex v which is not a descendant of a vertex in MG, we let

c′(v) = b, where b /∈ R. The rest of the vertices remain with their original coloring.

Since the total weight of bad R-vertices is at most ε/2, c′ is ε-close to c. Now, the

only R-vertices in the recolored forest are in subtrees of vertices in MG. However, for

every i-vertex v ∈MG, Fv does not contain any chain in S(i). Therefore, c′ satisfies

PS.

Lemma 5.1.5. If the total weight of bad R-vertices is at least ε/2 and Case 3 of

the algorithm applies, then (F, c) is rejected with probability at least 2
3
.

Proof. Using the Chernoff Bound, the probability of sampling less than 8 bad R-

vertices is smaller than e−2 < 1
6
. Assume that we sampled at least 8 bad R-vertices.

By the induction hypothesis, for every bad i-vertex v, Chain-Test(Fv, S(i), ε/2,c|Fv)

accepts with probability at most 1
3
. Since the tests are independent, the probability

that all the tests accept is at most
(

1
3

)8
< 1

6
. We conclude that the input is accepted

with probability at most 1
3
.

The rest of the proof deals with Case 4 of the algorithm. For a subforest F ′ or

F and a set S ′ of forbidden chains, we say that F ′ is S ′-avoidable if there exists

a coloring c′ of F ′ such that (F ′, c′|F ′) satisfies PS′ . Otherwise, we say that F ′ is

S ′-unavoidable.

63

Observation 5.1.6. If F is S-avoidable then every subtree in F is S-avoidable. 2

Lemma 5.1.7. Suppose that F is S-avoidable and, in addition, the total weight of

vertices in trees whose roots are bad is less than ε/2. Then, if Case 4 of the algorithm

applies, then (F, c) is ε-close to PS.

Proof. We show that there exists a coloring c′ of F that satisfies PS and is ε-close

to c. Let MG be the set of good roots in F . For every v ∈MG, by definition, there

exists a coloring cv of Fv which is ε/2-close to the restriction of c to Fv, such that

(Fv, cv) satisfies PS(i) . Since no vertex in MG is an ancestor of another, the Fv’s are

disjoint. We thus set c′(u) = cv(u) for any proper descendant u of v ∈MG. Clearly,

this changes the color of vertices within subforests of good vertices, and their total

weight is at most ε/2.

The total weight of vertices in trees whose roots are bad is at most ε/2. As

F is S-avoidable, by Observation 5.1.6, any of these trees is also S-avoidable. We

therefore color every tree T whose root is bad according to a coloring cT such that

(T, cT) satisfies PS. Since we have recolored additional vertices whose total weight

is at most ε/2, the resulting coloring c′ is ε-close to c. As we have taken care of

trees whose roots are good as well as of trees whose roots are bad, it follows that c′

satisfies PS.

Observation 5.1.8. If a highest tree in F is S-avoidable then F is S-avoidable.

Proof. Suppose that a highest tree T in F is S-avoidable. Therefore, there exists

a coloring cT of T such that (T, cT) satisfies PS. We define a coloring c of F as

follows. Let ` be a longest path from the root of T to a leaf. Let the level of a vertex

be its distance to a root. We color every vertex of level j in F with the same color as

the vertex of level j in ` is colored under cT . As ` is a longest path, c is well defined,

and, in addition, the restriction of c to ` coincides with cT . Now suppose that (F, c)

contains a chain in S. Then this chain is contained within a path from a root to a

leaf. However, by the definition of c, a chain with the same colors is contained in

(`, cT), in contradiction to the assumption that (`, cT) satisfies PS.

Lemma 5.1.9. Suppose that Case 4 of the algorithm applies. If F is S-unavoidable,

or the total weight of vertices in trees whose roots are bad is at least ε/2, then (F, c)

is rejected with probability at least 2
3
.

Proof. If F is S-unavoidable, then, by Observation 5.1.8, any highest tree in F

is S-unavoidable. In particular, the highest tree whose root is queried by Case 4 of

64

Algorithm 5.1.1 is 1-far from PS. Let v be the root of that tree and let i be the

color of v. By the induction hypothesis, Chain-Test(Fv, S(i), ε/2, c|Fv) rejects with

probability at least 2
3
.

For the case where the total weight of vertices in trees whose roots are bad

is at least ε/2, the proof is essentially the same as for Lemma 5.1.5. Since the

probability of choosing a certain root is proportional to the total weight of its tree,

the probability of choosing a bad root in each iteration in this case is at least ε/2,

as was the probability of choosing a bad vertex in Case 3 of the algorithm, on which

the Chernoff bound was applied.

This completes the proof of Theorem 5.1.2.

5.1.1 A non-adaptive chain test

In order to transform Algorithm 5.1.1 into a non-adaptive one, note that the dis-

tribution of vertices sampled in a specific recursive call of the test depends only on

which of the four cases of the algorithm was executed. Therefore, one may decide

what vertices to query regardless of previous answers, for any possible scenario of

the cases of Algorithm 5.1.1. We thus define a non-adaptive procedure where we

perform our queries. Since we do not know what set S of chains will be actually used

for the queries, we use an upper bound on the sum of chain lengths in S, denoted

by U , instead of the actual set S.

Algorithm 5.1.10. Query(F , U , ε)

We define the algorithm by induction on U .

• If U = 0, do nothing.

• Otherwise:

1. Query 32
ε

vertices in F , where each vertex is independently chosen ac-

cording to the distribution defined by µ. For each queried vertex v, call

Query(Fv, U − 1, ε/2).

2. Query 32
ε

roots in F . The roots will be chosen independently, with possible

repetitions, where the probability of selecting a certain root is proportional

to the total weight of the tree rooted in it. In addition, query the root of a

highest tree in F . For each queried vertex v, call Query(Fv, U − 1, ε/2).

65

After calling Query(F , U , ε) with U = S and the original ε, we may simulate the

running of Algorithm 5.1.1 by simply using the relevant answers from the queries

produced in every recursion level. Clearly, we will have all our required answers, as

the depth of the recursion is at most S. By applying similar techniques to those

used for the adaptive case, we obtain that the query and time complexity for the

non-adaptive test are essentially the same, that is, ε−S · 2S2/2+O(S) queries and O(n)

time, where the only difference is in the coefficient hidden in the O notation.

5.2 A test for a forbidden forest

In this section we consider the property PS where S = {f} for some colored ordered

forest f . By a slight abuse of notation we refer to this property as Pf rather than

P{f}. Given a colored vertex r in f , we use the notations fr and fR
r to denote the

subforest of r and the right subforest of r with respect to f , analogously as we did

for F . However, here we refer to a colored ordered forest.

For clarity, we first present an adaptive algorithm, and later show how to trans-

form it into a non-adaptive algorithm. Note that our algorithm uses no information

on the number of colors k. On the other hand, denoting the size of f by F , we may

clearly assume that k is not larger than F + 1.

Algorithm 5.2.1. Forest-Test(F , f , ε, c)

1. If f is empty, reject.

2. Otherwise, if F is empty, accept.

3. Otherwise, let r be the leftmost root in f . Let i be the color of r. Query
32
ε

vertices in F , where each vertex is independently chosen according to the

distribution defined by µ. Reject if there exists a sampled i-vertex v such that

both Forest-Test(Fv, fr, ε/2, c|Fv) and Forest-Test(FR
v , fR

r , ε/2, c|F R
v
) have

rejected, and accept otherwise.

Theorem 5.2.2. Forest-Test is a 1-sided ε-test for Pf for every ε > 0. The query

complexity of the test is

ε−F · 2F2/2+O(F)

and the time complexity is the time required for performing the queries.

66

Proof. We start with the complexity requirements. Let Q (F , ε) denote the query

complexity when the algorithm is being called with parameters f and ε such that

the size of f is F . It can be seen that for F > 0 we have

Q (F , ε) ≤ 64

ε

(
Q
(
F − 1,

ε

2

)
+ 1
)

.

With the assumption that Q (0, ε) = 1 for every ε > 0 we have

Q (F , ε) ≤ 128

ε
Q
(
F − 1,

ε

2

)
≤ · · · ≤ O

((
128

ε

)F
2F

2/2

)
= ε−F · 2F2/2+O(F),

using similar techniques to those used in Section 5.1, one can see that the time

complexity is no larger than the time needed for making the queries.

The algorithm is trivially correct for the base cases. We henceforth prove the

correctness of Case 3 by induction on F .

Lemma 5.2.3. If (F, c) satisfies Pf then Forest-Test accepts with probability 1.

Proof. Suppose that the input was rejected. Then an i-vertex v exists such that

both Forest-Test(Fv, fr, ε/2, c|Fv) and Forest-Test(FR
v , fR

r , ε/2, c|RFv
) have rejected.

By the induction hypothesis, Fv contains fr and FR
v contains fR

r . It clearly follows

that F contains f , and hence does not satisfy Pf .

Let r be the leftmost root of f and let i denote its color. An i-vertex v in F is

called down-bad (with respect to f) if Fv is ε/2-far from Pfr . Otherwise it is called

down-good. v is called right-bad if FR
v is ε/2-far from PfR

r
. Otherwise it is called

right-good. We say that a vertex is bad if it is both down-bad and right-bad.

Lemma 5.2.4. If the total weight of bad vertices is no larger than ε/2, then (F, c)

is ε-close to Pf .

Proof. We show that in such a case there exists a coloring c′ of F that satisfies

Pf and is ε-close to c.

Let U be the set of down-bad i-vertices in F which are right-good. If U is not

empty (one of the cases where U is empty is when f is a tree), let u be the first

vertex in U according to the “post-order”, that is, there are no vertices of U left of

u or below it. By definition, there exists a coloring cu of FR
u which is ε/2-close to

c|F R
u
, such that (FR

u , cu) satisfies PfR
u
. We thus set c′(w) = cu(w) for every w ∈ FR

u .

67

Note that there is a total weight of at most ε/2 of down-bad i-vertices left of u or

below it (or in the entire forest, if u does not exist).

Let G be the set of down-good i-vertices to the left of u or below it (or all down-

good i-vertices if u does not exist). Let MG be the set of vertices in G which have

no proper ancestors in G. By definition, for every v ∈ MG there exists a coloring

cv of Fv which is ε/2-close to c|Fv , such that (Fv, cv) satisfies Pfr . We thus set

c′(w) = cv(w) for every proper descendant u of v ∈ MG. Clearly, we have so far

recolored vertices whose total weight is at most ε/2. For every down-bad i-vertex v

which is to the left of u and is not a descendant of a vertex in MG, we let c′(v) be

any color other than i. The rest of the vertices remain unchanged. Since the total

weight of such vertices is at most ε/2 (as they are also right-bad), c′ is ε-close to c.

To see that c′ satisfies Pf , note that the only i-vertices to the left of u or below

it are descendants of vertices in MG. However, the subforests of vertices in MG do

not contain fr. On the other hand, fR
r cannot be found to the right of u. It clearly

follows that F does not contain f .

Lemma 5.2.5. If the total weight of bad vertices is at most ε/2, then (F, c) is

accepted with probability at most 1
3
.

Proof. Using the Chernoff Bound, the probability of sampling less than 8 bad

vertices is smaller than e−2 < 1
6
. Assume that we sampled at least 8 bad vertices.

By the induction hypothesis, for every bad vertex v, Forest-Test(Fv, fr, ε/2, c|Fv)

and Forest-Test(FR
v , fR

r , ε/2, c|F R
v
) both accept with probability at most 1

3
, and so

at least one of these two tests accepts with probability at most 2
3
. Since the tests are

independent, the probability that for every bad vertex v at least one test accepts is

at most
(

2
3

)8
< 1

6
. We conclude that the input is accepted with probability at most

1
3
.

This completes the proof of Theorem 5.2.2.

5.2.1 A non-adaptive forest test

As in the test for chains, the distribution of vertices sampled in Case 3 is independent

of the answers for previous queries. Therefore, we may choose all the queried vertices

of the algorithm in advance. The essential difference between the adaptive and non-

adaptive versions, is that in the adaptive version we perform the recursion on Fv

only for queried vertices v which are i-vertices. In the non-adaptive case, we have

68

to perform the recursion for all queried vertices. Therefore, the query complexity

for the non-adaptive test is the same as the worst case of the adaptive one, that is,

ε−F ·2F2/2+O(F). The time complexity is again the time it takes to make the queries.

5.3 Discussion

A test for a general set of forbidden forests would require more than separately

testing for each of the forbidden forests, as a priori it may be the case that the input

is close to not containing each of the forbidden forests separately, and yet far from

simultaneously not containing any of them. Also, the test would have to be more

sophisticated than our tests given in this chapter, in the sense that it is not enough

to detect a far input by finding an instance of a forbidden forest. Indeed, it may be

the case that a single vertex is common to all instances of forbidden forests, but any

attempt to remove these instances by recoloring the vertex results in appearance of

other instances of (possibly different) forbidden forests. We see an example of this

situation in the cases of convexity and quasi-convexity, where our tests attempt to

discover the existence of such a critical vertex without actually querying it. Another

example is in our chain test, where for some inputs we have to query a longest path

between a root to a leaf, to make sure that F has a coloring which contains no

forbidden chain.

Another natural direction would be to consider rooted forests which are not

ordered. Testing for a forbidden forest in an unordered rooted forest may clearly

be reduced to testing for a set of forbidden rooted ordered forests. However, as the

size of the forbidden set, in terms of the total number of vertices, may be up to a

factorial in the size of the original forest, the question arises as to whether there is

a more efficient way of solving the problem.

69

Part II

Testing Graph Orientations for

Being Eulerian

70

Chapter 6

Introduction

6.1 Testing in the orientation model

Testing properties of directed graphs has been studied in the past through naturally

adapting the dense graph model and the bounded degree model (see [4, 7]). Here

we consider property testing of directed graphs in the orientation model, whose

study began in [30] and continued in [31] and [12]. The orientation model is a

massively parameterized model (see Section 1.3). The domain graph in this model

is an undirected graph G = (V, E), and the input is an orientation
−→
G of G, in

which every edge in E has a direction. Our testers may access the input using edge

queries. That is, every query concerns an edge e ∈ E, and the answer to the query

is the direction of e in
−→
G . Our distance function is the Hamming distance on G’s

orientations. Namely, an orientation
−→
G of G is called ε-close to a property P if it

can be made to satisfy P by inverting at most an ε-fraction of the edges of G, and

otherwise
−→
G is said to be ε-far from P .

The orientation model provides a novel and interesting setting for research.

Studying this model not only requires new techniques, but it also provides a natural

and rich framework for exploring properties of directed graphs. In addition, testers

for the orientation model could have practical counterparts in some physical net-

works, such as a road network, where it is plausible to assume that one can reverse

the direction of an existing arc more cheaply than one can add or delete a new arc.

71

6.2 Eulerian graphs and Eulerian orientations

We consider the property of being Eulerian, which was presented in [31] as one of

the natural orientation properties whose query complexity was still unknown. A

directed graph
−→
G is called Eulerian if for every vertex v in the graph, the in-degree

of v is equal to its out-degree (in addition, it is common to define Eulerian graphs

as connected, but as we explain later, our algorithms and proofs work equally well

whether we require connectivity or not). An undirected graph G has an Eulerian

orientation
−→
G if and only if all the degrees of G are even. Such an undirected domain

graph is called Eulerian also. Throughout our work we assume that our underlying

undirected graph G is Eulerian.

Eulerian graphs and Eulerian orientations have attracted researchers since the

dawn of graph theory in 1736, when Leonard Euler published his solution for the

famous “Königsberg bridge problem”. Throughout the years, Eulerian graphs have

been the subject of extensive research (e.g. [45, 36, 52, 38, 11, 6]; see [22, 23] for

an extensive survey). Aside from their appealing theoretic characteristics, Eulerian

graphs have been studied in the context of networking [33] and genetics [44].

Testing for being Eulerian in the orientation model is equivalent to the following

problem. We have a known network (a communication network, a transportation

system or a piping system) where every edge can transport a unit of “flow” in both

directions. Our goal is to know whether the network is “balanced”, or far from

being balanced, where being balanced means that the number of flows entering

every node in the network is equal to the number of flows exiting it (so there is no

“accumulation” in the nodes). To examine the network, we detect the flow direction

in selected individual edges, which is deemed to be the expensive operation.

The main difficulty in testing orientations for being Eulerian arises from the fact

that an orientation might have a small number of unbalanced vertices, and each of

them with a small imbalance, and yet be far from being Eulerian. This is since

trying to balance an unbalanced vertex by inverting some of its incident edges may

violate the balance of its balanced neighbors. Thus, we must continue to invert edges

along a directed path between a vertex with a positive imbalance and a vertex with

a negative imbalance. We call such a path a correction path. A main component

of our work is giving upper bounds for the length of the correction paths. In this

context we note the work of Babai [6], who studied the ratio between the diameter of

Eulerian digraphs and the diameter of their underlying undirected graphs. While he

72

gave an upper bound for this ratio for vertex-transitive graphs, he showed an infinite

family of undirected graphs with diameter 2 which have an Eulerian orientation with

diameter Ω(n1/3).

6.3 Our results

Our upper bounds are based on three “generic” tests, one 1-sided test and two

2-sided tests. Instead of receiving ε as a parameter, the generic tests receive a pa-

rameter p, which stands for the number of required correction paths in an orientation

that is far from being Eulerian. We hence call these tests p-tests. We later derive

ε-tests from the p-tests by proving two lower bounds for p. The first one gives an

efficient test for dense graphs and the second one gives an efficient test for expander

graphs. Finally, we show how to use variations of the expander tests for obtaining

a 1-sided test and a 2-sided test for general graphs, using a decomposition (“chop-

ping”) procedure into subgraphs that are roughly expanders. The 2-sided test that

we obtain this way has a sub-linear query complexity for every graph. Unfortu-

nately, our chopping procedure is adaptive and has an exponential computational

time in |E|. All of our other algorithms are non-adaptive and their computational

complexity is of the same order as their query complexity.

On the negative side, we provide several lower bounds. We show that any 1-

sided test for being Eulerian must use Ω(m) queries for some graphs. For bounded-

degree graphs, we use the toroidal grid to prove non-constant 1-sided and 2-sided

lower bounds. These bounds are noteworthy, as bounded-degree graphs have a

constant size witness for not being Eulerian, namely the set of edges incident with

one unbalanced vertex. In contrast, the st-connectivity property, whose witness

must include a cut in the graph, is testable with a constant number of queries in

the orientation model [12]. Other testing models also have known super-constant

lower bounds for some properties which have constant-size witness. For instance,

in [9] it is proved that testing whether a truth assignment satisfies a known 3CNF

formula requires a linear number of queries for some formulas. However, most of

these bounds are for properties that have stronger expressive power than that of

being Eulerian.

The following chart gives a summary of our upper and lower bounds for the query

complexity of ε-tests. Here and throughout Part II, we set n = |V | and m = |E|,
let ∆ be the maximum vertex-degree in G, and set d

def
= m/n.

73

Result 1-sided tests 2-sided tests

Tests for large d

(Section 8.2)
O
(

∆m
ε2d2

)
min

{
Õ
(

m3

ε6d6

)
, Õ
(√

∆m
ε2d2

)}
Tests for α-expanders

(Section 8.3)
O
(

∆ log(1/ε)
αε

)
min

{
Õ

((
log(1/ε)

αε

)3
)

, Õ
(√

∆ log(1/ε)
αε

)}
General tests

(Section 8.5)
O
(

(∆m log m)2/3

ε4/3

)
min

{
Õ
(

∆1/3m2/3

ε4/3

)
, Õ
(

∆3/16m3/4

ε5/4

)}
Simple lower bound

(Section 7.4)
Ω(m) —

Lower bounds for

bounded-degree graphs

(Chapter 9)

Ω(log m),

Ω(m1/4)

non-adaptive

Ω(log log m),

Ω
(√

log m
log log m

)
non-adaptive

The rest of Part II is organized as follows. Chapter 7 provides general definitions

and lemmas to be used in the sequel, including a simple 1-sided lower bound for

general graphs (Section 7.4). Chapter 8 is dedicated to our upper bounds: Section

8.1 contains our three p-tests, which distinguish between Eulerian orientations and

orientations with many correction paths. In Section 8.2 we give a lower bound on

the number of correction paths as a function of the average degree in the graph, and

derive our tests for graphs with high average degree. In Section 8.3 we give such a

bound and derive tests for expander graphs. Section 8.4 considers testing subgraphs

that we call “lame” expanders, providing results for them that are similar to those

obtained for expanders, and are used in the sequel. Section 8.5 presents our most

general tests, which use the results of Section 8.4. Section 8.6 concludes the section

with a short discussion of the upper bounds results and open problems. To end

this part of the thesis, Chapter 9 gives our 2-sided and 1-sided lower bounds for

bounded-degree graphs.

74

Chapter 7

Basic Definitions and Lemmas

7.1 Preliminaries

Throughout Part II, we assume that our domain graph G = (V, E) is an Eulerian

undirected graph, that is, for every v ∈ V , the degree deg(v) of v is even.

Given an orientation
−→
G = (V,

−→
E) and a vertex v ∈ V , let indeg−→

G
(v) denote

the in-degree of v with respect to
−→
G and let outdeg−→

G
(v) denote the out-degree of v

with respect to
−→
G . We define the imbalance of v in

−→
G as ib−→

G
(v)

def
= outdeg−→

G
(v) −

indeg−→
G

(v). We sometimes omit the subscript
−→
G when it is obvious from the context.

We say that a vertex v ∈ V is a spring in
−→
G if ib−→

G
(v) > 0. We say that v is a drain

in
−→
G if ib−→

G
(v) < 0. If ib−→

G
(v) = 0 then we say that v is balanced in

−→
G . We say that

−→
G is Eulerian if all its vertices are balanced. Since all the vertices of G are of even

degree, there always exists some Eulerian orientation
−→
G of G.

We note that it is common to require connectivity from an Eulerian undirected

graph and strong connectivity from a directed Eulerian graph. However, all our

algorithms and proofs work also for the case where our domain graph G is not

connected. Furthermore, it is easy to see that if G is connected, then every Eulerian

orientation
−→
G of G is strongly connected. Thus, if we are interested in testing

whether
−→
G is strongly connected, in addition to having balanced vertices, we simply

add to our tests a phase which checks the domain graph G and rejects if it is not

connected. We henceforth ignore the connectivity criterion.

Note that testing whether
−→
G is Eulerian is trivial for ε ≥ 1

2
.

Observation 7.1.1. Every orientation
−→
G of G is 1

2
-close to being Eulerian.

Proof. Let
−→
G1 be an arbitrary Eulerian orientation of G. Let

−→
G2 =

←−
G1, namely,

75

the orientation derived from
−→
G 1 by inverting all the edges. Clearly,

−→
G2 is Eulerian as

well, since inverting all the edges maintains the absolute value of the imbalance of all

vertices. Now, for every edge e ∈ E, the direction of e in
−→
G is the same as in

−→
G1 if and

only if it is opposite to the direction of e in
−→
G2. Hence, dist(

−→
G,
−→
G1) = 1−dist(

−→
G,
−→
G2),

and therefore,
−→
G is 1

2
-close to either

−→
G1 or

−→
G2.

We conclude this section with some notation that is useful in the following. Given

a set U ⊆ V , we let

E(U)
def
= {{u, v} ∈ E | u, v ∈ U},

−→
E (U)

def
= {(u, v) ∈

−→
E | u, v ∈ U},

∂U
def
= {{u, v} ∈ E | u ∈ U, v /∈ U},

and
−→
∂ U

def
= {(u, v) ∈

−→
E | u ∈ U, v /∈ U}.

E(U,W)
def
= {{u, w} ∈ E | u ∈ U,w ∈ W}

and
−→
E (U,W)

def
= {(u, w) ∈

−→
E | u ∈ U,w ∈ W}.

7.2 Correction subgraphs and p-tests

Let
−→
G be an orientation of G. Given a subgraph

−→
H = (VH ,

−→
EH) of

−→
G (that is, a

directed graph where VH ⊆ V and
−→
EH ⊆

−→
E) we define

−→
G←−

H

def
= (V,

−→
E←−

H
) to be the

orientation of G derived from
−→
G by inverting all the edges of

−→
H . Namely,

−→
E←−

H
=
−→
E \
−→
EH ∪ {(v, u) ∈ (VH)2 | (u, v) ∈

−→
EH}.

We say that
−→
H is a correction subgraph of

−→
G if

−→
G←−

H
is Eulerian. Note that in such

a case,
−→
G is |

−→
EH |
m

-close to being Eulerian.

Lemma 7.2.1. A subgraph
−→
H of

−→
G is a correction subgraph if and only if the

following conditions hold for every v ∈ V :

1. If v /∈ VH , then v is balanced in
−→
G .

2. If v ∈ VH , then ib−→
H

(v) = 1
2
· ib−→

G
(v).

76

In particular, a vertex v is a spring in
−→
G if and only if it is a spring in

−→
H , and v

is drain in
−→
G if and only if it is a drain in

−→
H .

Proof. Remember that
−→
H is a correction subgraph of

−→
G if and only if ib−→

G←−
H

(v) = 0

for every v ∈ V . The proof follows from the following facts, which can be easily

verified:

1. If v /∈ VH , then ib−→
G←−

H

(v) = ib−→
G

(v).

2. If v ∈ VH , then ib−→
G←−

H

(v) = ib−→
G

(v)− 2 · ib−→
H

(v).

Since G is Eulerian, there exists some correction subgraph of
−→
G . Furthermore,

without loss of generality, we may focus on acyclic correction graphs.

Observation 7.2.2. For any orientation
−→
G of G and for any correction subgraph

−→
H1 of

−→
G , there exists an acyclic correction subgraph

−→
H of

−→
G that is a subgraph of

−→
H1.

Proof. We obtain
−→
H from

−→
H1 as follows. While

−→
H1 is not acyclic, we arbitrarily

choose a directed cycle and remove its edges from the subgraph. Note that this

operation maintains the balance factors of all the vertices of G with respect to
−→
H1.

The proof thus follows from Lemma 7.2.1.

Let S be the set of springs in
−→
G and let T be the set of drains in

−→
G . We say that

a directed path
−→
P = 〈u0, . . . , uk〉 in

−→
G is a spring-drain path if u0 ∈ S and uk ∈ T .

Note that in this case, for any correction subgraph
−→
H of

−→
G , we have by Lemma

7.2.1 that u0 is a spring in
−→
H and uk is a drain in

−→
H . The following observations

and lemmas follow easily.

Observation 7.2.3. If
−→
G is not Eulerian then any correction subgraph

−→
H of

−→
G

contains a spring-drain path.

Observation 7.2.4. Let
−→
H be a correction subgraph of

−→
G and let

−→
P be a spring-

drain path in
−→
H . Define

−→
H \
−→
P to be the graph obtained from

−→
H by removing all the

edges of
−→
P , that is,

−→
E \
−→
P

def
= (VH ,

−→
E \
−→
P). Then

−→
H \
−→
P is a correction subgraph

of
−→
G←−

P
, the graph obtained from

−→
H by inverting all the edges of

−→
P . Moreover, if

−→
H

is acyclic then
−→
H \
−→
P is edgeless if and only if

−→
G←−

P
is Eulerian.

77

Lemma 7.2.5. If
−→
G is not Eulerian then any acyclic correction subgraph

−→
H of

−→
G is a union of p = 1

4

∑
u∈V |ib(u)| edge-disjoint spring-drain paths. Moreover,

every decomposition of
−→
H into edge-disjoint spring-drain paths has exactly p paths.

In particular, removing any spring-drain path from
−→
H results in a graph that is a

collection of p− 1 edge-disjoint spring-drain paths.

Proof. From Observations 7.2.3 and 7.2.4, it is clear that
−→
H may be decomposed

into edge-disjoint spring-drain paths. Note that when removing a spring-drain path,

we reduce the sum
∑

u∈V |ib(u)| by exactly four (as we reduce the absolute value of

the imbalance of both the spring and the drain by two). Therefore, every decom-

position of
−→
H into disjoint spring-drain paths contains p = 1

4

∑
u∈V |ib(u)| paths.

Lemma 7.2.6. Let
−→
G be an orientation of G and let

−→
H be an acyclic correction

subgraph of
−→
G which is a union of p disjoint spring-drain paths. Let S be the set of

springs in
−→
H . Then

∑
u∈S ib(u) = 2p.

Proof. By Lemma 7.2.1, for any spring u ∈ S, the number of spring-drain paths

starting at u is ib(u)/2. Thus
∑

u∈S ib(u)/2 = p.

Given some positive number p, if every correction subgraph of an orientation
−→
G is a union of at least p disjoint spring-drain paths, then we say that

−→
G is p-far

from being Eulerian. An algorithm is be called a p-test for being Eulerian if it

can distinguish between Eulerian orientations and p-far orientations. Namely, the

algorithm should accept an Eulerian orientation with probability at least 2/3 and

reject a p-far orientation with probability at least 2/3. Similarly to ε-tests, if a p-test

accepts every Eulerian orientation with probability 1 then it is called 1-sided, and

otherwise it is called 2-sided.

7.3 β-correction subgraphs and (p, β)-tests

Given β > 0, we say that a vertex v is β-small if deg(v) ≤ β and β-big if deg(v) > β.

An orientation
−→
G is called β-Eulerian if all the β-small vertices in V are balanced

in
−→
G . Note that for β ≥ ∆,

−→
G is β-Eulerian if and only if

−→
G is Eulerian. A directed

subgraph
−→
H = (VH ,

−→
EH) of

−→
G is a β-correction subgraph of

−→
G if:

1.
−→
G←−

H
is β-Eulerian.

78

2. For every v ∈ V we have: |ib−→
G←−

H

(v)| ≤ |ib−→
G

(v)|, and if v is a spring (resp.

drain) in
−→
H then it is either balanced or a spring (resp. drain) in

−→
G←−

H
.

That is,
−→
H fixes the balance of all the β-small vertices without increasing or changing

the sign of the imbalance of β-big vertices.

A directed path
−→
P = 〈u0, . . . , uk〉 in an orientation

−→
G is called a β-spring-drain

path if
−→
P is a spring-drain path and at least one of u0 and uk is β-small.

Observation 7.3.1. Every orientation
−→
G which is not β-Eulerian has a β-

correction subgraph which is a union of edge-disjoint β-spring-drain paths.

For 0 ≤ ε ≤ 1 and β > 0, we say that an orientation
−→
G is (ε, β)-amendable if

there exists a β-correction subgraph
−→
H = (VH ,

−→
EH) of

−→
G with |

−→
EH | ≤ εm. Otherwise

we say that
−→
G is (ε, β)-unamendable.

For p, β > 0, we say that an orientation
−→
G is p-close to being β-Eulerian if there

exists a β-correction subgraph
−→
H of

−→
G that is a union of at most p edge-disjoint

β-spring-drain paths. Otherwise, we say that
−→
G is p-far from being β-Eulerian.

Note that in fact the requirement from the correction subgraph to be composed of

β-spring-drain paths only is not restricting in the definition of being p-far.

One can show that all the lemmas and observations that we have proved in

Section 7.2 for correction subgraphs and spring-drain paths can be adapted to β-

correction subgraphs and β-spring-drain paths. In particular:

Lemma 7.3.2. If
−→
G is not β-Eulerian then any edge-minimal (acyclic) β-correction

subgraph
−→
H of

−→
G is a union of at least 1

4

∑
u∈V,deg(u)≤β |ib(u)| and at most

1
2

∑
u∈V,deg(u)≤β |ib(u)| edge-disjoint β-spring-drain paths. Hence, if

−→
G is p-far from

being β-Eulerian then ∑
u∈V,deg(u)≤β

|ib(u)| > 2p.

Proof. One can show that any acyclic β-correction subgraph is a union of edge-

disjoint β-spring-drain paths, using similar techniques to those that we used in

Section 7.2, as well as the fact that a β-correction subgraph may not increase or

change the sign of the imbalance of β-big vertices. To bound the number of β-spring-

drain paths in any β-correction subgraph
−→
H of an orientation

−→
G , note that when

we remove a β-spring-drain path from
−→
H , we reduce the sum

∑
u∈V,deg(u)≤β |ib(u)|

by either two or four (as we reduce the absolute value of the imbalance of both the

spring and the drain by two, and at least one of them is β-small). Therefore, every

79

decomposition of
−→
H into disjoint β-spring-drain paths contains p paths for some p

between 1
4

∑
u∈V,deg(u)≤β |ib(u)| and 1

2

∑
u∈V,deg(u)≤β |ib(u)|.

Given p, β > 0, an algorithm is called a (p, β)-test for being Eulerian for some

positive number p if it can distinguish between β-Eulerian orientations and orienta-

tions that are p-far from being β-Eulerian. Namely, the algorithm should accept a

β-Eulerian orientation with probability at least 2/3 and reject an orientation that

is p-far from being β-Eulerian with probability at least 2/3. As usual, a (p, β)-test

is said to be 1-sided if it accepts every β-Eulerian orientation with probability 1.

Otherwise, the test is said to be 2-sided.

7.4 A linear lower bound for 1-sided tests

In this section we prove that there exists no sub-linear 1-sided test for Eulerian

orientations of general graphs.

Consider an algorithm that tests an orientation
−→
G of G. At a given moment, we

represent the edges that the algorithm has queried so far by a directed knowledge

graph
−→
H = (V,

−→
EH), where

−→
EH ⊆

−→
E . We say that a cut M = (U, V \ U) of G is

valid with respect to a knowledge graph
−→
H if

|
−→
EH(U, V \ U)| ≤ 1

2
|E(U, V \ U)| and |

−→
EH(V \ U,U)| ≤ 1

2
|E(U, V \ U)|.

Otherwise, M is called invalid. Clearly, if
−→
G is Eulerian, then every knowledge

graph
−→
H of

−→
G contains only valid cuts. We show that any 1-sided test for being

Eulerian must obtain a knowledge graph that contains some invalid cut in order to

reject
−→
G .

We say that a (valid) cut M = (U, V \U) of G is restricting with respect to
−→
H if

−−→
|EH(U, V \ U)| =

1

2
|E(U, V \ U)| or |

−→
EH(V \ U,U)| =

1

2
|E(U, V \ U)|.

Note that, given that
−→
G is Eulerian, a restricting cut with respect to

−→
H forces the

orientations of all the unqueried edges in the cut. We say that two restricting cuts

M1 and M2 are conflicting (with respect to a knowledge graph
−→
H) if they force

contrasting orientations of at least one unqueried edge.

80

Lemma 7.4.1. Let
−→
H be a knowledge graph of

−→
G and suppose that all the cuts in

G are valid with respect to
−→
H . Then there are no conflicting cuts with respect to

−→
H .

Proof. Assume, on the contrary, that M1 = (V1, V \ V1) and M2 = (V2, V \ V2)

are conflicting with respect to
−→
H . That is, there exists an edge {u, w} ∈ E, that

was not queried and hence is not oriented in
−→
H , which is forced to have contrasting

orientations by M1 and M2. Without loss of generality, assume that u ∈ V1\V2, w ∈
V2 \ V1, and

|
−→
EH(V1, V \ V1)| =

1

2
· |E(V1, V \ V1)|, (7.1)

|
−→
EH(V2, V \ V2)| =

1

2
· |E(V2, V \ V2)|. (7.2)

Thus, M1 forces e to be oriented from w to u, whereas M2 forces e to be oriented

from u to w.

Recall now that all the cuts in G are valid with respect to
−→
H . Consider the cuts

(V1 ∩ V2, V \ (V1 ∩ V2)) and (V1 ∪ V2, V \ (V1 ∪ V2)). We have

|
−→
EH(V1 ∩ V2, V \ (V1 ∩ V2))| ≤

1

2
· |E(V1 ∩ V2, V \ (V1 ∩ V2))| (7.3)

and

|
−→
EH(V1 ∪ V2, V \ (V1 ∪ V2))| ≤

1

2
· |E(V1 ∪ V2, V \ (V1 ∪ V2))| (7.4)

since these cuts are valid. Note that

|E(V1 ∩ V2, V \ (V1 ∩ V2))| + |E(V1 ∪ V2, V \ (V1 ∪ V2))| (7.5)

= |E(V1, V \ V1)|+ |E(V2, V \ V2)| − 2 · |E(V1 \ V2, V2 \ V1)|

and

|
−→
EH(V1 ∩ V2, V \ (V1 ∩ V2))| + |

−→
EH(V1 ∪ V2, V \ (V1 ∪ V2))| = (7.6)

|
−→
EH(V1, V \V1)|+ |

−→
EH(V2, V \V2)| − |

−→
EH(V1 \V2, V2 \V1)| − |

−→
EH(V2 \V1, V1 \V2)|.

Summing Equation (7.1) with Equation (7.2) yields

|
−→
EH(V1, V \V1)|+|

−→
EH(V2, V \V2)| =

1

2
(|E(V1, V \ V1)| + |E(V2, V \ V2)|) . (7.7)

81

Summing Inequality (7.3) with Inequality (7.4) yields

−→
EH(V1 ∩ V2, V \ (V1 ∩ V2))| + |

−→
EH(V1 ∪ V2, V \ (V1 ∪ V2))| ≤ (7.8)

1

2
(|E(V1 ∩ V2, V \ (V1 ∩ V2))| + |E(V1 ∪ V2, V \ (V1 ∪ V2))|) .

Substituting Equations (7.5) and (7.6) in Inequality (7.8) we obtain:

|
−→
EH(V1, V \V1)|+ |

−→
EH(V2, V \V2)|− |

−→
EH(V1 \V2, V2 \V1)|− |

−→
EH(V2 \V1, V1 \V2)| ≤

1

2
(|E(V1, V \ V1)| + |E(V2, V \ V2)|)− |E(V1 \ V2, V2 \ V1)|.

Now, from Equation (7.7) we have:

|
−→
EH(V1 \ V2, V2 \ V1)| + |

−→
EH(V2 \ V1, V1 \ V2)| ≥ |E(V1 \ V2, V2 \ V1)|.

That is, all the edges in E(V1\V2, V2\V1) are oriented in
−→
H . This is a contradiction

to our assumption that {u, w} ∈ E(V1 \ V2, V2 \ V1) was not yet oriented.

Lemma 7.4.2. Suppose that
−→
H is a knowledge graph that does not contain invalid

cuts. Then
−→
H is extensible to an Eulerian orientation

−→
G = (V,

−→
EG) of G. That is,

−→
EH ⊆

−→
EG.

Proof. We orient unoriented edges in the following manner. If there exists a

restricting cut with unoriented edges, we orient one of them as obliged by the cut.

According to Lemma 7.4.1, this will not invalidate any of the other cuts in the graph,

and so we may continue. If there are no restricting cuts in the graph, we arbitrarily

orient one unoriented edge and repeat (and this cannot violate any cut in the graph

since there were no restricting cuts). Eventually, after orienting all the edges, we

receive a complete orientation of G whose cuts are all valid, and thus it is Eulerian.

Theorem 7.4.3. There exists an infinite family of graphs for which every 1-sided

test for being Eulerian must use Ω(m) queries.

Proof. For every even n, let Gn
def
= K2,n−2, namely, the graph with a set of vertices

V = {v1, . . . , vn} and a set of edges E = {{vi, vj} | i ∈ {1, 2}, j ∈ {3, . . . , n}}.
Clearly, Gn is Eulerian and n = Ω(m).

82

Consider the orientation
−→
Gn of Gn in which all the edges incident with v1 are

outgoing and all the edges incident with v2 are incoming. Clearly,
−→
Gn is 1

2
-far from

being Eulerian. According to Lemma 7.4.2, every 1-sided test must query at least

half of the edges in some unbalanced cut (because otherwise it would clearly not

obtain an invalid cut in the knowledge graph). However, one can easily see that

every cut which does not separate v1 and v2 is balanced, while every cut which

separates v1 and v2 is of size n− 2 = Ω(m).

83

Chapter 8

Upper Bounds

8.1 Generic tests

In this section we present one 1-sided p-test and two 2-sided p-tests for being Eu-

lerian. Namely, our tests distinguish with high probability between the case where
−→
G is Eulerian and the case where

−→
G is p-far from being Eulerian (see Section 7.2).

In later sections we devise several lower bounds on p for every orientation
−→
G that is

ε-far from being Eulerian, thus obtaining corresponding upper bounds on the tests

below. In fact, the 1-sided and 2-sided tests that we give in Subsection 8.1.2 are

(p, β)-tests (see Section 7.3), which are, in particular, p-tests when β = ∆. We will

use these tests also for β < ∆ in Section 8.4.

8.1.1 A 2-sided p-test

We give a simple 2-sided p-test that is independent of the maximum degree ∆.

This p-test will yield efficient ε-tests for dense graphs (Section 8.2) and expanders

(Section 8.3). To simplify notation, we denote δ
def
= p

4m
.

Algorithm 8.1.1. SIMPLE-2(
−→
G, p):

1. Repeat 4
δ

times independently:

• Select an edge e ∈ E uniformly and query it. Denote the start vertex of

e in
−→
E by u and the end vertex of e in

−→
E by v.

• Query 16 ln(12/δ)
δ2 edges incident with u uniformly and independently and

reject if the sample contains at least (1 + δ)8 ln(12/δ)
δ2 outgoing edges.

84

2. Accept if the input was not rejected earlier.

Lemma 8.1.2. SIMPLE-2 is a 2-sided p-test for being Eulerian with query com-

plexity Õ
(

1
δ3

)
= Õ

(
m3

p3

)
.

Proof. The query complexity is clearly as stated. To prove the correctness of our

algorithm, suppose first that
−→
G is Eulerian. For every vertex u ∈ V , the expected

number of outgoing edges in the sample of u’s incident edges is 8 ln(12/δ)
δ2 . Applying

Chernoff’s upper tail bound, the probability of having at least (1+δ)8 ln(12/δ)
δ2 outgoing

edges in a sample is at most

(
eδ

(1 + δ)(1+δ)

) 8 ln(12/δ)

δ2

. (8.1)

From the Taylor expansion, we have

ln(1 + δ) = δ − δ2

2
+

δ3

3
− . . .

and

δ · ln(1 + δ) = δ2 − δ3

2
+

δ4

3
−

Summing the two series we obtain that (1 + δ) ln(1 + δ) > δ + δ2

2
− δ3

6
> δ + δ2

8
.

Thus (1 + δ) ln(1 + δ) − δ > δ2

8
and therefore eδ

(1+δ)(1+δ) < e−δ2/8. Substituting in

Equation (8.1), we obtain that the probability of sampling (1 + δ)8 ln(12/δ)
δ2 outgoing

edges for a balanced vertex is at most δ
12

. Since we sample 4
δ

vertices, the probability

of rejecting an Eulerian orientation is at most 1
3
.

Assume now that
−→
G is p-far from being Eulerian. A vertex u ∈ V will be called

a δ-spring in
−→
G if ib(u) > 3δ · deg(u). Let Sδ be the set of all δ-springs in

−→
G . Note

that Sδ ⊆ S, where S is the set of all springs in
−→
G . We have∑

u∈S

ib(u) ≤
∑
u∈Sδ

deg(u) + 3δ ·
∑

u∈S\Sδ

deg(u).

Let y =
∑

u∈Sδ
deg(u). Since

∑
u∈S deg(u) < 2m, we obtain∑

u∈S

ib(u) < y + 3δ · (2m− y) = (1− 3δ)y + 6δm.

85

However, from Lemma 7.2.6, we have
∑

u∈S ib(u) = 2p = 8δm, and therefore,

y >
2δm

1− 3δ
> 2δm.

Thus,
∑

u∈Sδ
deg(u) > 2δm, and since for every u ∈ Sδ we have degout(u) > 1

2
deg(u),

there exist at least δm edges (u, v) ∈
−→
E such that u is a δ-spring. As SIMPLE-2

samples 4
δ

edges (u, v) ∈
−→
E uniformly and independently, the probability of not

sampling any edge (u, v) such that u is a δ-spring is at most (1− δ)
4
δ < e−4 < 0.03.

Suppose now that the algorithm has sampled an edge (u, v) such that u is a δ-

spring. Then
−→
G will be rejected unless fewer than (1+δ)8 ln(12/δ)

δ2 of the queried edges

(u, w) are outgoing. Since ib(u) > 3δ ·deg(u), the expected number of outgoing edges

is at least (1 + 3δ/2)8 ln(12/δ)
δ2 . Note that (1 + δ)8 ln(12/δ)

δ2 < (1 − 1
4
δ)(1 + 3

2
δ)8 ln(12/δ)

δ2 .

Therefore, by the Chernoff bound, the probability of sampling fewer than (1 +

δ)8 ln(12/δ)
δ2 outgoing edges is at most

exp

(
− δ2

32

(
1 +

3δ

2

)
8 ln(12/δ)

δ2

)
< exp

(
− ln(12/δ)

4

)
.

Note that ln(12/δ)
4

> ln(10/3), and therefore, the probability of not detecting that u

is a δ-spring is at most 0.3. We thus conclude that if
−→
G is p-far from being Eulerian,

then SIMPLE-2 accepts
−→
G with probability smaller than 1

3
, which completes the

proof of the theorem.

8.1.2 (p, β)-tests

We now give a simple 1-sided (p, β)-test, which has a better query complexity than

SIMPLE-2 for ∆� m2

p2 ln(m
p
).

Algorithm 8.1.3. GENERIC-1(
−→
G, p, β):

1. Repeat ln 3 m
p

times independently:

• Select an edge e ∈ E uniformly and query it. Denote the start vertex of

e in
−→
E by u and the end vertex of e in

−→
E by v.

• If deg(u) ≤ β then: Query all the edges {u, w} ∈ E and reject if u is

unbalanced, namely, if ib(u) 6= 0.

2. Repeat ln 3 m
p

times independently:

86

• Select an edge e ∈ E uniformly and query it. Denote the start vertex of

e in
−→
E by u and the end vertex of e in

−→
E by v.

• If deg(v) ≤ β then: Query all the edges {w, v} ∈ E and reject if v is

unbalanced, namely, if ib(v) 6= 0.

3. Accept if the input was not rejected by the above.

Lemma 8.1.4. GENERIC-1 is a 1-sided (p, β)-test for being Eulerian with query

complexity O
(

βm
p

)
. In particular, for β = ∆, GENERIC-1 is a 1-sided p-test with

query complexity O
(

∆m
p

)
.

Proof. The query complexity is clearly as stated. Since Algorithm 8.1.3 rejects

only when an unbalanced β-small vertex is discovered, it always accepts a β-Eulerian
−→
G . Suppose now that

−→
G is p-far from being β-Eulerian. Clearly, to reject

−→
G , it

suffices to sample one edge e = (u, v) ∈
−→
E such that u is a spring in Step 1 or an

edge e = (u, v) ∈
−→
E such that v is a drain in Step 2. By Lemma 7.3.2, E contains

at least p edges of at least one of these two kinds of edges, and so their fraction is

at least p/m. We thus conclude that the probability of accepting
−→
G is at most

(
1− p

m

) ln 3 m
p

<
1

3
.

We conclude this section with a 2-sided (p, β)-test, which gives better query

complexity than GENERIC-1 for β � log2 m and better query complexity than

SIMPLE-2 for p � m√
β
. The main idea of the algorithm is to perform roughly

O((log β)2) testing stages, each designed to detect unbalanced vertices whose degree

and imbalance lie in a certain interval. We show that with high probability, a β-

Eulerian orientation
−→
G is accepted by all the testing stages, while an orientation

that is p-far from being β-Eulerian is rejected by at least one of them.

Algorithm 8.1.5. MULTISTAGE-2(
−→
G, p, β):

For i = 1, . . . , dlog βe − 1, do:

1. Let Vi
def
= {u ∈ V | deg(u) ∈ [2i, 2i+1) } and ni

def
= |Vi|.

2. Let j = di/2e. If 2j · ni > 2p
(log β)2

then:

87

• Sample xij = ln 12 (log β)2 2j+1 ni

2p
vertices in Vi uniformly and indepen-

dently.

• For every sampled vertex u, query all the edges incident with u, and

reject if u is unbalanced.

3. For every j ∈ {di/2e+ 1, . . . , i− 1} such that 2j · ni > 2p
(log β)2

do:

• Sample xij = ln 12 (log β)2 2j+1 ni

2p
vertices in Vi uniformly and indepen-

dently.

• For every sampled vertex u, query qij = 256 · ln(6(log β)2 xij) ·
22(i−j) edges adjacent to u, uniformly and independently, and reject if

the absolute difference between the number of incoming and outgoing

edges in the sample is at least
qij

4·2i−j .

Accept if the input was not rejected earlier.

Lemma 8.1.6. MULTISTAGE-2 is a 2-sided (p, β)-test for being Eulerian with

query complexity Õ
(√

β m
p

)
. In particular, for β = ∆, MULTISTAGE-2 is a 2-

sided p-test for being Eulerian with query complexity Õ
(√

∆ m
p

)
.

Proof. First, we compute the asymptotic query complexity of Algorithm 8.1.5.

Since

xij = O

(
(log β)2 · 2j · ni

p

)
and

qij = O

(
log

(
log β · 2j · ni

p

)
· 22(i−j)

)
= O

(
log

(
log β ·m

p

)
· 22(i−j)

)
,

the total query complexity is at most

log β∑
i=1

xidi/2e2
di/2e+1 +

i−1∑
j=di/2e+1

xij · qij



= O

log

(
log β ·m

p

)
(log β)2

p

log β∑
i=1

22i · ni

i−1∑
j=di/2e

1

2j


= O

(
log

(
log β ·m

p

)
(log β)2

p

log β∑
i=1

23i/2 · ni

)

88

= O

(
log

(
log β ·m

p

)
(log β)2

p
2log β/2

log β∑
i=1

2i · ni

)

= O

(
log

(
log β ·m

p

)
(log β)2

p

√
βm

)
.

Now suppose that
−→
G is β-Eulerian. Then

−→
G can only be rejected in Step 3,

where we randomly sample qij edges incident with a (β-small) vertex u ∈ Vi. Since

u is balanced, the expected number of incoming edges in the sample is
qij

2
. By the

Chernoff bound, the probability of sampling fewer than (1− 1
4·2i−j)

qij

2
incoming edges

is at most exp
(
− 1

22(i−j) ·
qij

64

)
< 1

6(log β)2xij
. Similarly, the probability of sampling fewer

than (1− 1
4·2i−j)

qij

2
outgoing edges is at most 1

6(log β)2xij
. Since for every pair (i, j) we

sample xij vertices, and since there are less than (log β)2 pairs, the total probability

of rejecting
−→
G is at most 1

3
.

Suppose now that
−→
G is p-far from being β-Eulerian. From Lemma 7.3.2, we have∑

u∈V,deg(u)≤β

|ib(u)| > 2p.

We define a partition of the unbalanced β-small vertices in
−→
G as follows. For

every 1 ≤ i ≤ dlog βe − 1 and for every 1 ≤ j ≤ i, let

Vij
def
= {u ∈ Vi | |ib(u)| ∈ [2j, 2j+1) }.

Then there exist i0 and j0 such that

∑
u∈Vi0j0

|ib(u)| > 2p

(log β)2
. (8.2)

As |ib(u)| < 2j0+1 for every u ∈ Vi0j0 , we have

|Vi0j0| >
2p

(log β)2 · 2j0+1
.

Recall that |Vi0| = ni0 . Hence, when we sample xi0j0 vertices in Step 2 or in Step 3,

the probability of not sampling any vertex u ∈ Vi0j0 is smaller than(
1− 2p

(log β)2 · 2j0+1 · ni0

)xi0j0

< exp

(
− 2p

(log β)2 · 2j0+1 · ni0

· xi0j0

)
=

1

12
.

89

Assume from now on that the algorithm has sampled a vertex u ∈ Vi0j0 . If

j0 ≤ di0/2e then all the edges incident with u are queried (Step 2), and since u

is unbalanced,
−→
G is now rejected with probability 1. Otherwise, qi0j0 edges in-

cident with u are queried independently in Step 3. Since deg(u) < 2i0+1 and

|ib(u)| ≥ 2j0 , either the expected number of incoming edges in the sample is at

least
(
1 + 1

2·2i0−j0

) qi0j0

2
or the expected number of outgoing edges in the sample

is at least
(
1 + 1

2·2i0−j0

) qi0j0

2
. To accept the input, we must sample fewer than(

1 + 1
4·2i0−j0

) qi0j0

2
<
(
1− 1

8·2i0−j0

)
·
(
1 + 1

2·2i0−j0

) qi0j0

2
edges in the majority direction.

By the Chernoff bound, the probability of doing so is at most

exp
(
− qi0j0

256 · 22(i0−j0)

)
= exp

(
− ln(6(log β)2 xi0j0)

)
=

1

6(log β)2 xi0j0

.

Note that from Inequality (8.2) we must have 2j0+1 · ni0 > 4p
(log β)2

and hence

xi0j0 > ln 12. In addition, we may assume that β ≥ 2, since otherwise
−→
G is trivially

β-Eulerian. It thus follows that the probability of not rejecting the input when sam-

pling u’s edges is smaller than 1/4. We conclude that the probability of accepting

an orientation that is p-far from being β-Eulerian is at most 1/3.

We note that the query complexity bound of MULTISTAGE-2 can be made

tighter for some graphs, as the algorithm skips pairs (i, j) where 2j ·ni ≤ 2p
(log β)2

(and

thus i and j cannot be the i0 and j0 which satisfy Equation (8.2)). In particular,

for regular graphs, only one value of i is relevant for testing, which eliminates the

square over log β in the query complexity. However, this does not change the power

of β or the dependency on p and m.

8.2 Testing graphs with high average degree

In this section we obtain a general lower bound for the required number p of cor-

rection paths as a function of d = m/n. This, together with the analysis of the

previous section, will provide us with an efficient test for dense graphs.

Lemma 8.2.1. Suppose that
−→
G is not Eulerian and that

−→
H is an acyclic correction

subgraph of
−→
G which is a union of p edge-disjoint spring-drain paths. Then

−→
H

contains a spring-drain path of length smaller than n√
p
.

Proof. Consider a Breadth-First Search (BFS) traversal of
−→
H starting at the set

of springs, S. We define a partition of VH into levels L0, . . . , Lt for some t > 0 as

90

follows. Let L0 = S. Now, for any i > 0, while
⋃i−1

j=0 Lj 6= VH , define

Li
def
= {v ∈ VH \

i−1⋃
j=0

Lj | there exists u ∈ Li−1 such that (u, v) ∈
−→
EH}.

Note that if v ∈ Li then
−→
H contains a path of length i from some spring to v. Let `

be the minimum index of a level Li which contains a drain. We prove the claim by

showing that ` < n√
p
.

For every i = 0, . . . , t we let ni = |Li|. Recall that there are p edge-disjoint spring-

drain paths in
−→
H . We first show that for every 0 ≤ i < ` we have ni+1 ≥ p/ni.

Consider the level Li for some 0 ≤ i < `. Since there are no drains in the levels

L0, . . . , Li, there exist at least p edges from Li to Li+1. Therefore, there exists a

vertex v ∈ Li which has at least p/ni neighbors in Li+1. Hence, ni+1 ≥ p/ni.

Summing over all i = 0, . . . , `− 1 we obtain

`−1∑
i=0

ni+1 ≥ p ·
`−1∑
i=0

1

ni

,

and so

p ≤
∑`−1

i=0 ni+1∑`−1
i=0

1
ni

.

Now, for a given
∑`−1

i=0 ni, the minimum value of
∑`−1

i=0
1
ni

is reached when ni =∑`−1
i=0 ni/` for every i = 0, . . . , `− 1. Thus,

p ≤
∑`−1

i=0 ni+1

`2/
∑`−1

i=0 ni

< n2/`2,

which proves the lemma.

Lemma 8.2.2. If
−→
G is ε-far from being Eulerian then it is p-far from being Eulerian

for p > ε2d2/4.

Proof. Let
−→
H0 be an acyclic correction subgraph of

−→
G . In each step j ≥ 1, while

−−→
Hj−1 is not empty, we choose a shortest spring-drain path

−−→
Pj−1 in

−−→
Hj−1 and set

−→
Hj =

−−→
Hj−1\

−−→
Pj−1. By Lemma 7.2.5,

−→
H0 is a union of p = 1

4

∑
u∈V |ib(u)| edge-disjoint

spring-drain paths, and moreover, every
−→
Hj is a union of p− j disjoint spring-drain

paths. Hence, the graphs
−→
H0, . . . ,

−−−→
Hp−1 are non-empty. Furthermore, every subgraph

91

−→
Hj is clearly acyclic, and hence by Observation 7.2.4, for j = 0, . . . , p − 1

−→
Hj is a

correction subgraph for some non-Eulerian orientation of G. Let `j be the length of
−→
Pj for j = 0, . . . , p− 1. Then by Lemma 8.2.1, we have `j < n√

p−j
. Summing over j,

we obtain

p−1∑
j=0

`j < n ·
p−1∑
j=0

1√
p− j

= n

p∑
j=1

1√
j

= n

(
1 +

p∑
j=2

1√
j

)
. (8.3)

Since f(x) = 1√
x

is monotone decreasing for every x > 0, we have

1√
j

<

∫ j

x=j−1

dx√
x

for every j ≥ 1, and therefore

p∑
j=2

1√
j

<

∫ p

x=1

dx√
x

= 2
√

p− 2.

Substituting this in (8.3) we obtain

p−1∑
j=0

`j < 2
√

pn.

Note that
∑p−1

j=0 `j is the total number of edges in
−→
H . As

−→
G is ε-far from being

Eulerian, we have εm <
∑p−1

j=0 `j, and thus, p > ε2m2/4n2 = ε2d2/4.

Substituting the lower bound for p of Lemma 8.2.2 in Lemmas 8.1.4, 8.1.2 and

8.1.6, we obtain the following theorem.

Theorem 8.2.3.

1. SIMPLE-2(
−→
G, ε2d2/4) is a 2-sided ε-test for being Eulerian with query com-

plexity Õ
(

m3

ε6d6

)
= Õ

(
n3

ε6d3

)
.

2. GENERIC-1(
−→
G, ε2d2/4, ∆) is a 1-sided ε-test for being Eulerian with query

complexity O
(

∆m
ε2d2

)
= O

(
∆n
ε2d

)
.

3. MULTISTAGE-2(
−→
G, ε2d2/4, ∆) is a 2-sided ε-test for being Eulerian with

query complexity Õ
(√

∆m
ε2d2

)
= Õ

(√
∆n

ε2d

)
.

92

SIMPLE-2 gives a sub-linear complexity for d = ω
(√

n·(log n)1/4

ε3/2

)
, GENERIC-1

gives a sub-linear query complexity for d = ω
(√

∆
ε

)
, and MULTISTAGE-2 gives a

sub-linear complexity for d = ω
(

∆1/4

ε

)
. All of the tests yield their lowest query

complexity relative to m when m = Θ(n2) (i.e., d = Θ(n)): Õ(1/ε6) for SIMPLE-2,

O(n/ε2) for GENERIC-1, and Õ(
√

n/ε2) for MULTISTAGE-2.

8.3 Testing orientations of an expander graph

A graph G = (V, E) is called an α-expander for some α > 0 if it is connected and

for every U ⊆ V such that 0 < |E(U)| ≤ m/2 we have

|∂U |
|E(U)|

≥ α.

Note that while the diameter of G is O(log(1+α) m), the “oriented-diameter” of
−→
G is

not necessarily low, even if we assume that the orientation is Eulerian, as was shown

by [6].

In the following, log
(k)
b (x) denotes the k-nested logarithm with base b of x, that

is, log
(1)
b (x)

def
= logb(x) and log

(k+1)
b (x)

def
= logb(log

(k)
b (x)) for any natural k ≥ 1.

Lemma 8.3.1. Let G be an Eulerian α-expander and let k ≥ 1 be a natural number

such that log
(k−1)
(1+α/2) m ≥ log(1+α/2)

(
4
ε

)
. Then:

1. Every non-Eulerian orientation
−→
G of G contains a spring-drain path of length

at most

`k
def
= 2 · log

(k)
(1+α/2) m + 2 · log(1+α/2)

(
4

ε

)
. (8.4)

2. Every orientation
−→
G of G that is ε-far from being Eulerian is pk-far from being

Eulerian for

pk
def
=

εm

`k

=
εm

2 · log
(k)
(1+α/2) m + 2 · log(1+α/2)

(
4
ε

)
Proof. We prove the lemma by induction on k. In every inductive step, we use

the known bounds of `k and pk to devise `k+1 and pk+1 in an iterative manner. We

start by proving the lemma for the base case, k = 1.

93

To prove Item 1 of the lemma for k = 1, let
−→
G be a non-Eulerian orientation

of
−→
G . Consider a BFS traversal of

−→
G starting from the set S of springs. For every

i ≥ 0, let Li be the ith level of the traversal, where L0 = S, and let U<i
def
=
⋃

0≤j<i Lj

and U≥i
def
=
⋃

j≥i Lj. For every i > 0, let fi be the number of directed edges going

from Li−1 to Li. Let L` be the first level that contains a drain. By the expander

property of G, for every i > 0 while |E(U<i)| ≤ m/2 we have |∂(U<i)| ≥ α|E(U<i)|.
Note that for every i ≤ `, the set U<i contains no drains, and all the directed edges

that exit it are from Li−1 to Li. Hence fi > 1
2
|∂(U<i)|. We thus obtain that

fi >
α

2
|E(U<i)|

for every 0 < i ≤ ` while |E(U<i)| ≤ m/2, and therefore

|E(U<i+1)| >
(
1 +

α

2

)
|E(U<i)|.

By induction, we obtain that

|E(U<i)| >
(
1 +

α

2

)i−1

f1 ≥
(
1 +

α

2

)i−1

(8.5)

for every 0 < i ≤ ` for which |E(U<i)| ≤ m/2. Now, if for every 0 < i ≤ `

we have |E(U<i)| ≤ m/2, then clearly |E(U<`)| >
(
1 + α

2

)`−1
, and hence ` − 1 <

log(1+α/2) |E(U<`)| ≤ log(1+α/2) m and ` < log(1+α/2) m.

Otherwise, let r > 0 be the minimal index for which |E(U<r)| > m/2. Then, for

every r ≤ i ≤ ` we have |E(U≥i)| < m/2, and therefore |∂(U≥i)| ≥ α|E(U≥i)|. Note

that for every i ≥ r, the set U≥i contains no springs, and all the directed edges that

enter it go from Li−1 to Li. Therefore, fi > 1
2
|∂(U≥i)|. We obtain that for every

r ≤ i ≤ `

fi >
α

2
|E(U≥i)|,

and thus

|E(U≥i−1)| >
(
1 +

α

2

)
|E(U≥i)|.

By induction, we have

|E(U≥i−1)| >
(
1 +

α

2

)`−i+1

|E(U≥`)| ≥
(
1 +

α

2

)`−i+1

(8.6)

for every r ≤ i ≤ `.

94

From (8.5) and (8.6) we obtain that both r − 1 < log(1+α/2) m and ` − r + 1 <

log(1+α/2) m, and therefore ` < 2·log(1+α/2) m. Hence, every non-Eulerian orientation

of G contains a spring-drain path of length at most `1 = 2 · log(1+α/2) m + 2 ·
log(1+α/2)

(
4
ε

)
.

To prove Item 2 of the lemma for k = 1, let
−→
G be an orientation of G that is

ε-far from being Eulerian. While
−→
G is not Eulerian, choose a shortest spring-drain

path in
−→
G and invert all its edges. By Item 1, every chosen spring-drain path is of

length at most `1. Let
−→
H be the union of the spring-drain paths inverted. Clearly,

−→
H is a correction subgraph of

−→
G . As

−→
G is ε-far from being Eulerian,

−→
H contains

at least εm edges, and thus it is necessarily a union of at least p1 = εm
`1

disjoint

spring-drain paths. By Lemma 7.2.5, every correction subgraph of
−→
G contains the

same number of disjoint spring-drain paths, which completes the proof of the base

case.

Suppose now that the lemma holds for some natural k ≥ 1 and assume that

log
(k)
(1+α/2) m ≥ log(1+α/2)

(
4
ε

)
. The proof of both items of the lemma for k + 1 is very

similar to that of the base case. However, in Inequality (8.5) we know that f1 ≥ pk,

and in Inequality (8.6) we know that |E(U≥`)| ≥ pk. Hence, every non-Eulerian

orientation
−→
G of G contains a spring-drain path of length at most

`k+1 ≤ 2 · log(1+α/2)

(
m

pk

)
= 2 · log(1+α/2)

(
`k

ε

)

≤ 2 · log(1+α/2)

(
2 · log

(k)
(1+α/2) m + 2 · log(1+α/2)

(
4

ε

))
+ 2 · log(1+α/2)

(
1

ε

)
. (8.7)

Since log
(k)
(1+α/2) m ≥ log(1+α/2)

(
4
ε

)
we have

`k+1 ≤ 2·log(1+α/2)

(
4 · log

(k)
(1+α/2) m

)
+2·log(1+α/2)

(
1

ε

)
= 2·log

(k+1)
(1+α/2) m+2·log(1+α/2)

(
4

ε

)
,

which proves Item 1. The proof of Item 2 is the same as for the base case.

Lemma 8.3.2. Let G be an Eulerian α-expander. Let
−→
G be an orientation of G

that is ε-far from being Eulerian. Then
−→
G is p-far from being Eulerian for

p = Ω

(
αεm

log(1
ε
)

)
.

95

Proof. Let k be the minimum natural number such that log
(k)
(1+α/2) m <

log(1+α/2)

(
4
ε

)
. Then, using the same arguments as we did in the proof of Lemma

8.3.2 for smaller k’s, we obtain that every non-Eulerian orientation of G contains

a spring-drain path of length at most `k+1, where `k+1 satisfies Inequality (8.7).

However, since log
(k)
(1+α/2) m < log(1+α/2)

(
4
ε

)
, we now have

`k+1 < 2· log(1+α/2)

(
4 · log(1+α/2)

(
4

ε

))
+2· log(1+α/2)

(
1

ε

)
= O

(
log(1+α/2)

(
1

ε

))
.

Similarly to our proof of Item 2 in Lemma 8.3.2, we obtain that every orientation

of G that is ε-far from being Eulerian is p-far from being Eulerian for

p =
εm

`k+1

= Ω

(
εm

log(1+α/2)

(
1
ε

)) = Ω

(
αεm

log(1
ε
)

)
.

Substituting the lower bound for p of Lemma 8.3.2 in Lemmas 8.1.2, 8.1.4 and

8.1.6, we obtain the following theorem.

Theorem 8.3.3. Let G be an α-expander (for some α > 0) with m edges and

maximum degree ∆.

1. SIMPLE-2
(−→

G, Ω
(

αεm
log(1/ε)

))
is a 2-sided ε-test for being Eulerian with query

complexity Õ

((
log(1/ε)

αε

)3
)

.

2. GENERIC-1
(−→

G, Ω
(

αεm
log(1/ε)

)
, ∆
)

is a 1-sided ε-test for being Eulerian with

query complexity O
(

∆ log(1/ε)
αε

)
.

3. MULTISTAGE-2
(−→

G, Ω
(

αεm
log(1/ε)

)
, ∆
)

is a 2-sided ε-test for being Eulerian

with query complexity Õ
(√

∆ log(1/ε)
αε

)
.

Note that for a constant α, the query complexity of SIMPLE-2 depends only

on ε (while the other tests depend also on ∆).

96

8.4 Testing orientations of “lame” directed ex-

panders

In this section we discuss a variation of the expander test, which will serve us in

Section 8.5 for devising tests for general graphs. Given an orientation
−→
G of G, we

now test a subgraph
−→
G [U] of

−→
G , induced by a subset U ⊆ V . We refer to the edges

in E(U) as the internal edges of
−→
G [U], and denote mU

def
= |E(U)|. We say that

−→
G [U] is Eulerian if and only if all the vertices in U are balanced in

−→
G . We say that

−→
G [U] is β-Eulerian if and only if all the β-small vertices in U are balanced in

−→
G .

Note that these definitions rely also on the edges in ∂U , which we will henceforth

call external edges. We assume that the orientations of all the external edges are

known, and furthermore, we use a distance function that does not allow inverting

external edges. Namely, we will say that
−→
G [U] is ε-close to being Eulerian if and

only if it has a correction subgraph of size at most εmU which includes only internal

edges. Otherwise, we say that
−→
G [U] is ε-far from being Eulerian. Similarly, we will

say that
−→
G [U] is (ε, β)-amendable if and only if it has a β-correction subgraph of

size at most εmU which includes only internal edges. Otherwise, we say that
−→
G [U]

is (ε, β)-unamendable. Note that we can view the external edges as comprising a

knowledge graph (see Section 7.4). To ensure that
−→
G [U] can be made Eulerian (or

β-Eulerian) by inverting internal edges only, we always assume that all the cuts in
−→
G are valid with respect to the orientation

−→
∂ U of the external edges. This implies

in particular that
−→
E (U, V \ U) =

−→
E (V \ U,U). (8.8)

The next lemma shows that this assumption allows us to apply the same techniques

as we did for the general testing problem.

Lemma 8.4.1. If all the cuts in
−→
G are valid with respect to

−→
∂ U , then:

1.
−→
G [U] can be made Eulerian by inverting internal edges along spring-drain

paths.

2.
−→
G [U] can be made β-Eulerian by inverting internal edges along β-spring-drain

paths.

3. If
−→
G [U] is β-Eulerian then it can be made Eulerian by inverting internal edges

along spring-drain paths, where in each such path, both the spring and the

drain are β-big.

97

Proof. We first give a proof of Item 1, and later explain how to modify it so as

to prove Item 2 and Item 3. Assume that there is a spring s ∈
−→
G [U] with no path

to any drain that is contained entirely in
−→
G [U]. Let

X = {u ∈ U | there is a directed path of internal edges from s to u}.

As X contains no drains but at least one spring, more edges exit X than enter it.

Furthermore, by the definition of X, all the edges that exit X are in
−→
∂ U . Hence,

the cut (X, V \X) is invalid with respect to
−→
∂ U , a contradiction. Since inverting

an internal spring-drain path does not change the orientation of the edges in ∂U ,

we may continue to invert such paths until
−→
G [U] becomes balanced.

To prove Item 2, note that any correction subgraph of internal edges, which

exists by Item 1, contains a β-correction subgraph as a subgraph, and thus it is also

internal in
−→
G [U]. To obtain this β-correction subgraph, we modify the correction

subgraph by removing paths from β-big springs to β-big drains one by one as long

as they exist.

To prove Item 3 we use the same proof as for Item 1. However, here we know

that all our springs and drains are β-big, since
−→
G [U] is β-Eulerian.

We will be interested in induced subgraphs
−→
G [U] that are “lame directed ex-

panders”. Formally, given a subset U ⊆ V and a parameter β > 0, we say that a

cut (A, B) of U is a β-cut of U if

|E(B)| ≥ |E(A)| ≥ β.

Given parameters α, β > 0, we say that the subgraph
−→
G [U] of G is an (α, β)-expander

if for every β-cut (A, B) of U we have

|E(A, B)| −
∣∣∣|−→E (V \ U,A)| − |

−→
E (A, V \ U)|

∣∣∣ ≥ 2α|E(A)|. (8.9)

Note that to decide whether
−→
G [U] is an (α, β)-expander we do not need to

know the orientation of its internal edges, but only that of its external edges. In

particular, if the entire domain graph G is an α-expander, then
−→
G itself is always

an (α, β)-expander for every β > 0.

In the next two lemmas we give lower bounds for the numbers of internal spring-

drain paths and β′-spring-drain paths (for some β′) in an (α, β)-expander. Using

98

our (p, β)-tests from Section 8.1 with these bounds, we will later obtain ε-tests for

(α, β)-expanders. In the following, mU = |E(U)| and ∆U is the maximum degree

of a vertex in U (where the degree of a vertex u ∈ U is the total number of edges

incident with u, including external edges).

Lemma 8.4.2. Let
−→
G [U] be an (α, β)-expander for some 0 < α < 1 and 0 ≤ β

and let mU
def
= |E(U)|. Suppose that all the cuts in G are valid with respect to

−→
∂ U .

Suppose that
−→
G [U] is (ε′, β′)-unamendable for some 0 < ε′ < 1 and 0 < β′ ≤ ∆U .

Then
−→
G [U] is p-far from being β′-Eulerian for p(U, α, β, ε′, β′) = Ω

(
ε′mU

log(1+α) mU+β

)
=

Ω
(

ε′mU

log mU/α+β

)
.

Proof. We show that in any orientation
−→
G such that

−→
G [U] is not β′-Eulerian,

there exists a spring-drain path inside
−→
G [U] of length O(log(1+α) mU + β). Note

that an (α, β)-expander
−→
G [U] remains an (α, β)-expander after we invert some of its

internal edges. Thus, if
−→
G [U] is (ε′, β′)-unamendable, then we have to invert internal

edges along Ω
(

ε′mU

log(1+α) m+β

)
β′-spring-drain paths (as inverting spring-drains paths

in which both the spring and the drain are β′-big is irrelevant for being β′-Eulerian).

Thereof the lemma will follow.

Assume that
−→
G [U] is not β′-Eulerian, and let ` be the minimum length of a

spring-drain path of internal edges in
−→
G [U]. Such a path exists by Lemma 8.4.1. If

` ≤ β then the claim is obviously true. We thus assume that ` > β. Let SU be the

set of springs in U . Consider a BFS traversal of
−→
G [U] starting from L0

def
= SU . For

every i > 0, set by induction

Li
def
= {v ∈ U | there exists u ∈ Li−1 s.t. (u, v) ∈

−→
E }.

In addition, let Ai
def
=
⋃

0≤j<i Lj and Bi
def
=
⋃

j≥i Lj. Consider a level i such that

β < i ≤ ` and |E(Ai)| ≤ |E(Bi)|. Clearly, (Ai, Bi) is a β-cut, and thus, since U is

an (α, β)-expander, we have

|E(Ai, Bi)|+ |
−→
E (V \ U,Ai)| − |

−→
E (Ai, V \ U)| ≥ 2α|E(Ai)|. (8.10)

Note that for every i ≤ `, the set Ai contains springs but no drains. Hence, more

edges exit Ai then enter it:

|
−→
E (Ai, Bi)| − |

−→
E (Bi, Ai)| − |

−→
E (V \ U,Ai)|+ |

−→
E (Ai, V \ U)| > 0,

99

and thus

|
−→
E (Ai, Bi)| >

1

2

(
|
−→
E (Ai, Bi)|+ |

−→
E (Bi, Ai)|+ |

−→
E (V \ U,Ai)| − |

−→
E (Ai, V \ U)|

)
.

Substituting the above in Inequality (8.10) we have

|
−→
E (Ai, Bi)| > α|E(Ai)|

for every i such that β < i ≤ ` and |E(Ai)| ≤ |E(Bi)|. Recall that all the directed

edges that exit Ai enter Ai+1. We thus have

|E(Ai+1)| > (1 + α)|E(Ai)|,

and by induction,

|E(Ai)| > (1 + α)i−β|E(Aβ)| ≥ (1 + α)i−ββ.

Therefore,

i− β ≤ log(1+α)

(
|E(Ai)|

β

)
< log(1+α) mU (8.11)

for every i such that β < i ≤ ` and |E(Ai)| ≤ |E(Bi)|. Now, if for every β < i ≤ `

we have |E(Ai)| ≤ |E(Bi)|, then, from Inequality (8.11) we have `−β < log(1+α) mU

and thus ` = O(log(1+α) mU + β).

Otherwise, let k > 0 be the minimal index for which |E(Ai)| > |E(Bi)|. From

Equation (8.11) we have

k − 1− β < log(1+α) mU . (8.12)

For every k ≤ i ≤ ` while |E(Bi)| ≥ β, (Bi, Ai) is a β-cut, and thus from Inequality

(8.9) we have

|E(Ai, Bi)| − |
−→
E (V \ U,Bi)|+ |

−→
E (Bi, V \ U)| ≥ 2α|E(Bi)|. (8.13)

Note that the set Bi contains drains but no springs. Hence, more edges enter Bi

then exit it:

|
−→
E (Ai, Bi)| − |

−→
E (Bi, Ai)|+ |

−→
E (V \ U,Bi)| − |

−→
E (Bi, V \ U)| > 0,

100

and thus

|
−→
E (Ai, Bi)| >

1

2

(
|
−→
E (Ai, Bi)|+ |

−→
E (Bi, Ai)| − |

−→
E (V \ U,Bi)|+ |

−→
E (Bi, V \ U)|

)
.

Substituting the above in Inequality (8.13) we have

|
−→
E (Ai, Bi)| > α|E(Bi)|

for every i such that k ≤ i ≤ ` and |E(Ai)| > |E(Bi)| ≥ β. Since all the edges in
−→
E (Ai, Bi) enter Li, we have

|E(Bi)| > (1 + α)|E(Bi+1)|,

and by induction

|E(Bi)| > (1 + α)j−i|E(Bj)|

for every i, j such that k ≤ i ≤ j ≤ ` and |E(Aj)| > |E(Bj)| ≥ β. Hence,

j − i ≤ log(1+α)

(
|E(Bi)|
|E(Bj)|

)
< log(1+α) mU (8.14)

for every i, j such that k ≤ i ≤ j ≤ ` and |E(Aj)| > |E(Bj)| ≥ β. Now, if

|E(A`)| > |E(B`)| ≥ β then, taking i = k and j = ` we have

`− k < log(1+α) mU .

Combined with Inequality (8.12) we obtain

` < 2 log(1+α) mU + β + 1 = O(log(1+α) mU + β).

Otherwise, let r be the minimum index such that |E(Bi)| < β. Then, for i = k

and j = r − 1, Inequality (8.14) yields

r − 1− k < log(1+α) mU . (8.15)

Since |E(Br)| < β, there are less then β levels between r and ` and thus ` < r + β.

Hence, with Inequalities (8.12) and (8.15) we achieve

` < 2 log(1+α) mU + 2β + 2 = O(log(1+α) mU + β).

101

Lemma 8.4.3. Let
−→
G [U] be an (α, β)-expander for some 0 < α < 1 and 0 ≤ β ≤ ∆U

2

and let mU
def
= |E(U)|. Suppose that all the cuts in G are valid with respect to

−→
∂ U .

Suppose further that for some ε > 0,
−→
G [U] is ε-far from being Eulerian, but still

(ε
2
, 2β)-amendable. Then

−→
G [U] is p′-far from being Eulerian for p′(U, α, β, ε) =

Ω
(

εmU

log(1+α) mU

)
= Ω

(
αεmU

log mU

)
.

Proof. As
−→
G [U] is (ε

2
, 2β)-amendable, there exists a 2β-correction subgraph

−→
H

of
−→
G [U] of size at most εmU/2. Consider

−→
G 1[U]

def
=
−→
G [U]←−

H
, that is, the digraph

obtained from
−→
G [U] by inverting all the edges in the 2β-correction subgraph

−→
H .

Then
−→
G 1[U] is 2β-balanced. However, since

−→
G [U] is ε-far from being balanced, at

least εmU/2 more edges must be inverted in order to make it Eulerian. By Item

3 of Lemma 8.4.1, there exists a correction subgraph for
−→
G [U] which is a union of

internal paths from 2β-big springs to 2β-big drains.

To complete the proof, we show that while
−→
G 1[U] is not Eulerian, it contains

an internal spring-drain path of length ` = O(log(1+α) mU) = O(log mU/α). This

is done similarly to the proof in Lemma 8.4.2 which shows the existence of a short

β′-spring-drain path. However, note that now the set E(A2) includes all the edges

outgoing from at least one 2β-big spring, and thus E(Ai, Bi) is a β-cut for every

i ≥ 2 such that |E(Ai)| ≤ |A(Bi)|. Hence, instead of Inequality (8.11) we have

i− 2 ≤ log(1+α)

(
|E(Ai)|
|E(A2)|

)
< log(1+α) mU (8.16)

for every i such that 1 < i ≤ ` and |E(Ai)| ≤ |E(Bi)|. Furthermore, since all

the drains are 2β-big, the set E(B`−1) includes all the edges incoming to at least

one 2β-big drain, and thus E(Bi, Ai) is a β-cut for every i ≤ ` − 1 such that

|E(Ai)| > |A(Bi)|. Hence, putting j = `− 1 in Inequality (8.14), we obtain

`− i− 1 ≤ log(1+α)

(
|E(Bi)|
|E(B`−1)|

)
< log(1+α) mU (8.17)

for every i ≤ `−1 such that |E(Ai)| > |A(Bi)|. Let k be the minimum value of i for

which |E(Ai)| > |A(Bi)|. Then, from Inequality (8.16) we have k < log(1+α) mU +

3 and from Inequality (8.17) we have ` − k < log(1+α) mU + 1, and hence ` =

O(log(1+α) mU).

Suppose that
−→
G is ε-far from being Eulerian. Note that if β ≤ ∆U

2
, then either

102

the conditions of Lemma 8.4.2 apply for ε′ = ε/2 and β′ = 2β, or the conditions of

Lemma 8.4.3 apply. Also, note that if β > ∆U

2
then the conditions of Lemma 8.4.2

apply for ε′ = ε and β′ = ∆U . We thus obtain the two ε-tests below. Note that

whenever our tests use samples of edges incident with a vertex u ∈ U , the sampling

is among all the edges incident with u, and not only internal edges.

Algorithm 8.4.4. GEN-1(
−→
G [U], α, β, ε)

1. If β ≤ ∆U

2
then run GENERIC-1(

−→
G [U], p(U, α, β, ε/2, 2β), ∆U), and

otherwise run GENERIC-1(
−→
G [U], p(U, α, β, ε, ∆U), ∆U). In both cases,

p(U, α, β, ε′, β′) is the lower bound given in Lemma 8.4.2.

2. If β ≤ ∆U

2
then run GENERIC-1(

−→
G [U], p′(U, α, β), ∆U), where p′(U, α, β) is

the lower bound given in Lemma 8.4.3.

3. Reject if at least one of the tests has rejected, and accept otherwise.

Algorithm 8.4.5. MULTI-2(
−→
G [U], α, β, ε)

1. If β ≤ ∆U

2
then run MULTISTAGE-2(

−→
G [U], p(U, α, β, ε/2, 2β), ∆U), and

otherwise run MULTISTAGE-2(
−→
G [U], p(U, α, β, ε, ∆U), ∆U). In both cases,

p(U, α, β, ε′, β′) is the lower bound given in Lemma 8.4.2.

2. If β ≤ ∆U

2
then run MULTISTAGE-2(

−→
G [U], p′(U, α, β), ∆U), where

p′(U, α, β) is the lower bound given in Lemma 8.4.3.

3. Reject if at least one of the tests has rejected, and accept otherwise.

Combining Lemma 8.4.2 and Lemma 8.4.3 with Lemma 8.1.4 and Lemma 8.1.6,

we obtain the following lemmas, which will be used in Section 8.5.

Lemma 8.4.6. GEN-1(
−→
G [U], α, β, ε) is a 1-sided ε-test for an (α, β)-expander sub-

graph
−→
G [U], assuming that the external edges of U are known and do not induce an

invalid cut. The query complexity of the test is O
(

∆U log mU

εα
+ β·min{β,∆U}

ε

)
, where

mU = |E(U)| and ∆U = max{deg(u) | u ∈ U}.

Lemma 8.4.7. MULTI-2(
−→
G [U], α, β, ε) is a 2-sided ε-test for an (α, β)-expander

subgraph
−→
G [U], assuming that the external edges of U are known and do not induce

an invalid cut. The query complexity of the test is Õ

(
√

∆U log mU

εα
+

β·
√

min{β,∆U}
ε

)
,

where mU = |E(U)| and ∆U = max{deg(u) | u ∈ U}.

103

8.5 General tests based on chopping

In this section we use our results from Section 8.4 to provide a 1-sided test and a

2-sided test as follows. Given an orientation
−→
G of an Eulerian graph G, we show

how to decompose
−→
G into a collection of (α, β)-expanders with a relatively small

number of edges that are outside the (α, β)-expanders, called henceforth external

edges. We will find this “chopping” adaptively while querying external edges only.

If we do not find a witness showing that
−→
G is not Eulerian already during the

chopping procedure, then we sample a few (α, β)-expanders and test them using

GEN-1 (Algorithm 8.4.4) or using MULTI-2 (Algorithm 8.4.5), obtaining a 1-sided

test or a 2-sided test respectively.

Lemma 8.5.1 (The chopping lemma). Given an orientation
−→
G as input and pa-

rameters α, β > 0, we can either find a witness showing that
−→
G is not Eulerian, or

find non-empty induced subgraphs
−→
G i = (Vi,

−→
E i =

−→
E (Vi)) of

−→
G (where i = 1, . . . , k

for some k), which we call (α, β)-components (or simply components), that satisfy

the following:

1. The vertex sets V1, . . . , Vk of the components are mutually disjoint.

2. |
−→
E i| ≥ β for i = 1, . . . k.

3. All the components
−→
G i are (α, β)-expanders.

4. The total number of external edges satisfies

|
−→
E \

⋃
i=1,...,k

−→
E (Vi)| = O(αm2 log m/β).

During the chopping procedure, we query only external edges, i.e., edges that are not

in any component Gi. The query complexity is of the same order also if we find a

witness that
−→
G is not Eulerian.

Proof. The chopping procedure proceeds as follows. At first, we define
−→
G =

−→
G [V] as our single component. Then, in each step, we decompose a component
−→
G [U] into two separate components

−→
G [A] and

−→
G [B], if (A, B) is a β-cut of U and

|E(A, B)| −
∣∣∣|−→E (V \ U,A)| − |

−→
E (A, V \ U)|

∣∣∣ < 2α|E(A)|. (8.18)

104

When decomposing, we query the edges of the cut (A, B) and mark them as external

edges. Note that we need not query any additional edges to decide on cutting a

component, as all the required information is given by the domain graph G and the

orientation of the external edges that were queried in previous steps. After each

stage, we check whether the orientations of the edges queried so far invalidate any

of the cuts in the graph (see Section 7.4), in which case we conclude that
−→
G is not

Eulerian and return the invalid cut.

The procedure terminates once there is no cut of any component that satisfies

the chopping conditions. The components are clearly disjoint throughout the pro-

cedure. Since we only chopped components across β-cuts, every final component

contains at least β edges. Moreover, note that a component is always chopped by

the procedure unless all its β-cuts satisfy Inequality (8.9). Hence, if the algorithm

terminates without finding a witness that
−→
G is not Eulerian, then every

−→
G i is an

(α, β)-expander.

It remains to prove the upper bound for the number of external edges and the

query complexity of the chopping procedure. Consider a component U and a β-cut

(A, B) of U that was queried in some step of the lemma. Suppose that the cut

(A, V \ A) is valid. Then

|
−→
E (A, B)| − |

−→
E (B, A)|+ |

−→
E (A, V \ U)| − |

−→
E (V \ U,A)| = 0. (8.19)

Combining this with the chopping condition (8.18), and considering two cases de-

pending on whether |
−→
E (A, V \U)|− |

−→
E (V \U,A)| is positive or negative, we obtain

that

min
{
|
−→
E (A, B)|, |

−→
E (B, A)|

}
< α|E(A)|. (8.20)

Hence, if Inequality (8.20) does not hold, then, in any case, after querying the edges

in (A, B) we discover an invalid cut in the graph (which could be (A, B) or another

cut). We next compute the query complexity in the case where our knowledge graph

contains no invalid cuts throughout the procedure, and later show how to modify

our analysis for the case where an invalid cut is detected after querying the last cut.

For every β-cut (A, B) that we use for partitioning, we refer to the edges in the

minimal cut among
−→
E (A, B) and

−→
E (B, A) as rare edges, and to the edges in the

other direction as common edges. Let us first compute the cost of querying the rare

edges only. For every partition of a β-cut (A, B), we “charge” a cost of α on every

edge in E(A). From Inequality (8.20), the sum of charges is larger than the number

105

of rare edges queried. Since by our definition |E(A)| ≤ |E(B)|, every edge can

belong to “Side” A of a partitioned β-cut (A, B) at most log m times throughout

the entire procedure. Hence, the sum of charges is at most α log m for every edge in

the graph and at most αm log m in total. We complete the proof by showing that

the ratio between the number of external edges and the number of rare external

edges is O(m/β).

Consider the component multigraph
−→
G comp, whose vertices are the components

Gi and whose edges are the external edges of
−→
G . By our assumption that the knowl-

edge graph contains no invalid cuts,
−→
G comp is Eulerian (as a directed multigraph),

and hence it is an edge-disjoint union of simple directed cycles. However,
−→
G comp

does not contain a directed cycle of common edges. This can proved by induction

as follows. When starting the chopping procedure there is only one component and

no external edges. Then at every step we partition one component into two sets,

and add the common edges, if any, from one of the sets to the other. One can see

that this cannot create directed cycles of common edges. Therefore,
−→
G comp is an

edge-disjoint union of simple directed cycles, where each cycle contains at least one

rare edge. As the number of vertices in
−→
G comp is at most m/β, we conclude that

the number of external edges in
−→
G is at most m/β times the number of rare edges.

From the discussion above, it follows that the number of external edges in
−→
G is

O(αm2 log m/β).

Regarding the case where querying the edges of a β-cut (A, B) reveals a violation

of a cut in the graph, recall that as long as the knowledge graph does not induce an

invalid cut, there exists an Eulerian orientation extending the knowledge graph (see

Lemma 7.4.2). Thus, the edges of (A, B) have a “good” orientation that does not

violate any cut in the graph. Clearly, the total query complexity after we query the

edges of (A, B) and terminate is no higher than in the case where we would have

queried the edges of (A, B) and discovered the good orientation.

We are now ready to present our 1-sided test. In the following, let α, β > 0 be

parameters.

Algorithm 8.5.2. CHOP-1(
−→
G, ε, α, β):

1. Use Lemma 8.5.1 (the chopping lemma) for finding (α, β)-components
−→
G 1, . . . ,

−→
G k and querying their external edges, or reject and terminate if an

invalid cut is found in the process.

106

2. Sample 3 ln 3/ε (α, β)-components
−→
G i randomly and independently, where the

probability of selecting a component
−→
G i in each sample is proportional to mi

def
=

|E(Vi)|.

3. Test every selected component
−→
G i using GEN-1(

−→
G i, α, β, ε/2) (Algorithm

8.4.4). Reject if the test rejects for at least one of the components selected.

4. Accept if the input was not rejected by any of the above steps.

Lemma 8.5.3. If
−→
G is Eulerian then CHOP-1 accepts

−→
G with probability 1.

Proof. If
−→
G is Eulerian then

−→
G has no invalid cuts and therefore CHOP-1

does not reject in Step 1. In addition, every (α, β)-component of
−→
G is Eulerian,

and since GEN-1 is 1-sided (see Lemma 8.4.6), CHOP-1 does not reject any of the

tested (α, β)-components.

Lemma 8.5.4. If the external edges induce an invalid cut, or if more than an ε/2-

fraction of the internal edges are in (α, β)-components that are ε/2-far from being

Eulerian, then CHOP-1 rejects with probability at least 2/3.

Proof. If the external edges induce an invalid cut then the algorithm rejects in

Step 1 while trying to perform the chopping. Otherwise, every (α, β)-component

sampled in Step 2 is ε/2-far from being Eulerian with probability at least ε/2. By

Lemma 8.4.6, for every (α, β)-component that is ε/2-far from being Eulerian, the

rejection probability is at least 2/3. Thus, the probability of rejecting one sampled

component is at least ε/3. Since the components are selected independently, the

probability of accepting all the components is at most (1−ε/3)3 ln 3/ε < e− ln 3 = 1/3.

Lemma 8.5.5. If the external edges do not induce an invalid cut and at most an

ε/2-fraction of the internal edges are in (α, β)-components that are ε/2-far from

being Eulerian, then
−→
G is ε-close to being Eulerian.

Proof. By Item 1 of Lemma 8.4.1, every (α, β)-component
−→
G i in

−→
G can be made

Eulerian by inverting internal edges of
−→
G i. We thus orient the (α, β)-components

that are ε/2-far from being Eulerian so as to make them Eulerian. These components

consist of at most εm/2 edges. In addition, we invert a minimum number of edges

in each of the (α, β)-components that are ε/2-close to being Eulerian, so as to make

them Eulerian too. This requires at most εm/2 more alterations. We thus obtain

an Eulerian orientation that is ε-close to
−→
G .

107

Theorem 8.5.6. CHOP-1 is a 1-sided test for being Eulerian with query complexity

O

(
αm2 log m

β
+

∆ log m

ε2α
+

β ·min{β, ∆}
ε2

)
.

In particular, for α = (∆ log m)1/3

(εm)2/3 and β = (εm log m)2/3

∆1/3 , the query complexity is

O

(
(∆m log m)2/3

ε4/3

)
= O

((
∆

ε

)4/3

(n log n)2/3

)
.

Proof. The correctness of the test follows from Lemmas 8.5.3, 8.5.4, and 8.5.5.

The query complexity follows from Lemmas 8.4.6 and 8.5.1 (the chopping lemma).

We note that Theorem 8.5.6 provides a sub-linear algorithm for every graph

of maximum degree ∆ = o
(

ε2√m
log m

)
. For nearly regular graphs, i.e. graphs with

m = Ω(∆n), the algorithm is sub-linear for every ∆ = o
(

ε4n
log2 n

)
.

We conclude with a similar 2-sided test which gives a sub-linear query complexity

for all graphs. In the following, let α, β > 0 be parameters.

Algorithm 8.5.7. CHOP-2(
−→
G, ε, α, β):

1. Use Lemma 8.5.1 (the chopping lemma) for finding (α, β)-components
−→
G 1, . . . ,

−→
G k and querying their external edges, or reject and terminate if an

invalid cut is found in the process.

2. Sample 3
ε

(α, β)-components
−→
G i independently, where the probability of select-

ing a component
−→
G i is proportional to mi

def
= |E(Vi)|.

3. Test every selected component
−→
G i for being Eulerian 12 ln(9/ε) times indepen-

dently using MULTI-2(
−→
G i, α, β, ε/2) (Algorithm 8.4.5). Reject if there is a

component
−→
G i which was rejected by at least half of its tests.

4. Accept if the input was not rejected in a previous step.

Lemma 8.5.8. If
−→
G is Eulerian then CHOP-2 accepts with probability at least 2/3.

Proof. If
−→
G is Eulerian then

−→
G has no invalid cuts and therefore CHOP-2 does

not reject in Step 1. In addition, all the (α, β)-components
−→
G i are Eulerian. Thus,

108

by Lemma 8.4.7, every run of MULTI-2 on a component
−→
G i rejects with probability

at most 1/3. By standard large deviation arguments, the probability of rejecting

a component
−→
G i by at most half of its tests is at most ε/9. Applying the union

bound for the 3/ε (α, β)-components sampled, the probability of rejecting
−→
G is at

most 1/3.

Lemma 8.5.9. If the external edges induce an invalid cut, or if more than ε/2-

fraction of the internal edges are in (α, β)-components that are ε/2-far from being

Eulerian, then Algorithm 8.5.7 rejects with probability at least 2/3.

Proof. If the external edges induce an invalid cut then the algorithm rejects

in Step 1 while trying to perform the chopping. Otherwise, the probability of not

sampling any (α, β)-component that is ε/2-far from being Eulerian is at most (1−
ε
2
)3/ε < 1

4
. Suppose that we have sampled at least one (α, β)-component that is

ε-far from being Eulerian. By Lemma 8.4.7, the acceptance probability of a single

test of this component is at most 1/3. Using standard large deviation arguments,

the probability of accepting in at most half of the tests of this component is smaller

than 1/12. We conclude that the probability of accepting
−→
G in this case is at most

1/3.

Observation 8.5.10. Lemma 8.5.5 is true for CHOP-2 as well as for CHOP-1.

Theorem 8.5.11. Algorithm 8.5.7 is a 2-sided test for being Eulerian with query

complexity

O

(
αm2 log m

β

)
+ Õ

(√
∆ log m

ε2α
+

β ·
√

min{β, ∆}
ε2

)
.

In particular, if ∆ ≤ (εm)4/7, then for α = ∆1/6

(εm)2/3 and β = (εm)2/3

∆1/6 the query

complexity is Õ
(

∆1/3m2/3

ε4/3

)
= Õ

(
m6/7

ε8/7

)
. If (εm)4/7 < ∆ ≤ m, then for α = ∆5/16

(εm)3/4

and β = ∆1/8
√

εm the query complexity is Õ
(

∆3/16m3/4

ε5/4

)
= Õ

(
m15/16

ε5/4

)
.

Proof. The correctness of the test follows from Lemmas 8.5.8, 8.5.9, and 8.5.5.

The query complexity follows from Lemmas 8.4.7 and 8.5.1 (The chopping lemma).

109

8.6 Discussion

The procedure of our general test is surprisingly involved considering the problem

statement. The question arises as to whether we can reduce the computational com-

plexity from exponential to polynomial in m or to perform most of the calculations

in a preprocessing stage. Another unresolved question is whether there exists a

non-adaptive sub-linear test for all graphs.

Also, it would be interesting to consider a generalized models where each edge

may have a weight affecting the distance function or a capacity in addition to a

direction. The latter may describe natural network flow problems where a flow

between two nodes may be of varying volume as well as direction. Such generaliza-

tions would require more evolved techniques, since our BFS-based analysis does not

immediately apply to them in its current form.

110

Chapter 9

Lower Bounds for

Bounded-Degree Graphs

9.1 A 2-sided lower bound

In this section we prove the following theorem.

Theorem 9.1.1. For every 0 < ε ≤ 1/64, every non-adaptive (2-sided) ε-test

for Eulerian orientations of bounded degree graphs must use Ω
(√

log m
log log m

)
queries.

Consequently, every adaptive test requires Ω(log log m) queries.

The main idea of the proof uses Yao’s principle [53]. Namely, for infinitely many

natural numbers `, we define a graph G` with m = 2`2 edges and two distributions

over the orientations of G`. The first distribution, P`, contains only Eulerian orien-

tations of G`, while the second distribution, F`, contains orientations that are with

high probability 1/64-far from being Eulerian. We then show that any non-adaptive

deterministic algorithm which makes o
(√

log m
log log m

)
queries cannot distinguish be-

tween the distributions P` and F` with probability higher than 1/5.

All our underlying graphs G` are two dimensional tori, which are 4-regular graphs

having a highly symmetric structure (the exact definition is given below). We exploit

this symmetry to construct distributions P` and F` such that, for any fixed set Q

of o
(√

log m
log log m

)
edges, with high probability, the orientation of every pair of edges

in Q has either no correlation in any of the distributions, or a correlation that is

identical in both distributions.

We build the orientations in P` and F` from repeated “patterns” of varying sizes

and show that, in order to distinguish between the distributions, a deterministic

111

algorithm must be approximately synchronized with the (unknown) size of these

patterns.

9.1.1 Preliminaries

For i, j ∈ [`] we let i⊕j denote addition modulo `, that is:

i⊕j =

{
i + j , i + j ≤ `

i + j − ` , i + j > `
.

Given a graph G = (V, E) and two vertices u, v ∈ V , we define the distance

between u and v (or shortly dist(u, v)), as the the walking distance in G between

u and v. Given two edges e1, e2 ∈ E, we define the distance between e1 and e2

(or shortly dist(e1, e2)) as the minimal distance between an endpoint of e1 and an

endpoint of e2. For an edge e = {u, v} ∈ E and a vertex w ∈ V , we define

the distance of e from w, or shortly dist(e, w), as the minimum of dist(u, w) and

dist(v, w). We stress that even when we consider an orientation
−→
G , the distances

between edges and vertices are still measured on the underlying undirected graph

G for the purpose of the following proofs.

Definition 9.1.2 (Torus). A torus is a two dimensional cyclic grid. Formally, an

` × ` torus is the graph T = (V, E) on n = `2 vertices V = {vi,j : i, j ∈ [`]}
and m = 2`2 edges E = EH ∪ EV , where EH =

{
{vi,j1 , vi,j2} : j2 = j1⊕1

}
and

EV =
{
{vi1,j, vi2,j} : i2 = i1⊕1

}
. We refer to EH as the set of horizontal edges and

to EV as the set of vertical edges. Two edges e1, e2 ∈ E are said to be perpendicular

if one of them is horizontal and the other is vertical, and otherwise they are called

parallel.

Given an orientation
−→
T of T , we say that a horizontal edge e = {vi,j, vi,j⊕1}

is directed to the right if vi,j is the start-point of e, and otherwise we say that e is

directed to the left. Similarly, we say that a vertical edge e = {vi,j, vi⊕1,j} is directed

upwards if vi,j is the start-point of e, and otherwise we say it is directed downwards.

To simplify the presentation, we assume throughout this section that ` is even.

We now define a graph operation that will be used later in the construction of the

distributions P` and F`.

Definition 9.1.3 ((a, b)-shifting). Let
−→
T be an orientation of an `× ` torus T , and

let a, b ∈ [`]. We define the (a, b)-shifting of
−→
T to be the orientation

−→
Ta,b of T , which

112

is a transformation of the orientation
−→
T a units upwards and b units rightward.

Namely, for every edge e of T , if e = {vi,j, vi′,j′} is directed from vi,j to vi′,j′ in
−→
T

then ea,b
def
= {vi⊕a,j⊕b, vi′⊕a,j′⊕b} is directed from vi⊕a,j⊕b to vi′⊕a,j′⊕b in

−→
Ta,b.

9.1.2 Defining auxiliary distributions

In this subsection, let H = (V, E) be an ` × ` torus, where V = {vi,j | i, j ∈ [`]},
using the same indexing as in Definition 9.1.2. We define two simple distributions,

R` and C(k)
` , over the orientations of H. We later use these distributions to build

the final distributions, F` and P`.

The distributionR` is simply a random orientation of H’s edges. Namely, in
−→
H ∼

R` the orientation of every edge e ∈ E is chosen uniformly at random, independently

of the other edges.

Lemma 9.1.4. Let
−→
H be an orientation of H, chosen according to the distribution

R`. Then with probability 1− o(1), there are at least `2/4 unbalanced vertices in
−→
H .

Proof. Define a subset I = {vi,j | i + j is even} ⊆ V of `2/2 vertices. Observe

that I is an independent set in H (i.e. it has no internal edges), and so every vertex

vi ∈ I is balanced with probability xi =
(
4
2

) (
1
2

)4
= 3/8 independently from all

other vertices in I. By Chernoff’s inequality, the probability that at least half of

the vertices in I are balanced is bounded by exp(−`2/64). Namely, with probability

1− o(1) there are at least `2/4 unbalanced vertices in I.

The second distribution, C(k)
` , is over Eulerian orientations of H. We assume

that 2k divides ` =
√

m/2. To construct an orientation according to C(k)
` , we first

partition the edges of H into edge-disjoint “square-shaped” 4k-cycles as follows. For

every 0 ≤ i < `, 0 ≤ j < `/2k, we let vi,2kj⊕i be a “lower-left corner” of a cycle

C. The other “corner” vertices of C are vi⊕k,2kj⊕i, vi⊕k,2kj⊕i⊕k, and vi,2kj⊕i⊕k. The

four corner vertices are connected by two paths of k horizontal edges and two paths

of k vertical edges. One can see that this indeed forms a partition of all H’s edges

into edge-disjoint cycles. Then, for every cycle C, we randomly and independently

choose one of C’s two possible Eulerian orientations. Let
−→
H ′ denote the orientation

of H at this stage. Finally, a, b ∈ [`] are chosen uniformly at random, and
−→
H is set

to be the (a, b)-shifting of
−→
H ′.

In what follows, for a pair of edges ei, ej ∈ E and an orientation
−→
H of H, we

say that ei and ej are independent if either
−→
H ∼ R`, or

−→
H ∼ C(k)

` and the edges ei

113

and ej reside in different 4k-cycles Ci and Cj. A set Q ⊆ E is called independent

if all the pairs e1, e2 ∈ Q are independent. Observe that if Q is independent, then

the orientation of every e ∈ Q is distributed uniformly at random, independently of

the orientation of all other members of Q. Clearly, if
−→
H is distributed according to

R` then every set Q ⊆ E is independent. In the following lemmas we prove that,

under some conditions, the set Q is independent with high probability also if
−→
H is

distributed according to C(k)
` .

Lemma 9.1.5. Let e1, e2 ∈ E be two perpendicular edges of H. Let
−→
H be an

orientation of H distributed according to C(k)
` , for an integer k that divides `/2.

Then the probability that e1 and e2 are independent is at least 1− 1
2k

.

Proof. Suppose that e1 and e2 are not independent. Hence, they both reside

in the same cycle C in the partition of H’s edges into 4k-cycles. Note that e1 and

e2 can define a unique square-shaped 4k-cycle in which they can both reside, and

hence, they define a unique vertex in H that must be the lower-left corner of this

cycle. By the definition of the partition into 4k-cycles, it is easy to see that the

fraction of vertices in H that are corner vertices is 1
2k

. The lemma follows since in

the last stage of constructing an orientation from C(k)
` , the partition into 4k-cycles

is randomly shifted.

Lemma 9.1.6. Let k be an integer that divides `/2. Let Q ⊆ E be a set of o(
√

k)

edges such that for every pair e1, e2 ∈ Q, either dist(e1, e2) > 2k, or e1 and e2 are

perpendicular. Then for an orientation
−→
H of H distributed according to C(k)

` , the

probability that Q is independent is 1− o(1).

Proof. Fix a pair e1, e2 ∈ Q. If dist(e1, e2) > 2k then e1 and e2 must reside in

different 4k-cycles, and hence they are independent. Otherwise, e1, e2 are perpendic-

ular, and by Lemma 9.1.5 they are independent with probability at least 1− 1
2k

. The

proof is now completed by applying the union bound for all o(k) pairs e1, e2 ∈ Q.

9.1.3 Defining the main distributions

In this subsection we give two distributions of torus orientations. First, we need to

define the following operation.

114

Definition 9.1.7 (t-tiling). Let `, t > 0. Let
−→
H = (V (H),

−→
E (H)) be an `×` directed

torus where V (H) = {vi,j | i, j ∈ [`]}. Let T = (V, E) be an 2t` × 2t` torus where

V = {ui,j | i, j ∈ [2t`]}.
We define the t-tiling of

−→
H as the orientation

−→
H t of T which is constructed as

follows. First, partition T into `2 disjoint 2t× 2t grids {Gi,j}i,j∈[`], where every grid

Gi,j is associated with the vertex vi,j ∈ V (H). Formally, For every i, j ∈ [`] the grid

Gi,j is the induced subgraph of T whose set of vertices is Vi,j
def
= {ui′,j′ : 2t(i − 1) <

i′ ≤ 2ti, 2t(j − 1) < j′ ≤ 2tj}. The upper left t× t grid of every Gi,j is denoted by

Ri,j and is called the representative grid of the vertex vi,j ∈ V (H).

Figure 9.1: A directed 2 × 2 torus
−→
H (left) and its corresponding 3-tiling,

−→
T . The

vertex v2,1 is encircled in
−→
H , and its corresponding vertices r1

2,1, r
2
2,1 and r3

2,1 are

encircled in
−→
T . In addition, the edge {v1,2, v1,1} is emphasized in

−→
H , and its corre-

sponding edges are emphasized in
−→
T . Note the circular orientation of the padding

edges in
−→
T , marked with dashed arrows.

The orientation
−→
H t of T is defined as follows. For every vi,j ∈ V (H), let

r1
i,j, r

2
i,j, . . . , r

t
i,j ∈ V be the t vertices on the main diagonal of the representative

grid Ri,j. For every edge e = {vi,j, vi′,j′} ∈
−→
E (H) directed from vi,j to vi′,j′ and

every h ∈ [t], we orient the edges on the shortest path from rh
i,j to rh

i′,j′ in a way

that forms a directed path from rh
i,j to rh

i′,j′. For every edge e′ ∈ E that participates

in this path, we call e the originating edge of e′, and use the notation org(e′)
def
= e.

The edges e′ of T originated in this manner are called representative edges, whereas

115

the remaining edges are called padding edges. Next, all the horizontal padding edges

are directed to the right, and all the vertical padding edges are directed upwards (see

Definition 9.1.2). See an example in Figure 9.1. For every padding edge e we define

org(e)
def
= ∅, since they have no origin in H.

The next lemma states that a tiling of an Eulerian torus is also Eulerian, while

on the other hand, a tiling of a torus with many unbalanced vertices results with a

torus that is far from being Eulerian.

Lemma 9.1.8. Let
−→
H = (V (H),

−→
E (H)) be a directed `×` torus and let

−→
H t = (V,

−→
E)

be the t-tiling of
−→
H for some natural number t. Then,

• If
−→
H is Eulerian, then

−→
H t is also Eulerian.

• For every 0 < δ < 1, if
−→
H contains δ`2 unbalanced vertices, then

−→
H t is δ

16
-far

from being Eulerian.

Proof. The first statement of the lemma follows easily from Definition 9.1.7.

Assume now that
−→
H has δ`2 unbalanced (spring or drain) vertices. According to

the definition of a t-tiling, for every unbalanced vertex vi,j ∈ V (H) we have exactly

t unbalanced vertices r1
i,j, r

2
i,j, . . . , r

t
i,j on the main diagonal of vi,j’s representative

grid Ri,j in
−→
H t, so the number of unbalanced vertices in

−→
H t is δ`2t. In addition,

whenever vi,j is a spring (respectively drain) vertex in
−→
H , the vertices r1

i,j, r
2
i,j, . . . , r

t
i,j

are also springs (respectively drains) in
−→
H t, so every pair of spring-drain vertices

must reside in different grids Ri,j and Ri′,j′ . This implies that (due to the orientation

of the padding edges) the distance from any spring vertex to any drain vertex in
−→
H t is at least t. Consequently, every correction path in

−→
H t must be of length at

least t. Since every correction path in
−→
H t can balance at most two unbalanced

vertices, and since the length of every such path is at least t, we conclude that
−→
H t

is tδ`2t/2

|E(
−→
H t)|

= δ`2t2/2
8`2t2

= δ
16

-far from being Eulerian.

Lemma 9.1.9. Let
−→
H t be a t-tiling of a randomly oriented ` × ` torus

−→
H ∼ R`.

Then with probability 1− o(1),
−→
H t is 1/64-far from being Eulerian.

Proof. Follows by combining Lemma 9.1.8 (with δ = 1/4) and Lemma 9.1.4.

We are now ready to define the distributions P` and F` over the orientations of

an ` × ` torus T = (V, E). To avoid divisibility concerns, we assume that ` = 2k

and k = 2b for some natural number b > 1. It is easy to verify that the same proof

works also for general values of ` and k by using rounding as appropriate.

116

Distribution P`: Choosing
−→
T ∼ P` is done according to the following steps.

• Choose s uniformly at random from the range [k/4, k/2]. Let t = 2s, that is,

t can take log `
4

values in the range [`1/4, `1/2].

• For an `
2t
× `

2t
torus H, choose a random orientation

−→
H of H according to the

distribution C(k)
`/2t.

• Set
−→
T ′ to be the t-tiling of

−→
H .

• Choose a, b ∈ [`] uniformly at random, and set
−→
T to be the (a, b)-shifting of

−→
T ′ (see Definition 9.1.3).

Distribution F`: Choosing
−→
T ∼ F` is done according to the following steps.

• Choose s uniformly at random from the range [k/4, k/2] and set t = 2s.

• For an `
2t
× `

2t
torus H, choose a random orientation

−→
H of H according to the

distribution R`/2t.

• Set
−→
T ′ to be the t-tiling of

−→
H .

• Choose a, b ∈ [`] uniformly at random, and set
−→
T to be the (a, b)-shifting of

−→
T ′.

9.1.4 Bounding the variation distance

Let T = (V, E) be an ` × ` torus. According to Lemma 9.1.8, every orientation
−→
T ∼ P` of T is Eulerian. According to Lemma 9.1.9, an orientation

−→
T ∼ F` of T

is 1
64

-far from being Eulerian with high probability. Our aim is to show that any

non-adaptive deterministic algorithm that makes o
(√

log `
log log `

)
queries will fail to

distinguish between the orientations that are distributed according to P` and those

that are distributed according to F`.

Let Q ⊆ E be a fixed set of at most 1
10

√
log `

log log `
edges queried by a non-adaptive

deterministic algorithm. Let
−→
H = (V (H),

−→
E (H)) be the `

2t
× `

2t
torus (oriented

according to either C(k)
`/2t or R`/2t) that has been used to create an orientation

−→
T of

T . By Definition 9.1.7, the orientations of the padding edges of
−→
T are identical in

P` and F`, and the orientations of the other edges are determined by those of their

117

originating edges. We thus focus on the set org(Q)
def
= {org(e) : e ∈ Q} ⊆ E(H) of

Q’s originating edges.

If
−→
T is distributed according to F`, then the set org(Q) ⊆ E(H) is independent

in H, and hence the distribution of the orientations of the edges in org(Q) ⊆ E(H)

is uniform. We henceforth assume that
−→
T is distributed according to P`. In the next

lemmas we show that, with probability at least 4/5, the set org(Q) is independent

in H also in this case, and thus our algorithm cannot distinguish between the two

distributions.

Lemma 9.1.10. Let e1, e2 ∈ E be two edges within distance x. Let
−→
T be a random

orientation of T chosen according to the distribution P`. Then

Prs

[
t

4k
≤ x ≤ 4tk

]
<

8(log log ` + 2)

log `
.

Proof. Observe that there are at most 2 log k + 4 = 2 log log ` + 4 values of s for

which a fixed number x can satisfy 2s−log k−2 = t
4k
≤ x ≤ 4tk = 2s+log k+2. Moreover,

s is distributed uniformly among its k
4

= log `
4

possible values, so the lemma follows.

For a set Q ⊆ E and an orientation
−→
T of T , let IQ be the following event: For

all pairs e1, e2 ∈ Q, either dist(e1, e2) < t
4k

or dist(e1, e2) > 4tk in T .

Lemma 9.1.11. Let Q ⊆ E be a fixed set of 1
10

√
log `

log log `
edges, and let

−→
T be a

random orientation of T , according to distribution P`. Then the event IQ occurs

with probability at least 9/10.

Proof. Follows by applying the union bound on the inequality from Lemma

9.1.10 for all pairs e1, e2 ∈ Q.

Lemma 9.1.12. With probability 1 − o(1) conditioned on the event IQ, every two

edges e1, e2 ∈ Q such that dist(e1, e2) < t
4k

satisfy one of the following: (1) e1, e2 are

perpendicular; (2) at least one of e1, e2 has no origin in H; (3) org(e1) = org(e2).

Proof. Fix two edges e1, e2 ∈ Q such that dist(e1, e2) < t
4k

. If one of them has no

originating edge in H then we are done. Otherwise, since dist(e1, e2) < t
4k

, by the

definition of the t-tiling, org(e1) and org(e2) must have a common endpoint in H, say

vi,j. If e1 and e2 are perpendicular, then again we are done. On the other hand, if

e1 and e2 are parallel, then in order to have different origins they must be separated

118

by the the main diagonal of Ri,j (the representative grid of the common vertex vi,j).

Note that this may happen only if the distance of both e1 and e2 from the main

diagonal is at most t
4k

. But the probability that an edge is within that distance from

the main diagonal of some representative grid is at most 2 t
4k

t
t2

= 1
2k

= o
(

log log `
log `

)
.

Now the proof is completed by applying the union bound for all pairs e1, e2 ∈ Q.

Lemma 9.1.13. Let Q ⊆ E be a fixed set of 1
10

√
log `

log log `
edges, and let

−→
T be a

random orientation of T , chosen according to the distribution P`. Then org(Q) is

independent with probability at least 4/5.

Proof. By Lemma 9.1.11, with probability at least 9/10, the event IQ happens,

that is, for all pairs e1, e2 ∈ Q we have either dist(e1, e2) < t
4k

or dist(e1, e2) > 4tk

in T . Assume that IQ occurs. Then, by Lemma 9.1.12, with probability 1 − o(1),

all the pairs e1, e2 ∈ Q with dist(e1, e2) < t
4k

in T are perpendicular or have no

more than one originating edge. Conditioned on this event, every two edges in

org(Q) are perpendicular or are at distance larger than 2k in H. Recall that |Q| =
o(
√

log `) = o(
√

k) and hence |org(Q)| = o(
√

k). Therefore, from Lemma 9.1.6,

org(Q) is independent in this case with probability 1− o(1).

Summing up, we have that org(Q) is independent with probability at least 9
10
−

o(1) > 4/5 for ` large enough, where the probabilities are taken over P`.

Proof of Theorem 9.1.1. Let Q ⊆ E be the fixed set of 1
10

√
log `

log log `
edges queried

by a deterministic non-adaptive algorithm. For every fixed t, a, and b, let P t,a,b
` be

P` conditioned on t, a, and b and let F t,a,b
` be F` conditioned on t, a, and b. Note

that t, a, and b fully define the set org(Q) of originating edges and, in particular, it

is the same set for orientations drawn according to P t,a,b
` and according to F t,a,b

` . It

follows that, for every t, a, and b, if org(Q) is independent then the restriction of

P t,a,b
` to Q is identical to that of F t,a,b

` . Now, recall that for every t, a, and b, if
−→
T is

distributed according to F t,a,b
` then org(Q) is independent. On the other hand, by

Lemma 9.1.13, org(Q) is independent with probability at least 4/5 also for P t,a,b
` ,

taken over the choice of t, a, and b. Summing over all the possible choices of t, a,

and b, we obtain that the variation distance between P t,a,b
` and F t,a,b

` is at most 1/5.

Hence, distinguishing between the two distributions with probability larger than 1/5

requires more than 1
10

√
log `

log log `
= Ω

(√
log m

log log m

)
queries.

119

9.2 A 1-sided lower bound

In this section we prove the following theorem.

Theorem 9.2.1. For every 0 < ε ≤ 1/16, every non-adaptive 1-sided ε-test for

Eulerian orientations of bounded degree graphs must use at least 1
100

m1/4 queries.

Consequently, every adaptive 1-sided test requires Ω(log m) queries.

As opposed to 2-sided testers, a 1-sided tester is not allowed to reject the input

unless a negative witness was found. In our case, as claimed in Lemma 7.4.1, the

only possible witness that an orientation is not Eulerian is an invalid cut, i.e. a

(possibly partial) cut that cannot be made balanced under any orientation of the

non-queried edges.

Following this observation, we prove Theorem 9.2.1 using the distribution F`

defined in Subsection 9.1.3. First, we define a distribution F ′` that is similar to the

distribution F`, except that t is fixed to be `/16, and the orientation
−→
H of an 8× 8

torus H is fixed to be one that makes all 64 vertices fully unbalanced. Then we

show that for orientations that are distributed according to F ′`, any non-adaptive

deterministic algorithm that makes o(
√

`) = o(
√

m) orientation queries cannot find

an invalid cut (a negative witness) with probability larger than 1/5. This will imply

that there exists an 1
16

-far orientation on which any randomized tester fails with

probability at least 4/5.

The main idea is as follows. A cut can be invalid (and hence unbalanced) only

if both its components contain unbalanced vertices. Let us now fix a cut (A, B)

of an ` × ` torus T = (V, E), and let
−→
T be an orientation of T chosen according

to F ′`. Suppose that indeed both A and B contain unbalanced vertices, and let

Q be a subset of the edges in the cut (A, B) that witness its invalidity. Using

basic properties of tori, we show that either Q contains Ω(m1/4) edges, or otherwise,

one of the edges e ∈ Q must be within distance at most O(m1/4) from one of the

unbalanced vertices of
−→
T . Since the number of unbalanced vertices in

−→
T ∼ F ′` is

O(`) = o(m1/4), and since they are grouped into 64 diagonals of length `/32, the

number of edges that are within distance O(m1/4) from these unbalanced vertices is

bounded by O(m3/4). Finally, since the last step in building
−→
T is a random shift,

the probability that a set Q of size o(m1/4) contains any such edge tends to zero.

We first give a formal definition of the distribution F ′` of orientations over a

torus.

120

Distribution F ′`: Choosing
−→
T ∼ F ′` is done according to the following steps.

• Set t = `/16.

• Fix the orientation
−→
H of the `

2t
× `

2t
= 8×8 torus H, such that all 64 vertices of

H are fully unbalanced in
−→
H (i.e. no vertex has both incoming and outgoing

edges).

• Set
−→
T ′ to be the t-tiling of

−→
H .

• Pick a, b ∈ [`] uniformly at random and set
−→
T to be the (a, b)-shifting of

−→
T ′.

Lemma 9.2.2. Let T = (V, E) be an `× ` torus and let
−→
T be an orientation of T

distributed according to F ′`. Let Q be a fixed set of 1
100

m1/4 edges from E. Then the

probability (over
−→
T ∼ F ′`) that any of the edges in Q is within distance at most

√
`

from a vertex v ∈ V that is unbalanced in
−→
T is at most 1/5.

Proof. Let U denote the set of unbalanced vertices in
−→
T ∼ F ′`. Observe that

|U | = 64t = 4` = 4
√

m/2, and recall that the vertices in U ⊆ V are grouped

into 64 diagonals of length t (see Definition 9.1.7). Thus, the number of vertices

v ∈ V that are within distance at most
√

` from some vertex u ∈ U is bounded by

64 · (t+2
√

`) ·2
√

` ≤ 10`3/2. Hence, the probability of a single edge e ∈ Q satisfying

dist(e, u) ≤
√

` for some u ∈ U is bounded by 20m−1/4 and the lemma follows.

We establish the proof of Theorem 9.2.1 using a few lemmas, in which we point

out some significant properties of the torus. But first, we give a general lemma

about witnesses for not being Eulerian.

Lemma 9.2.3. Let G = (V, E) be a graph and let
−→
G = (V,

−→
E) be an orientation of

G. If a set Q ⊆ E is a witness that
−→
G is not Eulerian then Q contains more than

half of the edges of some invalid cut (A, B) in
−→
G , where both A and B are connected

sets of vertices.

Proof. Recall that, by Lemma 7.4.1, Q contains more than half of the edges of

an invalid cut, say (A′, B′). Without loss of generality we assume that |
−→
E (A′, B′)| >

1
2
|E(A′, B′)|. Hence, Q contains more than 1

2
|E(A′, B′)| edges going from A′ to B′.

Let A1, . . . , Ar be the connected components of A′. Note that (A′, B′) is a disjoint

union of (A1, B
′), . . . , (Ak, B

′). Using averaging calculations, we obtain that there

exists a connected component Ai such that Q contains more than 1
2
|E(Ai, B

′)| edges

121

going from Ai to B′. Note in addition that there are no edges between Ai and other

connected components Ak’s of A′, and thus (Ai, B
′) = (Ai, V \ Ai). We conclude

that Q contains more than 1
2
|E(Ai, V \ Ai)| edges going from Ai to V \ Ai. Now,

let B1, . . . , Bs be the connected components of V \ Ai. Note that (Ai, V \ Ai) is a

disjoint union of (Ai, B1), . . . , (Ai, Bs). Using averaging calculations, we obtain that

there exists a connected component Bj such that Q contains more than 1
2
|E(Ai, Bj)|

edges going from Ai to Bj. Note in addition that there are no edges between Bj and

other connected components Bk’s of V \ Ai, and therefore (Ai, Bj) = (V \ Bj, Bj).

We conclude that Q contains more than 1
2
|E(V \ Bj, Bj)| edges going from V \ Bj

to Bj, and hence, Q is a witness to the invalidity of (V \ Bj, Bj). Bj is clearly

connected. To complete the proof, we need to show that V \ Bj is connected as

well. Recall that V \ Bj is a union of Ai and all the connected components Bk’s of

V \ Ai for k 6= j. The Bk’s are not connected to each other. However, the torus T

is a connected graph, and therefore, every Bk must be connected to Ai. Since Ai is

connected, V \Bj is connected. To conclude, we set A = V \Bj and B = Bj.

In the following, we let T = (V, E) be an ` × ` torus and use the notation of

Definition 9.1.2. For every i ∈ [`], define the ith row of T as Ri
def
= {vi,j ∈ V | j ∈ [`]}.

For every j ∈ [`], define the jth column of T as Cj
def
= {vi,j ∈ V | i ∈ [`]}. Given a

set A ⊆ V , let R(A) be the set of rows Ri of T such that A ∩Ri 6= ∅, and let C(A)

be the set of columns Cj of T such that A ∩ Cj 6= ∅.
Given a cut (A, B) of V we say that a row Ri is mixed if Ri ⊆ R(A) ∩ R(B),

that is, if Ri includes vertices in A as well as vertices in B. Similarly, we say that

a column Cj is mixed if Cj ⊆ C(A) ∩ C(B). Let rmix be the number of mixed rows

with respect to (A, B) and let cmix be the number of mixed columns with respect to

(A, B).

Observation 9.2.4. |E(A, B)| ≥ 2(rmix + cmix).

Proof. Looking at the cycle of vertical edges connecting all the vertices in every

mixed column, it is easy to see that every mixed column has at least two vertical

edges in (A, B). Similarly, it can be shown that every mixed row has at least two

horizontal edges in (A, B).

Observation 9.2.5.

1. If |R(A)| < ` then cmix = |C(A)|.

122

2. If |C(A)| < ` then rmix = |R(A)|.

The analogous claims also hold for B.

Proof. We give the proof of the first item as the proof of the second item is

identical. Let Ri be a row of T that is not in R(A). Then vi,j ∈ B for every j ∈ [`].

Hence, every column Cj ∈ C(A) has a vertex in A as well as a vertex in B (namely,

vi,j), which proves the claim.

Observation 9.2.6.

1. If |R(A)| = ` then rmix = |R(B)|.

2. If |C(A)| = ` then cmix = |C(B)|.

Proof. We give the proof of the first item as the proof of the second item is

identical. Suppose that |R(A)| = `. Then every row includes a vertex in A. Let

Ri ∈ R(B). Then Ri includes a vertex in A as well as a vertex in B, which completes

the proof.

We say that a set A ⊆ V of vertices in T is grid-bounded if |R(A)| < ` and

|C(A)| < `.

Lemma 9.2.7. Let (A, B) be a cut of V where |E(A, B)| < 2`. Then at least one

of A and B is grid-bounded.

Proof. From Observation 9.2.4 we have that rmix + cmix < `. Note that

|R(A)| + |R(B)| − rmix = ` and |C(A)| + |C(B)| − cmix = `. Hence |R(A)| +
|C(A)|+ |R(B)|+ |C(B)| ≤ 2` + rmix + cmix < 3`, and thus, at most two of the sets

R(A), C(A), R(B), C(B) are of size `. Assuming that both A and B are not grid-

bounded, we have max(|R(A)|, |C(A)|) = ` and max(|R(B)|, |C(B)|) = `. There-

fore, we must have |R(A)| = ` and |C(A)| < ` or |R(A)| < ` and |C(A)| = `. We

complete the proof for the case where |R(A)| = ` and |C(A)| < ` as the proof for

the other case is identical. From Observation 9.2.6 we have |R(B)| = rmix < `, and

thus, from Observation 9.2.5, cmix = |C(B)|. Now, |C(B)| = `, as otherwise B is

grid-bounded. We hence obtain cmix = `, a contradiction.

Observation 9.2.8. If A is connected then there exists a row index i∗ ∈ [`] such that

R(A) = {Ri∗ , Ri∗⊕1, . . . , Ri⊕(s−1)} where s = |R(A)|, and there exists a column index

123

j∗ ∈ [`] such that C(A) = {Cj∗ , Cj∗⊕1, . . . , Cj⊕(t−1)} where t = |R(B)|. Hence, A is

contained in a subgraph G of T which is an |R(A)| × |R(B)| grid. Renaming i∗ as 1

and j∗ to 1, we have that G is a grid with the vertex set VG = {vi,j | i ∈ [s], j ∈ [t]}.

Proof. Let Ri1 , Ri2 be rows in R(A). Hence, both Ri1 and Ri2 include at least

one vertex in A. Since A is connected, there exists a path of vertices in A between

Ri1 and Ri2 . Clearly, for every edge in the path, the endpoints are in the same row

(in case of a horizontal edge) or in subsequent rows (in case of a vertical edge). We

thus conclude that R(A) is a set of successive rows in the torus. Similarly, C(A) is

a set of successive columns in the torus.

Lemma 9.2.9. Let T = (V, E) be an ` × ` torus, and let
−→
T be a non-Eulerian

orientation of T . Let U ⊆ V denote the set of unbalanced vertices with respect to
−→
T . Let Q ⊆ E be a set of edges forming a witness that

−→
T is not Eulerian, where

|Q| < 1
2
`. Let q denote the minimal distance of an edge in Q to an unbalanced vertex,

that is, q
def
= mine∈Q, u∈U{dist(e, u)}. Then |Q| ≥ q.

Proof. By Lemma 9.2.3, we assume without loss of generality that Q contains

more than half of the edges of an invalid cut (A, B), where both A and B are

connected. Since |Q| < 1
2
`, we have |E(A, B)| < `, and hence, from Lemma 9.2.7,

one of the sets A and B is grid-bounded. Assume without loss of generality that A is

grid-bounded. Let s = |R(A)| and t = |C(A)|. Then s, t < `. Since A is connected,

from Observation 9.2.8, A is contained in an s× t grid G.

Suppose that |Q| < q. Then |E(A, B)| < 2q, and from Observation 9.2.4 we

have rmix + cmix < q. Let e = (wA, wB) be an edge in Q ∩ E(A, B), where wA ∈ A

and wB ∈ B. Since A is invalid, there exists an unbalanced vertex u ∈ A. By the

definition of q we have dist(e, u) ≥ q and hence dist(u, wA) ≥ q. Using the notation

of Observation 9.2.8, we denote u = vi1,j1 and wA = vi2,j2 , where i1, i2 ∈ [s] and

j1, j2 ∈ [t]. Then clearly |i1−i2|+|j1−j2| ≥ q. We thus have s = |R(A)| ≥ |i1−i2|+1

and t = |C(A)| ≥ |j1 − j2|+ 1. Since A is grid-bounded, from Observation 9.2.5 we

obtain |C(A)| + |R(A)| = rmix + cmix ≥ |i1 − i2| + 1 + |j1 − j2| + 1 > q. Finally,

Observation 9.2.4 gives that |E(A, B)| > 2q, a contradiction.

Proof of Theorem 9.2.1. Let T = (V, E) be an ` × ` torus and let
−→
T ∼ F ′`

be an orientation of T . Let Q ⊆ E be the fixed set of 1
100

m1/4 edge queries that

a deterministic non-adaptive algorithm makes on
−→
T . By Lemma 9.2.9, in order to

form a witness that
−→
T is not Eulerian, one of the edges in Q must be within distance

124

at most |Q| = 1
100

m1/4 <
√

` from an unbalanced vertex in
−→
T . But according to

Lemma 9.2.2, the probability of the above is at most 1/5. We thus conclude that

discovering a witness that
−→
T ∼ F ′` is not Eulerian with probability larger than 1/5

requires more than 1
100

m1/4 nonadaptive queries.

125

Part III

Bibliography

126

Bibliography

[1] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Efficient testing of

large graphs, Combinatorica 20(4):451–476, 2000 (a preliminary version

appeared in Proceedings of the 40th FOCS: 656–666, 1999).

[2] N. Alon, E. Fischer, I. Newman and A. Shapira, A combinatorial char-

acterization of the testable graph properties: It’s all about regularity,

Proceedings of the 38th STOC: 251–260, 2006.

[3] N. Alon, M. Krivelevich, I. Newman and M. Szegedy, Regular lan-

guages are testable with a constant number of queries, Siam Journal

on Computing 30(6):1842–1862, 2001.

[4] N. Alon and A. Shapira, Testing subgraphs in directed graphs, J. Com-

put. Syst. Sci. 69(3):354–382, 2004 (a preliminary version appeared in

Proceedings of the 35th STOC: 700–709, 2003).

[5] S. Arora, C. Lund, R, Motwani, M. Sudan and M. Szegedy, Proof

verification and the hardness of approximation problems, Journal of

the ACM, 45(3):501–555, 1998.

[6] L. Babai, On the diameter of Eulerian orientations of graphs, Proceed-

ings of the 17th SODA: 822–831, 2006.

[7] M. Bender and D. Ron, Testing properties of directed graphs: Acyclic-

ity and connectivity, Random Structures and Algorithms 20(2):184–205,

2002.

[8] E. Ben-Sasson, P. Harsha, O. Lachish and A. Matsliah, Sound 3-query

PCPPs are Long, Proccedings of the 35th ICALP (1):686-697, 2008.

127

[9] E. Ben-Sasson, P. Harsha and S. Raskhodnikova, Some 3CNF proper-

ties are hard to test, SIAM Journal on Computing 35(1):1–21, 2005 (a

preliminary version appeared in Proceedings of the 35th STOC, 2003).

[10] M. Blum, M. Luby and R. Rubinfeld, Self-testing/correcting with ap-

plications to numerical problems. Journal of Computer and System Sci-

ences 47:549–595, 1993 (a preliminary version appeared in Proceedings

of the 22nd STOC, 1990).

[11] G. R. Brightwell and P. Winkler, Counting Eulerian circuits is #P-

complete, Proceedings of the 7th ALENEX and 2nd ANALCO (Van-

couver BC), C. Demetrescu, R. Sedgewick and R. Tamassia, eds, SIAM

Press, 259–262, 2005.

[12] S. Chakraborty, E. Fischer, O. Lachish, A. Matsliah and I. Newman:

Testing st-Connectivity, Proceedings of the 11th RANDOM and the 10th

APPROX (2007): 380–394.

[13] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron and

A. Samorodnitsky, Improved testing algorithms for monotonicity, Pro-

ceedings of the 3rd RANDOM: 97–108, Springer-Verlag, Berkeley CA,

1999.

[14] F. Ergün, S. Kannan, S. R. Kumar, R. Rubinfeld and M. Viswanathan,

Spot checkers, Journal of Computer and System Sciences, 60(3):717–

751, 2000.

[15] E. Fischer, Testing graphs for colorability properties, Random Struc-

tures and Algorithms 26:289–309, 2005 (a preliminary version appeared

in Proceedings of the 12th SODA, 2001).

[16] E. Fischer, The art of uninformed decisions: A primer to property

testing, Bulletin of the European Association for Theoretical Computer

Science 75:97–126, Section 8, 2001. Also in Current Trends in Theoret-

ical Computer Science: The Challenge of the New Century (G. Paun,

G. Rozenberg and A. Salomaa eds.), Vol. I 229-264, World Scientific

Publishing, 2004.

128

[17] E. Fischer, O. Lachish, A. Matsliah, I. Newman and O. Yahalom, On

the query complexity of testing orientations for being Eulerian, Proceed-

ings of the 11th APPROX and 12th RANDOM, LNCS 5171: 402–415,

Springer-Verlag, 2008.

[18] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld

and A. Samorodnitsky, Monotonicity testing over general poset do-

mains, Proceedings of the 34th STOC: 474–483, 2002.

[19] E. Fischer and I. Newman, Testing of matrix-poset properties, Combi-

natorica, to appear (a preliminary version appeared in Proceedings of

the 33rd ACM STOC: 286–295, 2001).

[20] Eldar Fischer and Eyal Rozenberg: Lower bounds for testing forbid-

den induced substructures in bipartite-graph-like combinatorial ob-

jects, Proceedings of the 10th APPROX and 11th RANDOM: 464–478,

2007.

[21] E. Fischer and O. Yahalom, Testing convexity properties of tree color-

ings, Proceedings of the 24th STACS, LNCS 4393: 109–120, Springer-

Verlag, 2007.

[22] H. Fleishcner, Eulerian graphs and related topics, Part 1. Vol. 1. Annals

of Discrete Mathematics 45, 1990.

[23] H. Fleishcner, Eulerian graphs and related topics, Part 1. Vol. 2. Annals

of Discrete Mathematics 50, 1991.

[24] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan and A. Wigderson,

Self-testing/correcting for polynomials and for aproximate functions,

Proceedings of the 23th STOC: 32–42, 1991.

[25] O. Goldreich, S. Goldwasser and D. Ron, Propery testing and its con-

nection to learning and approximation, Journal of the ACM 45(4):653–

750, 1998.

[26] O. Goldreich and D. Ron, Property testing in bounded degree graphs,

Algorithmica 32:302–343, 2002.

129

[27] O. Goldreich and L. Trevisan, Three theorems regarding testing graph

properties, Random Structures and Algorithms 23(1):23–57, 2003 (a

preliminary version appeared in Proceedings of the 42nd IEEE FOCS:

460–469, 2001).

[28] S. Halevy and E. Kushilevitz, Distribution-free connectivity testing,

Proceedings of the 7th APPROX and 8th RANDOM: 393–404, 2004.

[29] S. Halevy and E. Kushilevitz, Distribution-free property testing, Pro-

ceedings of the 6th APPROX and 7th RANDOM: 302–317, 2003.

[30] S. Halevy, O. Lachish, I. Newman and D. Tsur, Testing orientation

properties, technical report, Electronic Colloquium on Computational

Complexity (ECCC), Report No. 153, 2005.

[31] S. Halevy, O. Lachish, I. Newman and D. Tsur, Testing properties of

constraint-graphs, Proceedings of the 22nd IEEE Annual Conference on

Computational Complexity (CCC): 264–277, 2007.

[32] D. Harel and R. E. Tarjan, Fast algorithms for finding nearest common

ancestor, SIAM Journal on Computing 13(2):338–355, 1984.

[33] T. Ibaraki, A. V. Karzanov and H. Nagamochi, A fast algorithm for

finding a maximum free multiflow in an inner Eulerian network and

some generalizations, Combinatorica 18(1) (1988), 61–83.

[34] T. Kaufman, M. Krivelevich and D. Ron, Tight bounds for testing bi-

partiteness in general graphs, SIAM Journal on Computing 33(6):1441–

1483, 2004.

[35] D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental

Algorithms, Addison-Wesley, 1968. Second edition, 1973.

[36] L. Lovász, On some connectivity properties of Eulerian graphs, Acta

Math. Hung. 28:129–138, 1976.

[37] F. Magniez and M. de Rougemont, Property testing of regular tree

languages, In Proceedings of the 31st ICALP, LNCS 3142: 932–944,

Springer-Verlag, 2004.

130

[38] M. Mihail, P. Winkler, On the number of Eulerian orientations of a

graph, Algorithmica 16(4/5): 402–414, 1996.

[39] S. Moran and S. Snir, Convex recolorings of phylogenetic trees: defini-

tions, hardness results and algorithms, to appear in Journal of Com-

puter and System Sciences (a preliminary version appeares in Procced-

ings of WADS:218–232, 2005).

[40] B.M.E. Moret and T. Warnow, Reconstructing optimal phylogenetic

trees: A challenge in experimental algorithmics, In: Experimental Al-

gorithmics, LNCS 2547: 163–180, Springer-Verlag, 2002.

[41] L. Nakhleh, T. Warnow, D. Ringe, and S.N. Evans, A comparison of

phylogenetic reconstruction methods on an IE dataset, Transactions of

the Philological Society 3(2): 171–192, 2005.

[42] I. Newman, Testing of Function that have small width Branching Pro-

grams, SIAM Journal on Computing 31(5):1557–1570, 2002 (a prelim-

inary version appeared in Proceedings of the 41st FOCS, 2000).

[43] M. Parnas and D. Ron, Testing the diameter of graphs, Random Struc-

tures and Algorithms, 20(2):165–183, 2002.

[44] P. A. Pevzner, H. Tang and M. S. Waterman, An Eulerian path

approach to DNA fragment assembly, Proc. Natl. Acad. Sci. USA

98:9748–9753, 2001.

[45] R. W, Robinson, Enumeration of Euler graphs, In Proof Techniques in

Graph Theory (Ed. F. Harary): 147–153, New York Academic Press,

1969.

[46] D. Ron, Property testing (a tutorial), In: Handbook of Randomized

Computing (S. Rajasekaran, P. M. Pardalos, J. H. Reif and J. D. P.

Rolim eds), Vol. II, 597–649, Kluwer Academic Publishers, 2001.

[47] R. Rubinfeld and M. Sudan, Robust characterization of polynomials

with applications to program testing, SIAM Journal on Computing

25:252–271, 1996 (first appeared as a technical report, Cornell Univer-

sity, 1993).

131

[48] B. Schieber and U. Vishkin, On finding lowest common ancestors: Sim-

plifications and parallelization, SIAM Journal on Computing 17:1253–

1262, 1988.

[49] T. Schlieder and F. Naumann. Approximate tree embedding for query-

ing XML data, In ACM SIGIR Workshop On XML and Information

Retrieval, Athens, Greece, July 2000.

[50] L. Segoufin and V. Vianu, Validating streaming XML documents, Sym-

posium on Principles of Database Systems (PODS):53–64 , 2002

[51] C. Semple and M. Steel, Phylogenetics, Oxforx University Press, 2003.

[52] W. T. Tutte, Graph theory, Addison-Wesley, New York, 1984.

[53] A. C. Yao, Probabilistic computation, towards a unified measure of

complexity, In Proceedings of the 18th IEEE FOCS: 222–227, 1977.

132

