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Abstract

In this thesis we study property testers and their applications in the dense graph and
hypergraph model, property testers for massively parameterized properties, and proba-
bilistically checkable proofs of proximity – PCPPs.

First we consider the task of testing for graph isomorphism in the dense graph model.
We investigate both one-sided error and two-sided error testers under two possible settings.
The first is where both graphs need to be queried, and the second is where one of the
graphs is given in advance. We prove nearly tight lower and upper bounds on the query
complexity of isomorphism testers under each of the four possible combinations.

Then we show that any general partition-problem of dense hypergraphs has a sub-
linear time (O(n) where the input size is Ω(nr) for some r > 1) approximate partitioning
algorithm and a property tester with constant query complexity. This extends the results
of Goldreich, Goldwasser and Ron who obtained similar algorithms for graph partition
problems in their seminal paper [GGR98]. We use the partitioning algorithm to obtain a
surprisingly simple sub-linear time algorithmic version of Szemerédi’s regularity lemma,
and for any r ≥ 3, we also obtain an O(n) time (where the input size is Ω(nr)) random-
ized algorithm for constructing weakly regular partitions of r-uniform hypergraphs, thus
improving upon the previous O(n2r−1) time deterministic algorithms. In addition, we use
the hypergraph partition testing algorithm to unify many previous results in hypergraph
property testing and CNF testing.

In massively parameterized property testing we concentrate on the orientation model.
Our first result in this model solves an open question from [HLNT05], asking whether it is
possible to test (with constant number of queries) that an orientation

−→
G is st-connected.

We show that the property of being st-connected is testable by a one-sided error algorithm
with a number of queries depending only on ε. That is, we construct a randomized
algorithm such that for any underlying graph G, on input of an unknown orientation the
algorithm queries only O(1) edges for their orientation, and based on this distinguishes
with success probability 2

3 between the case that the orientation is st-connected and the
case that it is ε-far from being st-connected.

Our second result within the topic of massively parameterized properties deals with the
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task of testing whether an orientation of a given graph is Eulerian. Despite the local nature
of this property, it turns out to be significantly harder for testing than st-connectivity. In
particular, we show a super-constant lower bound on the query complexity, even if 2-sided
error is allowed and the underlying graph is a toroidal grid (meaning that there are very
small negative witnesses).

In the last part of the thesis we study length-soundness tradeoffs in probabilistically
checkable proofs of proximity (PCPPs). We show that any verifier obtaining the “best
possible” soundness must query an exponentially long proof. One of the central ingredients
in our proof is a tight connection between the query complexity of linear codes (in the
property testing sense), and their optimal proof-length (in the PCPP sense).

2



Chapter 1

General introduction

With the recent advances in technology, we are faced with the need to process increas-
ingly larger amounts of data increasingly faster. Originally, a problem was considered
computable if there was an algorithm that could decide it in finite time given any input
instance. Later came the notion of polynomial time computation, and then the possibility
of making computations faster through use of parallel machines. However, the algorithms
involved still face the obvious obstacle of reading the entire input prior to its assessment.
There are practical situations in which the input is so large (and not accessible in parallel),
so that even taking a linear time in its size to provide an answer is too much. In other sit-
uations the input is not easily accessible, or does not have an explicit representation, and
an “oracle” procedure that computes its values in specific locations is provided instead.

The main line of research in this thesis revolves around designing and analyzing ex-
tremely efficient approximation algorithms, and in particular algorithms that make a
decision concerning the input after reading only a small portion of it. In particular,
the questions addressed in this thesis are related to combinatorial property testing in
the dense-graphs model, testing massively parameterized properties, sub-linear time algo-
rithms for dense graphs and hypergraphs, and probabilistically checkable proofs of prox-
imity (PCPPs).

In this chapter we provide a brief introduction to the topics that are related to the
content of this thesis. A more focused introduction and bibliographic background, based
on the articles in which these results were published, are provided later in the specific
parts.

1.1 Combinatorial property testing

The meta problem in the area of property testing is the following: Given a combinatorial
structure S, distinguish between the case that S satisfies some property P and the case

3



that S is ε-far from satisfying P . Roughly speaking, a combinatorial structure is said
to be ε-far from satisfying some property P if an ε-fraction of its representation has
to be modified in order to make S satisfy P . The main goal in property testing is to
design randomized algorithms, which look at a very small portion of the input, and use
this information to distinguish with high probability between the above two cases. Such
algorithms are called property testers or simply testers for the property P .

Blum, Luby and Rubinfeld [BLR90] were the first to formulate a question of this type,
and the general notion of property testing was first formulated by Rubinfeld and Sudan
[RS93], who were interested in studying various algebraic properties such as the linearity
of functions. The definitions and the first study of property testing as a framework were
introduced in the seminal paper of Goldreich, Goldwasser and Ron [GGR98]. Since then,
an extensive amount of work has been done on various aspects of property testing as well
as on studying particular properties. For comprehensive surveys see [Ron01, Fis04].

1.1.1 Property testing in the dense graph (and hypergraph) model

The “dense” graph testing model that was defined in [GGR98] is also one of the well
studied models in combinatorial property testing. Formally, the inputs in this model are
functions g : {1, 2, . . . ,

(
n
2

)} → {0, 1}, which represent the edge set of a graph G with n

vertices. The distance of a graph from a property P is measured by the minimum number
of bits that have to be modified in the input in order to make it satisfy P , divided by the
input length m, which in our case is taken to be

(
n
2

)
.

For the question of testing graphs with a constant number of queries in the dense
model there are many recent advances, such as [AS05b], [FN05], [AS05] and [AFNS06].
All of these results use Szemerédi’s regularity lemma [Sze78] as the main technical tool
(see a brief introduction to the regularity lemma in Section 5.4.1).

For some of the properties that we consider here the number of required queries is of
the form nα for some α > 0, and in these cases our interest will be to find bounds as tight
as possible on α.

The dense graph model naturally generalizes to hypergraphs. For example, if properties
of r-uniform hypergraphs are considered, then the inputs are functions h : {1, 2, . . . ,

(
n
r

)} →
{0, 1}, representing the edge set of a hypergraph. Similarly to the case of graphs, the
distance of a hypergraph from a property P is measured by the minimum number of bits
that have to be modified in the input in order to make it satisfy P , divided by the input
length.
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1.1.2 Testing graph properties in other models

Other models in which graph properties were studied are the bounded-degree graph model,
in which a sparse representation of sparse graphs is considered (instead of the adjacency
matrix as in the dense model), and the general density model (also called the mixed model)
which is a combination of the dense and the sparse (bounded degree) models. We will not
deal with those models in the thesis. For further information on the sparse and the mixed
models the reader is referred to [GR02], [PR02] and [KKR04].

1.1.3 Testing massively parameterized properties

The study of massively parameterized properties explicitly started in [HLNT05], where
property testing of graphs in the orientation model was considered first 1. This is a model
that combines information that has to be queried with information that is known in
advance, and so does not readily yield to general techniques such as that of the regularity
lemma used in [AFNS06] and [AS05].

Specifically, the information given in advance is an underlying undirected graph G =
(V,E) (that may have parallel edges). The input is then constrained to be an orientation
of G, and the distances are measured relative to |E| and not to any function of |V |. An
orientation of G is simply an orientation of its edges. That is, for every edge e = u, v in
E(G) an orientation of G specifies which of u and v is the source vertex of e, and which
is the target vertex. Thus an orientation defines a directed graph

−→
G whose undirected

skeleton is G. Given the undirected graph G, a property of orientations is just a partial
set of all orientations of G.

In the framework of property testing, the relevant combinatorial structure is an orien-
tation

−→
G of the underlying graph G, and the distance between two orientations

−→
G1,

−→
G2

is the number of edges that are oriented differently in
−→
G1 and

−→
G2. Thus an orientation−→

G is ε-far from a given property P if at least ε|E(G)| edges have to be redirected in
−→
G

to make it satisfy P . Ideally the number of queries that the tester makes depends only on
ε and on nothing else (in particular it depends neither on |E| nor the specific undirected
graph G itself).

To put this model in context with previously discussed models, we note that in the
dense, sparse and mixed models any property that has o(n) witness size, and in particular
the property of st-connectivity (either directed or undirected) is trivially testable as every
input is close to the property.

Apart from [HLNT05], another related work to this model is that of [HLNT07] in
which a graph G = (V, E) is given and the properties are properties of boolean functions

1One can put the earlier works of Newman [New02] and Ben-Sasson et. al. [BSHR05] in the framework
of testing massively parameterized properties as well, where the parameters are the branching program
and the 3-CNF formula, respectively.
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f : E(G) → {0, 1}. In [HLNT07] the interpretation of such a function is as an assignment
to certain formulae that are associated with the underlying graph G, and in particular
can viewed as properties of orientations (although the results in [HLNT07] concentrate
on properties that are somewhat more “local” than our “global” property of being st-
connected).

A common feature of the works in this model, which distinguishes these results from
results in many other areas of property testing and in particular those of the dense graph
models, is that the algorithms themselves are rather non-trivial in construction, and not
just in their analysis.

1.2 Probabilistically checkable proofs of proximity - PCPPs

A PCPP verifier for a property P ⊂ {0, 1}n is a randomized, sublinear-time algorithm that
distinguishes with high probability between inputs that belong to P and inputs that are
far in relative Hamming distance from all members of P . In this sense, PCPP verifiers are
similar to property testers, as they perform the same task. However, in contrast to a tester
the PCPP verifier may query an additional auxiliary proof, called a proof of proximity.

PCPPs were simultaneously introduced in [BSGH+04] and (under the name assignment
testers) in [DR04], and a similar notion also appeared earlier in [Sze99]. The interest in
PCPPs stems first and foremost from the role they play within the proof of the celebrated
PCP Theorem of [AS98, ALM+98]. But PCPPs are also interesting beyond the scope of
the PCP Theorem. They can be used to transform any error correcting code into a locally
testable one and to construct “relaxed” locally decodable codes [BSGH+04]. Additionally,
as shown in [FF05, GR05], they have applications to questions in the theory of “tolerant”
property testing that was introduced in [PRR06].

While the performance of a property tester is usually measured as the maximal number
of queries it makes, PCPP verifiers have four parameters of interest — proof length, query
complexity, completeness and a soundness function. The proof length is the length of
the auxiliary proof that is queried by the verifier2. The query complexity is the maximal
number of bits that can be read from both the input and the proof. The completeness
parameter is the minimal probability with which inputs that belong to P are accepted
when they are presented along with a “good” proof of proximity, and finally the soundness
function s(δ) is the minimal rejection probability of inputs that are δ-far from P , where the
minimum is taken over all such δ-far inputs and all possible proofs that may accompany
them.3 In this thesis we study the relations between the proof length and the soundness

2In PCP literature one often encounters randomness complexity as a means for bounding proof-length.
The two parameters are closely related, i.e., proof-length ≈ 2randomness, and we stick to the former param-
eter.

3Often, in literature on PCPs, the term “soundness” refers to “soundness-error” which is defined to be
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of PCPP verifiers that make 3 queries and have perfect completeness.

the maximal acceptance probability of a “bad” input. The connection between soundness (used here) and
soundness-error, denoted serror, is of course s = 1− serror.
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Chapter 2

Summary of results

In this chapter we give an informal description of our main results. Sections 2.1 and 2.2
refer to the dense graphs model and related applications, Sections 2.3 and 2.4 are related
to massively parameterized properties, and Section 2.5 summarizes our results related to
PCPPs.

2.1 Testing graph isomorphism

In [AFKS00] it is proved that testing whether two graphs are isomorphic requires a non-
constant number of queries, but the question of how many queries are indeed required has
remained open. In Chapter 4 (based on [FM06]) we consider the task of distinguishing
between the case that two graphs on n vertices are isomorphic, and the case that they are
ε-far, that is they differ in more than ε

(
n
2

)
pairs for all possible bijections of their vertices.

During this work we investigated both one-sided error and two-sided error testers under
two possible models. The first is where both graphs need to be queried, and the second
is where one of the graphs is given in advance. We prove lower and upper bounds on the
query complexity of isomorphism testing under each of the four possible settings, that are
nearly tight for most of them.

2.2 Approximate hypergraph partitioning and applications

In Chapter 5 (based on [FMS07]) we show that any partition-problem of hypergraphs has an
O(n) time approximate partitioning algorithm and a property tester with constant query
complexity. This extends the results of Goldreich, Goldwasser and Ron who obtained
similar algorithms for graph partition problems in their seminal paper [GGR98].

The partitioning algorithm is used to obtain a surprisingly simple O(n) time algorith-
mic version of Szemerédi’s regularity lemma. Unlike all the previous approaches for this
problem, which only guaranteed to find partitions of tower-size in ε (regardless of the
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nature of the graph), our algorithm will find a small regular partition in the case that
one exists. In addition, for any r ≥ 3, we give an O(n) time randomized algorithm for
constructing weakly regular partitions of r-uniform hypergraphs, thus improving upon the
previous O(n2r−1) time deterministic algorithms.

The hypergraph partition testing algorithm is used to unify many previous results in
hypergraph property testing and CNF testing. It can also be used to obtain the partition
densities for the regularity problem (rather than the partition itself) using only poly(1/ε)
queries (for partitions of fixed size) and constant running time.

2.3 Testing st-connectivity

A major question that has remained open in [HLNT05] is whether connectivity properties
admit a constant query complexity test. For a fixed s, t ∈ V (G), an orientation

−→
G is

st-connected if there is a directed path from s to t in it. Connectivity and in particular
st-connectivity is a very basic problem in graph theory which has been extensively studied
in various models of computation.

Our first result in the study of massively parameterized properties (Chapter 7 – based
on [CFL+07]) is that the property of being st-connected is testable by a one-sided er-
ror algorithm with a number of queries depending only on ε. That is, we construct a
randomized algorithm such that for any underlying graph G, on input of an unknown
orientation the algorithm queries only O(1) edges for their orientation and based on this
decides with success probability 2

3 (this of course could be amplified to any number smaller
than 1) between the case that the orientation is st-connected and the case that it is ε-far
from being st-connected. Our algorithm additionally has one-sided error, meaning that
st-connected orientations are accepted with probability 1. Recall that in this setting the
algorithm knows the underlying graph G in advance (and may do preprocessing on it) and
G is neither alterable nor part of the input to be queried.

Our proof uses combinatorial reduction arguments with a concentration type lemma
that is proven for this purpose. Unlike many traditional property testing results, here the
resulting testing algorithm is highly non-trivial.

2.4 Testing orientations for being Eulerian

Our second result within the topic of massively parameterized properties (Chapter 8 –
based on parts from [FMNY08]) solves an open problem from [CFL+07] (the same paper
that is summarized in the previous section). Again, the undirected graph (the skeleton) is
known in advance, and we need to test whether the orientation of the graph is Eulerian.
Despite the local nature of the property of being Eulerian, it turns out to be significantly
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harder for testing than other properties studied in the orientation model. In particular,
we show a non-constant lower bound on the query complexity of even 2-sided error tests
for this property (namely, tests that are allowed to reject inputs that satisfy the property).

Additional results related to this topic were published in [FMNY08], and also appear
in the Ph.D. thesis of Orly Yahalom.

2.5 Length-Soundness tradeoffs for 3-query PCPPs

As mentioned earlier, PCPP verifiers have four parameters of interest – proof length, query
complexity, completeness and a soundness function. Recall that the soundness function
s(δ) is the minimal rejection probability of inputs that are δ-far from the property P ,
where the minimum is taken over all such δ-far inputs and all possible proofs that may
accompany them. In Chapter 9 (based on [BHLM08]) we study the relations between
the proof length and the soundness of PCPP verifiers that make three queries and have
perfect completeness. In particular, we quantify the soundness deficiency as a function of
the proof-length and show that any verifier obtaining the “best possible” soundness must
query an exponentially long proof.
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Chapter 3

Global definitions and

preliminaries

3.1 General notations

We denote by [n] the set {1, 2, . . . , n}, and for ` < n we denote by [`, n] the set {`, ` +
1, . . . , n}. For two finite sets A and B, we denote by A4B their symmetric difference (i.e.
the set A \ B ∪ B \ A). For an alphabet Σ and a pair of words x, y ∈ Σn, we define the
fractional Hamming distance

δ(x, y) , |{i ∈ [n] : xi 6= yi}|
n

.

Fora property defined as a set P ⊆ Σn, we define

δ(x, P ) , min
y∈P

{δ(x, y)}.

A word x is said to be ε-far from P whenever δ(x, P ) ≥ ε.

3.2 Property testers

Definition 1. An ε-testing algorithm with q queries for a property P ⊆ Σn is a proba-
bilistic algorithm, that for any input x ∈ Σn makes up to q queries into x, and satisfies
the following.

• If x satisfies P then the algorithm accepts x with probability at least 2
3 .

• If x is ε-far from P , then the algorithm rejects x with probability at least 2
3 .

A property testing algorithm has one-sided error probability if it accepts inputs that
satisfy the property with probability 1. We also call such testers one-sided error testers, or
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testers with perfect completeness.
A property testing algorithm is non-adaptive if the outcomes of its queries do not affect

the choice of the following queries, but only the decision of whether to reject or accept the
input in the end.

Later we will need a more general definition of a property tester, in which we also
measure the soundness function of the testing algorithm. We postpone this definition to
the parts where it becomes necessary (Section 9.2).

A property that is testable by looking at a portion of the input whose size is a function
of ε only (and is independent of the input size n) is plainly called testable.

3.3 Graphs and graph properties

Unless stated otherwise, all of our graphs are simple, and contain no loops nor parallel
edged. We always assume (even where not explicitly stated) that the number of vertices
(usually denoted by n) of the input graph(s) is large enough, as a function of the other
parameters. For a graph G = (V,E) and a vertex v ∈ V , Γ(v) ⊆ V denotes the set of v’s
neighbors in G. Given a subset U of the vertices of a graph G, we denote by G(U) the
induced subgraph of G on U .

We denote by G ∼ G(n, p) the random graph where each pair of vertices forms an edge
with probability p, independently of other pairs. Note that this is in fact a probability
space, but sometimes we will abuse notation and use G(n, p) to denote a graph drawn
according to this space.

3.3.1 Distance between graphs and properties

Definition 2. Given two labeled graphs G and H on the same vertex set V , the distance
between G and H is the size of the symmetric difference between the edge sets of G and
H, divided by

(|V |
2

)
.

Given a graph G and a graph H on the same vertex set V , we say that H and G are
ε-far, if the distance between G and any permutation (vertex renaming) of H is at least ε.

Given a graph G and a graph property (a set of graphs that is closed under graph
isomorphisms) P , we say that G is ε-far from satisfying the property P , if G is ε-far from
any graph H on the same vertex set which satisfies P . Otherwise G is ε-close to P .

Using this definition of the distance from graph properties together with Definition
3.2 we get the formal definition of a graph testing algorithm. Notice that this definition
is relevant only for the dense graphs model, where the queries correspond to reading an
entry in the adjacency matrix.
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3.4 Restriction, variation distance and Yao’s method

Proving lower bounds for the two-sided error testers involves Yao’s method [Yao77], which
for our context informally says that if there is a small enough statistical distance between
the distributions of q query results, from two distributions over inputs that satisfy the
property and inputs that are far from satisfying the property, then there is no tester for
that property which makes at most q queries. We start with definitions that are adapted
to property testing lower bounds.

Definition 3 (restriction, variation distance). For a distribution D over inputs, where
each input is a function f : D → {0, 1}, and for a subset Q of the domain D, we define the
restriction D|Q of D to Q to be the distribution over functions of the type g : Q → {0, 1},
that results from choosing a random function f : D → {0, 1} according to the distribution
D, and then setting g to be f |Q, the restriction of f to Q.

Given two distributions D1 and D2 of binary functions from Q, we define the variation
distance between D1 and D2 as follows: d(D1, D2) = 1

2

∑
g:Q→{0,1} |PrD1 [g] − PrD2 [g]|,

where PrD[g] denotes the probability that a random function chosen according to D is
identical to g.

The next lemma follows from [Yao77] (see e.g. [Fis04]):

Lemma 3.4.1 (see [Fis04]). Suppose that there exists a distribution DP on inputs over
D that satisfy a given property P , and a distribution DN on inputs that are ε-far from
satisfying the property, and suppose further that for any Q ⊂ D of size q, the variation
distance between DP |Q and DN |Q is less than 1

3 . Then it is not possible for a non-adaptive
algorithm making q (or less) queries to ε-test for P .

An additional lemma for adaptive testers is proven implicitly in [FNS04], and a detailed
proof appears in [Fis04]. Here we strengthen it somewhat, but still exactly the same proof
works in our case too.

Lemma 3.4.2 ([FNS04], see [Fis04]). Suppose that there exists a distribution DP on
inputs over D that satisfy a given property P , and a distribution DN on inputs that are
ε-far from satisfying the property. Suppose further that for any Q ⊂ D of size q, and any
g : Q → {0, 1}, we have PrDP |Q [g] < 3

2PrDN |Q [g]. Then it is not possible for any algorithm
making q (or less) queries to ε-test for P . The conclusion also holds if instead of the above,
for any Q ⊂ D of size q and any g : Q → {0, 1}, we have PrDN |Q [g] < 3

2PrDP |Q [g].
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Part I

Dense Graphs and Hypergraphs
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Chapter 4

Testing graph isomorphism

Two graphs G and H on n vertices are ε-far from being isomorphic if at least ε
(
n
2

)
edges

must be added or removed from E(G) in order to make G and H isomorphic. In this
chapter we deal with the question of how many queries are required to distinguish between
the case that two graphs are isomorphic, and the case that they are ε-far from being
isomorphic.

We investigate both one-sided error and two-sided error testers under two possible
settings: The first setting is where both graphs need to be queried; and the second setting
is where one of the graphs is fully known to the algorithm in advance.

We prove that the query complexity of the best one-sided error testing algorithm is
Θ̃(n3/2) if both graphs need to be queried, and that it is Θ̃(n) if one of the graphs is known
in advance (where the Θ̃ notation hides polylogarithmic factors in the upper bounds only).
For two-sided error testers, we prove that the query complexity of the best tester is Θ̃(

√
n)

when one of the graphs is known in advance, and we show that the query complexity lies
between Ω(n) and Õ(n5/4) if both G and H need to be queried. All of our algorithms are
additionally non-adaptive, while all of our lower bounds apply for adaptive testers as well
as non-adaptive ones.

4.1 Background and introduction

Since we study graph isomorphism (a property of pairs of graphs), our input consists of
two functions g : {1, 2, . . . ,

(
n
2

)} → {0, 1} and h : {1, 2, . . . ,
(
n
2

)} → {0, 1}, which represent
the edge sets of two corresponding graphs G and H over the vertex set V = {1, . . . , n}.

We consider the following questions:

1. Given two input graphs G and H, how many queries to G and H are required to test
that the two graphs are isomorphic? This property was already used in [AFKS00]
for proving lower bounds on property testing, and a lower bound of the form nα was
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known for quite a while (see e.g. [Fis04]).
2. Given a graph Gk, which is known in advance (and for which any amount of prepro-

cessing is allowed), and an input graph Gu, how many queries to Gu are required
to test that Gu is isomorphic to Gk? Some motivation for this question comes from
[Fis05], where upper and lower bounds that correlate this question with the “inher-
ent complexity” of the provided Gk are proven. Here our main interest is in finding
the bounds for the “worst possible” Gk.

For the case where the testers must have one-sided error, our results show tight (up to
logarithmic factors) upper and lower bounds, of Θ̃(n3/2) for the setting where both graphs
need to be queried, and Θ̃(n) for the setting where one graph is given in advance. The
upper bounds are achieved by trivial algorithms of edge sampling and exhaustive search.
As we are interested in the number of queries we make no attempt to optimize the running
time (but our two-sided error algorithms have a better running time as well). The main
work here lies in proving a matching lower bound for the first setting where both graphs
need to be queried, as the lower bound for the second setting is nearly trivial.

Unusually for graph properties that involve no explicit counting in their definition, we
can do significantly better if we allow our algorithms to have two-sided error. When one
graph is given in advance, we show Θ̃(n1/2) upper and lower bounds. The upper bound
algorithm uses a technique that allows us to greatly reduce the number of candidate
bijections that need to be checked, while assuring that for isomorphic graphs one of them
will still be close to an isomorphism. For this to work we need to combine it with a
distribution testing algorithm from [BFF+01], whose lower bound is in some sense the
true cause of the matching lower bound here.

For two-sided error testers where the two graphs need to be queried, a gap in the
bounds remains. We present here a lower bound proof of Ω(n) on the query complexity –
it is in fact the lower bound proof already used previously, only here we analyze it to its
fullest potential. The upper bound of Õ(n5/4) uses the ideas of the algorithm above for the
setting where one of the graphs is known, with an additional mechanism to compensate
for having to query from both graphs to find matching vertices.

To our knowledge, the best known algorithm for deciding the corresponding promise
problem in the classical sense (i.e., given two graphs distinguish whether they are iso-
morphic or ε-far from being isomorphic) requires quasi-polynomial running time [AFK96].
Both our two-sided error testers have the additional property of a quasi-polynomial run-
ning time (similarly to the algorithm in [AFK96]) even with the restriction on the number
of queries.

The following is the summary of our results for the query complexity in various settings.
We made no effort to optimize the logarithmic factors in the upper bounds, as well as the
exact dependance on ε (which is at most polynomial).
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Upper bound Lower bound

One sided error, one graph known Õ(n) Ω(n)

One sided error, both graphs unknown Õ(n3/2) Ω(n3/2)

Two sided error, one graph known Õ(n1/2) Ω(n1/2)

Two sided error, both graphs unknown Õ(n5/4) Ω(n)

The rest of this chapter is organized as follows. We provide some additional (specific)
preliminaries and definitions in Section 4.2. Upper and lower bounds for the one-sided
algorithms are proven in Section 4.3, and the upper and lower bounds for the two-sided
algorithms are proven in Section 4.4. Section 4.5 contains some discussion and comments
on future work.

4.2 Specific definitions and preliminaries

First we formulate an extension of Definition 1 to properties of pairs of graphs. In our
case, we will be interested in the property of two graphs being isomorphic.

Definition 4. An ε-testing algorithm with q queries for a property P of pairs of graphs
is a probabilistic algorithm, that for any input pair G,H makes up to q queries in G and
H (a query consisting of finding whether two vertices u, v of G or H form an edge of that
graph or not), and satisfies the following.

• If the pair G,H satisfies P then the algorithm accepts with probability at least 2
3 .

• If the pair G,H is ε-far from P , then the algorithm rejects with probability at least
2
3 .

To simplify the arguments when discussing the properties of the query sets, we define
knowledge charts.

Definition 5. Given a query set Q to the adjacency matrix A of the graph G = (V, E)
on n vertices, we define the knowledge chart IG,Q of G as the subgraph of G known after
making the set Q of queries to A. We partition the pairs of vertices of IG,Q into three
classes: Q1, Q0 and Q∗. The pairs in Q1 are the ones known to be edges of G, the pairs
in Q0 are those that are known not to be edges of G, and all unknown (unqueried) pairs
are in Q∗. In other words, Q1 = E(G) ∩Q, Q0 = Q \ E(G), and Q∗ = [V (G)]2 \Q. For
a fixed q, 0 ≤ q ≤ n, and G, we define IG,q as the set of all possible knowledge charts
{IG,Q : |Q| = q}. For example, note that |IG,0| = |IG,(n

2)
| = 1.
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We will ask the question of whether two query sets are consistent, i.e. they do not
provide an evidence for the two graphs being non-isomorphic. We say that the knowledge
charts are knowledge-packable if the query sets that they represent are consistent. Formally,

Definition 6. A knowledge-packing of two knowledge charts IG1,Q1 , IG2,Q2, where G1 and
G2 are graphs with n vertices, is a bijection π of the vertices of G1 into the vertices of G2

such that for all v, u ∈ V (G1), if {v, u} ∈ E(G1) ∩ Q1 then {π(v), π(u)} /∈ Q2 \ E(G2),
and if {v, u} ∈ Q1 \E(G1) then {π(v), π(u)} /∈ E(G2) ∩Q2.

In particular, if G1 is isomorphic to G2, then for all 0 ≤ q1, q2 ≤
(
n
2

)
, every member

of IG1,q1 is knowledge-packable with every member of IG2,q2 . In other words, if G1 is
isomorphic to G2, then there is a knowledge-packing of IG1,Q1 and IG2,Q2 for any possible
query sets Q1 and Q2.

Lemma 4.2.1. Any one-sided error isomorphism tester, after completing its queries
Q1, Q2, must always accept G1 and G2 if the corresponding knowledge charts IG1,Q1 , IG2,Q2

on which the decision is based are knowledge-packable. In particular, if for some G1, G2

and 0 ≤ q ≤ (
n
2

)
, any IG1,Q1 ∈ IG1,q and IG2,Q2 ∈ IG2,q are knowledge-packable, then every

one-sided error isomorphism tester which is allowed to ask at most q queries must always
accept G1 and G2.

Proof. This is true, since if the knowledge charts IG1,Q1 and IG2,Q2 are packable, then there
is an extension G

′
1 of G1’s restriction to Q1 to a graph that is isomorphic to G2. In other

words, given G
′
1 and G2 as inputs, there is a positive probability that the isomorphism

tester obtained IG′1,Q1
= IG1,Q1 and IG2,Q2 after completing its queries, and hence, a

one-sided error tester must always accept in this case.

Often, given two isomorphic graphs G,H on n vertices, we want to estimate how many
vertices from both graphs need to be randomly chosen in order to get an intersection set
of size k with high probability.

Lemma 4.2.2. Given two graphs G,H on n vertices, a bijection σ of their vertices, and
two uniformly random subsets CG ⊂ V (G), CH ⊂ V (H), the following holds: for any
0 < α < 1 and any positive integers c, k, if |CG| = knα logc n and |CH | = n1−α logc n, then
with probability 1− o(2− logc n) the size of CG ∩ σ(CH) is greater than k.

Proof sketch. By the linearity of expectation, the expected size of the intersection set is
|CG||CH |

n = k log2c n. Using large deviation inequalities, CG ∩ σ(CH) > k with probability
1− o(2− logc n).
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4.3 One-sided testers

By Lemma 4.2.1, one-sided testers for isomorphism look at some query set Q of the input,
and accept if and only if the restriction of the input to Q is extensible to some input
satisfying the property. The main idea is to prove that if the input is far from satisfying
the property, then with high probability its restriction Q will provide the evidence for it.
To prove lower bounds for one-sided testers, it is sufficient to find an input that is ε-far
from satisfying the property, but for which the restriction of the input to any possible set
Q is extensible to some alternative input that satisfies the property. In this section we
prove the following:

Theorem 4.3.1. The query complexity of the best one-sided isomorphism tester is Θ̃(n3/2)
(up to coefficients depending only on the distance parameter ε) if both graphs are unknown,
and it is Θ̃(n) if one of the graphs is known in advance.

We first prove Theorem 4.3.1 for the case where both graphs are unknown, and then
move to the proof of the simpler second case where one of the graphs is known in advance.

4.3.1 One-sided testing of two unknown graphs

The upper bound

Algorithm 1.

1. For both graphs G1, G2 construct the query sets Q1, Q2 respectively by
choosing every possible query with probability

√
ln n
εn , independently of

other queries.

2. If |Q1| or |Q2| is larger than 1000n3/2
√

ln n
ε , accept without making the

queries. Otherwise make the chosen queries.

3. If there is a knowledge-packing of IG1,Q1 and IG2,Q2, accept. Otherwise
reject.

Clearly, the query complexity of Algorithm 1 is O(n3/2
√

log n) for every fixed ε.

Lemma 4.3.2. Algorithm 1 accepts with probability 1 if G1 and G2 are isomorphic, and if
G1 and G2 are ε-far from being isomorphic, Algorithm 1 rejects with probability 1− o(1).

Proof. Assume first that G1 and G2 are isomorphic, and let π be an isomorphism between
them. Obviously π is also a knowledge-packing for any pair of knowledge charts of G1 and
G2. Hence, if the algorithm did not accept in the second stage, then it will accept in the
third stage.

Now we turn to the case where G1 and G2 are ε-far from being isomorphic. Due to
large deviation inequalities, the probability that Algorithm 1 terminates in Step 2 is o(1),
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and therefore we can assume in the proof that it reaches Step 3 without harming the
correctness. Since G1 and G2 are ε-far from being isomorphic, every possible bijection
π of their vertices has a set Eπ of at least εn2 pairs of G1’s vertices such that for every
{u, v} ∈ Eπ, either {u, v} is an edge in G1 or {π(u), π(v)} is an edge in G2 but not both.
Now we fix π and let {u, v} ∈ Eπ be one such pair. The probability that {u, v} was not
queried in G1 or {π(u), π(v)} was not queried in G2 is 1 − ln n

εn . Since the queries where
chosen independently, the probability that for all {u, v} ∈ Eπ that either {u, v} was not
queried in G1 or {π(u), π(v)} was not queried in G2 is at most (1 − ln n

εn )εn2
. Using the

union bound, we bound the probability of not revealing at least one such pair in both
graphs for all possible bijections by n!(1− ln n

εn )εn2
. This bound satisfies

n!(1− lnn

εn
)εn2 ≤ n!(e−

ln n
εn )εn2

= n!
1
nn

= o(1)

thus the algorithm rejects graphs that are ε-far from being isomorphic with probability
1− o(1).

The lower bound

Here we construct a pair G,H of 1/100-far graphs on n vertices, such that every knowledge
chart from IG,n3/2/200 can be packed with every knowledge chart from IH,n3/2/200, and hence
by Lemma 4.2.1, any one-sided algorithm which is allowed to use at most n3/2/200 queries
must always accept G and H. Note that this holds for non-adaptive as well as adaptive
algorithms, since we actually prove that there is no certificate of size n3/2/200 for the
non-isomorphism of these two graphs.

Lemma 4.3.3. For every large enough n, there are two graphs G and H on n vertices,
such that:

1. G is 1/100-far from being isomorphic to H

2. Every knowledge chart from IG,n3/2/200 can be knowledge-packed with any knowledge
chart from IH,n3/2/200

Proof. We set both G and H to be the union of a complete bipartite graph with a set
of isolated vertices. Formally, G has three vertex sets L,Rf , Re, where |L| = n/2, |Rf | =
26n/100 and |Re| = 24n/100, and it has the following edges: {{u, v} : u ∈ L ∧ v ∈ Rf}.
H has the same structure, but with |Rf | = 24n/100 and |Re| = 26n/100, as illustrated
in Figure 8.1. Clearly, just by the difference in the edge count, G is 1/100-far from being
isomorphic to H, so G and H satisfy the first part of Lemma 4.3.3.

To prove that the second condition of Lemma 4.3.3 holds, we will show that for all
possible query sets QG, QH of size n3/2/200 there exist sets YG ∈ Rf (G) and YH ∈ Re(H)
that satisfy the following.
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Figure 4.1: The graphs G and H (with the difference between them exaggerated)

• |YG| = |YH | = n/50

• the knowledge charts IG,QG
and IH,QH

restricted to L(G) ∪ YG and L(H) ∪ YH can
be packed in a way that pairs vertices from L(G) with vertices from L(H)

In Figure 8.2 we illustrate these restricted knowledge charts, where solid lines are
known (queried) edges, and dashed lines are known (queried) “non-edges”. The existence
of such YG and YH implies the desired knowledge-packing, since we can complete the
partial packing from the second item by arbitrarily pairing vertices from Rf (G) \ YG with
vertices from Rf (H), and pairing vertices from Re(G) with vertices from Re(H) \ YH .

Remark 4.3.4. Note that there is a trivial algorithm that distinguishes between the two
graphs in O(n) queries by sampling vertices and checking their degrees. However, such an
algorithm has two-sided error. Any one-sided error algorithm must find evidence to the
non-isomorphism of the graphs, i.e. two knowledge charts that cannot be packed (in the
sense that there is no isomorphism consistent with them).

Figure 4.2: Finding YG and YH
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Proving the existence of YG and YH

For every vertex v ∈ V (G), we define its query degree as

dQ(v) =
∣∣∣
{
{v, u} : u ∈ V (G) ∧ {v, u} ∈ QG

}∣∣∣

We also denote by NQ(v) the set {u : {v, u} ∈ E(G) ∩QG} and we denote by NQ(v) the
set {u : {v, u} ∈ QG \ E(G)}. In other words, NQ(v) is the set of known neighbors of v,
NQ(v) is the set of known non-neighbors of v, and dQ(v) = |NQ(v)|+ |NQ(v)|. We define
dQ(v), NQ(v) and NQ(v) for H’s vertices similarly.

Since |QG|, |QH | ≤ n3/2/200, there must be two sets of vertices DG ∈ Rf (G) and DH ∈
Re(H), both of size n/10, such that ∀v∈DG

: dQ(v) ≤ n1/2/2 and ∀v∈DH
: dQ(v) ≤ n1/2/2.

Now we prove the existence of YG and YH (as defined above) using a simple probabilistic
argument. First we set an arbitrary pairing BD = {{v1

G, u1
H}, {v2

G, u2
H}, . . . , {vn/10

G , u
n/10
H }}

of DG’s and DH ’s elements. Then we choose a bijection BL : L(G) → L(H) uniformly at
random, and show that with some positive probability, there are at least n/50 consistent
(packable) pairs in BD. Formally, we define

Y =
{
{vG, uH} ∈ BD : BL(NQ(vG)) ∩NQ(uH) = ∅

}

as the set of consistent pairs, and show that Pr[|Y | ≥ n/50] > 0.
For a specific pair {v ∈ DG, u ∈ DH}, we have

PrBL
[BL(NQ(v)) ∩NQ(u) = ∅] ≥

n1/2/2−1∏

i=0

(1− n1/2/2
n/2− i

)

≥ (1− 2n1/2

n
)n1/2/2 ≥ (e + 0.001)−1 ≥ 1/3

and by the linearity of expectation, E[|Y |] ≥ |DG|/3 > n/50. Therefore, there is at least
one bijection BL for which the size of Y is no less than its expectation. We can now set

YG = {u : ∃v ∈ V (H) such that {u, v} ∈ Y }

and
YH = {v : ∃u ∈ V (G) such that {u, v} ∈ Y }

concluding the proof.
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4.3.2 One-sided testing where one of the graphs is known in advance

The algorithm for testing isomorphism between an unknown graph and a graph that is
known in advance is similar to Algorithm 1 above. In this case the algorithm makes a
quasi-linear number of queries, to accept with probability 1 if the graphs are isomorphic
and reject with probability 1−o(1) if they are ε-far from being isomorphic. We also prove
an almost matching nearly trivial lower bound for this problem.

The upper bound

Denote by Gk and Gu the known and the unknown graphs respectively.

Algorithm 2.

1. Construct a query set Q by choosing every possible query from Gu with
probability ln n

εn , independently at random.

2. If |Q| is larger than 10n ln n
ε , accept without making the queries. Otherwise

make the chosen queries.

3. If there is a knowledge-packing of IGu,Q and IGk,[V (Gk)]2, accept. Other-
wise reject.

Clearly the query complexity of Algorithm 2 is O(n log n), and it rejects in Step 2 with
probability o(1).

Lemma 4.3.5. Algorithm 2 always accepts isomorphic graphs, and it rejects ε-far graphs
with probability 1− o(1).

Proof. The proof is almost identical to that of Lemma 4.3.2. It is clear that isomorphic
graphs are always accepted by Algorithm 2. Now we assume that the graphs Gk and Gu

are ε-far and that the algorithm reached Step 3 (as it stops at Step 2 with probability
o(1)) . Given a bijection π, the probability that no violating pair {u, v} ∈ Eπ was queried
is at most (1 − ln n

εn )εn2 ≤ e−n ln n = n−n. Applying the union bound over all n! possible
bijections, the acceptance probability is bounded by n!/nn = o(1)

The lower bound

As before, to give a lower bound on one-sided error algorithms it is sufficient to show that
for some Gk and Gu that are far, no “proof” of their non-isomorphism can be provided
with Ω(n) queries. First we formulate the second part of Lemma 4.2.1 for the special case
where one of the graphs is known in advance.
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Lemma 4.3.6. If for some Gk, Gu, where Gk is known in advance, and some fixed 0 ≤
q ≤ (

n
2

)
, IGk,[v(Gk)]2 is knowledge-packable with every IGu,Q ∈ IGu,q, then every one-sided

error isomorphism tester which is allowed to ask at most q queries must always accept Gk

and Gu.

We set Gk to be a disjoint union of Kn/2 and n/2 isolated vertices, and set Gu to be
a completely edgeless graph.

Observation 4.3.7. Gk and Gu are 1/4-far, and every IGu,Q ∈ IGu, n
4

is knowledge-
packable with IGk,[V (Gk)]2.

Proof. Clearly, just by the difference in the edge count, Gk is 1/4 far from being isomorphic
to Gu. But since n/4 queries cannot involve more than n/2 vertices from Gu (all isolated),
and Gk has n/2 isolated vertices, the knowledge charts are packable.

Together with Lemma 4.3.6, we get the desired lower bound. This concludes the proof
of the last part of Theorem 4.3.1.

4.4 Two-sided testers

In the context of graph properties, two-sided error testers are usually not known to achieve
significantly lower query complexity than the one-sided error testers, apart from the prop-
erties that explicitly involve counting, such as Max-Cut and Max-Clique [GGR98]. How-
ever, in our case two-sided error isomorphism testers have substantially lower query com-
plexity than their one-sided error counterparts.

4.4.1 Two-sided testing where one of the graphs is known in advance

Theorem 4.4.1. The query complexity of two-sided error isomorphism testers is Θ̃(
√

n)
if one of the graphs is known in advance, and the other needs to be queried.

We prove the lower bound first. This way it will be easier to understand why certain
stages of the upper bound testing algorithm are necessary.

The lower bound

Lemma 4.4.2. Any isomorphism tester that makes at most
√

n
4 queries to Gu cannot

distinguish between the case that Gk and Gu are isomorphic and the case that they are
1/32-far from being isomorphic, where Gk is known in advance.

We begin with a few definitions.
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Definition 7. Given a graph G and a set W of n
2 vertices of G, we define the clone G(W )

of G in the following way:

• the vertex set of G(W ) is defined as: V (G(W )) = W ∪ {w′ : w ∈ W}

• the edge set of G(W ) is defined as: E(G(W )) =

{
{v, u} : {v, u} ∈ E(G)

}
∪

{
{v′, u} : {v, u} ∈ E(G)

}
∪

{
{v′, u′} : {v, u} ∈ E(G)

}

In other words, G(W ) is the product of the subgraph of G induced on W with the graph K2.
For the two copies v, v′ ∈ V (G(W )) of v ∈ W , we say that v is the source of v and v′.

Lemma 4.4.3. Let G ∼ G(n, 1/2) be a random graph. With probability 1−o(1) the graph
G is such that for every subset W ⊂ V (G) of size n/2, the clone G(W ) of G is 1/32-far
from being isomorphic to G.

Proof. Let G be a random graph according to G(n, 1/2), and let W ⊂ V (G) be an arbitrary
subset of G’s vertices of size n/2. First we show that for an arbitrary bijection σ :
V (G(W )) → V (G) the graphs G(W ) and G are 1/32-close under σ with probability at most
2−Ω(n2), and then we apply the union bound on all bijections and every possible subset
W .

We split the bijection σ : V (G(W )) → V (G) into two injections σ1 : W → V (G) and
σ2 : V (G(W ))\W → V (G)\σ1(W ). Note that either |W \σ1(W )| ≥ n/4 or |W \σ2(W )| ≥
n/4. Assume without loss of generality that the first case holds, and let U denote the
set W \ σ1(W ). Since every edge in G is chosen at random with probability 1/2, the
probability that for some pair u, v ∈ U either {u, v} is an edge in G and {σ(u), σ(v)} is
not an edge in G or {u, v} is not an edge in G and {σ(u), σ(v)} is an edge in G is exactly
1/2. Moreover, these events are independent for all pairs in U . Therefore, using large
deviation inequalities, the probability that in the set U there are less than

(
n
2

)
/32 such

pairs is at most 2−Ω(n2). There are at most n! possible bijections, and
(

n
n/2

)
possible choices

for W , so using the union bound, the probability that for some W the graph G ∼ G(n, 1/2)
is not 1/32-far from being isomorphic to some G(W ) is at most 2−Ω(n2)

(
n

n/2

)
n! = o(1).

Given a graph G satisfying the assertion of Lemma 4.4.3, we set Gk = G and define
two distributions over graphs, from which we choose the unknown graph Gu:

• DP : A permutation of Gk, chosen uniformly at random.

• DN : A permutation of G
(W )
k , where both W and the permutation are chosen uni-

formly at random.
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According to Lemma 4.4.3 and Lemma 3.4.2, it is sufficient to show that the dis-
tributions DP and DN restricted to a set of

√
n/4 queries are close. In particular, we

intend to show that for any Q ⊂ D = V 2 of size
√

n/4, and any Q : Q → {0, 1}, we
have PrDP |Q [Q] < 3

2PrDN |Q [Q]. This will imply a lower bound for adaptive (as well as
non-adaptive) testing algorithms.

Observation 4.4.4. For a set U of G(W )’s vertices, define the event EU as the event
that there is no pair of copies w, w′ of any one of G’s vertices in U . For a given set Q of
pairs of vertices, let UQ be the set of all vertices that belong to some pair in Q. Then the
distribution DN |Q conditioned on the event EUQ

(defined above) and the unconditioned
distribution DP |Q are identical.

Proof. In DN , if no two copies of any vertex were involved in the queries, then the source
vertices of the queries to Gu are in fact a uniformly random sequence (with no repetition)
of the vertices of Gk, and this (together with Gk) completely determines the distribution
of the answers to the queries. This is the same as the unconditioned distribution induced
by DP .

Intuitively, the next lemma states that picking two copies of the same vertex in a
randomly permuted G(W ) requires many samples, as per the well known birthday problem.

Lemma 4.4.5. For a fixed set Q of at most
√

n/4 queries and the corresponding set
U = UQ of vertices, the probability that the event EU did not happen is at most 1/4.

Proof. The bound on |Q| implies that |U | ≤ √
n/2. Now we examine the vertices in U as

if we add them one by one. The probability that a vertex v that is added to U is a copy
(with respect to the original graph G) of some vertex u that was already inserted to U (or
vice versa) is at most

√
n

2n . Hence, the probability that eventually (after
√

n/2 insertions)
we have two copies of the same vertex in U is at most

√
n

2n ·
√

n/2 = 1/4.

From Observation 4.4.4, the distribution DN |Q conditioned on the event EU and the
unconditioned distribution DP |Q are identical. By Lemma 4.4.5 it follows that Pr[EU ] >

2/3. Therefore, for any g : Q → {0, 1} we have

PrDN |Q [g] = Pr[EU ]·PrDP |Q [g]+(1−Pr[EU ])·PrDN |Q [g] ≥ Pr[EU ]·PrDP |Q [g] >
2
3
·PrDP |Q [g]

or equivalently

PrDP |Q [g] <
3
2
PrDN |Q [g]

hence the distributions DP and DN satisfy the conditions of Lemma 3.4.2. The following
corollary completes the proof of Lemma 4.4.2.
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Corollary 4.4.6. It is not possible for any algorithm (adaptive or not) making
√

n/4 (or
less) queries to test for isomorphism between a known graph and a graph that needs to be
queried.

The upper bound

We start with a few definitions. Given a graph G and a subset C of V (G), we define the
C-labeling of G’s vertices as follows: Every vertex v ∈ V (G) gets a label according to the
set of its neighbors in C. Note that there are 2|C| possible labels for a set C, but even if
2|C| > n still at most n of the labels occur, since there are only n vertices in the graph.
On the other hand, it is possible that several vertices will have the same label according
to C. Such a labeling implies the following distribution over the vertices of G.

Definition 8. Given a graph G and a C-labeling of its vertices (according to some C ⊂
V (G)), we denote by DC the distribution over the actual labels of the C-labeling (at most
n labels), in which the probability of a certain label γ is calculated as the number of vertices
from V (G) having the label γ under the C-labeling, divided by n.

Given a graph G on n vertices and a graph C on k < n vertices, we say that a one
to one function η : V (C) → V (G) is an embedding of C in G . We also call η(V (C))
the placement of C in G. With a slight abuse of notation, from now on by a placement
η(V (C)) we mean also the correspondence given by η, and not just the set.

Given graphs G,H on n vertices, a subset CG of V (G) and a placement CH of CG in
H under an embedding η, we define the distance between the CG-labeling of G and the
CH -labeling of H as

1
2

∑

γ∈2CG

∣∣ |{u ∈ V (G) : Γ(u) ∩ CG = γ}| − |{v ∈ V (H) : Γ(v) ∩ η(CG) = γ}| ∣∣

this distance measure is equal to the usual variation distance between DCG
and DCH

,
multiplied by n. We are now ready to prove the upper bound.

Lemma 4.4.7. Given an input graph Gu and a known graph Gk (both of order n), there
is a property tester Aku that accepts with probability at least 2/3 if Gu is isomorphic to
Gk, and rejects with probability at least 2/3 if Gu is ε-far from Gk. Furthermore, Aku

makes Õ(
√

n) queries to Gu.

We first outline the algorithm: The test is performed in two main phases. In Phase
1 we randomly choose a small subset Cu of Gu’s vertices, and try all possible placements
of Cu in the known graph Gk. The placements that imply a large distance between the
labeling of Gu and Gk are discarded. After filtering the good placements of Cu in Gk, we
move to Phase 2. In Phase 2 every one of the good placements is tested separately, by
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defining a random bijection π : V (Gu) → V (Gk) and testing whether π is close to being
an isomorphism. Finally, if one of the placements passed both Phase 1 and Phase 2, the
graphs are accepted. Otherwise they are rejected.

Phase 1

In the first phase we choose at random a core set Cu of log2 n vertices from Gu (the
unknown graph). For every embedding η of Cu in Gk and the corresponding placement
Ck, we examine the distributions DCu and DCk

as in Definition 8. Since the graph Gk

is known in advance, we know exactly which are the actual labels according to Ck (in
total no more than n labels), so from now on we will consider the restriction of both
distributions to these actual labels only. Next we test for every embedding of Cu whether
DCu is statistically close to DCk

. Note that the distribution DCk
is explicitly given, and

the distribution DCu can be sampled by choosing a vertex v from V (Gu) uniformly at
random, and making all queries {v} × Cu. If the label of some v ∈ V (Gu) does not exist
in the Ck-labeling of Gk, we immediately reject this placement and move to the next one.
Now we use the following lemma from [BFF+01], which states that Õ(

√
n) samples are

sufficient for testing if the sampled distribution is close to the explicitly given distribution.

Lemma 4.4.8. There is an algorithm that given two distributions DK ,DU over n elements
and a distance parameter ε, where DK is given explicitly and DU is given as a black box that
allows sampling according to the distribution, satisfies the following: If the distributions
DK and DU are identical, then the algorithm accepts with probability at least 1− 2− log7 n;
and if the variation distance between DK and DU is larger than ε/10, then the algorithm
accepts with probability at most 2− log7 n. For a fixed ε, the algorithm uses Õ(

√
n) many

samples.

Actually, this is an amplified version of the lemma from [BFF+01], which can be
achieved by independently repeating the algorithm provided there polylog(n) many times
and taking the majority vote. This amplification allows us to reuse the same Õ(

√
n)

samples for all possible placements of the core set. As a conclusion of Phase 1, the
algorithm rejects the placements of Cu that imply a large variation distance between the
above distributions, and passes all other placements of Cu to Phase 2. Naturally, if Phase
1 rejects all placements of Ck due to distribution test failures or due to the existence of
labels in Gu that do not exist in Gk, then Gu is rejected without moving to Phase 2 at
all. First we observe the following.

Observation 4.4.9. With probability 1− o(1), all of the placements that passed Phase 1
imply ε/10-close distributions, and all placements that imply identical distributions passed
Phase 1. In other words, the distribution test did not err on any of the placements.

28



Proof. There are at most 2log3 n possible placements of Cu. Using the union bound with
Lemma 4.4.8, we conclude that Phase 1 will not err with probability 1− o(1).

Phase 2

Following Observation 4.4.9, we need to design a test such that given a placement Ck of
Cu in Gk that implies close distributions, the test satisfies the following conditions:

1. If the graphs are isomorphic and the embedding of Cu is expandable to some iso-
morphism, then the test accepts with probability at least 3/4

2. If the graphs Gu and Gk are ε-far, then the test accepts with probability at most
o(2− log3 n).

If our test in Phase 2 satisfies these conditions, then we get the desired isomorphism
tester. From now on, when we refer to some placement of Cu we assume that it has passed
Phase 1 and hence implies close distributions.

In Phase 2 we choose a set Wu of log4 n vertices from V (Gu), and retrieve their labels
according to Cu by making the queries Wu × Cu. Additionally, we split Wu into 1

2 log4 n

pairs {{u1, v1}, . . . , {u 1
2

log4 n, v 1
2

log4 n}} randomly, and make all 1
2 log4 n queries according

to these pairs. This is done once, and the same set Wu is used for all the placements
of Cu that are tested in Phase 2. Then, for every placement Ck of Cu, we would like to
define a random bijection πCu,Ck

: V (Gu) → V (Gk) as follows. For every label γ, the
bijection πCu,Ck

pairs the vertices of Gu having label γ with the vertices of Gk having
label γ uniformly at random. There might be labels for which one of the graphs has more
vertices than the other. We call these remaining vertices leftovers. Note that the amount
of leftovers from each graph is equal to the distance between the Ck-labeling and the Cu-
labeling. Finally, after πCu,Ck

pairs all matching vertices, the leftover vertices are paired
arbitrarily. In practice, since we do not know the labels of Gu’s vertices, we instead define
a partial bijection π̃Cu,Ck

(Wu) → V (Gk) as follows. Every vertex v ∈ Wu that has the
label γv is paired uniformly at random with one of the vertices of Gk which has the same
label γv and was not paired yet. If this is impossible, we reject the current placement of
Cu and move to the next one.

Denote by δCu,Ck
the fraction of the queried pairs from Wu for which exactly one of

{ui, vi} and {π̃Cu,Ck
(ui), π̃Cu,Ck

(vi)} is an edge. If δCu,Ck
≤ ε/2, then Gu is accepted.

Otherwise we move to the next placement of Cu. If none of the placements was accepted,
Gu is rejected.

Correctness

A crucial observation in our proof is that with high probability, any two vertices that
have many distinct neighbors in the whole graph will also have distinct neighbors within
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a “large enough” random core set.
Formally, given a graph G and a subset C of its vertices, we say that C is β-separating

if for every pair of vertices u, v ∈ V (G) such that duv , 1
n |{Γ(u)4Γ(v)}| ≥ β the vertices

u and v have different labels under the C-labeling of G.

Claim 4.4.10. Let β > 0 be fixed, let G be a graph of order n and let C ⊂ V (G) be a
uniformly chosen random subset of size log2 n. Then C is β-separating with probability
1− o(1).

Proof. Fix a pair u, v ∈ V (G). If u, v are such that duv > β, then the probability that they
share exactly the same neighbors in C is bounded by (1− β)log2 n ≤ e−β log2 n = n−β log n.
Using the union bound, with probability 1− o(1) every pair u, v of vertices with duv > β

will not have exactly the same neighbors in C, i.e. the vertices will have different labels
under the C-labeling.

Lemma 4.4.11 (completeness). Conditioned over the event that Cu is ε/8-separating, if
the graphs Gu and Gk are isomorphic and the placement Ck of Cu is expandable to some
isomorphism, then Pr[δCu,Ck

≤ ε/2] = 1− o(1), and hence Ck is accepted in Phase 2 with
probability 1− o(1).

Proof. Let φ : V (Gu) → V (Gk) be an isomorphism to which the placement of Cu is
expandable. By definition, for every pair v1, v2 of Gu’s vertices, {v1, v2} is an edge in Gu

if and only if {φ(v1), φ(v2)} is an edge in Gk. In addition, for every vertex v ∈ V (Gu),
the vertices v and φ(v) have exactly the same labels. Let σ be the permutation, such
that πCu,Ck

is the composition of σ and the isomorphism φ. In the rest of this proof, by
distance we mean the absolute distance between two labeled graphs (which is between 0
and

(
n
2

)
).

First we show that the distance from σ(Gu) to Gk is almost the same as the distance
from φ(Gu) to Gk (which is zero since φ is an isomorphism), and then we apply large
deviation inequalities to conclude that Pr[δCu,Ck

≤ ε/2] = 1− o(1).
To prove that the distance from σ(Gu) to Gk is close to zero we show a transformation of

φ into πCu,Ck
by performing “swaps” between vertices that have the same label. Namely,

we define a sequence of permutations φi, starting from φ0 = φ, and ending with φt =
πCu,Ck

. In each step, if there is some vertex v0 such that φi(v0) = u1 while πCu,Ck
(v0) = u0,

then we find a vertex v1 such that φi(v1) = u0, and set φi+1(v0) = u0 and φi+1(v1) = u1.
The rest of the vertices are mapped by φi+1 as they were mapped by φi.

Since in each step we only swap a pair of vertices with the same label, and since the
core set Cu is ε/8-separating, every such swap can increase the distance by at most εn/8,
so eventually the distance between σ(Gu) and Gk is at most εn2/8. Therefore, by large
deviation inequalities, δCu,Ck

as defined in Phase 2 is at most ε/2 with probability 1−o(1),
and so the placement Ck is accepted.

30



We now turn to the case where Gu and Gk are ε-far. Note that until now we did not
use the fact that Cu and Ck imply close distributions. To understand why this closeness
is important, recall the pairs of graphs from the lower bound proof. If we give up the
distribution test in Phase 1, then these graphs will be accepted with high probability,
since the algorithm cannot reveal two copies of the same vertex when sampling o(

√
n)

vertices (recall that |Wu| = O(log4 n)). Intuitively, the problem is that in these pairs of
graphs, the partial random bijection π̃Cu,Ck

will not simulate a restriction of the random
bijection πCu,Ck

to a set of log4 n vertices. In the lower bound example, π̃Cu,Ck
will have

no leftovers with high probability, even though πCu,Ck
will always have Ω(n) leftovers.

The reason is that in the cloned graph Gu, for each of about half of the labels from Ck

there are two times more vertices, while for the second half there are no vertices at all.
The distribution test in Phase 1 actually checks whether the clustering of the vertices
according to the labels is into subsets of almost equal sizes in both Gu and Gk. If it is so,
then the partial random bijection π̃Cu,Ck

is indeed similar to the restriction of a bijection
πCu,Ck

to a set of log4 n vertices.

Lemma 4.4.12 (soundness). If the graphs Gu and Gk are ε-far, and the placement Ck

implies ε/10-close distributions, then Pr[δCu,Ck
≤ ε/2] ≤ o(2− log3 n), and hence Ck is

accepted in Phase 2 with probability at most o(2− log3 n).

Proof. Assume that for a fixed Ck the random bijection πCu,Ck
is ε-far from isomorphism.

We then need to show that δCu,Ck
as defined in Phase 2 is larger than ε/2 with probability

1− o(2− log3 n).
Since the variation distance between the distributions DCu and DCk

is at most ε/10,
the amount of leftovers (which is exactly the distance between the Cu-labeling of Gu

and the Ck-labeling of Gk) is at most εn/10. Therefore, even if we first remove those
εn/10 (or less) leftovers, the fraction of pairs u, v for which exactly one of {u, v} and
{π̃Cu,Ck

(u), π̃Cu,Ck
(v)} is an edge is not smaller by more than 4ε/10 from that of πCu,Ck

.
Let π̃Cu,Ck

be the random partial bijection as defined above. The distribution test of
Phase 1 guaranties that π̃Cu,Ck

is a random restriction of a function that is ε/10-close to
some bijection πCu,Ck

. Since Gu is ε-far from Gk, the bijection πCu,Ck
must be ε-far from

being an isomorphism, and hence π̃Cu,Ck
must exhibit a 6ε/10-fraction of mismatching

edges. Note that the acceptance probability of Ck given π̃Cu,Ck
is equal to the probability

that δCu,Ck
as defined in Phase 2 is at most ε/2. Large deviation inequalities show that

this probability is at most 2−Ω(log4 n) = o(2− log3 n).

As a conclusion, if Gk and Gu are isomorphic, then the probability that Cu is not
ε/8-separating is at most o(1), and for a correct (under some isomorphism) embedding of
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Cu in Gk, the probability that the distribution test will fail is also o(1), so in summary
algorithm Aku accepts with probability greater than 2/3. In the case that Gk and Gu are
ε-far from being isomorphic, with probability 1 − o(1) all placements that are passed to
Phase 2 imply close label distributions. Then each such placement is rejected in Phase 2
with probability 1− o(2− log3 n), and by the union bound over all possible placements the
graphs are accepted with probability less than 1/3. Algorithm Aku makes Õ(

√
n) queries

in Phase 1 and Õ(n1/4) queries in Phase 2. This completes the proof of Lemma 4.4.7 and
so of Theorem 4.4.1.

4.4.2 Two-sided testing of two unknown graphs

Theorem 4.4.13. The query complexity of two-sided error isomorphism testers is between
Ω(n) and Õ(n5/4) if both graphs need to be queried.

The upper bound

Lemma 4.4.14. Given two unknown graphs G and H on n vertices, there is a property
tester Auu that accepts with probability at least 2/3 if G is isomorphic to H, and rejects
with probability at least 2/3 if G is ε-far from H. Furthermore, Auu makes Õ(n5/4) queries
to G and H.

We use here ideas similar to those used in the upper bound proof of Lemma 4.4.7,
but with several modifications. The main difference between this case and the case where
one of the graphs is known in advance is that here we cannot write all label distributions
with all possible core sets in either one of the unknown graphs (because doing that would
require Ω(n2) queries). We overcome this difficulty by sampling from both graphs in a
way that with high probability will make it possible to essentially simulate the test for
isomorphism where one of the graphs is known in advance.

Phase 1

First we randomly pick a set UG of n1/4 log3(n) vertices from G, and a set UH of n3/4 log3(n)
vertices from H. Then we make all n5/4 log3(n) possible queries in UG×V (G). Note that if
G and H have an isomorphism σ, then according to Lemma 4.2.2 with probability 1−o(1)
the size of UG ∩ σ(UH) will exceed log2(n).

For all subsets CG of UG of size log2 n we try every possible placement CH ⊂ UH of
CG. There are at most 2log3 n subsets CG, and at most 2log3 n possible ways to embed
each CG in UH . Since we made all n5/4 log3(n) possible queries in UG × V (G), for every
CG ⊂ UG the corresponding distribution DCG

is entirely known.
Now for every possible placement of CG in UH , we test if the variation distance between

the distributions DCG
and DCH

is at most ε/10. Since we know the entire distribution
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DCG
, we only need to sample the distribution DCH

, and therefore we can still use the
amplified distribution test of Lemma 4.4.8. The test there requires Õ(

√
n) samples, so

similarly to the proof of Lemma 4.4.7 we take a random set S of Õ(
√

n) vertices from H

and make all n5/4polylog(n) queries in S × UH .
We reject the pairs of a set CG and a placement CH that were rejected by the distri-

bution test for DCG
and DCH

, and pass all other pairs to Phase 2. If Phase 1 rejects all
possible pairs, then the graphs G and H are rejected without moving to Phase 2. The
following observation is similar to the one we used in the case where one of the graphs is
known in advance.

Observation 4.4.15. With probability 1− o(1), all of the placements that passed Phase 1
imply ε/10-close distributions, and all placements that imply identical distributions passed
Phase 1. In other words, the distribution test did not err on any of the placements.

Phase 2

As in Lemma 4.4.7, we need to design a test which given a placement CH of CG in H that
implies close distributions, satisfies the following conditions:

1. If the graphs are isomorphic and the embedding of CH is expandable to some iso-
morphism, then the test accepts with probability at least 3/4

2. If the graphs G and H are ε-far, then the test accepts with probability at most
o(2−2 log3 n).

In Phase 2 we choose at random a set WG of n1/2 log13 n vertices from V (G), and a
set WH of n1/2 log6 n vertices from V (H). We retrieve the labels in WH according to any
CH by making the queries WH × UH . Additionally, we make all queries inside WH and
all queries inside WG. This is done once, and the same sets WG, WH are used for all of
the pairs CG, CH that are tested in Phase 2. According to Lemma 4.2.2, if the graphs
are isomorphic under some isomorphism σ, then |WH ∩ σ(WG)| > log7 n with probability
1− o(1).

Then, similarly to what is done in Lemma 4.4.7, for every pair CG, CH , we would
like to define a random bijection πCG,CH

: V (G) → V (H) as follows. For every label
γ, πCG,CH

pairs the vertices of G having label γ with the vertices of H having label γ

uniformly at random. After πCG,CH
pairs all matching vertices, the leftover vertices are

paired arbitrarily. Then again, since we do not know the labels of H’s vertices, we define
a partial bijection π̃CG,CH

(WH) → V (G) instead, in which every vertex v ∈ WH that has
the label γv is paired uniformly at random with one of the vertices of G which has the
same label γv and was not paired yet. If this is impossible, we reject the current pair
CG, CH and move to the next one.
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Denote by IH the set π̃CG,CH
(WH) ∩WG, and denote by SH the set π̃−1

CG,CH
(IH). Ac-

cording to Lemma 4.2.2, |IH | > log7 n with probability 1 − o(2− log6 n), that is, with
probability 1 − o(1) we have |IH | > log7 n for every pair CG, CH (if this is not the
case, we terminate the algorithm and answer arbitrarily). Next we take 1

2 log7 n pairs
{{u1, v1}, . . . , {u 1

2
log7 n, v 1

2
log7 n}} randomly from SH , and denote by δCG,CH

the fraction
of SH ’s pairs for which exactly one of {ui, vi} and {π̃CG,CH

(ui), π̃CG,CH
(vi)} is an edge. If

δCG,CH
≤ ε/2, then the graphs are accepted. Otherwise we move to the next pair CG, CH .

If none of the pairs are accepted, then the graphs are rejected.
As noted above, if G and H are isomorphic, then according to Lemma 4.2.2 with

probability 1−o(1) the size of UG∩σ(UH) is at least log2(n). Therefore with probability 1−
o(1), for some pair CH , CG the placement CH of CG is expandable to an isomorphism. We
now need to show that in this case the pair CH , CG is accepted with sufficient probability.

Lemma 4.4.16 (completeness). If the graphs G and H are isomorphic and σ is an iso-
morphism between them, then with probability at least 3/4 there exists CG ⊂ UG with a
placement CH ⊂ UH which is expandable to σ, and for which δCG,CH

≤ ε/2.

Proof sketch. First we look at the set ∆ = UG∩σ−1(UH). By Lemma 4.2.2 the size of ∆ is
at least log2 n with probability 1−o(1). Conditioned on this event, we pick CG ⊆ ∆ ⊆ UG

uniformly from all subsets of ∆ with size log2 n, and set CH = σ(CG) to be its placement
in UH . We now prove that conditioned on the event that ∆ is large enough, CG and CH

will be as required with probability 1− o(1).
Our main observation is that if we condition only on the event that ∆ is large enough,

then CG is distributed uniformly among all subsets with this size of V (G), so we proceed
similarly to the case where one of the graphs is known in advance. We observe that if
two vertices have many distinct neighbors, then with high probability they will not share
exactly the same neighbors within a random core set of size log2 n (see Lemma 4.4.10),
so CG has a separating property. When this happens, it is possible to switch between the
vertices with identical labels and still retain a small enough bound on δCG,CH

.

Lemma 4.4.17 (soundness). If the graphs G and H are ε-far, and the pair CG, CH implies
close distributions, then Pr[δCG,CH

≤ ε/2] ≤ o(2− log6 n), and hence the pair CG, CH is
accepted in Phase 2 with probability at most o(2− log6 n).

Proof sketch. As before, assume that for a fixed pair CG, CH the random bijection πCG,CH

is ε-far from isomorphism. We then need to show that δCG,CH
as defined in Phase 2 is at

most ε/2 with probability only o(2− log6 n).
Since the variation distance between the distributions DCG

and DCH
is at most ε/10,

the amount of leftovers (which is exactly the distance between the CG-labeling and the
CH -labeling) is at most εn/10. After removing those εn/10 (or less) leftovers, the fraction

34



of pairs u, v for which exactly one of {u, v} and {π̃CG,CH
(u), π̃CG,CH

(v)} is an edge is still
not smaller than that of πCG,CH

by more than 4ε/10. Now the distribution test of Phase
1 guaranties that π̃CG,CH

is ε/10-close to the restriction of some random bijection πCG,CH
.

Since the graph G is ε-far from being isomorphic to the graph H, the bijection πCG,CH

must be ε-far from an isomorphism, and hence π̃CG,CH
must exhibit a 6ε/10-fraction of

incompatible edges, while the acceptance probability of the pair CG, CH given π̃CG,CH
is

equal to the probability that δCG,CH
as defined in Phase 2 is at most ε/2. Applying large

deviation inequalities shows that this probability is at most 2−Ω(log7 n) = o(2− log6 n).

The isomorphism testing algorithm Auu makes Õ(n5/4) queries in total, completing
the proof of Theorem 4.4.13.

The lower bound

A lower bound of Ω(n) queries is implicitly stated in [Fis04] following [AFKS00]. Here we
provide the detailed proof for completeness.

Lemma 4.4.18. Any adaptive (as well as non-adaptive) testing algorithm that makes at
most n

4 queries cannot distinguish between the case that the unknown input graphs G and
H are isomorphic, and the case that they are 1

8 -far from being isomorphic.

Proof. We construct two distributions over pairs of graphs. The distribution DP is con-
structed by letting the pair of graphs consist of a random graph G ∼ G(n, 1/2) and a graph
H that is a random permutation of G. The distribution DN is constructed by letting the
pair of graphs consist of two independently chosen random graphs G,H ∼ G(n, 1/2).

Clearly DP satisfies the property with probability 1. By large deviation inequalities,
it is also clear that in an input chosen according to DN , the graphs G and H are 1

8 -far
with probability 1− 2Ω(n2). The next step is to replace DN with D′

N , in which the graphs
are 1

8 -far from being isomorphic with probability 1. We just set D′
N to be the distribution

that results from conditioning DN on the event that G is indeed 1
8 -far from H.

We now consider any fixed set Q = {p1, . . . , pn
4
} of vertex pairs, some from the first

graph, and others from the second graph. For an input chosen according to the distribution
DN , the values of these pairs (the answers for corresponding queries) are n

4 uniformly and
independently chosen random bits. We now analyze the distribution DP . Let e1, . . . , ek

and f1, . . . , fl be all vertex pairs of the first and the second graph respectively, that appear
in Q. Clearly k, l ≤ |Q| = n

4 . Let σ : {1, . . . , n} → {1, . . . , n} be the permutation according
to which the second graph is chosen in DP . Let E denote the event that σ(ei) 6= fj for every
1 ≤ i ≤ k and 1 ≤ j ≤ l, where for e = {u, v} we denote by σ(e) the pair {σ(u), σ(v)}.
Clearly, if E occurs then {p1, . . . , pn

4
} will be a set of n

4 uniformly and independently
chosen random bits.
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Claim 4.4.19. The event E as defined above occurs with probability at least 3/4.

Proof. For a single pair ei and a random permutation σ, the probability that ei = σ(fj) for
some 1 ≤ j ≤ l is bounded by n

2(n
2)

. Hence by the union bound, Pr[E] ≥ 1− kn
2(n

2)
> 3/4.

Since E occurs with probability at least 3/4, and since the event upon which we
conditioned DN to get D′

N occurs with probability 1− 2−Ω(n2) = 1− o(2−|Q|), we get that
for any g : Q → {0, 1}, we have PrD′N |Q [g] < 3

2PrDP |Q [g] and therefore the distributions
DP and D′

N satisfy the conditions of of Lemma 3.4.2.

4.5 Future work

While our two-sided error algorithms run in time quasi-polynomial in n (like the general
approximation algorithm of [AFK96]), the one-sided algorithms presented here require
an exponential running time. It would be interesting to reduce the running time of the
one-sided algorithms to be quasi-polynomial while still keeping them one-sided.

Another issue goes back to [AFKS00]. There, the graph isomorphism question was used
to prove that certain first order graph properties are impossible to test with a constant
number of queries. However, in view of the situation with graph isomorphism, the question
now is whether every first order graph property is testable with O(n2−α) many queries for
some α > 0 that depends on the property to be tested.

Finally, it would be interesting to close the remaining gap between Ω(n) and Õ(n5/4)
in the setting of two graphs that need to be queried, and a two-sided error algorithm. It
appears (with the aid of martingale analysis on the same distributions DP , DN as above)
that at least for non-adaptive algorithms the lower bound can be increased a little to a
bound of the form Ω(n logα n), but we are currently unable to give tighter bounds on the
power of n.
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Chapter 5

Approximate hypergraph

partitioning and applications

In this chapter we show that any partition-problem of hypergraphs has an O(n) time
approximate partitioning algorithm and an efficient property tester. This extends the
results of Goldreich, Goldwasser and Ron who obtained similar algorithms for the special
case of graph partition problems in their seminal paper [GGR98].

The partitioning algorithm is used to obtain the following results:

• We derive a surprisingly simple O(n) time algorithmic version of Szemerédi’s regu-
larity lemma. Unlike all the previous approaches for this problem [AN06, DLR95,
FK99b, FK96, KRT03], which only guaranteed to find partitions of tower-size, our
algorithm will find a small regular partition in the case that one exists.

• For any r ≥ 3, we give an O(n) time randomized algorithm for constructing regular
partitions of r-uniform hypergraphs, thus improving the previous O(n2r−1) time
(deterministic) algorithms [CR00, FK96].

The property testing algorithm is used to unify several previous results, and to obtain
for a fixed partition size the partition densities for the above problems (rather than the
partitions themselves) using only poly(1/ε) queries and constant running time.
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5.1 Background and introduction

Graph partition problems are some of the most well-studied problems both in graph theory
and in computer-science. Standard examples of partition problems include k-colorability,
Max-Clique and Max-Cut. Most of these problems are computationally hard even to
approximate, but it was observed in the 90’s [AKK99, dlV96] that many of these partition
problems have good approximations when the input graph is dense. In this chapter we
introduce an efficient O(n) algorithm for partitioning hypergraphs, with an accompanying
O(1) query complexity test for the existence of a partition with given parameters. We
show that several previous results on graph and hypergraph partition problems follow as
special cases of our main result. In some cases the our results will actually improve upon
the previously known ones.

Our framework for studying hypergraph partition problems generalizes the frame-
work of graph partition problems that was introduced by Goldreich, Goldwasser and Ron
[GGR98]. Let us briefly discuss the graph partitioning algorithm of [GGR98]. A graph
partition-instance Ψ is composed of an integer k specifying the number of sets in the re-
quired partition V1, . . . , Vk of the graph’s vertex set, and intervals specifying the allowed
ranges for the number of vertices in every Vi and the number of edges between every Vi

and Vj for i ≤ j.
Goldreich, Goldwasser and Ron [GGR98] showed that for any partition-instance Ψ

with k parts, and for any fixed ε, there is an O(2(k/ε)O(k)
+ (k/ε)O(k)n) time algorithm

that produces a partition of an input graph that is ε-close to satisfying Ψ, assuming that a
satisfying partition exists (the distance is measured by the differences between the actual
densities and the required ones). Note that one can formulate many problems, such as k-
colorability, Max-Cut and Max-Clique, in this framework of partition-instances. Therefore,
the algorithm of [GGR98], which we will henceforth refer to as the GGR-algorithm, implies
for example that there is an O(exp(1/ε3)+(1/ε2)n) time algorithm that approximates the
size of the maximum cut of a graph to within an additive error of εn2. It also implies that
for any ε > 0 there is an O(exp(1/ε3) + (1/ε2)n) time algorithm that, given a graph G,
either reports that G is not 3-colorable, or 3-colors the vertices of G in such a way that
all but at most εn2 of the edges are properly colored.

The second main result of [GGR98] was that in fact, for any partition problem Ψ as
above, there is a randomized algorithm making only (k/ε)O(k) many queries to the input
graph, and running in time 2(k/ε)O(k)

, which distinguishes with probability 2
3 between

graphs satisfying Ψ and graphs that are ε-far from satisfying Ψ. Thus the result of
[GGR98] implies that one can distinguish in constant time between graphs satisfying a
partition instance and graphs that are far from satisfying it.

Here we extend the main results of [GGR98] to the case of hypergraphs by showing
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that there is a randomized algorithm for the general hypergraph partition-problem. The
running time of our algorithm is O(n) (where n is the number of vertices, making this
sublinear) and it has the following property: Given an input hypergraph H, which satisfies
the partition problem, the algorithm produces a partition of H that is “close” to satisfying
it. In the case that no such partition of H exists, the algorithm rejects the input. We also
obtain property testing algorithms for such problems making only poly(1/ε) queries, and
with a constant running time.

We present several applications of our result, and in the foremost a new application
related to Szemerédi’s regularity lemma [Sze78]. By using an appropriate hypergraph mod-
eling of the problem we design a surprisingly simple O(n) time algorithm for constructing
regular partitions of graphs. An added benefit is that unlike the previous approaches for
constructing regular partitions [AN06, DLR95, FK99b, FK96, KRT03], which proved the
lemma “algorithmically”, our algorithm will find a small regular partition in the case that
one exists in our input graph, rather than being guaranteed to find only a partition of the
tower-size upper bound given by Szemerédi’s lemma itself.

We also design an O(n) time randomized algorithm for constructing regular partitions
of r-uniform hypergraphs for any r ≥ 3. This improves over the previous (deterministic)
algorithms [CR00, FK96] that have a running time of O(n2r−1).

Our property testing algorithm provides a common generalization for many previously
known results. We show how special cases of the now-testable partition problem can be
easily used to derive some results that were previously proved using specialized methods,
namely testing properties of hypergraphs [CS05, Lan04] and estimating k-CNF satisfiabil-
ity [AVKK03].

5.2 Extension of the GGR-algorithm

Our main result in this chapter is a generalization of the GGR-algorithm to the case of
hypergraphs. Let us start by defining our framework for studying hypergraph partition
problems. We consider directed hypergraphs H = (V,E1, E2, . . . , Es) with n vertices and
s directed edge sets (the generalization to several edge sets also has a role in our main
application). Every edge set Ei(H) ⊆ V ri is a set of ordered ri-tuples (ordered sets with
possible repetitions) over V . 1 That is, for every edge set Ei(H) we think of any of the
edges e ∈ Ei as an ordered subset of V (H) of size ri. Let us put r = maxi{ri}. Note that
the usual notion of a directed graph corresponds to hypergraphs with only one edge set
E whose edges are of size 2. For an ri-tuple e = (v1, . . . , vri) ∈ Ei we say that vj is in the
jth place of e (or is simply the jth vertex of e). We use [k] to denote the set {1, . . . , k},
and we use a = b± c as a shorthand for b− c ≤ a ≤ b + c.

1The logicians among the readers should recognize these as arity ri relations.
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5.2.1 The partition property

Let H be a hypergraph as above and let Π = {V Π
1 , . . . , V Π

k } be a partition of V (H). Let us
introduce a notation for counting the number of edges of Ei(H) with a specific placement
of their vertices within the partition classes of Π (remember that the edges are ordered).
For every i ∈ [s] we denote by Φi the set of all possible mappings φ : [ri] → [k]. We think
of every φ ∈ Φi as mapping the vertices of an ri-tuple to the components of Π. We denote
by EΠ

i,φ ⊆ Ei the following set of ri-tuples:

EΠ
i,φ = {(v1, . . . , vri) ∈ Ei : vj ∈ V Π

φ(j), ∀ 1 ≤ j ≤ ri}

We now introduce a notion that generalizes the partition instances of graphs that
were discussed earlier in the context of graphs. A density tensor is a sequence ψ =〈〈ρj〉j∈[k], 〈µi,φ〉i∈[s],φ∈Φi

〉
of reals (between 0 and 1), specifying the presumed normalized

sizes of |V Π
i | and |EΠ

i,φ| of a partition of a hypergraph H. In particular, given a par-
tition Π = {V Π

1 , V Π
2 , . . . , V Π

k } of a hypergraph H, we set ψΠ to be the density tensor〈
〈ρΠ

j 〉j∈[k], 〈µΠ
i,φ〉i∈[s],φ∈Φi

〉
with the property that for all j, ρΠ

j = 1
n · |V Π

j | and for all i and

φ, µΠ
i,φ = 1

nri · |EΠ
i,φ|.

For a fixed hypergraph H, a set Ψ of general density tensors (with respect to k, s and
r1, . . . , rs) defines a property of V (H)’s partitions as follows. We say that a partition Π of
V (H) (exactly) satisfies Ψ if there exists a density tensor ψ =

〈〈ρj〉j∈[k], 〈µi,φ〉i∈[s],φ∈Φi

〉 ∈
Ψ, such that ψ and the density tensor ψΠ of Π are equal. Namely, the following equalities
hold: for all j ∈ [k], ρΠ

j = ρj ; and for all i ∈ [s] and φ ∈ Φi, µΠ
i,φ = µi,φ.

We say that Π ε-closely satisfies Ψ if there exists ψ ∈ Ψ, such that for all j ∈ [k]
ρΠ

j = ρj and for all i ∈ [s] and φ ∈ Φi µΠ
i,φ = µi,φ ± ε. In addition, we say that Π

ε-approximately satisfies Ψ if there exists ψ ∈ Ψ such that for all j ∈ [k] ρΠ
j = ρj ± ε

and for all i ∈ [s] and φ ∈ Φi µΠ
i,φ = µi,φ ± ε.

By extension (and with a slight abuse of notation), we say that the hypergraph H itself
satisfies the property Ψ if there exists a partition Π of H’s vertices that satisfies Ψ, and
similarly we say that H itself ε-closely (respectively ε-approximately) satisfies the property
Ψ if there exists a partition of H’s vertices that ε-closely (respectively ε-approximately)
satisfies the property Ψ. In addition, we may refer to a specific density tensor ψ as the
singleton set {ψ}, and accordingly consider it as a property of partitions.

In the following we make some computational assumptions on the representation of
the considered set Ψ, which may be infinite. In particular, we assume that given a density
tensor ψ, computing whether ψ is close to some ψ′ ∈ Ψ can be done efficiently.

Definition 9. For a set Ψ of density tensors, we say that Ψ is checkable for proximity
in time O(t), or shortly TC(Ψ) = O(t), if there exists an algorithm that for any density
tensor ψ and any ε > 0 decides in time at most O(t) whether the tensor ψ ε-approximately
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satisfies Ψ, and if so, outputs a density tensor ψT ∈ Ψ which is ε-approximated by ψ.
We say that a set Ψ of density tensors is efficiently checkable for proximity if TC(Ψ)

is bounded by some polynomial in s and kr.

Note that the sets Ψ resulting from upper and lower bound constraints as in [GGR98]
are indeed efficiently checkable for proximity. For instance, given a density tensor ψ =〈〈ρj〉j∈[k], 〈µi,φ〉i∈[s],φ∈Φi

〉
, one can verify in time O(k + s · kr) whether ψ ε-approximately

satisfies Ψ by going over the k + s · kr values of the parameters of ψ, and checking if all
of these values satisfy the lower and upper bounds within the allowed deviation of ε. It is
easy to verify that the sets of density tensors defined in the proofs of Theorem 5.4.2 and
Theorem 5.5.1 below are also efficiently checkable for proximity.

Also, we assume throughout that a uniformly random choice of a vertex v ∈ V , as well
as an edge query, can all be done in constant time. In the following we make no attempt
to optimize the coefficients, only the function types.

We are now ready to state the main technical theorem of this chapter.

Theorem 5.2.1 (Hypergraph Partitioning Algorithm). Let H = (V, E1, . . . , Es) be a hy-
pergraph with n vertices and s edge sets of maximal size r, let Ψ be an efficiently checkable
set of density tensors, of partitions into k sets, and let ε > 0 and δ > 0 be fixed constants.
There is a randomized algorithm A such that

• If H satisfies Ψ then with probability at least 1−δ the algorithm A outputs a partition
of V (H) that ε-closely satisfies Ψ.

• For every H, the algorithm A outputs a partition of V (H) that does not ε-closely
satisfies Ψ with probability at most δ. In particular, if H does not ε-closely satisfy
Ψ, then the algorithm returns “No Partition” with probability at least 1− δ.

Furthermore, the running time of A is bounded by log2(1
δ ) · exp

(
( r

ε)
O(s·r·kr)

)
+ n ·

poly(kr, s, 1/ε).

Observe that the above algorithm has only poly-logarithmic dependence on the success
probability δ, a fact that will be important in the applications of Theorem 5.2.1 we discuss
later.

Let us now discuss the property testing variant of Theorem 5.2.1. To this end, we define
one additional measure of closeness to the property Ψ for the property testing context.
Let H = (V,E1, . . . Es) and H ′ = (V, E′

1, . . . E
′
s) be two hypergraphs over the same vertex

set V , with matching arities of edge sets (i.e. for all i ∈ [s], ri = r′i). Let ∆(Ei, E
′
i) denote

the size of the symmetric difference between Ei and E′
i. The distance between H and

H ′ is defined as dist(H,H ′) = 1
s

∑
i∈[s] ∆(Ei, E

′
i)/nri . The distance of a hypergraph H

from the property Ψ is defined as dist(H,Ψ) = minH′{dist(H, H ′) : H ′ satisfies Ψ}. For
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ε > 0 we say that H is ε-far from satisfying the property Ψ when dist(H,Ψ) > ε, and
otherwise, we say that H is ε-close to Ψ. The testing algorithm follows immediately from
the following.

Theorem 5.2.2 (Testing). Let H = (V, E1, . . . , Es) be a hypergraph with n vertices and
s edge sets of maximal size r, let Ψ be an efficiently checkable set of density tensors, of
partitions into k sets, and let ε > 0 and δ > 0 be fixed constants. There is a randomized
algorithm AT such that

• If H satisfies Ψ then with probability at least 1− δ the algorithm AT outputs Accept,
and in addition provides a density tensor ψT ∈ Ψ such that ψT is ε-closely satisfied
by H.

• If H does not even ε-closely satisfy the property Ψ then with probability at least 1−δ

the algorithm AT outputs Reject.

The query complexity of the algorithm AT is bounded by log2(1
δ ) · poly(kr, s, 1/ε), and its

running time is bounded by log2(1
δ ) · exp

(
( r

ε)
O(s·r·kr)

)
.

To see why the algorithm above can be used as a testing algorithm in the traditional
sense, just note that a hypergraph that ε/kr-closely satisfies a property is clearly ε-close
to it. Note that the GGR-algorithm [GGR98] follows from Theorem 5.2.1 by setting r = 2
and s = 1 in the statement of the theorem. Similarly, the property testing algorithm of
[GGR98] follows easily from Theorem 5.2.2.

5.3 Immediate applications of the theorems

Just as the GGR-algorithm [GGR98] and its testing variant can be used to give O(n)
time algorithms and testing algorithms for graph partition problems like Max-Cut, k-
colorability and Max-Clique, so can Theorems 5.2.1 and 5.2.2 be used to give analogous
algorithms for the corresponding problems in hypergraphs. For example, consider the
following immediate corollary of Theorems 5.2.1 and 5.2.2.

Corollary 5.3.1. For any fixed r and c, the following algorithms immediately follow from
using Theorems 5.2.1 and 5.2.2 for the corresponding special cases:

• An ε-test of an n-vertex r-uniform (simple) hypergraph for the property of being
c-colorable (with no monochromatic edges), making poly(1/ε) queries and taking
exp(poly(1/ε)) time, and an accompanying approximate coloring algorithm taking
exp(poly(1/ε)) + poly(1/ε)n time.
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• An ε-test of an n-vertex r-uniform hypergraph for the property of having an in-
dependent set of size at least αn (for any fixed α), making poly(1/ε) queries and
taking exp(poly(1/ε)) time, and an accompanying approximate algorithm taking
exp(poly(1/ε)) + poly(1/ε)n time and finding a set of size αn spanning less than
εnr edges.

• An algorithm for approximating the maximum r-way cut of an n-vertex r-uniform
hypergraph up to an εnr additive error, making poly(1/ε) queries and taking
exp(poly(1/ε)) time, and an accompanying algorithm taking exp(poly(1/ε)) +
poly(1/ε)n time for finding a cut witnessing the approximate maximum.

We note that some of these results are not new. For example, a test for a maximum
independent set was first obtained by Langberg [Lan04], and a test for hypergraph c-
colorability was first obtained by Czumaj and Sohler [CS05]. Moreover, the ad-hoc versions
of the results of [CS05] and [Lan04] have a better dependence on 1/ε than the algorithms
derivable from our method of obtaining general hypergraph partitions, although we could
also improve our dependency by doing ad-hoc optimizations in the proof for the special
cases. The main motivation for the above proposition is to show that our result can be
thought of as a common generalization of many previous results.

5.3.1 Estimating the maximum number of satisfiable clauses in a k-CNF

Up to now it would have been enough to prove a version of our main theorem that
would apply only to undirected hypergraphs. The next application, related to the work of
[AVKK03], shows an instance in which the ordering of the edges is important.

Corollary 5.3.2. For a fixed k, the following follows from using Theorems 5.2.1 and
5.2.2 for the appropriate setup: An algorithm for approximating the minimum number
of unsatisfiable clauses in an n-variable k-CNF up to an εnk additive error, making
poly(1/ε) queries and taking exp(poly(1/ε)) time, and an accompanying algorithm taking
exp(poly(1/ε)) + poly(1/ε)n time for finding an assignment witnessing the approximate
minimum.

Proof. We need to use here k + 1 “edge sets”, E0, . . . , Ek, where Ei will correspond to all
clauses for which exactly i of the k literals are negated. Moreover, we order each clause in
Ei so that the i negated literals are first. We consider the n variables as “vertices”, and
seek a partition of them into two sets V0 and V1.

We now formulate the property Ψα, as the property that in the desired partition no
more than a total of αnk edges are in some Ei while their first i vertices are in V1 and all
their other vertices are in V0. It is now not hard to see that a partition witnessing Ψα can

43



be converted to an assignment leaving no more than αnk clauses unsatisfied, by assigning
to each variable xi the value ji for which the corresponding vertex vi is in Vji .

Finally, to estimate the minimum number, we run our partitioning algorithm for any α

which is an integer multiple of ε/2, with approximation parameter ε/2 and confidence pa-
rameter ε/6 (so with probability at least 2

3 we make no error on any run of the partitioning
algorithm).

We note that here again the degree of our polynomial is worse than the one in
[AVKK03], but also here we could have made it better with ad-hoc optimizations. Also,
the original result of [AVKK03] refers to general k-CSP instances rather than k-CNF
ones, but it is not hard to either reduce the former to the latter, or use a slightly more
complicated instance of the partitioning problem.

5.4 Finding a regular partition of a graph

5.4.1 Background and statement

The most interesting application we have of Theorem 5.2.1 is a new algorithmic approach
for constructing a regular partition of a graph (in the sense of Szemerédi [Sze78]). This ap-
proach leads to an algorithm that improves upon the previous algorithms for this problem
both in the running time (note that we make a tradeoff here by constructing a sublinear
time probabilistic algorithm), and in the guarantee that a small regular partition will be
found if one exists, with a running time that corresponds to the actual output size. Al-
though this is a result on graphs, it cannot be derived from the graph version of Theorem
5.2.1 (i.e. the original GGR-algorithm) because a key feature of the algorithm is that it
considers relations between more than two vertices of the graph.

The regularity lemma of Szemerédi [Sze78] is one of the most important results in
graph theory, as it guarantees that every graph has an ε-approximation of constant de-
scriptive size, namely a size that depends only on ε and not on the size of the graph. This
approximation “breaks” the graph into a constant number of pseudo-random bipartite
graphs. This is very useful in many applications since dealing with random-like graphs
is much easier than dealing with arbitrary graphs. For a comprehensive survey of the
applications of the lemma, the interested reader is referred to [KS96].

We first state the lemma. Recall that for two nonempty disjoint vertex sets A and
B of a graph G, we define E(A,B) to be the set of edges of G between A and B. The
edge density of the pair is defined by d(A,B) = |E(A,B)|/(|A||B|). The original notion
of regularity, to which we refer to as subset regularity, was defined based on an easy to
observe property of random graphs.

44



Definition 10 (ε-subset-regular pair). A pair (A,B) is ε-subset-regular if for every A′ ⊆
A and B′ ⊆ B satisfying |A′| ≥ ε|A| and |B′| ≥ ε|B|, we have d(A′, B′) = d(A,B)± ε.

An ε-regular pair can be thought of as a pseudo-random bipartite graph in the sense
that it behaves almost as we would expect from a random bipartite graph of the same
density, see e.g. [DLR95]. The intuition behind the above definition is that if (A,B)
behaves like a random bipartite graph with edge density d, then all large enough sub-pairs
should have similar densities.

A partition V1, . . . , Vk of the vertex set of a graph is called an equipartition if |Vi| and
|Vj | differ by no more than 1 for all 1 ≤ i < j ≤ k (so in particular every Vi has one of two
possible sizes). The order of an equipartition denotes the number of partition classes (k
above). An equipartition V1, . . . , Vk of the vertex set of a graph is called ε-subset-regular
if all but at most ε

(
k
2

)
of the pairs (Vi, Vj) are ε-subset-regular. Szemerédi’s regularity

lemma can be formulated as follows.

Lemma 5.4.1 ([Sze78]). For every ε > 0 there exists T = T5.4.1(ε), such that any graph
with n ≥ 1/ε vertices has an ε-subset-regular equipartition of order k̂, where 1/ε ≤ k̂ ≤ T .

It is far from surprising that a lemma that supplies an approximation of constant size
for arbitrarily large graphs will also have algorithmic applications. The original proof
of the regularity lemma was non-constructive, in the sense that it did not supply an
efficient polynomial time algorithm for obtaining a regular partition of the graph. The
first polynomial time algorithm for constructing such a partition of a graph was obtained
by Alon et al. [ADL+94]. Additional algorithmic versions of the lemma were later obtained
in [AN06, DLR95, FK99b, FK96, KRT03].

The main observation used in most of the above was that although subset-regularity is
computationally hard even to detect, it is essentially equivalent to an alternative definition
that is based on a simple count of local structures.

Given (A,B), we denote by dC4(A, B) the density of C4 instances (cycles of size 4)
between A and B, namely, the number of copies of C4 whose vertices alternate between
A and B, divided by their possible maximum number

(|A|
2

)(|B|
2

)
. 2

Definition 11 (ε-locally-regular pair and partition). A pair (A, B) of vertex sets is ε-
locally-regular if dC4(A,B) = d4(A,B)± ε.

An equipartition V1, . . . , Vk of the vertex set of a graph is called ε-locally-regular if all
but at most ε

(
k
2

)
of the pairs (Vi, Vj) are ε-locally-regular.

In the sequel we will refer to local-regularity simply as regularity whenever there is no
ambiguity in the context. The main observation about this definition is that an εO(1)-
regular pair is also ε-subset-regular, and the other direction similarly holds. This was first

2When counting the number of C4 instances between A and B we only consider the edges connecting
A and B. Therefore, 0 ≤ dC4(A, B) ≤ 1.
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proved in [ADL+94]. Our algorithm will center on finding partitions in which the pairs
conform to local regularity.

The main drawback of the regularity lemma is that the bounds that the lemma guar-
antees have an enormous dependence on ε. More precisely, denote the tower of exponents

function as Tower(i) = 2Tower(i−1) = 2
···

2
}

i
. Then the bounds on T5.4.1(ε) are given by

Tower(1/ε5). Furthermore, Gowers [Gow97] proved that these bounds are not far from the
truth (in the qualitative sense), as he constructed a graph that has no ε-regular partition
of size less than Tower(1/ε1/16).

Of course, this takes a huge toll on the dependency on ε of the running time of all
the previous algorithms for constructing regular partitions. Also, as these algorithms
essentially follow the original proof of Szemerédi’s lemma (while substituting the newer
and easier to check definition of regularity as in Definition 11), they are not guaranteed to
run faster even if the graph admits a very small regular partition, as it may be overlooked
considering the way the lemma was proved.

In contrast, the algorithm we design in this chapter takes a different approach, and
manages to directly check the graph (up to some tolerance) for the existence of a regular
partition with a prescribed order k. Thus, a smaller regular partition, if one exists, will
indeed be returned. For the same reason, the running time is also reduced. For a fixed ε,
the running time will be linear in the size of the actual output (making this a sublinear
time algorithm in the size of the input). The worst case running time will only occur if
the graph is indeed a worst-case graph, such as the one constructed in [Gow97]. Another
added feature is that if we only care about the densities of the regular partition and not the
partition itself, then there is a variant of the algorithm that takes constant time, assuming
that a uniformly random choice of a vertex and an edge query can be done in constant
time. The following is the new algorithmic version of Lemma 5.4.1.

Theorem 5.4.2. There is a randomized algorithm, that given ε > 0 and an n vertex graph
G, that has a 1

2ε-regular partition of order k̂ ≥ 1/ε, 3 produces with high probability an
ε-regular partition of G of order k, where 1/ε ≤ k ≤ k̂.

The expected running time of the algorithm is O(exp(exp(O(k̂5))) + n · poly(k̂)). Also,
the densities of the partition can be found and output in time exp(exp(O(k̂5))), indepen-
dently of n.

We stress that in Theorem 5.4.2, the algorithm does not receive the number k̂ as part
of the input. Also, the hidden constants in the running time are absolute and do not
depend on ε or k̂, and correspondingly there is no unconditional Tower-dependence on ε

as in the previous algorithms. In addition, it is not hard to see that the constant 1
2 in

3The reason for the requirement that k̂ ≥ 1/ε is that the same requirement is present in Lemma 5.4.1.
For the same reason we return a partition of size k ≥ 1/ε.
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the statement can be replaced with any constant smaller than 1. Finally, although the
algorithm does not know k̂ in advance, its running time does depend, in a good sense,
on k̂. That is, if k̂ is small then the running time of the algorithm will also be small,
compared to the unconditional Tower-type dependence on ε of the previous algorithms.

Note that if one takes k̂ in Theorem 5.4.2 to be the upper bound on the size of a regular
partition that must exist in any graph, that is k̂ = T5.4.1(ε) = Tower(poly(1/ε)), then we
simply get a randomized algorithm for constructing a regular partition of a graph. An
interesting feature of this algorithm is that its running time is O(n) for any fixed ε. This
algorithm is faster than the previous algorithms that ran in time Ω(n2) (and higher). The
price that we pay is that our algorithm is randomized while the previous algorithms were
deterministic.

5.4.2 The proof idea

Our main idea is that instead of trying to reprove the regularity lemma “algorithmically”
as in the previous approaches, we take Lemma 5.4.1 for a fact and just try to find the
smallest regular partition that the graph has. Starting from k = 1/ε we try to find a regular
partition of G of order k, and if none exists we move to k + 1. Lemma 5.4.1 guarantees
that we will eventually find a regular partition. To implement the above approach, we
need an algorithm that will produce a regular partition of G of order k if one exists, and
will not output any partition if none exists. Let’s see how we can use Theorem 5.2.1 to
obtain such an algorithm.

A key difference between a partition-instance in the sense of [GGR98] and a regular
partition is that in a partition-instance we only care about the density of each pair (Vi, Vj),
while in a regular partition we care about the distribution of the edges between Vi and
Vj given in terms of a sort of a second moment condition, that of Definition 11. The
framework of the graph partition problems of [GGR98] thus cannot by itself provide a
check for regularity (unless “negations” of partition properties are checked as in [FN05]
and in the hypergraph regularity algorithms here, but these again may lead to a small
regular partition being overlooked). However, as we show below, a hypergraph partition
theorem such as Theorem 5.2.1 is very useful for checking the regularity condition of
Definition 11.

Given a graph G let us implicitly construct a hypergraph H = H(G) on the vertex
set V (H) = V (G), that contains the 2-edges of G as well as 4-edges corresponding to
the 4-cycles of G. This is not an undirected hypergraph, so we need at least some part
of the additional generality provided in Theorem 5.2.1. Suppose that G has an ε-regular
partition V1, . . . , Vk. Then, for any pair (Vi, Vj) which is ε-regular, Definition 11 says that
there is a real d such that d = d(A,B) and the number of 4-cycles spanned by (A,B) is
(d4±ε)

(|Vi|
2

)(|Vj |
2

)
. Hence, the same partition V1, . . . , Vk when considered on H, would have
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the property that if (Vi, Vj) is regular (in G) with density d, then the density of 4-edges
in H connecting a pair of vertices from Vi with a pair of vertices from Vj is d4 ± ε.

Therefore, our algorithm for constructing a regular partition of G simply looks for a
partition of H into k sets V1, . . . , Vk such that most pairs (Vi, Vj) have the property that the
density of 4-edges connecting them is close to d4(Vi, Vj). By the above discussion we know
that if a graph G has an ε-regular partition then H satisfies the partition-instance. One
should be careful at this point, as Theorem 5.2.1 only guarantees that if the hypergraph
satisfies the partition-instance then the algorithm will return a possibly different partition
that is close to satisfying the partition-instance. Luckily, it is not difficult to see that if the
algorithm returns a partition of H that is close to satisfying the above partition-instance,
then it is in fact regular with slightly worse parameters.

We finally note that the above explanation describes the method of designing an al-
gorithm whose running time is as stated with high probability and not in expectation. To
maintain a low expected running time, without knowing the value of k̂ (which may be
very large), we need one final trick: As we go and try higher and higher values of k, we go
back and try again the lower values, to get another chance at small partitions that may
have been missed during the first try. We note that in this use of Theorem 5.2.1 we rely
on the fact that the dependence on δ in Theorem 5.2.1 is only poly-logarithmic. Thus we
execute the more costly iterations with sufficiently small probability relative to their cost.

5.4.3 Proof of Theorem 5.4.2

We first formally describe the reduction, through which we reduce the problem of finding
a regular partition of a graph G to the problem of finding a partition of a hypergraph
H = H(G) satisfying certain density conditions. Given a graph G let us define the
following hypergraph H = H(G).

Definition 12. For a graph G, the hypergraph H = H(G) has the same vertex set as G,
and two sets of edges, a set E of 2-edges and a set C of (ordered) 4-edges. E(H) is made
identical to E(G) (if we insist on the ordered edge setting of Theorem 5.2.1, then for every
{u, v} ∈ E(G) we have both (u, v) and (v, u) in H). We set C to include all sequences
(u1, u2, u3, u4) that form a 4-cycle in that order in G.

We note that also C has symmetries due to redundancy, as for example (u1, u2, u3, u4) ∈
C if and only if (u2, u3, u4, u1) ∈ C. If we want to keep a hypergraph-like structure without
redundancy, then we should define E(H) as a set of unoredered pairs (just like E(G)) and
C(H) as a set of unordered pairs of unordered pairs, where the cycle (u1, u2, u3, u4) would
be represented by the pair of pairs {{u1, u3}, {u2, u4}}. This is the representation that
we adopt from now on (moving back to the fully ordered representation would just entail
adding a constant coefficient in Definition 13 below).
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Let us note that while discussing regular partitions, we measure the density of edges
and C4’s between sets Vi, Vj relative to the size of Vi and Vj , see for example Definitions
10 and 11. On the other hand, when discussing the partition problems related to Theorem
5.2.1, we considered the density of edges relative to the number of vertices in the entire
graph. In order to keep the following discussion aligned with the definitions of Subsection
5.2.1, let us use the convention of Theorem 5.2.1 of considering densities relative to the
number of vertices in the entire graph. Therefore, in our density tensors we set µ(i, j) as
the number of edges in E(H) between Vi and Vj divided by n2 and set µC4(i, j) as the
number of directed edges in C(H) consisting of a pair from Vi and a pair from Vj , divided
by n4. Our hypergraph partition property is now defined as the following.

Definition 13. Let Ψ(k, ε) denote the set of density tensors for partitions (V1, . . . , Vk)
which are equipartitions, and in addition for at least a 1− ε fraction of the pairs 1 ≤ i <

j ≤ k we have µC4(i, j) = 1
4k4µ4(i, j)± ε

4k4 .

It is not hard to see that the above Ψ is efficiently checkable for proximity as per
Definition 9, as required for Theorem 5.2.1 and Theorem 5.2.2.

We claim that a partition satisfying Ψ over H indeed satisfies the (local) regularity
condition over G. For simplicity, we ignore additive O( k

n) factors all throughout the
following.

Claim 5.4.3. Given a graph G, let H = H(G) be the hypergraph defined above. Then,
a partition of V (G) into sets V1, . . . , Vk is ε-regular if and only if the same partition of
V (H) satisfies Ψ(k, ε). Also, if a partition of V (H) ε

16k4 -closely satisfies Ψ(k, 1
2ε) then the

same partition of V (G) is ε-regular.

Proof. For two disjoint vertex sets W1,W2, Let us define by E(W1,W2) the set of edges
of E(H) from W1 to W2, and by C4(W1,W2) the set of 4-edges of C(H) of type
{{u1, u2}, {v1, v2}} with u1, u2 ∈ Vi and v1, v2 ∈ Vj . It is now not hard to see that
(up to O( k

n) additive factors) we have d(Vi, Vj) = |E(Vi,Vj)|
(n/k)2

= k2µ(i, j), and similarly

dC4(Vi, Vj) = |C(Vi,Vj)|
(n/k

2 )2 = 4k4µC4(i, j). Now, the ε-regularity condition of Definition 11

requires that dC4(Vi, Vj) = d(Vi, Vj)4 ± ε. By the above this is equivalent to the condition
µC4(i, j) = 1

4k4µ4(i, j)± ε
4k4 , as needed.

As for the second assertion of the lemma, note that Ψ(k, 1
2ε) requires that for all but at

most 1
2ε

(
k
2

)
of the pairs (Vi, Vj) we have µC4(i, j) = 1

4k4µ4(i, j)± ε
8k4 . If a partition ε

16k4 -
closely satisfies this condition, it means that for all these pairs (Vi, Vj) we have µC4(i, j) =
1
4k4µ4(i, j)± ε

4k4 , which means by the above discussion that this partition is ε-regular.

The algorithm: We only prove the version that provides the actual partition, as prov-
ing the version that provides densities in constant running time is almost word-for-word
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identical, only instead of Theorem 5.2.1 one would use Theorem 5.2.2 respectively. We
start by describing a version of the algorithm that will run in the stated time with high
probability (say, 3/4) rather than in expectation. We will later add one more idea that will
give the required bound on the expectation. Given a graph G and a parameter ε > 0, our
goal is to produce an ε-regular partition of G of size at least 1/ε and at most k̂, assuming
that G has a 1

2ε-regular partition of size at most k̂ (remember that the algorithm does
not receive k̂ as part of the input). Starting from k = 1/ε, we execute the hypergraph
partitioning algorithm on the hypergraph H = H(G) that was described at the beginning
of this section with the partition instance Ψ(k, 1

2ε), with success probability δk (that will
be specified later) and with approximation parameter ε

16k4 . Note that each call to the
algorithm of Theorem 5.2.1 is done with a different value of k. Let us name the step
where we call the partition algorithm with partition-instance Ψ(k, 1

2ε) the kth iteration of
the algorithm.

A crucial point here is that we do not explicitly construct H as that may require
time Θ(n4). Rather, whenever the hypergraph partition algorithm of Theorem 5.2.1 asks
whether a pair of vertices {v1, v2} is connected to another pair of vertices {u1, u2}, we just
answer by inspecting the four corresponding edges of G (in constant time). If for some
integer k the hypergraph partition algorithm returns a partition of V (H), then we return
the same partition for V (G). Otherwise, we move to the next integer k + 1. If we reached
k = T5.4.1(1

2ε) = Tower(poly(1/ε)) we stop and return “fail”.4

Correctness: Let us now prove the correctness of the algorithm. Recall that we denote
by δk the error probability with which we apply the partition algorithm of Theorem 5.2.1
at the kth iteration. Remember that the algorithm does not know r in advance, and it may
be the case that r is as large as Tower(1/ε) (due to the lower bound of Gowers [Gow97]).
Therefore, one way to resolve this is to take each δk to be 1/Tower(1/ε). However, that
would mean that the running time of the partition algorithm would be Tower(1/ε) even
if r is small (as the running time depends on δk).

A more economic way around this problem is to take δk = 1
4 · 2−k. This way the

probability of making an error when considering all possible values of k is bounded by∑∞
k=1

1
4 · 2−k ≤ 1

4 . Note that this in particular means that with high probability we will
not return a partition of G that does not ε

16k4 -closely satisfy Ψ(k, 1
2ε). Combined with the

second assertion of Claim 5.4.3 we get that with high probability the algorithm returns
only partitions that are ε-regular.

We thus only have to show that if G has a 1
2ε-regular partition of size k̂, then the

algorithm will find an ε-regular partition of G of size at most k̂. Suppose then that G has
4The choice of the maximum k is because by Lemma 5.4.1 we know that any graph has a 1

2
ε-regular

partition of size at most T5.4.1(
1
2
ε). Therefore, if we reached that value of k then we know that we made

a mistake along the way.
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such a partition of size k̂. We show that with high probability the algorithm will find such
a partition during the k̂th iteration (of course it may be the case that it will find a smaller
partition during one of the previous iterations). Let H = H(G) be the hypergraph defined
above. By Claim 5.4.3 we know that as G has a 1

2ε-regular partition of size k̂, H satisfies
Ψ(k̂, 1

2ε). Therefore, with probability at least 1 − δk̂ ≥ 3/4, the partition algorithm will
return a partition of H that ε

16k̂4
-closely satisfies Ψ(k̂, 1

2ε). By the second assertion of
Claim 5.4.3 we know that such a partition is ε-regular.

Running time with high probability: Let us bound the running time of the algo-
rithm. Since with high probability the hypergraph partition algorithm will generate an
ε-regular partition of G when reaching the k̂th iteration (or earlier), we get that with high
probability the algorithm will terminate after at most k̂ iterations. When executing the
algorithm of Theorem 5.2.1 on Ψ(k̂, 1

2ε) we need to set s = 1, r = 4, δ = δk = 1
4 · 2−k. The

number of partitions is k while the proximity parameter should be ε
16k4 ≥ 1

16k5 (remember
that we start with k = 1/ε). It follows from Theorem 5.2.1 that the running time of the
hypergraph partition algorithm in the kth iteration is O(22O(k5)

+ n · poly(k)). As the
running time of k iterations is clearly dominated by the running time of the kth one, we
get that with probability at least 3

4 both the answer will be correct and the running time

will be bounded by O(22O(k̂5)
+ n · poly(k̂)).

Bounding the expected running time: The version of the algorithm described above
runs in time O(22O(k̂5)

+ n · poly(k̂)) with high probability, but this is not its expectation.
The reason is that the error of not finding one small existing regular partition could be
very costly, as it could be followed with many iterations of searching in vain for higher
values of k (remember that the larger k is, the more costly it is to execute the algorithm
of Theorem 5.2.1). Suppose then that we partition the execution of the algorithm into
phases, where in the kth phase we execute the algorithm described above from the first
iteration till iteration k, only now we use δk = 2−2b·k6

for all k iterations, with b a constant
to be chosen.

The modified algorithm clearly has a larger probability of outputting the required
regular partition and a smaller probability of returning a wrong partition (because
2−2b·k6

≤ k−12−k). Let us compute the expected running time, which we bound using∑∞
k=m pk · tk where pk is the probability of the algorithm performing the kth phase, and

tk is the “cost” of the kth phase, that is the running time of that phase. Similarly to what
we have discussed above, the time it takes to execute the iterations 1, . . . , k of the original
algorithm, even with the new δk, is bounded by O(22O(k5)

+ n · poly(k)). The contribution
of the first k̂ phases is clearly dominated by this expression for k = k̂.

Now, let us focus on pk for some k > k̂. Suppose that the graph has a 1
2ε-regular
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partition of size k̂. To reach phase k for some k > k̂, the algorithm must have in particular
failed the attempt made in phase k − 1 to find a partition of size k̂. Remember that the
failure probability of that attempt is at most δk−1. Therefore, the probability of reaching
phase k is at most δk−1 = 2−2b·(k−1)6

. Hence, the total time expectancy for this algorithm
(where we set b to be a large enough constant) is bounded by

∞∑

k=1/ε

pk · tk =
∞∑

k=1/ε

pk ·O(22O(k5)
+ n · poly(k))

= O(22O(k̂5)
+ n · poly(k̂)) +

∞∑

k=k̂+1

2−2b·(k−1)6 ·O(22O(k5)
+ n · poly(k))

= O(22O(k̂5)
+ n · poly(k̂)) + O(n)

= O(22O(k̂5)
+ n · poly(k̂)) .

5.5 Regular partition of a hypergraph

Another main application of Theorem 5.2.1 is finding regular partitions of r-uniform hy-
pergraphs. 5 Just like the algorithms for graph regularity have many applications for
graph problems, the algorithms for hypergraph regularity have applications for hyper-
graph problems.

Hypergraph regularity has more than one version. The version we investigate here
is the one discussed e.g. in [FK96] (the “vertex partition” version), which is not strong
enough for some applications such as proving Szemerédi’s Theorem on r-term arithmetic
progressions [Sze75], but still has many applications. For example, it was used in [FK96]
to obtain additive approximations for all Max-SNP problems. This notion of regularity
is defined in an analog manner to the definition of ε-subset-regularity for graphs. The
following is a quick rundown of the relevant definitions.

Definition 14. For an r-uniform hypergraph H and an r-tuple (U1, . . . , Ur) of vertex sets
of H, the edge density d(U1, . . . , Ur) is defined by the number of edges with one vertex
from every Ui, divided by

∏r
i=1 |Ui|. An r-tuple (U1, . . . , Ur) as above is called ε-regular,

if every r-tuple U ′
1, . . . , U

′
r such that U ′

i ⊆ Ui and |U ′
i | ≥ ε|Ui| satisfies d(U ′

1, . . . , U
′
r) =

d(U1, . . . , Ur)± ε.
Finally, an equipartition V1, . . . , Vk of the vertices of H is called ε-regular if for all but

at most an ε fraction of the possible r-tuples 1 ≤ i1 < i2 < · · · < ir ≤ k, we have that
(Vi1 , . . . , Vir) is ε-regular.

5A hypergraph H = (V, E) is r-uniform if all its edges have exactly r distinct vertices of V . These edges
are unordered, that is, they are just subsets of V (H) of size r. Hence a simple graph is just a 2-uniform
hypergraph.
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As is the case for graphs, an ε-regular partition of an r-uniform hypergraph into a
bounded number of sets always exists. However, obtaining an algorithmic version of the
hypergraph version of the regularity lemma turns out to be more involved than the graph
case, and in particular here we can no longer guarantee to find a small regular partition if
one exists.

Theorem 5.5.1. For any fixed r and ε > 0, there exists an O(n) time probabilistic
algorithm that finds an ε-regular partition of an r-uniform hypergraph with n vertices.
Moreover, if we only want to find the densities of an ε-regular partition, then there exists
an algorithm obtaining them in constant time.

The improvement over previous results that comes from the linearity of the algorithm
in its output becomes more apparent here: While the previous algorithms (see, for exam-
ple, [CR00, FK96]) for constructing a regular partition of an r-uniform hypergraph have
running time O(n2r−1) (note that this is close to being quadratic in the input size), our
algorithm has running time O(n) for any r. Like the previous algorithms, and unlike the
algorithm given in Theorem 5.4.2, the algorithm in Theorem 5.5.1 still has a tower-type
dependence on ε.

Unlike the algorithm for graph regularity from the previous section that directly finds
a regular partition, the algorithm of Theorem 5.5.1 makes use of some aspects of the
iterative procedure for proving the existence of a regular partition, which repeatedly refines
a partition of the hypergraph until a regular one is obtained. A direct implementation of
such a procedure would suffer from NP-Completeness issues, and even if this is resolved
in the style of previous works it would still take at least Ω(nr) time as all deterministic
algorithms have to (and in the previous works it actually takes longer). The crux of our
proof is to apply an idea from [FN05] along with Theorem 5.2.1 in order to implement (an
aspect of) the iterative procedure in time O(n).

5.5.1 Proof for Theorem 5.5.1

The main result in [FN05] required a way to quickly find the densities of a regular partition
of a graph.6 While the full result there does not seem translatable to our current body on
knowledge on hypergraphs, the part about finding a regular partition is indeed translatable
to a proof of Theorem 5.5.1. In the following we describe how to adapt the appropriate
arguments from [FN05] to hypergraph regularity.

Equipartitions and the index function: In all that follows, we consider an r-uniform
simple and unordered hypergraph H with a vertex set V , and we assume throughout that
|V | is large enough as a function of the other parameters (for a smaller |V |, we can just do

6In fact, in [FN05] a partition conforming to a strengthened notion of regularity was required.

53



an exhaustive search). An equipartition V1, . . . , Vk of the vertex set V is defined as before.
The main tool in proving regularity is the following numeric function, that in some sense
measures how much the densities of the r-tuples in the partition vary.

Definition 15. For an r-tuple of vertex sets (W1, . . . ,Wr) of an r-uniform hypergraph G,
we define the density d(W1, . . . , Wr) of the r-tuple as the number of edges with one vertex
from every Wi, divided by

∏r
j=1 |Wj |.

For an equipartition A = (V1, . . . , Vk) of an r-uniform hypergraph G into l sets, its
index ind(A) is defined as k−r

∑
1≤i1<i2<···<ir≤k(d(Vi1 , . . . , Vir))2.

The index of any equipartition is clearly always between 0 and 1. One immediate but
useful observation is the continuity of the index function with respect to the densities.

Claim 5.5.2. If an equipartition A = (V1, . . . , Vk) of G and an equipartition A′ =
(V ′

1 , . . . , V
′
k) of G′ satisfy |d(Vi1 , . . . , Vir) − d(V ′

i1
, . . . , V ′

ir
)| ≤ ε for all 1 ≤ i1 < i2 <

· · · < ir ≤ k, then the respective indexes satisfy |ind(A)− ind(A′)| ≤ 4ε.

Robustness, finality, and regularity: The main technical observation of Szemerédi in
[Sze78] is that non-regular partitions can be refined in a way that substantially increases
their index, while (because the index is bounded by 1) there must be partitions which
cannot be refined that way. This observation carries to hypergraphs. Let us state this
formally.

Definition 16. A refinement of an equipartition A = (V1, . . . , Vk) is an equipartition
B = (W1, . . . , Wl) such that every set Wj is fully contained in some Vij .

Given δ > 0 and a function f : N → N , we say that an equipartition A = (V1, . . . , Vk)
is (δ, f)-robust if there exists no refinement B = (W1, . . . ,Wl) for which k ≤ l ≤ f(k) and
ind(B) ≥ ind(A)+δ. The equipartition A = (V1, . . . , Vk) is called (δ, f)-final if there exists
no B = (W1, . . . , Wl) as above regardless of whether it is a refinement of A or not.

It is immediate to see that any (δ, f)-final partition is also (δ, f)-robust. We work with
the definition of a final partition because it is somewhat easier to handle in the framework
of Theorem 5.2.1. By using the fact that the index is always bounded between 0 and 1, it
is not hard to see the following.

Claim 5.5.3. For every δ > 0, t and f : N → N there exists T = T5.5.3(δ, f, t) such that
every graph G with n > T vertices has an equipartition A = (V1, . . . , Vk) with t ≤ k ≤ T

which is (δ, f)-final.

The main technical step in [Sze78] is using the “defect form” of the Cauchy-Schwartz
inequality to derive a connection between robustness and regularity. The proof is based
on refining the equipartition according to the algebra generated by the regularity counter
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examples for the irregular r-tuples, and works almost word for word for hypergraphs. We
will not reproduce it here as it has been proved in several papers, see e.g. [Chu91] and
[CR00].

Lemma 5.5.4. For every r and ε there exist δ = δ5.5.4(r, ε) and f(k) = f
(r,ε)
5.5.4(k) so that

any equipartition of an r-uniform hypergraph that is (δ, f)-robust is also ε-regular.

The above lemma immediately suggests a way to generate a regular partition. Start-
ing from an arbitrary partition, we can repeatedly refine the partition until a regular one
is obtained. Indeed, that is the main idea in the original proofs of Szemerédi’s theorem
for graphs and hypergraphs. The first problem with implementing this strategy algorith-
mically is that it is not clear how to efficiently detect if an r-tuple is not regular. This
problem, however, can be overcome (see e.g. [ADL+94] and [CR00]). The more relevant
problem to our investigation here is that just calculating edge counts for a partition of
the hypergraph already takes time Θ(nr), and our goal is an O(n) time algorithm. As
we explain in the sequel, if we are looking for a partition satisfying a somewhat stronger
condition than regularity, then one such partition can be produced in O(n).

Finding a regular partition: The proof of Theorem 5.5.1 now manifests itself as
checking a sequence of density tensor sets that each describes a partition into k sets
which is (δ, f)-final for the parameters we obtain from Lemma 5.5.4. However, finality (or
robustness) by itself cannot be described by a set of density tensors. What we can do is
test for density tensors which conform to a possible value of the index function, and then
try to verify that an equipartition is final by testing for finer partitions with somewhat
higher indexes and rejecting our equipartition if they exist. Claim 5.5.2 allows us to use
our approximate algorithms, while ensuring that the “negation” procedure will also work
(i.e. that for an equipartition that is not final we will indeed detect this).

For an integer k and 0 ≤ α ≤ 1, we let Ψ(k,α) be the set of all density tensors of possible
equipartitions into k sets whose index is at least α. We set δ = δ5.5.4(r, ε) and f(k) =
f

(r,ε)
5.5.4(k), and now for every 1/ε ≤ k ≤ f(T5.5.3(1

3δ, f, 1/ε)) and every α ∈ {0, 1
6δ, 2

6δ, . . . , 1}
we run either the algorithm of Theorem 5.2.1 or the algorithm of Theorem 5.2.2 (depending
on whether we want to find the actual partition or just the densities) on Ψ(k,α), with
approximation parameter 1

24k−rδ, and with success probability sufficient to ensure that
with probability at least 2

3 none of the iterations provides an erroneous answer.7

We are now interested in finding k0 and α0 = `
6δ for which we received a positive

answer for Ψ(k0,α0) and received a negative answer for all Ψ(k,α0+2δ/3) for k0 ≤ k ≤ f(k0).
7The additional k−r factor in the approximation parameter is because of the difference in the normal-

ization between the definition of the density tensors in Ψ and the normalization of the density measure
d(W1, . . . , Wr).
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To conclude the proof, it is enough to convince ourselves that the following observations
hold assuming that none of our iterations has provided an erroneous answer.

• For every k we can approximate the maximum index of an equipartition into k parts
up to an error of 1

6δ (in either direction). The lower bound follows directly from our
procedure, while the upper bound follows from Claim 5.5.2

• A k0 as above is obtained. This is because the k′ for which there is a (1
3δ, f)-final

partition into k′ sets (which exists by Claim 5.5.3) will in particular be detected due
to the first item above (this does not mean that we will necessarily obtain k0 = k′).

• For the k0 that is obtained, the corresponding witnessing equipartition is (δ, f)-final
and hence ε-regular. This is again due to the bounds of the first item above on the
error in our index estimates.

The last two items above imply that we can then (by extracting the required data about
the partition witnessing a maximum index for k0) find our regular partition.

5.6 Overview of the proof of Theorems 5.2.1 and 5.2.2

Before going to the formal proof of Theorem 5.2.1 and Theorem 5.2.2 we briefly describe
the general idea of how it is done.

The outermost layer of the proof borrows from the proof of [GGR98] for graph parti-
tions. Assuming that the hypergraph admits a partition Π = {V1, . . . , Vk} of the vertices
with the desired densities, we first split V into ` = O(1/ε) parts Y 1, Y 2, . . . , Y ` of equal
size. Then, for every part Y i, a sample set U ⊂ V \Y i is chosen at random with the hope
of obtaining sufficiently many vertices from every Vj . Assume for now that we know the
intersection of U with Π, i.e. the partition ΠU = {U ∩ V1, . . . , U ∩ Vk}. Then we try to
reconstruct Π from its intersection with U as follows. First, the vertices in Y i are clustered
into a finite number of clusters, according to their degrees in the various components of ΠU

(the degree of v is the number of hyperedges in which v participates, counted for all sets of
edges and all possible configurations with respect to ΠU ). Intuitively, each cluster groups
together the vertices that look similar with respect to U and ΠU . Assume in addition that
for every cluster C ⊂ Y i of similar vertices we also know their approximate distribution in
the components of Π, i.e. we know some approximate β̄ = {β1, . . . , βk}, where for every
j, βj ≈ |C∩Vj |

|C| . Then we partition every cluster of Y i into the k components in a way that
preserves the normalized intersection sizes, according to the corresponding β̄.

Since we do not know the intersection ΠU , we simply try every possible partition of U .
Similarly for the second assumption, since we do not know the intersection sizes for each
cluster, we try all possibilities (up to some allowed deviation). For every such combination
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we get a different partition of V , and we test (by sampling) if one of them would give a
reconstruction with the required densities.

The motivation for this kind of reconstruction is based on the following central ob-
servation. Suppose that Y ⊂ V is a small enough set (but still linear in n) containing
vertices that have similar degrees in the various Vi’s. Assume that Π′ = {V ′

1 , . . . , V
′
k} is a

new partition of V that is constructed from Π by redistributing the vertices of Y arbitrar-
ily, so long as the component sizes are almost preserved (i.e. for all i, |V ′

i ∩Y | ≈ |Vi ∩Y |).
Then the densities of the partition Π′ are almost similar to the densities of Π. We should
also note that, like in [GGR98], it is not possible to classify all vertices of V at once while
maintaining a small approximation error, so every Y i is classified according to a partition
of a different sample set U i.

Although the overall strategy of the algorithm is similar to the GGR-algorithm, there
are several differences between our analysis and the original one in [GGR98]. One of the
reasons is that there are many ways in which an edge with r vertices can intersect the k

vertex sets, complicating the procedure of classifying the vertices according to the edges
they have with the sets of the partition. This reflects on which statistics we keep track
of, and also on how we obtain an approximation thereof. Another reason is that Theorem
5.2.1 can have as an input a general set of density tensors, rather than intervals of allowed
densities as in the GGR-algorithm [GGR98]. This extension of the GGR formalism allows
us to use the algorithm more easily and efficiently in our applications.

5.7 The proof of Theorem 5.2.1 and Theorem 5.2.2

First we define the notion of partitioning oracles, and state the central lemma that implies
the proof of Theorem 5.2.1 and Theorem 5.2.2.

Definition 17. A mapping π : V (H) → [k] is called a (q, c)-partition oracle if:

• for any v ∈ V (H), the query complexity of computing π(v) is bounded by O(q)

• for any v ∈ V (H), the time complexity of computing π(v) is bounded by O(c)

For a subset Y ⊂ V (H), we define a partial partition oracle π : Y → [k] similarly.
Given a sequence {πi}m

i=1 of m partition oracles, we say that the sequence {πi}m
i=1

has shared query complexity f , if for every v ∈ V (H) computing the m values
π1(v), π2(v), . . . , πm(v) requires at most f queries in all.

Now we are ready to state the main lemma required for the proof of Theorems 5.2.1
and 5.2.2.

Lemma 5.7.1. Let H = (V,E1, . . . , Es) be a hypergraph, let 0 < ε < 1 be a fixed constant
and let Ψ be a set of density tensors. There exist m = m5.7.1(ε, s, r, k) = exp

(
ε−O(s·r·kr)

)
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and f = f5.7.1(ε, s, r, k) = poly(kr, s, 1/ε) for which there is a randomized algorithm AR

that generates a sequence of size m of
(
f, f)-partition oracles {πi : V (H) → [k]}m

i=1 with
shared query complexity f , such that:

• If H satisfies Ψ then with probability at least 1
2 one or more of the m partition oracles

induces a partition which ε-approximately satisfies Ψ.

• The algorithm AR itself makes no queries to H, and it does not depend on the
property Ψ.

The running time of algorithm AR is bounded by O(m).

Note that the algorithm AR does not depend on H or Ψ at all. It only depends on the
general parameters (s, r1, . . . , rs, ε, k) of the problem, and none of the parameters of the
specific input.

Informally, our partition oracles will be constructed as follows.

Representation: every partition oracle π will be associated with some small subset
U ⊂ V (H) of H’s vertices, a partition ΠU of U into k components, and a vector β̄.
The set U will be usually shared among the partition oracles within a sequence.

Query complexity: for every vertex v ∈ V (H), some subset of edges within U ∪ {v}
will be queried. As we mentioned above, in case of sequences of partition oracles
the set U will be shared, and hence the shared query complexity of the considered
sequences will be small (when U is small).

Operation: every vertex v ∈ V (H) is classified according to the outcomes of the queries
in the previous stage and the partition ΠU . Then it is mapped to some j ∈ [k] at
random, according to the vector β̄ which is interpreted as a distribution.

Before proving Lemma 5.7.1, we state two additional lemmas and through them prove
Theorem 5.2.1 and Theorem 5.2.2.

Lemma 5.7.2. Let H be a hypergraph and let Ψ be a set of density tensors. For every
ε > 0, if H ε′-approximately satisfies Ψ, where ε′ , ε

2r , then H also ε-closely satisfies Ψ.

Lemma 5.7.3. Let Ψ be a property that is checkable for proximity in time TC(Ψ), and
let {πi}m

i=1 be a sequence of m (q, c)-partition oracles with shared query complexity f . For
every 0 < δ, ε < 1, there is a randomized algorithm AS that satisfies the following.

• If one of the partition oracles πi defines a partition Πi that ε/2-approximately satis-
fies the property Ψ, then with probability at least 1 − δ

2 algorithm AS outputs i and
a density tensor ψ ∈ Ψ which is ε-approximated by ψΠi – the true density tensor of
Πi.
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• If for every πi the induced partition Πi does not even ε-approximately satisfies Ψ,
then algorithm AS outputs False with probability at least 1− δ

2 .

Furthermore, the query complexity of AS is bounded by

O

(
(r · f + s) · (1

ε
)2 · log(

m · skr

δ
)
)

and the time complexity of AS is bounded by

O

(
m · c · (r · f + s) · (1

ε
)2 · log(

m · skr

δ
)
)

+ m · TC(Ψ)

We proceed with proving Theorem 5.2.1 and Theorem 5.2.2, and postpone the proof
of Lemmas 5.7.2 and 5.7.3 to Subsections 5.7.4 and 5.7.4 respectively.

Proof of Theorem 5.2.1

Proof. First we apply Lemma 5.7.1 with accuracy parameter ε′ = ε
4r , repeating it

2 log(1/δ) independent times, and thus we obtain m′ = m · 2 log(1/δ) partition oracles
with shared query complexity 2 log(1/δ) · f , where we know that if H satisfies Ψ, then
with probability at least 1− 1

2δ at least one of the m′ partition oracles induces a partition
which ε′-approximately satisfies Ψ. Then we can apply the algorithm from Lemma 5.7.3
on all m′ partitions and write down a 2ε′-approximately satisfying partition if we find one,
and output “No Partition” otherwise. In case we found a 2ε′-approximately satisfying
partition oracle π, we partition all vertices of H in time O(n · f). Then we modify the re-
sulting partition by making a minimal number of vertex moves according to Lemma 5.7.2
(see its proof below), so if one of the oracles indeed 2ε′-approximately satisfies Ψ then
with probability 1 − δ/2 Lemma 5.7.3 detected it and hence its corresponding modified
partition ε-closely satisfies Ψ. As a conclusion, the time complexity of our algorithm is
bounded by

O
(
m′ ·

[
f2
5.7.1 ·

( 1
ε′

)2
· log

(m′skr

δ

)
· r · s + TC(Ψ)

]
+ n · f5.7.1

)
=

exp
(
(r/ε)O(s·r·kr)

)
· log2(1/δ) + n · poly(kr, s, 1/ε)

and the probability of success is at least 1−δ, matching the assertions of Theorem 5.2.1.

Proof of Theorem 5.2.2

Proof. First we apply Lemma 5.7.1 with ε′ = ε
4r , repeating it 2 log(1/δ) independent

times and obtaining m′ = m · 2 log(1/δ) partition oracles with shared query complexity
2 log(1/δ) · f , where with probability at least 1 − 1

2δ, at least one of them induces an
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ε′-approximately satisfying partition in the case that H satisfies Ψ. Then we can apply
the algorithm from Lemma 5.7.3 on all m′ partitions and output the density tensor ψ ∈ Ψ
if we received one from algorithm AS described there. Observe that by Lemma 5.7.2, the
density tensor ψ (in the case that the algorithm AS did not err) is ε-closely satisfied by
H. Hence the total probability of success is at least 1 − δ. The time complexity of our
algorithm is bounded by

exp
(
(r/ε)O(s·r·kr)

)
· log2(1/δ)

and its query complexity is bounded by

poly(kr, s, 1/ε) · log2(1/δ)

matching the assertions of Theorem 5.2.2.

5.7.1 Proof of Lemma 5.7.1

As we mentioned in Section 5.6, in order to maintain a small approximation error the
partitioning algorithm AR is going to classify the vertices of H incrementally, by first
splitting V (H) into sets Y 1, Y 2, . . . , Y 8/ε and then partitioning every set Y i separately.
Therefore, we first state a technical lemma related to this partial partitioning algorithm,
and using it we prove Lemma 5.7.1.

Lemma 5.7.4. Let H = (V,E1, . . . , Es) be a hypergraph, let 0 < α < ε < 1 be fixed
constants and let Ψ be a set of density tensors. Let in addition Π = {V1, . . . , Vk} be a
partition of H’s vertices that α-approximately satisfies the property Ψ and let Y ⊂ V (H)
be a set of size ε

8n.
There exists m̂ = m̂5.7.4(ε, s, k, r) = exp

(
ε−O(s·kr)

)
and f = f5.7.4(ε, s, k, r) =

poly(kr, s, 1/ε) for which there is a randomized algorithm A1/ε that outputs a sequence
of m̂ partial (f, f)-partition oracles for Y with shared query complexity f , without looking
at Π, so that with probability at least 1 − ε

16 at least one of the partition oracles induces
a partition ΠU = {Y1, . . . , Yk} such that combining it with the original partition Π gives
a partition Π̂ = {V̂1, . . . , V̂k} (where for every i, V̂i =

(
(Vi \ Y ) ∪ Yi

)
), which (α + ε2

8 )-
approximately satisfies Ψ.

Furthermore, the partial partitioning algorithm A1/ε makes no queries to H at all, is
not dependent on Ψ, and its time complexity is bounded by O(m̂).

Supposing that we have such a partial partitioning algorithm A1/ε, we show how to
construct the main partitioning algorithm AR from Lemma 5.7.1.

Proof (of Lemma 5.7.1).
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Proof. Assume that H has a partition Π that satisfies the property Ψ. First we arbitrarily
split V into l = 8/ε equal-sized sets {Y 1, . . . , Y l}. Then we execute for every Y i the partial
partitioning algorithm A1/ε, and write down the m̂ partition oracles of each Y i. Recall
that the partial partitioning algorithm A1/ε does not require knowledge of the existing
partition Π. Using these m̂ · l partial partition oracles {(π1

1, . . . , π
1
m̂), . . . , (πl

1, . . . , π
l
m̂)} we

construct a set of m̂l complete partition oracles for V by going over all possible combina-
tions. Namely, we combine every possible sequence π1

i1
, π2

i2
, . . . , πl

il
of l partial oracles into

a complete oracle, that partitions all of H’s vertices into k components. We claim that
with probability at least 1

2 , one of these m̂l complete partition oracles induces a partition
that ε-approximately satisfies Ψ.

Assume that we start with an implicit partition Π0 = {V 0
1 , . . . , V 0

k } of H that satis-
fies the property Ψ, or equivalently α-approximately satisfies Ψ for α = 0. Since every
execution of A1/ε fails with probability at most ε

16 = 1
2l , with probability at least 1/2

we have a sequence of l “correct” partial partition oracles that admits the following con-
struction. To construct the correct complete partition oracle, we take the first “correct”
induced partition ΠY 1 = {Y 1

1 , . . . , Y 1
k } of Y 1, and build (implicitly) a new complete parti-

tion Π1 = {V 1
1 , . . . , V 1

k }, where V 1
i = (V 0

i \Y 1)∪Y 1
i , and where we now know (by Lemma

5.7.4) that Π1 is a partition that α + ε2

8 = ε2

8 -approximately satisfies Ψ. Now we continue
with a “correct” induced partition of Y 2 with respect to Π1, and build a complete partition
Π2 that 2 · ε2

8 -approximately satisfies Ψ and so on. Eventually, with probability 1/2, there
is a “right” sequence of the induced partial partitions ΠY i , from which we get a complete
partition Πl which (due to the triangle inequality) 8

ε · ε2

8 = ε-approximately satisfies Ψ as
required. Moreover, the way that the partitions are constructed is such that for this to
work (by trying out all combinations of the provided partition oracles of Y 1, . . . , Y l) we
require no knowledge of Π at all, apart from that such a partition exists.

5.7.2 Algorithm A1/ε - proof of Lemma 5.7.4

Overview

The main idea behind the partial partitioning algorithm is the following. Let Π =
{V1, . . . , Vk} be the (unknown) partition which approximately satisfies the property Ψ, and
let Ỹ be some small enough set of vertices. We refer to the type of an edge e = (v1, . . . , vri)
as its configuration with respect to Π, i.e. the number of vertices that it has in every com-
ponent, and their positions in e. If almost all vertices in Ỹ participate in the same number
of edges of any type (with respect to V1 \ Ỹ , . . . , Vk \ Ỹ ), then we can redistribute Ỹ in
any way, as long as the component sizes are almost preserved, and still get a partition Π′

which is almost as good as Π.
Once we convinced ourselves that this is true, we can think of a somewhat larger set
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Y ⊂ V , and its own partition {Y1, . . . , Yc} where in every Yi (similarly to the set Ỹ above)
almost all vertices are “similar” (note that this partition of Y is not related to the main
partition Π, and the partition size c depends among other things on the level of accuracy
in our notion of “almost”). Now, if we redistribute each Yi in a way that preserves the
component sizes in Π, then still (after the c redistributions) we get a partition which
approximately satisfies the property Ψ.

In the following section we define the notion of “almost similar vertices” more precisely,
and show how to cluster a given set in a way that groups almost similar vertices together.

Clustering vertices

Let Y 0 ⊂ V be a fixed set of vertices and let Π = {V1, . . . , Vk} be some partition of V .
Denote by {W1, . . . , Wk} the partition that Π induces on V \Y 0, i.e. {V1\Y 0, . . . , Vk\Y 0}.
Our aim in this section is to cluster every vertex v ∈ Y 0 according to its relative density
scheme with respect to {W1, . . . , Wk}. Referring to our discussion above, we are going
to group the “similar” vertices together. The clustering procedure is described precisely
below, but first we start with some definitions.

We denote by Φp
i the restriction of Φi to the domain [ri]\{p}. Namely, Φp

i is the set of
all mappings from [ri] \ {p} to [k]. Fix an edge set Ei, an index p ∈ [ri], a vertex v ∈ Y 0

and a mapping φ ∈ Φp
i . Let Γp

i,φ(v) denote the set

{
(v1, . . . , vri) ∈ Ei :

(
∀j∈[ri]\{p} vj ∈ Wφ(j)

)
∧

(
vp = v

)}

Intuitively, for every extension φ′ ∈ Φi of φ, the size of Γp
i,φ(v) measures how the density

µπ
i,φ′ is affected when putting the vertex v in the set Vφ′(p). Since we are interested in the

normalized densities of such edges, we define

γp
i,φ(v) =

|Γp
i,φ(v)|
nri−1

Let γ(v) = 〈γp
i,φ(v)〉i∈[s],p∈[ri],φ∈Φp

i
denote the density tensor of the vertex v considering

all possible edge sets, places and mappings with respect to the partition {W1, . . . , Wk}.
This density tensor encodes all information on v that we will use in the following (going
back to our previous discussion, “similar” vertices are the vertices that have “similar”
density tensors). Now we build an auxiliary set of quantitative density tensors. First
let Qε =

{
0, ε

32 , 2ε
32 , . . . , 1

}
be the set of integer multiples of ε

32 in [0, 1]. Then the set of
possible clusters is defined as

A = {ᾱ = 〈αp
i,φ〉i∈[s],p∈[ri],φ∈Φp

i
: ∀i∈[s],p∈[ri],φ∈Φp

i
αp

i,φ ∈ Qε}

In this set of (1
ε )O(kr·s·r) clusters (recall that r is the maximal arity of the edge sets) we
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group together the vertices that have approximately (up to ε
16) the same density tensors.

The precise clustering of a vertex v ∈ Y 0 is performed as follows. We say that the tensor
γ(v) of v is close to the cluster ᾱ ∈ A if for every i, φ, p we have γp

i,φ(v) = αp
i,φ ± ε/32.

Note that one tensor γ(v) can be close to multiple clusters. The final clustering will be
based on sampled approximate tensors of H’s vertices (rather than the real tensors), and
all we will require is that almost every vertex v goes to a cluster that is close to γ(v).

In the following we show that redistributing vertices from the same cluster cannot
change by much the resulting edge densities from those of the initial partition of V .

Redistributing vertices from the same cluster

Let Π = {V1, . . . , Vk} be any fixed partition of V , and let Y 0 ⊂ V be a set of at most ε
8n

vertices. As above, denote by {W1, . . . , Wk} the partition induced by Π on V \ Y 0. Let
Y 0,ᾱ be a subset of Y 0 such that all but at most ξ|Y 0,ᾱ| vertices v ∈ Y 0,ᾱ are close to
the same cluster ᾱ with respect to the partition {W1, . . . ,Wk}. This means that there is
a tensor ᾱ = 〈αp

i,φ〉i∈[s],p∈[ri],φ∈Φp
i

such that for all but at most ξ|Y 0,ᾱ| vertices v ∈ Y 0,ᾱ

we have ∀i∈[s],p∈[ri],φ∈Φp
i

γp
i,φ(v) = αp

i,φ ± ε/32. We claim that if the vertices of such a
Y 0,ᾱ are redistributed over the k components of Π in a way that approximately preserves
the number of vertices in every component, then the edge densities (according to any
index i and mapping φ ∈ Φi) remain almost the same as before the redistribution of Y 0,ᾱ.
Formally:

Claim 5.7.5. Let (Y 0,ᾱ
1 , . . . , Y 0,ᾱ

k ) be any partition of Y 0,ᾱ that for each 1 ≤ j ≤ k satisfies∣∣|Vj ∩Y 0,ᾱ| − |Y 0,ᾱ
j |∣∣ < η|Y 0,ᾱ|, and let Π̂ = {V̂1, . . . , V̂k} = {W1 ∪Y 0,ᾱ

1 , . . . ,Wk ∪Y 0,ᾱ
k } be

the redistributed partition of V . Then the following holds.

• ∀i∈[k],
∣∣|Vj | − |V̂j |

∣∣ < η|Y 0,ᾱ|

• ∀i∈[s],φ∈Φi
,

∣∣∣|EΠ
i,φ| − |EΠ̂

i,φ|
∣∣∣ ≤ ( 3ε

16 + ξ + η)|Y 0,ᾱ|nri−1

Proof. The first inequality follows directly from our assumptions, so we move to the second
one. Fix i and φ. We call an edge e relevant with respect to Π, i and φ if e ∈ EΠ

i,φ. Our
purpose is to show that for all i and φ, the size of EΠ

i,φ is close to the size of EΠ̂
i,φ. The

amount of relevant edges which have no vertices in Y 0,ᾱ at all is preserved. We partition
the rest of the relevant edges into two types:

I1 = {e ∈ (EΠ
i,φ ∪ EΠ̂

i,φ) : |e ∩ Y 0,ᾱ| = 1}

I≥2 = {e ∈ (EΠ
i,φ ∪ EΠ̂

i,φ) : |e ∩ Y 0,ᾱ| ≥ 2}

Clearly the size of I≥2 is bounded by |Y 0,ᾱ|2nri−2 ≤ ε
8 |Y 0,ᾱ|nri−1. As for I1, its influence

on the change in the density may be caused by one of the following.
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• At most ξ|Y 0,ᾱ| vertices that do not reside in the same cluster as the others. These
vertices can participate in at most ξ|Y 0,ᾱ|nri−1 relevant edges.

• The difference between the vertices that reside in the same cluster. This can change
the number of relevant edges by at most ε

16 |Y 0,ᾱ|nri−1.

• The difference in the sizes of the components before and after the redistribution.
Since these differences are bounded by η|Y 0,ᾱ|, the change in the number of crossing
edges due to them is at most η|Y 0,ᾱ|nri−1.

Summing up, the difference in the number of relevant edges before and after the redistri-
bution is at most ( 3ε

16 + ξ + η)|Y 0,ᾱ|nri−1.

Redistributing general sets of vertices

Until now we referred to sets Y 0,ᾱ in which almost all vertices are similar. Now we turn to
the case where we need to redistribute an arbitrary set Y 0 of size at most ε

8n (let the Vj ’s,
Wj ’s and the V̂j ’s denote the sets of the above partitions with respect to Y 0). Assume for
now that we have an oracle that provides us the following information:

(i) A clustering {Y 0,ᾱ1 , . . . , Y 0,ᾱc} of Y 0, such that all but at most an ε/4 fraction of
the vertices in Y 0 are assigned to a close cluster with respect to {W1, . . . , Wk}

(ii) For every Y 0,ᾱi and Vj , the approximate normalized size of |Y 0,ᾱi ∩ Vj |. Namely,
for each Y 0,ᾱi and Vj define ζᾱi

j , |Y 0,ᾱi∩Vj |
|Y 0,ᾱi | as the true intersection size. Then the

oracle provides a sequence
(
βᾱi

j

)
i∈[c],j∈[k]

of reals such that

k∑

j=1

c∑

i=1

(∣∣ζᾱi
j − βᾱi

j

∣∣ · |Y 0,ᾱi |
)

<
ε

4
· |Y 0|

Denoting by ξh the fraction of vertices in every Y 0,ᾱh that are not close to the cluster
ᾱh, we have

∑
h ξh|Y 0,ᾱh | ≤ ε

4 |Y 0|, and denoting by ηh the sum
∑k

j=1

∣∣ζᾱh
j − βᾱh

j

∣∣ we
have

∑
h ηh|Y 0,ᾱh | ≤ ε

4 |Y 0|. Then, after any redistribution of the vertices of each Y 0,ᾱh

according to the sequence
(
βᾱi

j

)
i∈[c],j∈[k]

, from (ii) we have:

∀j∈[k] :
∣∣|Vj | − |V̂j |

∣∣ <
ε

4
|Y 0| ≤ ε2

32
n

and according to (i), by Claim 5.7.5 we have:

∀i∈[s],φ∈Φi
:
∣∣∣|EΠ

i,φ| − |EΠ̂
i,φ|

∣∣∣ ≤
∑

h

(
3ε

16
+ ξh + ηh)|Y 0,ᾱh |nri−1 ≤ ε

2
|Y 0|nri−1 ≤ ε2

16
nri
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In terms of density tensors, we have: ∀j∈[k] : |ρΠ
j − ρΠ̂

j | ≤ ε2

32 and ∀i∈[s],φ∈Φi
: |µΠ

i,φ−µΠ̂
i,φ| ≤

ε2

16 .
The only thing left is to describe how to simulate the oracles for (i) and (ii) above. As

for the second item (ii), we can just provide corresponding partitions for all possible sets
of intersection sizes as follows. Let

B =
{

β̄ =
(
βᾱ

1 , . . . , βᾱ
k

)
ᾱ∈A : (βᾱ

j ∈ {0,
ε

32
,
2ε

32
, . . . , 1}) ∧ (

∑

j

βᾱ
j = 1)

}

The size of B is bounded from above by (32/ε)k·|A| = exp
(
ε−O(s·r·kr)

)
. For every possible

β̄ ∈ B, we partition the vertices of every Y 0,ᾱ into the k components according to the distri-
bution defined by

(
βᾱ

1 , . . . , βᾱ
k

)
, i.e. when queried about a vertex v ∈ Y 0,ᾱ we put it into Vj

with probability βᾱ
j , for every j ∈ [k]. Observe that there exists β̄ =

(
βᾱ

1 , . . . , βᾱ
k

)
ᾱ∈A ∈ B

which approximates the true intersection values
(
ζᾱ
1 , . . . , ζᾱ

k

)
ᾱ∈A even closer than needed,

and then for n = ω(s ·kr), with probability 1−o(1), redistributing according to this vector
β̄ will make the intersection sizes as close as required. Note that this avoids having to
know the actual sizes of the intersections of Y 0,ᾱ with the components V1, . . . , Vk while
constructing a partial partition oracle for the vertices in Y 0.

For the first item (i), we are going to choose a random set U of vertices in V \ Y 0,
and approximate the clusters of the vertices in Y 0 according to their density tensors with
respect to the partition of U induced by Π. Once again, since we do not know the partition
Π, we shall try all possible partitions of U as follows. Let U ∈ (V \ Y 0) be a set of size T .
We denote by PU the set of all possible k-way partitions of U , namely PU = {ΠU : ΠU is
a k-way partition of U}. Note that the size of PU is at most kT . We are going to partition
the set U according to each one of the partitions in PU , and clearly one of them is the
correct one, which is the one that is induced by the initial partition Π = {V1, . . . , Vk}.
The following lemma states that sampling from a small set U gives a good approximation
of the clusters for most of the vertices in Y 0.

Lemma 5.7.6. Let Π = {V1, . . . , Vk} be a partition of V , let Y 0 ⊂ V be a set of size ε
8n,

and let U ⊂ V \ Y 0 be a uniformly chosen random set of r · t = r · 216

ε2 log l·s·r·kr

ε vertices
(possibly with repetitions). There is a (deterministic) algorithm that outputs a sequence
of krt · |B| = exp

(
ε−O(s·r·kr)

)
partial oracles, that have shared query complexity s · t and

that query only edges contained in U ∪Y 0 to provide presumed density tensors for vertices
in Y 0. With probability at least 1− 1/(2l) over the choice of U at least one of the oracles
clusters the vertices of Y 0 so that all but at most ε

4 |Y 0| of them are clustered correctly with
respect to Π and A. Moreover, both the production and the operation of these oracles do
not depend on Π at all.
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Estimating the clusters by sampling – Proof of Lemma 5.7.6

Let Π = {V1, . . . , Vk} (we first assume here that the underlying partition of the vertices
is known and later show how to remove this dependency), let {W1, . . . , Wk} = {V1 \
Y 0, . . . , Vk \ Y 0}, and let us fix a vertex v ∈ Y 0, an edge set Ei, i ∈ [s], a position p ∈ [ri]
and a mapping φ ∈ Φp

i . We are going to estimate the value of γp
i,φ(v) by sampling random

sets of vertices from V , and calulating the fraction of the relevant edges within the chosen
random subsets and our fixed vertex v. Recall that

γp
i,φ(v) , 1

nri−1

∣∣∣
{

(v1, . . . , vri) ∈ Ei :
(
∀j∈[ri]\{p} vj ∈ Wφ(j)

)
∧

(
vp = v

)}∣∣∣

We should now note the following: If we choose uniformly, independently and
with repetition a sequence of ri − 1 vertices v1, . . . , vp−1, vp+1, . . . , vri , and denote
by F the event that for every i 6= p between 1 and ri we have vi ∈ Wφ(i) and
(v1, . . . , vp−1, v, vp+1, . . . , vri) ∈ Ei, then the probability of F is exactly γp

i,φ(v). Now,
we would like to repeat this step t = 216

ε2 log l·s·r·kr

ε times independently, and compute
γ̂p

i,φ(v), which is the fraction of the number of times where the event F occurred (later we
will show what to do here without prior knowedge of W1, . . . , Wk). Applying the additive
Chernoff bound we have

Pr
[
|γ̂p

i,φ(v)− γp
i,φ(v)| > ε

32

]
< 2 · exp(−2(

ε

32
)2t) <

ε

32 · l · s · r · kr

To be able to classify v completely by our oracle, we first choose uniformly and inde-
pendently (with repetitions, although those would clearly occur with probability o(1)) a
sequence U = {w1, . . . w(r−1)t} of (r − 1)t vertices. For a requested vertex v, we can for
every i ∈ [s], p ∈ [ri] and φ ∈ Φp

i compute the estimation γ̂p
i,φ(v) by dividing U into sub-

sequences of length ri− 1 and using the first t of them in the estimation procedure above.
By the union bound, the probability for a given v that there exists any i, p and φ for
which the deviation is more than ε

32 is bounded by ε
32l . Hence, by the Markov inequality,

with probability at least 1− 1
3l the sequence U is such that for all vertices v ∈ Y 0 but at

most an ε/4 fraction of them, we have γ̂p
i,φ(v) = γp

i,φ(v) ± ε
32 for all i, p and φ. We also

note that the number of input queries that we need in order to produce the classification
of v is clearly bounded by t · s · r · kr

Now, to remove the dependency on Π we still have to deal with the problem of not
knowing W1, . . . ,Wk. We do know which vertices are not in any Wi at all (because we know
Y 0, which is given by the algorithm and is not dependent on the input hypergraph), so we
can classify those vertices from U which are not in these sets. For the other vertices, we
have no choice but to construct appropriate oracles for any possibility of partitioning them
into k sets, as one of these partitions would be the correct one conforming to W1, . . . , Wk.
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Here it is important that U is chosen only once, and then re-used for all our oracles in all
of their oracle queries.

5.7.3 Some possible ad-hoc optimizations for properties

In all our treatment, we made no attempt to optimize the dependency functions themselves
but only to optimize the function types. Moreover, we applied the general versions of
Theorem 5.2.1 and Theorem 5.2.2 also for properties where clearly our requirements on
the partition tensor ψΠ are rather sparse. Before we conclude the proof details for these
theorems, this is a good place to sketch how we can use such specific features of special
cases to substantially optimize the algorithm.

For several of the special cases discussed in this chapter there is a way to ignore many
of the values γp

i,φ(v), thus reducing the size of A and obtaining much shorter running
times. Here we sketch how it can be done for two of the properties.

k-colorability of r-uniform hypergraphs: We note that this partition property de-
pends only on the density of edges inside every partition component Vj . These are only
affected by edges including a vertex v whose other r − 1 vertices are in the same Vj . In
other words, we need only to count the values γp

1,φ(v) for which φ : [r] \ {p} → [k] is a
constant function, and there are only rk of those. Moreover, taking into consideration that
this is a property of simple (undirected) hypergraphs, we can also do away with the index
p. Thus, the power of 1/ε that is hidden in the complexity estimates of the colorability
algorithm would be Õ(k) rather than depend on kr (only multiplicative coefficients would
depend on r).

A similar optimization, to a somewhat lesser extent, are also possible for the problem
of estimating the number of satisfiable clauses in a k-CNF instance.

Optimizations for Theorem 5.4.2: The property Ψ used in its proof (see Section
5.4.3) concerns hypergraphs with 4-edges, but these are always between two sets. There-
fore, we only need to consider values γp

2,φ(v) where the function φ has a range of size 2.
Along with some additional care taken in the proof itself, it appears possible to replace
the k̂5 in the estimates there with k̂2+o(1).

5.7.4 The last missing details of the proof

From ε′-approximation to ε-closeness – Proof of Lemma 5.7.2

In this section we show that any partition Π, which ε′ = ε
2r -approximately satisfies Ψ, can

be turned into a partition which ε-closely satisfies Ψ by correcting the number of vertices
in each component, where the correction is done by moving around a minimal number of
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vertices according to some close density tensor in Ψ. The idea behind this observation
is that a partition which ε′-approximately satisfies Ψ can be corrected (by definition) by
moving vertices in a way that every Vj either gains up to ε′n vertices or loses up to ε′n
vertices (but not both). Now we show that as a consequence of such moves the difference
in the measured edge densities before and after the correction are small enough.

Formally, let Π be a partition which ε′-approximately satisfies Ψ, let ψΠ be the density
tensor of Π and let ψ ∈ Ψ be the density tensor which is ε′-approximately satisfied by Π.
By definition:

• for all j ∈ [k], ρΠ
j = ρj ± ε′

• for all i ∈ [s] and φ ∈ Φi, µΠ
i,φ = µi,φ ± ε′

Let Π̂ be the corrected partition, which results from the following process: Let S be a
temporary set of vertices, which is initially empty. For each j ∈ [k] such that ρΠ

j > ρj ,
we take |V Π

j | − ρj · n vertices from the component V Π
j of Π, and put them into the set S.

Then, for each j ∈ [k] such that ρΠ
j < ρj , we move ρj · n − |V Π

j | vertices from S to the
component Vj .

We are going to prove that the partition Π̂ ε-closely satisfies ψ. Recall that by definition
of ε-closely satisfying, we need to show that:

• for all j ∈ [k], ρΠ̂
j = ρj

• for all i ∈ [s] and φ ∈ Φi, µΠ̂
i,φ = µi,φ ± ε

The first item holds by the definition of Π̂, so we just need to prove the second one. Let
us fix i ∈ [s] and φ ∈ Φi and prove that µΠ̂

i,φ = µi,φ ± ε.
Let jh = φ(h) for all h ∈ [ri], and let Vj1 , Vj2 , . . . , Vjri

be the set (with possible
repetitions) of components of Π that participate in the edges from |EΠ

i,φ|. Observe that
any vertex v ∈ Vjh

can participate in the h’th place of at most nri−1 edges of |EΠ
i,φ|. On

the other hand, the number of vertices that were added or removed from each Vjh
is at

most ε′n. Therefore,
∣∣∣|EΠ

i,φ| − |EΠ
i,φ|

∣∣∣ ≤ ε′ · ri · nri , and consequently, µΠ̂
i,φ = µΠ

i,φ ± ε/2.

Combining it with µΠ
i,φ = µi,φ ± ε

2r we conclude that µΠ̂
i,φ = µi,φ ± ε as required.

Testing proximity to Ψ – Proof of Lemma 5.7.3

Proof. The main idea is straightforward. Fix one of the partition oracles π, and let Π
denote the partition induced by it. Our algorithm will estimate the following measures by
sampling:

• for all j ∈ [k], we compute a value ρS
j that estimates the normalized size of the

component Vj in the partition Π.
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• for every i ∈ [s] and φ ∈ Φi, we compute a value µS
i,φ that estimates the corresponding

hyperedge density.

In the next step, we check these estimated values as follows. Let ψS denote the density
tensor corresponding to the estimated values above. If ψS 3

4ε-approximately satisfies Ψ,
then we output ψ ∈ Ψ that is 3

4ε-approximated by ψS (recall that finding such ψ takes
O(TC(Ψ)) time). Otherwise, we move to the next partition oracle from the sequence
{πi}m

i=1. If we did not find any 3
4ε-approximately satisfying partition, then we output

False.
We now define and analyze the estimation procedure formally. First we choose a

sequence Tv (with possible repetitions) of t = (4
ε )2 · log

(
4m·(skr+k)

δ

)
vertices uniformly at

random, and we choose one additional sequence Te of r · t vertices in a similar fashion.
Next we make the following queries and write down their results.

• For every partition oracle π and every vertex v ∈ Tv ∪ Te we compute π(v). This
requires making O(r · t · f) queries.

• For every i ∈ [s] we split the first ri · t vertices of Te into t consequent ri-tuples {ξh =
(vh

1 , . . . , vh
ri

)}t
h=1, and for every tuple ξh = (vh

1 , . . . , vh
ri

) we check if (vh
1 , . . . , vh

ri
) ∈ Ei.

This requires making O(t · s) queries.

Summing up, the total number of queries we make is bounded by

O
(
t · (r · f + s)

)
= O

(
(r · f + s) · (1

ε
)2 · log(

m · skr

δ
)
)

Now, once we made all required queries, for every partition oracle π we perform the
following.

• For every j ∈ [k] we set

ρS
j =

1
t
|{v ∈ Tv : π(v) = j}|

• For every i ∈ [s] and φ ∈ Φi, we set

µS
i,φ =

1
t

∣∣∣
{

ξh = (vh
1 , . . . , vh

ri
) :

(
(vh

1 , . . . , vh
ri

) ∈ Ei

)
∧

(
∀j∈[ri]π(vj) = φ(j)

)}∣∣∣

For each j ∈ [k], let Fj denote the event |ρS
j − ρΠ

j | ≥ ε/4. Similarly, for every i ∈ [s] and
φ ∈ Φi, let Fi,φ denote the event |µS

i,φ−µΠ
i,φ| ≥ ε/4. Observe that if with probability 1− δ

2

none of these “bad” events occur for any one of the partition oracles π, then algorithm AS

satisfies the assertions of the lemma. We concentrate on a somewhat simpler case (which
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implies this one by the union bound), where we want to bound the probability for one
specific π and one specific event F of this type by δ

2m(skr+k) .
Note that for every v ∈ Tv and j ∈ [k], Pr[π(v) = j] = ρΠ

j . Similarly, for every ri-tuple
ξh = (vh

1 , . . . , vh
ri

) from Te, i ∈ [s] and φ ∈ Φi,

Pr
[(

(vh
1 , . . . , vh

ri
) ∈ Ei

)
∧

(
∀j∈[ri]π(vj) = φ(j)

)]
= µΠ

i,φ

Since the vertices in Tv and Te were chosen independently at random, we can apply
Chernoff’s inequality to bound the probability of the event F .

Pr[F ] ≤ 2 · exp(−2 · (ε/4)2 · t) ≤ δ

2m · (s · kr + k)

as required.
Since the operations of AS consume negligible running time, its time complexity is

bounded by m times the query complexity, plus m times the time required for checking
proximity to Ψ. So in total, the time complexity of AS is bounded by

O

(
m · c · (r · f + s) ·

(
(
1
ε
)2 · log(

m · skr

δ
)
))

+ m · TC(Ψ)

5.8 Future work

Strong hypergraph regularity: Very recently, a lot of attention was given to obtaining
hypergraph regularity lemmas [Gow97, NRS06, RS93, Tao06] that are strong enough to
reprove Szemerédi’s number-theoretic theorem [Sze75] and to prove combinatorial deletion
results. As it turns out, in these lemmas one needs to consider not only partitions of the
vertices of the graph, but also partitions of pairs of vertices, triples of vertices and so on.
Furthermore, one needs to consider various requirements on the interactions between the
partitions of different arities concerning their densities and beyond (e.g. on the count of
certain small substructures). See for example [HNR05] for an algorithmic version of a
strong regularity lemma for 3-uniform hypergraphs.

We believe that we can extend our main result about vertex partitions to the case
of partitions of pairs and beyond, but (regretfully) we currently cannot use them to give
algorithmic versions of the new variants of the regularity lemma discussed above. The
main reason is that our “control” of the interactions between partitions of different arities
is not strong enough to match the one typically required for a strong hypergraph regularity
lemma. It would be very interesting to obtain a generalization of Theorem 5.2.1 that will be
strong enough to yield algorithmic versions of the results of [Gow97, NRS06, RS93, Tao06].
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Improving the output for hypergraph regularity: While we can apply Theorem
5.2.1 in a simple way to obtain an algorithmic version of the regularity lemma for graphs
(given in Theorem 5.4.2), the generalization for hypergraphs (Theorem 5.5.1) is more
complicated, and has worse output guarantees as it will generally not find small regular
partitions if they exist. It would be interesting to see if one can prove a variant of Theorem
5.5.1 similar in nature to Theorem 5.4.2, perhaps by formulating and proving an adequate
notion of “local regularity” first.
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Part II

Massively Parameterized

Properties
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Chapter 6

Introduction

6.1 The orientation model

In this part of the thesis we concentrate on the Orientation model introduced in [HLNT05].
In this model the massive-parameter, i.e. the information given in advance, is an under-
lying undirected graph G = (V, E). The input is then constrained to be an orientation
of G, and the distances are measured relative to |E| and not to any function of |V |. An
orientation of G is simply an orientation of its edges. That is, for every edge e = {u, v} in
E(G) an orientation of G specifies which of u and v is the source vertex of e, and which
is the target vertex. Thus an orientation defines a directed graph

−→
G whose undirected

skeleton is G. Given the undirected graph G, a property of orientations is just a subset of
the set of all 2|E| possible orientations of G.

In the context of property testing, the relevant combinatorial structure to be tested is
an orientation

−→
G of the underlying graph G, and the distance between two orientations−→

G1,
−→
G2 is the number of edges that are oriented differently in

−→
G1 and

−→
G2. Thus an

orientation
−→
G is ε-far from a given property P if at least ε|E(G)| edges have to be

redirected in
−→
G to make it satisfy P . Ideally the number of queries that the property

tester makes depends only on ε and on nothing else (in particular it depends neither on
|E| nor on the specific undirected graph G itself), but as we shall see, this is not always
the case, even if we consider properties that have very small negative witnesses.

A common feature of the results (ours and others) in the orientation model is that the
algorithms themselves are rather non-trivial in their construction, and not just in their
analysis. This feature distinguishes them from results in many other areas of property
testing, such as the dense graph models. In particular, the testing algorithms in this
model do not readily yield to general techniques such as that of the regularity lemma used
in the dense graph model.

In this part of the thesis we study the query complexity of two natural graph properties
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in the orientation model. The first is the property of st-connectivity, where s and t are two
special vertices, and a digraph satisfies the property if there is a directed path between s

and t. In Chapter 7 we show that st-connectivity can be tested with constant (depending
only on the distance parameter ε) number of queries. Then, in Chapter 8, we study the
property of being Eulerian, namely that of all vertices having the same in-degree as their
out-degree. Although this property has a more “local” nature than st-connectivity, our
results show that it is harder to test in the orientation model. In particular, in Chapter 8
we show that testing orientations for being Eulerian requires making ω(1) queries, even if
two sided error is allowed and the underlying graph G has maximal degree 4 (note that in
this case there is always a negative witness of size 4). Before proceeding to these chapters,
we give some common notations and definitions in the following section.

6.2 Specific definitions and preliminaries

6.2.1 Notations

In what follows, our graphs are going to possibly include parallel edges, so we use ‘named’
pairs for edges, i.e. we use e = e{u, v} for an undirected edge named e whose end points
are u and v. Similarly, we use e = e(u, v) to denote the directed edge named e that is
directed from u to v. Let G = (V, E) be an undirected multi-graph (parallel edges are
allowed), and denote by n the number of vertices in V . We say that a directed graph

−→
G

is an orientation of the graph G, or in short a G-orientation, if we can derive
−→
G from G

by replacing every undirected edge e = e{u, v} ∈ E with either e(u, v) or e(v, u), but not
both. We also call G the underlying graph of

−→
G .

Given an undirected graph G and a subset W ⊂ V of G’s vertices, we denote by G(W )
the induced subgraph of G on W , and we denote by E(W ) = E(G(W )) the edge set of
G(W ). The distance between two vertices u, v in G is denoted by distG(u, v) and is set
to be the length of the shortest path between u and v. Similarly, for a directed graph

−→
G ,

dist−→
G

(u, v) denotes the length of the shortest directed path from u to v. The distance of
a vertex from itself is dist−→

G
(v, v) = distG(v, v) = 0. In the case where there is no directed

path from u to v in
−→
G , we set dist−→

G
(u, v) = ∞. The diameter of an undirected graph G

is defined as diam(G) = maxu,v∈V {distG(u, v)}.
For a graph

−→
G and a vertex v ∈ V , let Γin(v) = {u : ∃e(u, v) ∈ E} and Γout(v) =

{u : ∃e(v, u) ∈ E} be the set of incoming and outgoing neighbors of v respectively, and
let Γ(v) = Γin(v) ∪ Γout(v) be the set of neighbors in the underlying graph G. Let
degin(v), degout(v) and deg(v) denote the sizes of Γin(v), Γout(v) and Γ(v) respectively.
We denote the i-neighborhood (in the underlying undirected graph G) of a vertex v by
Ni(v) = {u : distG(u, v) ≤ i}. For example, N1(v) = {v} ∪ Γ(v), and for all v ∈ V ,
V = Ndiam(G)(v).
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6.2.2 Orientation distance, properties and testers

Given two G-orientations
−→
G1 and

−→
G2, the distance between

−→
G1 and

−→
G2, denoted by

∆(
−→
G1,

−→
G2), is the number of edges in E(G) having different directions in

−→
G1 and

−→
G2.

Given a graph G, a property PG of G’s orientations is a subset of all possible G-
orientations. We say that an orientation

−→
G satisfies the property PG if

−→
G ∈ PG. The

distance of
−→
G1 from the property PG is defined by δ(

−→
G1,PG) = min−→

G2∈PG

∆(
−→
G1,

−→
G2)

|E(G)| . We

say that
−→
G is ε-far from PG if δ(

−→
G,PG) ≥ ε, and otherwise we say that

−→
G is ε-close to

PG. We omit the subscript G when it is obvious from the context.

Definition 18. [(ε, q)-orientation tester] Let G be a fixed undirected graph and let P

be a property of G’s orientations. An (ε, q)-tester T for the property P is a randomized
algorithm, that for any

−→
G that is given via oracle access to the orientations of its edges

operates as follows.

• The algorithm T makes at most q orientation queries to
−→
G (where on a query e ∈

E(G) it receives as an answer the orientation of e in
−→
G).

• If
−→
G ∈ P , then T accepts it with probability at least 2/3.

• If
−→
G is ε-far from P , then T rejects it with probability at least 2/3.

The query complexity of an (ε, q)-tester T is the maximal number of queries q that T

makes on any input. Here too, we say that T has one-sided error if it accepts every
−→
G ∈ P

with probability 1. We also say that a property P is testable if for every ε > 0 it has an
(ε, q(ε))-test, where q(ε) is a function depending only on ε (and independent of the graph
size n).
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Chapter 7

Testing st-connectivity

7.1 Background

A major question that has remained open in [HLNT05] is whether connectivity proper-
ties admit a test in the orientation model. For a fixed s, t ∈ V (G), an orientation

−→
G is

st-connected if there is a directed path from s to t in it. Connectivity problems and in par-
ticular st-connectivity are very basic problems in graph theory and have been extensively
studied in various models of computation.

Our main result in this chapter is that the property of being st-connected is testable
by a one-sided error algorithm with a number of queries depending only on ε. That is,
we construct a randomized algorithm such that for any underlying graph G, on input of
an unknown orientation the algorithm queries only O(1) edges for their orientation and
based on this decides with success probability 2

3 between the case that the orientation is st-
connected and the case that it is ε-far from being st-connected. Our algorithm additionally
has one-sided error, meaning that st-connected orientations are accepted with probability
1. Note that the algorithm knows the underlying graph G in advance and G is neither
alterable nor part of the input to be queried. The dependence of the number of queries in
our test on ε is triply exponential, but it is independent of the size of the graph.

To put this result in context with previous works in the area of property testing, we
recall that the model that was mainly studied is the dense graphs model in which an input
is a graph represented as a subgraph of the complete graph. As such, for n-vertex graphs,
the input representation size is

(
n
2

)
which is the number of all possible unordered pairs.

Thus, any property that has o(n2) witness size, and in particular the property of undirected
st-connectivity, is trivially testable as every input is close to the property. Properties of
directed graphs were studied in the same context mostly by [AFNS06] and [AS05]. Inputs
in this model are subgraphs of the complete directed graph (with or without anti parallel
edges). In this case, directed st-connectivity is again trivial.
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Apart from [HLNT05], the most related work is that of [HLNT07], in which a graph
G = (V,E) is given and the properties are properties of boolean functions f : E(G) →
{0, 1}. In [HLNT07] the interpretation of such a function is as an assignment to certain
formulae that are associated with the underlying graph G, and in particular can viewed
as properties of orientations (although the results in [HLNT07] concentrate on properties
that are somewhat more “local” than our “global” property of being st-connected). Hence,
the results here should be viewed as moving along the lines of the investigation that was
started in [HLNT05] and [HLNT07].

The algorithm that we present here for st-connectivity involves a preprocessing stage
that is meant to reduce the problem to that of testing a branching program of bounded
width. Once this is achieved, a randomized algorithm simulating the test for constant
width branching programs from [New02] is executed to conclude the result.

In general, the decision problem of st-connectivity of orientations of a given graph is not
known to be reducible to constant width branching programs. In fact, it is most probably
not the case, as st-connectivity is complete for NL (non-deterministic LOG space) while
deciding constant width branching programs is in L.

In particular, it is not clear how to deal with high degree vertices or with large cuts.
The purpose of the preprocessing stage is to get rid of these difficulties (here it will be
crucial that we only want to distinguish between inputs that have the property and inputs
that are quite far from having the property). This is done in several steps that constitute
the main part of this chapter. In particular we have an interim result in which most but
not all edges of the graph are partitioned into constant width layers. This is proved using
a weak concentration lemma for sequences of integers, which is formulated and proved for
this purpose.

After the small portion of edges not in constant width layers is dealt with (using
a reduction based on graph contractions), we can reduce the connectivity problem to a
constant width read once branching program. Once such a branching program is obtained,
the result of [New02] can be used essentially in a black box manner.

Some interesting related open problems still remain. We still do not know if the
property of being strongly st-connected is testable with a constant number of queries. The
orientation

−→
G is strongly st-connected if there is a directed path in

−→
G from s to t as

well as a directed path from t to s. A more general problem is whether in this model
we can test the property of being all-pairs strongly-connected using a constant number of
queries. Another related property is the property that for a given s ∈ V (G) every vertex
is reachable by a directed path from s. The complexity of these problems is unknown,
although there are some indications that similar methods as those used here may help in
this regard.

The rest of this chapter is organized as follows. Section 7.2 contains the statement
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of the main result and an overview of the proof. In Section 7.3 we reduce the problem
of testing st-connectivity in general graphs to the problem of testing st-connectivity in
nicely structured bounded-width graphs (we later call them st-connectivity programs). In
Section 7.4 we reduce from testing st-connectivity programs to testing clustered branching
programs, and then we show how to convert these clustered branching programs into
regular ones, to which we can apply the testing algorithm from [New02]. Then in Section
7.5 we combine these ingredients to wrap up the proof. Finally, in Section 7.6 we provide
the missing proofs for the auxiliary lemmas.

7.1.1 Connectivity programs and Branching programs

Our first sequence of reductions converts general st-connectivity instances to well struc-
tured bounded-width st-connectivity instances, as formalized in the next definition.

Definition 19 (st-Connectivity Program). An st-Connectivity Program of width w and
length m over n vertices (or CP (w, m, n) in short), is a tuple 〈G,L〉, where G is an
undirected graph with n vertices and L is a partition of G’s vertices into layers L0, . . . , Lm.
There are two special vertices in G: s ∈ L0 and t ∈ Lm, and the edges of G are going only
between vertices in consecutive layers, or between the vertices of the same layer, i.e. for
each e = e{u, v} ∈ E(G) there exists i ∈ [m] such that u ∈ Li−1 and v ∈ Li, or u, v ∈ Li.
The partition L induces a partition E1, . . . , Em of E(G), where Ei is the set of edges that
have both vertices in Li, or one vertex in Li−1 and another in Li. In this partition of the
edges the following is required in CP (w,m, n): maxi{|Ei|} ≤ w.

Any orientation of G’s edges (that maps every edge e{u, v} ∈ E(G) to either e(u, v)
or e(v, u)) defines a directed graph

−→
G in the natural way. An st-connectivity program

C = 〈G,L, 〉 defines a property PC of G’s orientations in the following way:
−→
G ∈ PC if

and only if in the directed graph
−→
G there is a directed path from s to t.

Next we define branching programs. These are the objects to which we can apply the
testing algorithm of [New02].

Definition 20 (Branching Program). A Read Once Branching Program of width w over
an input of n bits (or BP (w, n) in short), is a tuple 〈G,L, X〉, where G is a directed
graph with 0/1-labeled edges, L is a partition of G’s vertices into layers L0, . . . , Ln such
that maxi{|Li|} ≤ w, and X = {x0, . . . , xn−1} is a set of n Boolean variables. In the
graph G there is one special vertex s belonging to L0, and a subset T ⊂ Ln of accepting
vertices. The edges of G are going only between vertices in consecutive layers, i.e. for each
e = e(u, v) ∈ E(G) there is i ∈ [n] such that u ∈ Li−1 and v ∈ Li. Each vertex in G has at
most two outgoing edges, one of which is labeled by ‘0’ and the other is labeled by ‘1’. In
addition, all edges between two consecutive layers are associated with one distinct member
of X = {x0, . . . , xn−1}. An assignment σ : X → {0, 1} to X defines a subgraph Gσ of G,
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which has the same vertex set as G, and for every layer Li−1 (whose outgoing edges are
associated with the variable xji), the subgraph Gσ has only the outgoing edges labeled by
σ(xji). A read once branching program B = 〈G,L, X〉 defines a property PB ⊂ {0, 1}n in
the following way: σ ∈ PB if and only if in the subgraph Gσ there is a directed path from
the starting vertex s to any of the accepting vertices in T .

Branching programs that comply with the above definition can be tested by the al-
gorithm of [New02]. However, as we will see in Section 7.4, the branching programs
resulting from the reduction from our st-connectivity programs have a feature that they
require reading more than one bit at a time to move between layers. The next definition
describes these special branching programs formally.

Definition 21 (Clustered Branching Program). A c-clustered Read Once Branching Pro-
gram of width w and length m over an input of n bits (or shortly BPc(w, m, n)) is a tuple
〈G,L, X, I〉, where similarly to the previous definition, G is a directed graph with labeled
edges (see below for the set of labels), L = (L0, . . . , Lm) is a partition of G’s vertices into m

layers such that maxi{|Li|} ≤ w, and X = {x0, . . . , xn−1} is a set of n Boolean variables.
Here too, G has one special vertex s belonging to L0, and a subset T ⊂ Ln of accepting
vertices. The additional element I is a partition (I1, . . . , Im) of X into m components,
such that maxi{|Ii|} ≤ c.

All edges in between two consecutive layers Li−1 and Li are associated with the com-
ponent Ii of I. Each vertex in Li−1 has 2|Ii| outgoing edges, each of them labeled by a
distinct α ∈ {0, 1}|Ii|.

An assignment σ : X → {0, 1} to X defines a subgraph Gσ of G, which has the same
vertex set as G, and for every layer Li (whose outgoing edges are associated with the
component Ii), the subgraph Gσ has only the edges labeled by

(
σ(xi)

)
i∈Ii

. A c-clustered

read once branching program B = 〈G,L, X, I〉 defines a property PB ⊂ {0, 1}n in the
following way: σ ∈ PB if and only if in the subgraph Gσ there is a directed path from the
starting vertex s to one of the accepting vertices in T .

Observe that BP (w,m) is equivalent to BP1(w, m,m).

7.2 The main result

For an undirected graph G and a pair s, t ∈ V (G) of distinct vertices, let P st
G be a set of

G-orientations under which there is a directed path from s to t. Formally, P st
G = {−→G :

dist−→
G

(s, t) < ∞}.
Theorem 7.2.1. The property P st

G is testable. In particular, for any undirected graph G,
two vertices s, t ∈ V (G) and every ε > 0, there is an (ε, q)-tester T for P st

G with query

complexity q = (2/ε)2
(1/ε)·2O(ε−2)
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Note that the property P st
G is trivially testable whenever the undirected distance from

s to t in G is less than ε|E(G)|. In particular, our result is interesting only for sparse
graphs, i.e. graphs for which |E(G)| ≤ |V (G)|/ε.

7.2.1 Proof overview

The main idea of the proof is to reduce the problem of testing st-connectivity in the
orientation model to the problem of testing a Boolean function that is represented by a
small width read once branching program. For the latter we have the result of [New02]
asserting that each such Boolean function is testable.

Theorem 7.2.2 ([New02]). Let P ⊆ {0, 1}n be the language accepted by a read-once
branching program of width w. Then testing P with one-sided error requires at most(

2w

ε

)O(w) queries.

By the definition above of BP (w, n), one could already notice that testing the accep-
tance of a branching program resembles testing st-connectivity, and that the two problems
seem quite close. However, there are several significant differences:

1. In branching programs, every layer is associated with a variable whose querying
reveals all the edges going out from this layer. In st-connectivity instances, in order
to discover the orientation of these edges we need to query each of them separately.

2. The length of the input in branching programs is the number of layers rather than
the total number of edges.

3. The edges in branching program graphs are always directed from Li−1 to Li for some
i ∈ [n]. In our case, the graph is not layered, and a pair u, v of vertices might have
any number of edges in both directions.

4. In branching programs the graphs have out-degree exactly 2, while an input graph
of the st-connectivity problem might have vertices with unbounded out-degree.

5. The most significant difference is that the input graphs of the st-connectivity problem
may have unbounded width. This means that the naive reduction to branching
programs may result in an unbounded width BP s, which we cannot test with a
constant number of queries.

We resolve these points in several steps. First, given an input graph G, we reduce
it to a graph G(1) which has the following property: for every induced subgraph W of
G(1), the diameter of W is larger than ε times the number of edges in W . Then we prove
that G(1) can be layered such that most of its edges lie within bounded-width layers. In
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particular, the total number of edges in the “wide” layers is bounded by ε
2E(G(1)). For

this we need a concentration type lemma which is stated and proven here for this purpose.
Next we reduce G(1) to a graph G(2), which can be layered as above, but without wide
layers at all. This in particular means that the number of edges in G(2) is of the order
of the number of layers, similarly to bounded width branching programs. In addition, in
this layering of G(2) the vertex t is in the last layer (while the vertex s remains in the first
layer). Then we reduce G(2) (which might be thought of as the bidirectional analogue of
a bounded width branching program) to a clustered read once bounded width branching
program. Finally we show that these clustered branching programs can be converted into
non-clustered branching programs, to which we can apply the test from [New02].

7.3 Reducing general graphs to connectivity programs

In this section we prove our first step towards proving Theorem 7.2.1. We reduce the prob-
lem of testing st-connectivity in a general graph to the problem of testing st-connectivity
of an st-Connectivity Program. First we define the notion of reducibility in our context,
and then we describe a sequence of reductions that will eventually lead us to the problem
of testing read once bounded width BP s.

7.3.1 Reducibility between st-connectivity instances

Let Gst denote the class of undirected graphs having two distinct vertices s and t, and
let G, G′ ∈ Gst. We say that G is (ε, η)-reducible to G′ if there is a function ρ that maps
orientations of G to orientations of G′ (from now on we denote by

−→
G ′ the orientation

ρ(
−→
G)) such that the following holds.

• If
−→
G ∈ P st

G then
−→
G ′ ∈ P st

G′

• If δ(
−→
G,P st

G ) ≥ ε then δ(
−→
G ′, P st

G′) ≥ η

• Any orientation query to
−→
G ′ can be simulated by a single orientation query to

−→
G .

We say that G is (ε)-reducible to G′ if it is (ε, ε)-reducible to G′. Notice that whenever
G is (ε, η)-reducible to G′, any (η, q)-tester T ′ for P st

G′ can be converted into an (ε, q)-tester
T for P st

G . Or in other words, (ε, q)-testing P st
G is reducible to (η, q)-testing P st

G′ .
In the following section we introduce our first reduction, which is referred to as the

reduction from G to G(1) in the proof overview.

7.3.2 Reduction to graphs having high-diameter subgraphs

An undirected graph G is called ε-long if for every subset W ⊂ V (G), diam(G(W )) >

ε|E(W )|.
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Lemma 7.3.1. Any graph G ∈ Gst is (ε)-reducible to a graph G′ ∈ Gst which is ε -long.

We first define a general contraction operator for graphs, and then use it for the proof.
Given a graph G let W ⊂ V be a subset of its vertices, and let C1, . . . , Cr be the vertex sets
of the connected components of G(W ). Namely, for each Ci ⊂ W , the induced subgraph
G(Ci) of the underlying graph G is connected, and for any pair u ∈ Ci, v ∈ Cj (i 6= j) of
vertices, e{u, v} /∈ E(G). We define a graph G/W as follows. The graph G/W has the
vertex set V/W = (V \W ) ∪ {c1, . . . , cr} and its edges are

E/W =
{

e{u, v} : (u, v ∈ V \W )∧(e ∈ E)
}
∪

{
e{ci, v} : (v ∈ V \W )∧∃u∈Ci(e{u, v} ∈ E)

}

Intuitively, in G/W we contract every connected component Ci of G(W ) into a single
(new) vertex ci without changing the rest of the graph. Note that such a contraction
may create parallel edges, but loops are removed. Whenever s ∈ Ci for some i ∈ [r],
we rename the vertex ci by s, and similarly if t ∈ Cj then we rename cj by t. In the
following a connected component containing both s and t will not be contracted, so we
can assume that the distinguished vertices s and t remain in the new graph G/W . Given
an orientation

−→
G of G we define the orientation

−→
G/W = ρ(

−→
G) of G/W as the orientation

induced from
−→
G in the natural way (note that there are no “new” edges in G/W ). Before

proving Lemma 7.3.1, we state and prove an auxiliary lemma.

Lemma 7.3.2. Let W ⊂ V be a subset of G’s vertices, such that diam(G(W )) ≤ ε|E(W )|.
Then G is (ε)-reducible to the graph G/W .

In particular, if v ∈ V is a vertex of
−→
G such that deg(v) ≥ 2/ε, then G is (ε)-reducible

to the graph G/N1(v).

Proof. Fix an orientation
−→
G of G. It is clear that if

−→
G ∈ P st

G then
−→
G/W ∈ P st

G/W . Now

assume that δ(
−→
G,P st

G ) ≥ ε. Let d and d′ denote δ(
−→
G,P st

G ) · |E(G)| and δ(
−→
G/W,P st

G/W ) ·
|E(G/W )| respectively. From the definition of the graph G/W it follows that d′ ≥ d −
diam(G(W )). This is true since any st-path in

−→
G/W can be extended to an st-path

in
−→
G by reorienting at most diam(G(W )) edges in W (by definition, diam(G(W )) is an

upper bound on the undirected distance from any “entry” vertex to any “exit” vertex in
G(W )). From the condition on W we have |E(

−→
G/W )| = |E|− |E(W )| ≤ |E|− diam(G(W ))

ε .
Combining these two together we have

δ(
−→
G/W,P st

G/W ) =
d′

|E(
−→
G/W )|

≥ d− diam(G(W ))
|E| − diam(G(W ))/ε

≥ d− diam(G(W ))
d/ε− diam(G(W ))/ε

= ε

In addition, it is clear that we can simulate each query to
−→
G/W by making at most one

query to
−→
G .

82



Proof of Lemma 7.3.1. We apply this contraction (iteratively) for each “bad” subgraph
W , until eventually we get a graph G′ in which all vertex subsets W satisfy diam(G(W )) >
|E(W )|

ε . If in some stage we have both s and t contained in the contracted subgraph W ,
then we just output a tester that accepts all inputs (since in this case all orientations
are ε-close to being st-connected). Note that this process may result in several different
graphs (depending on choices of the set W in each iteration), but we are only interested
in any such graph G′.

7.3.3 Properties of ε-long graphs

Next we show that an ε-long graph G can be “layered” so that the total number of edges
in the “wide” layers is bounded by ε

2E(G). We first define graph layering.

Definition 22 (Graph layering and width). Given a graph G and a vertex s ∈ V (G), let
m denote the maximal (undirected) distance from s to any other vertex in G. We define
a layering L = (L0, L1, . . . , Lm) of G’s vertices as follows. L0 = {s} and for every i > 0,
Li = Ni(s) \Ni−1(s). Namely Li is the set of vertices which are at (undirected) distance
exactly i from s. Note that for every edge e{u, v} of G either both u and v are in the same
layer, or u ∈ Li−1 and v ∈ Li for some i ∈ [m].

We also denote by EL
i the subset of G’s edges that either have one vertex in Li and the

other in Li−1, or edges that have both vertices in Li. Alternatively, EL
i = E(Li ∪ Li−1) \

E(Li−1). We refer to the sets Li and EL
i as vertex-layers and edge-layers respectively. We

omit the superscript L from the edge-layers notation whenever it is clear from the context.
The vertex-width of a layering L is maxi{|Li|}, and the edge-width of L is maxi{|Ei|}.

Bounding the number of edges within wide edge-layers

The following lemma (which is proved in Section 7.6.1) states that in a layering of an
ε-long graph most of the edges are captured in edge-layers of bounded width.

Lemma 7.3.3. Consider the layering L of an ε-long graph G as defined above, and let
I = {i : |Ei| > 2100/ε2

/ε} be the set of indices of the wide edge-layers. Then the following
holds:

∑
i∈I |Ei| ≤ ε

2 |E|.

In the following two sections we prove that ε-long graphs can be reduced to graphs
that have bounded width. In terms of the proof overview, we are going to reduce the
graph G(1) to the graph G(2).

7.3.4 Reduction to bounded width graphs

Let G = (V,E) ∈ Gst, and let L = (L0, L1, . . . , Lm) be the layering of G as above. We call
an edge-layer Ei wide if |Ei| > 1

ε · 2100/ε2
. Let W be the set of all wide edge-layers.
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Lemma 7.3.4. If G ∈ Gst satisfies
∑

Ei∈W |Ei| ≤ ε
2 |E| then G is (ε, ε/2)-reducible to a

graph G′ which has no wide edge-layers at all.

The proof of Lemma 7.3.4 appears in Section 7.6.2.

7.3.5 Reducing bounded width graphs to st-connectivity programs

So far we reduced the original graph G to a graph G′ which has a layering L =
(L0, L1, . . . , Lm) of edge-width at most w = 1

ε · 2100/ε2
, and in which the source ver-

tex s belongs to layer L0. The remaining difference between G′ and an st-connectivity
program is that in G′ the target vertex t might not be in the last vertex-layer Lm. The
following lemma states that we can overcome this difference by another reduction.

Lemma 7.3.5. Let G′ be a graph as described above. Then G′ is (ε, ε/2)-reducible to an
st-connectivity program S of width at most w + 1.

Proof. Let Lr be the layer to which t belongs in the layering L of the graph G′. Let
P = {p1, p2, . . . , pm−r} be a set of m− r new vertices. We define S as follows.

• V (S) = V (G′) ∪ P

• E(S) = E(G′) ∪
(⋃m−r−1

i=1 {ei(pi, pi+1)}
)
∪ {et(t, p1)}

Any orientation
−→
G ′ of G′ induces a natural orientation

−→
S of S; all edges e ∈ E(S) that

are also in E(G′) have the same orientation as in
−→
G ′, while the orientation of the new

edges were defined explicitly above. We also rename t to p0 and rename pm−r to t in S.
Basically we have added a sufficiently long path from the original target vertex to the new
target vertex to get S. Now it is easy to verify that G′ is indeed (ε, ε/2)-reducible to S

(assuming that G has at least 1/ε edges), and that the width of S is as required.

7.4 Reducing st-connectivity programs to branching pro-

grams

We now show how to reduce an st-connectivity program to a clustered branching program
(recall Definition 19 and Definition 21). First observe that we can assume without loss of
generality that if an st-connectivity program has edge-width w, then its vertex-width is at
most 2w (since removing vertices of degree 0 essentially does not affect the st-connectivity
program, and a vertex in Li with edges only between it and Li+1 can be safely moved to
Li+1).

Before moving to the formal description of the reduction, we start with a short intuitive
overview. A branching program corresponds to a (space bounded) computation that
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moves from the start vertex s, which represents no information about the input at all,
and proceeds (via the edges that are consistent with the input bits) along a path to one
of the final vertices. Every vertex of the branching program represents some additional
information gathered by reading more and more pieces of the input. Thus, the best way
to understand the reduction is to understand the implicit meaning of each vertex in the
constructed branching program.

Given a graph G of a bounded width st-connectivity program, and its layering
L0, L1, . . . Lm, we construct a graph G′ (with layering L′0, L

′
1, . . . L

′
m) for the bounded-

width branching program. The graph G′ has the same number of layers as G. Each
level L′i in G′ will represent the conditional connectivity of the vertices in the subgraph
Gi = G(

⋃i
j=0 Li) of G. To be specific, the knowledge we want to store in a typical vertex

at layer L′i of G′ is the following.

• for every u ∈ Li whether it is reachable from s in Gi.

• for every v, u ∈ Li whether v is reachable from u in Gi.

Hence, the amount of information we store in each node x ∈ L′i has at most 2w + (2w)2

many bits, and so there will be at most 42w2+w vertices in each L′i, meaning that the graph
G′ of the branching program is of bounded width as well.

Lemma 7.4.1. Let ε > 0 be a positive constant. Given a CP (w, m, n) instance C =
〈G,L〉, we can construct a BPw(42w2+w,m, n) instance B = 〈G′,L′, X ′, I ′〉 and a mapping
ρ from G-orientations to assignments on X such that the following holds,

• if
−→
G satisfies PC then σ = ρ(

−→
G) satisfies PB.

• if
−→
G is ε-far from satisfying PC then σ = ρ(

−→
G) is ε-far from satisfying PB.

• any assignment query to σ can be simulated using a single orientation query to
−→
G .

Proof. First we describe the construction, and then show that it satisfies the requirements
above.

The vertices of G′: We fix i and show, based on the layer Li of G, how to construct
the corresponding layer L′i of G′. Each vertex in L′i corresponds to a possible value of
a pair (Si, Ri) of sets. The first set Si ⊆ Li contains vertices v ∈ Li for which there is
a directed path from s to v in the subgraph of G induced on

⋃i
j=0 Lj . The second set

Ri ⊆ Li × Li is a set of ordered pairs of vertices, such that every ordered pair (u, v) is in
Ri if there is a directed path from u to v in the subgraph of G induced on

⋃i
j=0 Lj (the

path can be of length 0, meaning that the Ri’s contain all pairs (v, v), v ∈ Li). Notice
that |L′i| = 2|Li|2+|Li| ≤ 42w2+w for all i.

The edges of G′: Now we construct the edges of G′. Recall that E′
i+1 denotes the set

of (labeled) edges having one vertex in L′i+1 and the other in L′i. Fix i and a vertex v ∈ L′i.
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Let (S,R) be the pair of sets that correspond to v. Let S′′ be the set Li+1∩Γout(S), namely
the neighbors of vertices from S that are in Li+1, and set R′′ = {(v, v) : v ∈ Li+1}∪{(u, v) :(
u, v ∈ Li+1

)∧(
v ∈ Γout(u)

)} ∪ {(u, v) :
(
u, v ∈ Li+1

)∧
((

Γout(u)×Γin(v)
)∩R 6= ∅

)
}. Now

define R′ as the transitive closure of R′′, and set S′ = S′′ ∪ {v ∈ Li+1 : ∃u∈S′′(u, v) ∈ R′}.
Let v′ ∈ L′i+1 be the vertex corresponding to the pair (S′, R′) that we defined above. Then
the edges of E′

i+1 are given by all such pairs of vertices (v, v′).
The variables in X ′: Each variable x′i ∈ X ′ is associated with an edge ei ∈ E(G).

This association is actually the mapping ρ above, i.e. every orientation
−→
G of G defines an

assignment σ on X ′.
The partition I ′ of X ′: Recall that Ei denotes the set of edges of G having either

one vertex in Li−1 and the other in Li, or both vertices in Li. The partition I ′ of X ′ is
induced by the partition L of V (G). Namely, the component Ii of I contains the set of
variables in X ′ that are associated with edges in Ei. Thus w is also a bound on the sizes
of the components in I.

The set T ′ ⊂ L′m of accepting vertices: The set T ′ is simply the subset of vertices
in L′m whose corresponding set S contains the target vertex t of G.

Note that each value of a variable in X ′ corresponds exactly to an orientation of an
edge in G. This immediately implies the third assertion in the statement of the lemma.
Distances between inputs are clearly preserved, so to prove the other assertions it is enough
to show that the branching program accepts exactly those assignments that correspond
to orientations accepted by the connectivity program. It is straightforward (and left to
the reader) to see that the vertex reached in each L′i indeed fits the description of the sets
R and S, and so an assignment is accepted if and only if it corresponds to a connecting
orientation.

The branching programs resulting from the above reduction have a feature that they
require reading more than one bit at a time to move between layers. Specifically, they
conform to Definition 21. The result in [New02], however, deals with standard branching
programs (see Definition 20), which in relation to the above are a special case in which
essentially m = n and all the Ii’s have size 1. In the next section we deal with the final
reduction, into a standard (non-clustered) branching program (in which the edges between
two layers depend on just one Boolean variable).

7.4.1 Converting clustered branching programs to non-clustered ones

Lemma 7.4.2. Any BPc(w, m, n) instance can be converted to a BP (w2c, n) instance
accepting the very same language.

Proof. Throughout the proof it is convenient to refer to the vertices of a layer Li in the
clustered branching program as a set of states, and to the edges between Li−1 and Li
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as a transition function fi : Li−1 × {0, 1}|Ii| → Li. Namely, fi(v, b1, . . . , b|Ii|) is equal
to the vertex w in Li so that (v, w) is an edge labeled with (b1, . . . , b|Ii|). We shall use
an analogue notation for the transition functions in the constructed branching program,
f ′i : L′i−1 × {0, 1} → L′i. The basic idea of the proof is that instead of reading the entire
cluster Ii at once, we read it bit by bit, and use additional states in intermediate layers to
store the bits that we have read so far. We need to read at most c bits before we can use the
original transition functions, which causes the blowup of up to 2c in the number of states
in each layer. We define the new layers {s} = L′0, . . . , L

′
n of the program inductively. First

we define L0 = L′0 = {s}. Now, assuming that we have already converted L0, . . . , Li−1

into L′0, . . . , L
′
j such that L′j = Li−1, and calculated the corresponding transition functions

fk : L′k−1 × {0, 1} → L′k, we show how to convert Li into layers L′j+1, . . . , L
′
j+|Ii| so that

L′j+|Ii| = Li.
For 0 < k < |Ii| we set L′j+k = Li−1 × {0, 1}k, and set L′j+|Ii| = Li. Each layer L′j+k

will be associated with the bit corresponding to the k’th member of Ii, which to reduce
indexes we shall re-label as yj+k. In the following we denote members of a cross product
A×B as tuples (a, b) with a ∈ A and b ∈ B. The transition functions f ′j+1, . . . , f

′
j+|Ii| are

set as follows.

• For k = 1 we set f ′j+1(v, yj+1) = (v, yj+1), that is the transition is to the tuple
resulting from pairing v with the bit yj+1

• Accordingly, for 1 < k < |Ii| we set f ′j+k((v, b1, . . . , bk−1), yj+k) =
(v, b1, . . . , bk−1, yj+k), i.e. we concatenate the value of yj+k to the previously col-
lected values.

• Finally, for k = |Ii| we set f ′j+|Ii|(v, b1, . . . , b|Ii|−1) = fi(v, b1, . . . , b|Ii|−1, yj+|Ii|), i.e.
we employ the function fi on all the collected bit values and yj+|Ii|.

The accepting subset T ′ of L′n = Lm remains the same as the original T . It is now not
hard to see that both programs accept the exact same language over x1, . . . , xn.

7.5 Wrapping up – proof of Theorem 7.2.1

We started with a graph G and wanted to construct an (ε, q)-test for st-connectivity of
orientations of G. In Section 7.3.1, Section 7.3.2 and Section 7.3.3 we constructed a graph
G(1) such that if we have an (ε, q)-test for st-connectivity in G(1), then we have an (ε, q)-
test for G. Additionally G(1) has the property that most of the edge-layers in G(1) are
of size at most w = 1

ε · 2100/ε2
. Then in Section 7.3.4 we constructed a graph G(2) such

that if we have an ( ε
2 , q)-test for st-connectivity in G(2) then we have an (ε, q)-test for

G(1) and hence we have one for G. Moreover G(2) has all its edge-layers of size at most
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w. Finally in Section 7.3.5 we built a graph G(3) which has all its edge-layers of width at
most w + 1, and in addition, the vertices s and t are in the first and the last vertex-layers
of G(3) respectively. We also showed that having an ( ε

4 , q)-test for st-connectivity in G(3)

implies an ( ε
2 , q)-test for G(2), and hence an (ε, q)-test for G. This ends the first part of

the proof, which reduces general graphs to st-connectivity programs.
Then in Section 7.4 from G(3) we constructed a read once (w +1)-clustered Branching

Program that has width 42(w+1)2+w+1 so that an ( ε
4 , q)-test for this BP gives an ( ε

4 , q)-test
for st-connectivity in G(3). Then we converted the (w + 1)-clustered Branching Program
to a non-clustered Branching Program which has width w1 = 42(w+1)2+(w+1)2(w+1). Once
we have our read once bounded width branching program, by applying the algorithm of
[New02] for testing branching programs we get an ( ε

4 , q)-test with q = (2w1

ε/4 )O(w1) queries
for our problem. Hence by combining all of the above, we get an (ε, q) testing algorithm

for our original st-connectivity problem, where q = (2/ε)2
O((1/ε)·2(100/ε2))

.

7.6 Completing the missing proofs

7.6.1 Proof of Lemma 7.3.3

Before proving Lemma 7.3.3 we prove an auxiliary concentration lemma. Denote by A =
〈a0, a1, . . . , am〉 a sequence of integers, where a0 = 1 and for every i ≥ 1, ai = |Ei|.

Definition 23 (ε-good sequence). Let 0 < ε < 1 be a positive constant. A sequence
1 = a0, a1, . . . , am of positive natural numbers is ε-good if for every 0 ≤ k < m and
` ∈ [m− k] we have that

k+∑̀

i=k+1

ai ≤ ` · ak

ε
.

Claim 7.6.1. Let G be a graph in which for any induced subgraph W we have |E(W )| <
diam(W )/ε. Then the sequence A = 〈a0, a1, . . . , am〉 defined above is ε/4-good.

Proof. Let us assume the contrary of the claim. Let k and ` be such that

k+∑̀

i=k+1

ai >
4` · ak

ε

Consider the subgraph W defined by the vertices ∪k+`
i=kLi and the edges ∪k+`

i=k+1Ei. Now
the number of edges in W is clearly

∑k+`
i=k+1 ai. For each vertex v in Lk consider the

neighborhood of distance ` + 1 from v, N`+1(v), and denote the subgraph it spans by Wv.
Notice that each Wv is of diameter at most 2(` + 1) ≤ 4`, and that the union of the edge
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sets of the Wv includes the whole edge set of W , so we have
∑

v∈Lk
|E(Wv)| ≥

∑k+`
i=k+1 ai.

The number of vertices in Lk is at most ak, so by the pigeonhole principle we know that

at least one of the vertices v in Lk has at least
∑k+`

i=k+1 ai

ak
edges in Wv. By our assumption

on
∑k+`

i=k+1 ai we have |E(Wv)| > 4`
ε ≥ diam(Wv)/ε, a contradiction.

Lemma 7.6.2 (The weak concentration lemma). Let 〈a0, . . . , am〉 be an ε-good sequence
and let B = {i | ai > 25/ε2

/ε}. Then

∑

i∈B

ai ≤ ε

m∑

i=1

ai.

Proof. Let A be the sum of a1, . . . , am. According to Claim 7.6.3, that we state and prove
further on, we may without loss of generality assume that a0, . . . , am are monotone non-
decreasing as a function of their index. Now we assume that m is a power of 2, and prove
that in this case

∑
i∈B ai ≤ ε

2

∑m
i=1 ai. This is sufficient because if m is not a power of 2

then we can add more copies of a0 = 1 in the beginning until m is a power of 2, and doing
so will no more than double the sum of the sequence while keeping it ε-good.

We first note that A ≤ m/ε since the sequence is ε-good. In particular it is safe
to assume that m > 24/ε2

, because otherwise we would have B = ∅. For the sake of
contradiction, now assume that ∑

i∈B

ai >
ε

2
A. (7.1)

Set p(k) = m(1 − 2−(k+1)) and R(k) =
∑p(k+1)

i=p(k)+1 ai. Since the sum ranges in the
definition of R(k) are disjoint,

A ≥
4/ε2∑

k=1

R(k). (7.2)

We next show that Assumption (7.1) implies that for any k ∈ [4/ε2] we have that
R(k) > ε2·A

4 . This is sufficient since it implies that
∑4/ε2

j=1 R(k) > A, which contradicts
Equation (7.2).

Let k0 = 4/ε2. The assumption that the sequence is non-decreasing implies that

A ≥ ap(k0) · (m− p(k0)) = ap(k0) ·m · 2−(k0+1).

Using that A ≤ m/ε we get that ap(k0) ≤ 2(k0+1)

ε = 24/ε2+1

ε .
Consequently, if ai > 25/ε2

/ε then i > p(4/ε2 + 1). Hence for k ≤ k0, by Assump-
tion (7.1) we get that

∑m
i=p(k)+1 ai >

∑
i∈B ai > ε

2A. On the other hand as a0, . . . , am is
an ε-good sequence we know that ε−1 · ap(k) ·m · 2−(k+1) ≥ ∑m

i=p(k)+1 ai, and therefore by
plugging this into the previous inequality we get that ε−1 · ap(k) ·m · 2−(k+1) > ε

2A. Thus,
ap(k) > ε2·2k·A

m . Since a0, . . . , am are monotone non-decreasing as a function of their index
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we conclude that R(k) ≥ ap(k) · (p(k + 1)− p(k)) = ap(k) ·m · 2−(k+2). Together with the
lower bound on ap(k) we get that R(k) > ε2·A

4 .

Claim 7.6.3. If 〈a0, . . . , am〉 is an ε-good sequence, then the sequence 〈b0, . . . , bm〉 ob-
tained by sorting a0, . . . , am is also ε-good.

Proof. As the bi’s are monotone nondecreasing as a function of their index, in order to
show that they are an ε-good sequence we only need to show that for any k ∈ [m] we have

1
m− k

m∑

i=k+1

bi ≤ bk

ε

as for monotone sequences the average only decreases if a subsequence is chopped off from
the right.

Fix k ≤ m and consider the average 1
m−k

∑m
i=k+1 bi. We may assume that each bi is a

renaming of some aj in the original sequence. Thus the subsequence B = 〈bk+1, . . . , bm〉
corresponds to members in the original subsequence:

〈ai1+1, . . . , ai1+j1〉, 〈ai2+1, . . . , ai2+j2〉, . . . , 〈ait+1, . . . , ait+jt〉

where each subsequence 〈air+1, . . . air+jr〉 is a maximal contiguous subsequence in the
original sequence whose members were renamed to members of B, and hence their value
is at least bk (as all members in B are such).

On the other hand, the values of ai1 , ai2 , . . . , ait are all bounded by bk as their renaming
does not put them in B. Since 〈a1, . . . , am〉 is ε-good, this means that for every 1 ≤ r ≤ t,
the average of the subsequence 〈air+1, . . . air+jr〉 is at most bk/ε. Note that it is safe to
assume that b0 is the renaming of a0 (which for a good sequence is equal to the minimum
1) and hence i1 ≥ 0. Finally, as the average of the subsequence B is clearly a weighted
average of the averages of the 〈air+1, . . . air+jr〉 subsequences, it is bounded by bk/ε as
well.

Now the proof of Lemma 7.3.3 follows directly from Claim 7.6.1 and Lemma 7.6.2.

7.6.2 Proof of Lemma 7.3.4

Proof. Recall the definition of G/W (a graph in which a subset of vertices is contracted)
from Section 7.3.2. Let Ei be a wide edge-layer. For every edge e = e{u, v} ∈ Ei define
We = {u, v}. We iteratively contract the subgraphs We in G, for all edges in all wide
edge-layers. Denote the final graph as G′ = (V ′, E′).

We claim that after this process G′ has no wide edge-layers at all. Formally let p(i)
denote the size of the set {j|j ≤ i and Ej is wide}|. Namely p(i) is number of wide edge-
layers in G preceding the vertex-layer Li. Now we have the following claim:
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Observation 7.6.4. Let v ∈ Li be a vertex in the i’th vertex-layer of G. Then v’s
representing vertex v′ in G′ is in the vertex-layer L′i−p(i) of G′.

Proof. The proof follows by induction on i.

The mapping µ sending i to i′ = (i − p(i)) is monotone non-decreasing, and onto the
number of layers in G′. For an index i′ of a vertex-layer in G′, let `(i′) denote the largest
index in the set µ−1(i′). Recall that E′

i is the set of edges from layer L′i′−1 to layer L′i′ and
within layer L′i′ in G′. Note that these edges are exactly the edges that correspond to the
edges between layers L`(i′) and L`(i′)−1 and within L`(i′) in G. Thus assuming towards a
contradiction that E′

i is wide in G′, means that E`(i) is wide in G . But this is not possible,
as E`(i) is in the set of edges that were not contracted. As a conclusion, G′ cannot have
any wide edge-layers.

It is clear that any orientation query to
−→
G ′ can be simulated by a single orientation

query to
−→
G , and since all we did was contracting edges, if there is a path from s to t in−→

G then there is a path from s to t in
−→
G ′. Now we only need to show is that the second

condition of reducibility holds.
We now show that by changing the direction of at most ε

2 |E′| edges we can have a
path from s to t in

−→
G if there was one in

−→
G ′. We can always assume that the path in−→

G ′ is simple, i.e. it passes through each vertex at most once. Now each vertex in G′

corresponds to a connected subgraph in G. We call a non-trivial subgraph of G shrunk if
all its vertices, and only them, are represented by a single vertex in G′. Clearly we can
extend an st-path in G′ to an st-path in G by only reorienting the edges in the shrunk
subgraphs of G. We only contracted edges in the wide edge-layers, so the total number
of edges in the shrunk components is at most the total number of edges in the wide edge-
layers. By the assumption on G we have that only ε

2 |E| of the edges lie in the shrunk
subgraphs of G. If by changing the orientation of only ε

2 |E′| edges in
−→
G ′ we get a path

from s to t in
−→
G ′, then by changing only ε

2 |E′| + ε
2 |E| ≤ ε|E| edges in

−→
G we can get a

path from s to t in
−→
G , and the second reducibility condition is proved.
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Chapter 8

Testing for Eulerian orientations

8.1 Background

In this chapter we consider the property of being Eulerian, which was presented in
[HLNT07] as one of the natural orientation properties whose query complexity was still
unknown. A directed graph

−→
G is called Eulerian if for every vertex v in the graph, the

in-degree of v is equal to its out-degree. An undirected graph G has an Eulerian orien-
tation

−→
G if and only if all the degrees of G are even. Such an undirected graph is called

Eulerian also. Throughout this chapter we assume that our underlying undirected graph
G is Eulerian.

Despite the local nature of the property of being Eulerian, it turns out to be signifi-
cantly harder for testing than other properties in the orientations model. In particular,
in this chapter we show a super-constant lower bound on the query complexity of this
problem, even if the tester has two-sided error.

Eulerian graphs and Eulerian orientations have attracted researchers since the dawn
of graph theory in 1736, when Leonard Euler published his solution for the famous
“Königsberg bridge problem”. Throughout the years, Eulerian graphs have been the
subject of extensive research (e.g. [Rob69, Lov76, Tut84, MW96, BW05, Bab06]; see
[Fle90, Fle91] for an extensive survey). Aside from their appealing theoretic charac-
teristics, Eulerian graphs have been studied in the context of networking [IKN88] and
genetics [PTW01].

Testing for being Eulerian in the orientation model is equivalent to the following prob-
lem. We have a known network (a communication network, a transportation system or a
piping system) where every edge can transport a unit of “flow” in both directions. Our
goal is to know whether the network is “balanced”, or far from being balanced, where
being balanced means that the number of flows entering every node in the network is
equal to the number of flows exiting it (so there is no “accumulation” in the nodes). To
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examine the network, we detect the flow direction in selected individual edges, which is
deemed to be the expensive operation.

The main difficulty in testing orientations for being Eulerian arises from the fact that
an orientation might have a small number of unbalanced vertices, and each of them with
only a small small imbalance, and yet be far from being Eulerian. This is since trying
to balance an unbalanced vertex by inverting some of its incident edges may violate the
balance of its balanced neighbors. Thus, we must continue to invert edges along a directed
path between a vertex with a positive imbalance and one with a negative imbalance. We
call such a path a correction path.

In this context we mention the work of Babai [Bab06], who studied the ratio between
the diameter of Eulerian digraphs and the diameter of their underlying undirected graphs.
While he gave an upper bound for this ratio for vertex-transitive graphs, he showed an
infinite family of undirected graphs with diameter 2 which have an Eulerian orientation
with diameter Ω(n1/3).

To prove the lower bounds, we concentrate on bounded-degree graphs, and use the
toroidal grid to prove non-constant 1-sided and 2-sided lower bounds. These bounds are
quite surprising, as bounded-degree graphs have a constant size witness for not being
Eulerian, namely, the edges incident with one unbalanced vertex. In contrast, we saw
that the st-connectivity property studied in the previous chapter, whose witness must
include a cut in the graph, is testable with a constant number of queries in the orientation
model. However, in other testing models there are known super-constant lower bounds
also for properties that have constant-size witness. For instance, in [BSHR05] it is proved
that testing whether a truth assignment satisfies a known 3CNF formula requires a linear
number of queries for some formulas.

Before proceeding to the proofs of the lower bounds, we refer the reader to Section
6.2 above for basic preliminaries and notations used in the orientation model. Additional
specific preliminaries for this chapter are given in the next section.

8.2 Specific preliminaries

Consider an algorithm that tests an orientation
−→
G of G. At a given moment, we represent

the edges that the algorithm has queried so far by a directed knowledge graph
−→
H = (V,

−→
EH),

where
−→
EH ⊆ −→

E . We say that a cut M = (U, V \U) of G is valid with respect to a knowledge
graph

−→
H if

|−→EH(U, V \ U)| ≤ 1
2
|E(U, V \ U)| and |−→EH(V \ U,U)| ≤ 1

2
|E(U, V \ U)|.
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Otherwise, M is called invalid. Clearly, if
−→
G is Eulerian, then every knowledge graph

−→
H

of
−→
G contains only valid cuts. In the following we also show that the only negative witness

of
−→
G (for not being Eulerian) is a knowledge graph that contains some invalid cut.
We say that a (valid) cut M = (U, V \ U) of G is restricting with respect to

−→
H if

−−→|EH(U, V \ U)| =
1
2
|E(U, V \ U)| or |−→EH(V \ U,U)| =

1
2
|E(U, V \ U)|.

Note that, given that
−→
G is Eulerian, a restricting cut with respect to

−→
H forces the orienta-

tions of all the unqueried edges in the cut. We say that two restricting cuts M1 and M2 are
conflicting (with respect to a knowledge graph

−→
H ) if they force contrasting orientations of

at least one unqueried edge.

Lemma 8.2.1. Let
−→
H be a knowledge graph of

−→
G and suppose that all the cuts in G are

valid with respect to
−→
H . Then there are no conflicting cuts with respect to

−→
H .

Proof. Assume, on the contrary, that M1 = (V1, V \ V1) and M2 = (V2, V \ V2) are
conflicting with respect to

−→
H . That is, there exists an edge {u,w} ∈ E, which was not

queried and hence is not oriented in
−→
H , which is forced to have contrasting orientations

by M1 and M2. Without loss of generality, assume that u ∈ V1 \ V2, w ∈ V2 \ V1, and

|−→EH(V1, V \ V1)| =
1
2
· |E(V1, V \ V1)|, (8.1)

|−→EH(V2, V \ V2)| =
1
2
· |E(V2, V \ V2)|. (8.2)

Thus, M1 forces e to be oriented from w to u, whereas M2 forces e to be oriented from u

to w.
Recall now that all the cuts in G are valid with respect to

−→
H . Consider the cuts

(V1 ∩ V2, V \ (V1 ∩ V2)) and (V1 ∪ V2, V \ (V1 ∪ V2)). We have

|−→EH(V1 ∩ V2, V \ (V1 ∩ V2))| ≤ 1
2
· |E(V1 ∩ V2, V \ (V1 ∩ V2))| (8.3)

and
|−→EH(V1 ∪ V2, V \ (V1 ∪ V2))| ≤ 1

2
· |E(V1 ∪ V2, V \ (V1 ∪ V2))| (8.4)

since these cuts are valid. Note that

|E(V1 ∩ V2, V \ (V1 ∩ V2))| + |E(V1 ∪ V2, V \ (V1 ∪ V2))| (8.5)

= |E(V1, V \ V1)|+ |E(V2, V \ V2)| − 2 · |E(V1 \ V2, V2 \ V1)|

and
|−→EH(V1 ∩ V2, V \ (V1 ∩ V2))| + |−→EH(V1 ∪ V2, V \ (V1 ∪ V2))| = (8.6)
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|−→EH(V1, V \ V1)|+ |−→EH(V2, V \ V2)| − |−→EH(V1 \ V2, V2 \ V1)| − |−→EH(V2 \ V1, V1 \ V2)|.

Summing Equation (8.1) with Equation (8.2) yields

|−→EH(V1, V \ V1)|+ |−→EH(V2, V \ V2)| = 1
2

(|E(V1, V \ V1)| + |E(V2, V \ V2)|) . (8.7)

Summing Inequality (8.3) with Inequality (8.4) yields

−→
EH(V1 ∩ V2, V \ (V1 ∩ V2))| + |−→EH(V1 ∪ V2, V \ (V1 ∪ V2))| ≤ (8.8)

1
2

(|E(V1 ∩ V2, V \ (V1 ∩ V2))| + |E(V1 ∪ V2, V \ (V1 ∪ V2))|) .

Substituting Equations (8.5) and (8.6) in Inequality (8.8) we obtain:

|−→EH(V1, V \ V1)|+ |−→EH(V2, V \ V2)| − |−→EH(V1 \ V2, V2 \ V1)| − |−→EH(V2 \ V1, V1 \ V2)| ≤

1
2

(|E(V1, V \ V1)| + |E(V2, V \ V2)|)− |E(V1 \ V2, V2 \ V1)|.

Now, from Equation (8.7) we have:

|−→EH(V1 \ V2, V2 \ V1)| + |−→EH(V2 \ V1, V1 \ V2)| ≥ |E(V1 \ V2, V2 \ V1)|.

That is, all the edges in E(V1 \ V2, V2 \ V1) are oriented in
−→
H . This is a contradiction to

our assumption that {u,w} ∈ E(V1 \ V2, V2 \ V1) was not yet oriented.

Lemma 8.2.2. Suppose that
−→
H is a knowledge graph that does not contain invalid cuts.

Then
−→
H is extensible to an Eulerian orientation

−→
G = (V,

−→
EG) of G. That is,

−→
EH ⊆ −→

EG.

Proof. We orient unoriented edges in the following manner. If there exists a restricting cut
with unoriented edges, we orient one of them as obliged by the cut. According to Lemma
8.2.1, this will not invalidate any of the other cuts in the graph, and so we may continue.
If there are no restricting cuts in the graph, we arbitrarily orient one unoriented edge and
repeat (and this cannot violate any cut in the graph since there were no restricting cuts).
Eventually, after orienting all the edges, we receive a complete orientation of G whose cuts
are all valid, and thus it is Eulerian.

8.3 Lower bounds for bounded-degree graphs

In this section we prove the following theorems.

Theorem 8.3.1. Non-adaptive testing for Eulerian orientations of bounded degree graphs
with 2-sided error requires Ω

(√
log m

log log m

)
queries. Consequently, adaptive testing requires
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Ω(log log m) queries.

Theorem 8.3.2. Non-adaptive testing for Eulerian orientations of bounded degree graphs
with 1-sided error requires 1

100m1/4 queries. Consequently, adaptive testing with 1-sided
error requires Ω(log m) queries.

We start by proving Theorem 8.3.1. Next, based on the proof of Theorem 8.3.1, we
prove Theorem 8.3.2.

8.3.1 Overview of the proof of Theorem 8.3.1

The proof of Theorem 8.3.1 is by Yao’s principle, as formalized in Lemma 3.4.1. Namely,
for infinitely many natural numbers m we define a graph Gm with m edges, and two
distributions over the orientations of Gm. The first distribution, Pm, will contain only
Eulerian orientations of Gm, and the second distribution, Fm, will contain orientations
that are with high probability ε-far from being Eulerian, where ε = 1/64. Then we
show that any non-adaptive deterministic algorithm that makes o

(√
log m

log log m

)
orientation

queries cannot distinguish between the distributions Pm and Fm with probability larger
than 1/5.

All our underlying graphs Gm are two dimensional tori, which are 4-regular graphs
having a highly symmetric structure (the exact definition is given below). We exploit this
symmetry to construct distributions Pm and Fm such that in both cases, for any fixed set
Q of o

(√
log m

log log m

)
edges, the orientation of every pair in Q has (with high probability)

either no correlation at all, or a correlation that is identical in both cases.
To construct these distributions we build the orientations from repeated “patterns” of

varying sizes, and show that in order to succeed, a deterministic algorithm must know the
approximate size of these patterns.

8.3.2 Torus – formal definition

Recall that we denote by [`] the set {1, 2, . . . , `}. For i, j ∈ [`] we let ⊕ denote addition
modulo `, that is:

i⊕j =
{

i + j , i + j ≤ `

i + j − ` , i + j > `
.

Given a graph G and two edges e1, e2 ∈ E(G), we define the distance between e1 and e2 (or
shortly dist(e1, e2)) as the minimal distance between an endpoint of e1 and an endpoint
of e2. For an edge e = {u, v} ∈ E(G) and a vertex w ∈ V (G) we define the distance of e

from w, or shortly dist(e, w), as the minimum of dist(u, w) and dist(v, w). We stress that
in this chapter even in oriented graphs

−→
G , the distances between edges and vertices are

still measured on the underlying (undirected) graph G.
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We define the imbalance of a vertex v in a directed graph as ib(v) def= degout(v)−degin(v).
We say that a vertex v ∈ V is a spring if ib(v) > 0. We say that v is a drain if ib(v) < 0.
If ib(v) = 0 then we say that v is balanced in

−→
G . Clearly, a digraph is Eulerian if all

its vertices are balanced, and whenever all the vertices of an undirected graph have even
degrees, there always exists some Eulerian orientation on it.

Definition 24 (Torus). A torus is a two dimensional cyclic grid. Formally, an ` × `

torus is the graph T = (V, E) on n = `2 vertices V = {vi,j : i ∈ [`], j ∈ [`]} and m = 2n

edges E = EH ∪ EV , where EH =
{
{vi,j1 , vi,j2} : j2 = j1⊕1

}
and EV =

{
{vi1,j , vi2,j} :

i2 = i1⊕1
}
. We also call EH the set of horizontal edges, and call EV the set of vertical

edges. Two edges e1, e2 ∈ E are perpendicular if one of them is horizontal and the other
is vertical, and otherwise they are parallel.

Given an orientation
−→
T of T , we say that a horizontal edge e = {vi,j , vi,j⊕1} is directed

to the right if vi,j is the start-point of e, and otherwise we say that e is directed to the
left. Similarly, we say that a vertical edge e = {vi,j , vi⊕1,j} is directed upwards if vi,j is
the start-point of e, and else it is directed downwards.

To avoid irrelevant special case arguments, throughout this section we always assume
that ` is even. Now we define a graph operation that is later used in the construction of
the distributions Pm and Fm.

Definition 25 (shifting). Let T be an `×` torus, and let a, b ∈ [`]. We say that a mapping
π : V (T ) → V (T ) is an (a, b)-shifting of T if for every vi,j ∈ V (T ) we have π(vi,j) =
vi⊕a,j⊕b. Note that this is an isomorphism of T . Given an orientation

−→
T of T , we define

its shifting to preserve the directions of the edges. Namely, if e = {vi,j , vi′,j′} is directed
from vi,j to vi′,j′ in T , then in the (a, b)-shifting of T the edge e′ = {π(vi,j), π(vi′,j′)} is
directed from π(vi,j) to π(vi′,j′).

8.3.3 Defining two auxiliary distributions

In this section we describe two simple distributions, Rm and C(k)
m , over the orientations of

an ` × ` torus T with m = 2`2 edges. We later build the final distributions Fm and Pm

based on Rm and C(k)
m respectively.

The distribution Rm is simply a random orientation of T ’s edges. Namely, in
−→
T ∼ Rm

the orientation of each edge e ∈ E(T ) is chosen uniformly at random, independently of
the other edges.

Lemma 8.3.3. Let
−→
T be an orientation of a torus T with m edges, distributed according

to the distribution Rm. With probability 1−o(1), there are at least n/4 = m/8 unbalanced
vertices in

−→
T .
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Proof. Recall that V = {vi,j : i, j ∈ [`]} is the set of T ’s vertices. Define a subset

I = {vi,j : i + j is even} ⊆ V

of n/2 vertices. Observe that I is an independent set in T , and so every vertex vi ∈ I

is balanced with probability xi =
(
4
2

)
/24 = 3/8 independently from all other vertices in

I. By Chernoff’s inequality, the probability that at least half of the vertices in I are
balanced is bounded by exp(−n/64). Namely, with probability 1− o(1) there are at least
n/4 unbalanced vertices in I.

The second distribution, C(k)
m , is a distribution over Eulerian orientations of T . The

parameter k is assumed to divide `
2 =

√
m/2

2 . The Eulerian orientations given by C(k)
m are

constructed as follows. First, the torus T is decomposed into m/4k edge-disjoint 4k-cycles
c1, c2, . . . , cm/4k, where each cycle ci has exactly four “corner” vertices, that is vertices
that are adjacent to both vertical and horizontal edges. Then, for each cycle ci, one of its
two possible Eulerian orientations is chosen uniformly at random, independently of other
cycles. Let

−→
T ′ denote the orientation of T at this stage. Finally, a, b ∈ [`] are chosen

uniformly at random, and
−→
T is set to be an (a, b)-shift of

−→
T ′.

In what follows, for a pair of edges ei, ej ∈ T and an orientation
−→
T of T , we say that

ei and ej are independent if either
−→
T ∼ Rm, or if

−→
T ∼ C(k)

m and the edges ei,ej reside
in different 4k-cycles ci, cj . A set Q ⊆ E(T ) is independent if all pairs e1, e2 ∈ Q are
independent. Observe that if Q is independent, then the orientation of every e ∈ Q is
distributed uniformly at random, independently of the other members of Q. Clearly if

−→
T

is distributed according to Rm then every set Q ⊆ E(T ) is independent, but this is not
the case for orientations distributed according to C(k)

m . In the following lemmas we claim
that under some conditions on the set Q, with high probability it is independent even if−→
T is distributed according to C(k)

m .

Lemma 8.3.4. Let T be an ` × ` torus with m edges, and let e1, e2 ∈ E(T ) be two
perpendicular edges of T . Let

−→
T be an orientation of T distributed according to C(k)

m , for
an integer k that divides `/2. Then the probability that e1 and e2 are independent is at
least 1− 2

k .

Proof. Suppose that e1 and e2 are not independent. Then they must reside in the same
cycle c0. Observe that there is a unique vertex v0 defined by e1 and e2, which must be
one of the “corner” vertices of c0, namely, v0 must be an endpoint of both horizontal and
vertical edges of c0 . The number of 4k-cycles that are required to cover all edges of T is
2`2

4k = `2

2k , so the total number of corner vertices is 4 · `2

2k = 2`2

k . Therefore, the fraction of
corner vertices is exactly 2/k. Since in the last step of the definition of C(k)

m the orientation
is randomly shifted, the probability that v0 is not a corner of any of the 4k-cycles is exactly
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1− 2/k.

Lemma 8.3.5. Let T be an ` × ` torus with m edges and let k be an integer that di-
vides `/2. Let Q ⊆ E(T ) be a set of o(

√
k) edges such that for every pair e1, e2 ∈ Q

either dist(e1, e2) > 2k, or e1 and e2 are perpendicular. Then for an orientation
−→
T of T

distributed according to C(k)
m , the probability that Q is independent is 1− o(1).

Proof. Fix a pair e1, e2 ∈ Q. If dist(e1, e2) > 2k then e1 and e2 must reside in different
4k-cycles, and hence they are independent. Otherwise, e1, e2 are perpendicular, and by
Lemma 8.3.4 they are independent with probability at least 1 − 2

k . Now the proof is
completed by applying the union bound for all o(k) pairs e1, e2 ∈ Q.

8.3.4 Defining the distributions Pm and Fm

First we need to define the following operation, that allows us to construct orientations of
large tori based on orientations of small ones. This operation preserves the distance of the
orientations we use from being Eulerian. In particular, if it is applied on

−→
T ∼ Rm, then

the resulting orientation is far from being Eulerian as long as
−→
T contains many unbalanced

vertices (and then we can use Lemma 8.3.3), and on the other hand, if it is applied on the
Eulerian orientation

−→
T ∼ C(k)

m then the resulting orientation is also Eulerian.

Definition 26 (t-tiling). Let
−→
T be a directed ` × ` torus, and let t be a natural number.

We define the t-tiling of
−→
T as a 2t`×2t` directed torus

−→
T t which is constructed as follows.

For convenience, let vi,j , i, j ∈ [`] denote the vertices of
−→
T and let ui,j , i, j ∈ [2t`]

denote the vertices of
−→
T t. First, we partition the 2t`×2t` torus

−→
T t into `2 disjoint 2t×2t

grids {Gi,j}i,j∈[`], where every grid Gi,j is associated with the vertex vi,j ∈ V (
−→
T ). The

partition of
−→
T t into `2 grids Gi,j is according to the original layout of the vertices vi,j in

the `× ` torus
−→
T . Formally, For every i, j ∈ [`], the grid Gi,j contains the vertices

V (Gi,j) = {ui′,j′ : 2t(i− 1) < i′ ≤ 2ti, 2t(j − 1) < j′ ≤ 2tj}.

Next, every grid Gi,j is partitioned into the following four disjoint t× t grids.

• The grid Ri,j, which we call the representative of the vertex vi,j ∈ V (
−→
T ).

• The grid P r
i,j, which we call the padding to the right of Ri,j.

• The grid P b
i,j, which we call the padding below Ri,j.

• The grid P rb
i,j , which we call the padding diagonally to Ri,j.

These four t × t grids are composed into a 2t × 2t grid Gi,j by placing Ri,j in the upper
left corner, placing P r

i,j to the right of Ri,j, placing P b
i,j below Ri,j and placing P rb

i,j below
P r

i,j. See an example of how a 2× 2 torus corresponds to its 3-tiling in Figure 8.1.
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Figure 8.1: A 2×2 torus and its 3-tiling. The vertex v2,1 is encircled in the original torus,
and its corresponding sub-grids R2,1, P

r
2,1, P

b
2,1 and P rb

2,1 are encircled in the 3-tiling.

The orientation
−→
T t is defined as follows. For every vi,j ∈ V (

−→
T ), let r1

i,j , r
2
i,j , . . . , r

t
i,j ∈

V (
−→
T t) be the t vertices on the main diagonal of the representative grid Ri,j. For every

edge e = {vi,j , vi′,j′} ∈ E(
−→
T ) directed from vi,j to vi′,j′ and every h ∈ [t], we orient the

edges on the shortest path from rh
i,j to rh

i′,j′ in a way that forms a directed path from rh
i,j

to rh
i′,j′. For every edge e′ ∈ E(

−→
T t) that participates in this path, we call e the originating

edge of e′, and we use the notation org(e′) def= e.
As for the remaining edges (the “padding” part), all horizontal edges are directed to

the right, and all vertical edges are directed upwards, as per Definition 24. See an example
in Figure 8.2. For every padding edge e we define org(e) def= ∅, since they have no origin
in T .

The next lemma states that a tiling of an Eulerian torus is also Eulerian, while on the
other hand, a tiling of a torus with many unbalanced vertices results with a torus which
is far from being Eulerian.

Lemma 8.3.6. Let
−→
T be a directed ` × ` torus on n = `2 vertices, and let

−→
T t be the

t-tiling of
−→
T for some natural number t. Then ,

• If
−→
T is Eulerian, then

−→
T t is also Eulerian.

• For every 0 < δ < 1, if
−→
T contains δn = δ`2 unbalanced vertices, then

−→
T t is δ

16 -far
from being Eulerian.

Proof. The first statement of the lemma follows directly from Definition 26. Assume now
that

−→
T has δn unbalanced (spring or drain) vertices. According to the definition of a
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Figure 8.2: A 2 × 2 directed torus and the corresponding 3-tiling. The vertex v2,1 is
encircled in the original torus, and the corresponding vertices r1

2,1, r
2
2,1 and r3

2,1 are encircled
in its tiling. In addition, the edge {v1,2, v1,1} is emphasized in the original torus, and the
corresponding edges are emphasized in the 3-tiling. Notice the circular orientation of the
dashed edges (the padding part).

t-tiling, for every unbalanced vertex vi,j ∈ V (
−→
T ) we have exactly t unbalanced vertices

r1
i,j , r

2
i,j , . . . , r

t
i,j on the main diagonal of vi,j ’s representative grid Ri,j in

−→
T t, so the number

of unbalanced vertices in
−→
T t is δnt. In addition, whenever vi,j is a spring (respectively

drain) vertex in
−→
T , the vertices r1

i,j , r
2
i,j , . . . , r

t
i,j are also springs (respectively drains) in−→

T t, so every pair of spring-drain vertices must reside in different grids Ri,j and Ri′,j′ .
This implies that (due to the padding parts) the distance from any spring vertex to any
drain vertex in

−→
T t is at least t. Consequently, every correction path in

−→
T t must be of

length at least t. Since every correction path in
−→
T t can balance at most two unbalanced

vertices, and since the length of every such path is at least t, we conclude that
−→
T t is

tδnt/2

|E(
−→
T t)| = δnt2/2

8nt2
= δ

16 -far from being Eulerian.

Lemma 8.3.7. Let
−→
T t be a t-tiling of a randomly oriented ` × ` torus

−→
T ∼ Rm. Then

with probability 1− o(1),
−→
T t is 1/64-far from being Eulerian.

Proof. Follows by combining Lemma 8.3.6 (with δ = 1/4) and Lemma 8.3.3.

Now we describe the distributions Pm and Fm over the orientations of an `× ` torus
T , where m = 2`2. To avoid divisibility concerns, we assume that ` = 2k, and k = 2b for
some natural number b > 1. It is easy to verify that the same proof works also for general
values of ` and k by using rounding as appropriate.
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Distribution Pm: Choosing
−→
T ∼ Pm is done according to the following steps.

• Choose s uniformly at random from the range [k/4, k/2]. Let t = 2s, that is, t can
take log `

4 values in the range [n1/4, n1/2].

• For an `
2t × `

2t torus H, choose a random orientation
−→
H according to the distribution

C(k)
m .

• Set
−→
T ′ to be the t-tiling of

−→
H .

• Choose a, b ∈ [`] uniformly at random, and set
−→
T to be the (a, b)-shift of

−→
T ′.

Distribution Fm: Choosing
−→
T ∼ Fm is done according to the following steps.

• Choose s uniformly at random from the range [k/4, k/2] and set t = 2s.

• For an `
2t × `

2t torus H, choose a random orientation
−→
H according to the distribution

Rm.

• Set
−→
T ′ as the t-tiling of

−→
H .

• Choose a, b ∈ [`] uniformly at random, and set
−→
T to be the (a, b)-shift of

−→
T ′.

8.3.5 Bounding the probability of distinguishing between Pm and Fm

According to Lemma 8.3.6,
−→
T ∼ Pm is always Eulerian, and according to Lemma 8.3.7,−→

T ∼ Fm is with high probability 1
64 -far from being Eulerian. Our aim is to show that any

non-adaptive deterministic algorithm making o
(√

log `
log log `

)
queries will fail to distinguish

between orientations that are distributed according to Pm, and those that are distributed
according to Fm.

Let Q ⊆ E(T ) be a fixed set of at most 1
10

√
log `

log log ` edges queried by a deterministic

algorithm. Let org(Q) def= {org(e) : e ∈ Q} ⊆ E(H) be the set of Q’s originating edges
(see Definition 26). Clearly, if

−→
T is distributed according to Fm, then the set org(Q) ⊆

E(H) is independent in H, and hence the distribution of the orientations of the edges in
org(Q) ⊆ E(H) is uniform. Therefore, it is enough to show that whenever

−→
T is distributed

according to Pm, with probability at least 4
5 the set org(Q) is independent in H too. In

order to prove this we need the next lemma.

Lemma 8.3.8. Let q1, q2 ∈ E(T ) be a pair of edges within distance x. Let
−→
T be a random

orientation of T , chosen according to distribution Pm. Then

Prs[
t

4k
≤ x ≤ 4tk] <

8(log log ` + 2)
log `

.
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Proof. Observe that there are at most 2 log k + 4 = 2 log log ` + 4 values of s for which a
fixed number x can satisfy 2s−log k−2 = t

4k ≤ x ≤ 4tk = 2s+log k+2. On the other hand, s

is distributed uniformly among k
4 = log `

4 possible values, so the lemma follows.

For a set Q ⊆ E(T ) and an orientation
−→
T of T , we define the following event IQ: For

all pairs q1, q2 ∈ Q either dist(q1, q2) < t
4k or dist(q1, q2) > 4tk in T . The next lemma is a

direct consequence of Lemma 8.3.8.

Lemma 8.3.9. Let Q ⊆ E(T ) be a fixed set of 1
10

√
log `

log log ` edges, and let
−→
T be a random

orientation of T , according to distribution Pm. Then the event IQ occurs with probability
at least 9/10.

Proof. Follows by applying the union bound on the inequality from Lemma 8.3.8 for all
pairs q1, q2 ∈ Q.

Recall that since |org(Q)| = o(
√

log `) = o(k), according to Lemma 8.3.5 it is enough
to show that with probability at least 4

5 the set org(Q) is such that for every pair
org(e1), org(e2) ∈ org(Q) either dist

(
org(e1), org(e2)

)
> 2k in H, or org(e1) and org(e2)

are perpendicular. Clearly, if dist(e1, e2) > 4tk in T , then dist
(
org(e1), org(e2)

)
> 2k in

H. We take care of the other case in the next lemma.

Lemma 8.3.10. Conditioned on the event IQ, with probability 1 − o(1) for every pair
of edges e1, e2 ∈ Q such that dist(e1, e2) < t

4k one of the following holds: (1) e1, e2 are
perpendicular; (2) one of e1, e2 has no origin in H; (3) org(e1) = org(e2).

Before proving the lemma, observe that since IQ occurs with probability at least 9/10,
the conditions of Lemma 8.3.5 are satisfied by Q with (total) probability at least 9

10−o(1),
and hence org(Q) is independent with probability at least 9

10 − 2 · o(1) > 4/5, where the
probabilities are taken over Pm.

Proof. Fix a pair e1, e2 ∈ Q such that dist(e1, e2) < t
4k . If one of them has no originating

edge in H then we are done. Otherwise, since dist(e1, e2) < t
4k , by the definition of the

t-tiling org(e1) and org(e2) must have a common endpoint in H, say vi,j . If e1 and e2 are
perpendicular, then again we are done. On the other hand, if e1 and e2 are parallel, then
in order to have different origins they must be separated by the the main diagonal of Ri,j

(the representative grid of the common vertex vi,j). Notice that this may happen only if
the distance of both e1 and e2 from the main diagonal is at most t

4k . But the probability
that an edge is within that distance from the main diagonal of some representative grid
is at most t

4k t 1
t2

= 1
4k = o( log log `

log ` ). Now the proof is completed by applying the union
bound for all pairs e1, e2 ∈ Q .
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8.3.6 Proof of Theorem 8.3.1

Proof. Let Q ⊆ E(T ) be the fixed set of 1
10

√
log `

log log ` edge queries that a deterministic
algorithm makes. For every t let Pt

m and F t
m be respectively the conditioning of Pm and

Fm on a fixed value of t. Note that fixing t, org(Q) becomes defined and, in particular,
it is the same fixed set for inputs drawn according to Pt

m and F t
m. Now, for every t, if

−→
T

is distributed according to F t
m, then the set org(Q) of originating edges is independent.

On the other hand, by Lemmas 8.3.8, 8.3.9, and 8.3.10 the set org(Q) is independent with
probability at least 4/5 (with respect to the choice of t). Thus with probability at least
4/5 (over the choice of s which determines t), the set org(Q) is independent which implies
that the restriction of Pt

m on Q is identical to that of F t
m. Altogether, this implies that

distinguishing between the distributions with probability larger than 1/5 requires more
than 1

10

√
log `

log log ` = Ω
(√

log m
log log m

)
queries.

8.3.7 Overview of the proof of Theorem 8.3.2

As opposed to testers with 2-sided error, a tester with 1-sided error is not allowed to reject
the input unless a negative witness was found. In our case, as claimed in Lemma 8.2.1, the
only possible witness that an orientation is not Eulerian is an invalid cut, i.e. a (possibly
partial) cut that cannot be made balanced under any orientation of the non-queried edges.

Following this observation, we prove Theorem 8.3.2 using the distribution F` defined
in Section 8.3.4. First, we define distributions F ′` that are similar to the distributions F`,
except that t is fixed to be `/16, and the orientation

−→
H of an 8 × 8 torus H is fixed to

be one that makes all 64 vertices fully unbalanced. Then we show that for orientations
that are distributed according to F ′`, any non-adaptive deterministic algorithm that makes
o(
√

`) = o(
√

m) orientation queries cannot find an invalid cut (a negative witness) with
probability larger than 1/5. This will imply that there exists an 1

16 -far orientation on
which any randomized tester fails with probability at least 4/5.

The main idea is as follows. A cut can be invalid (and hence unbalanced) only if both
its components contain unbalanced vertices. Let us now fix a cut (A,B) of an `× ` torus
T , and let

−→
T be an orientation of T chosen according to F ′`. Suppose that indeed both A

and B contain unbalanced vertices, and let Q be a subset of the edges in the cut (A,B)
that witness its invalidity. Since the underlying graph T is a torus, one can show that
either Q contains Ω(m1/4) edges, or otherwise, one of the edges e ∈ Q must be within
distance at most O(m1/4) from one of the unbalanced vertices of

−→
T . Since the number

of unbalanced vertices in
−→
T ∼ F ′` is O(`) = o(m1/4), and since they are grouped into

64 diagonals of length `/32, the number of edges that are within distance O(m1/4) or
less from these unbalanced vertices is bounded by O(m3/4). Finally, since

−→
T is randomly

shifted, the probability that a set Q of size o(m1/4) contains any such edge goes to zero.

104



8.3.8 Proof of Theorem 8.3.2

First we formally define the distribution F ′`.

Distribution F ′`: Choosing
−→
T ∼ F ′` is done according to the following steps.

• Set t = `/16.

• Fix the orientation
−→
H of the `

2t × `
2t = 8× 8 torus H, such that all 64 vertices of H

are fully unbalanced in
−→
H (i.e. no vertex has both incoming and outgoing edges).

• Set
−→
T ′ to be the t-tiling of

−→
H .

• Pick a, b ∈ [`] uniformly at random and set
−→
T to be the (a, b)-shifting of

−→
T ′.

Lemma 8.3.11. Let T be an ` × ` torus, and let
−→
T be an orientation of T distributed

according to F ′`. Let Q be a fixed set of 1
100m1/4 edges from E(T ). Then the probability

(over
−→
T ∼ F ′`) that any of the edges in Q is within distance at most

√
` from an unbalanced

vertex v ∈ V (
−→
T ) is at most 1/5.

Proof. Let U denote the set of unbalanced vertices in
−→
T ∼ F ′`. Observe that |U | = 64t =

4` = 4
√

m/2, and recall that the vertices in U ⊆ V (T ) are grouped into 64 diagonals
of length t (see Definition 26). Thus, the number of vertices v ∈ V (T ) that are within
distance at most

√
` from some vertex u ∈ U is bounded by 64 · (t + 2

√
`) · 2

√
` ≤ 10`3/2.

Hence, the probability of a single edge e ∈ Q satisfying dist(e, u) ≤
√

` for some u ∈ U is
bounded by 20m−1/4 and the lemma follows.

We establish the proof of Theorem 8.3.2 using a few lemmas, in which we point out
some significant properties of the torus. But first, we give a general lemma about witnesses
for not being Eulerian.

Lemma 8.3.12. Let G = (V, E) be a graph and let
−→
G = (V,

−→
E ) be an orientation of G.

If a set Q ⊆ E is a witness that
−→
G is not Eulerian then Q contains more than half of the

edges of some invalid cut (A,B) in
−→
G , where both A and B are connected sets of vertices.

Proof. Recall that, by Lemma 8.2.1, Q contains more than half of the edges of an invalid
cut, say (A′, B′). Without loss of generality we assume that |−→E (A′, B′)| > 1

2 |E(A′, B′)|.
Hence, Q contains more than 1

2 |E(A′, B′)| edges going from A′ to B′. Let A1, . . . , Ar be the
connected components of A′. Note that (A′, B′) is a disjoint union of (A1, B

′), . . . , (Ak, B
′).

Using averaging calculations, we obtain that there exists a connected component Ai such
that Q contains more than 1

2 |E(Ai, B
′)| edges going from Ai to B′. Note in addition

that there are no edges between Ai and other connected components Ak’s of A′, and thus
(Ai, B

′) = (Ai, V \ Ai). We conclude that Q contains more than 1
2 |E(Ai, V \ Ai)| edges
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going from Ai to V \Ai. Now, let B1, . . . , Bs be the connected components of V \Ai. Note
that (Ai, V \Ai) is a disjoint union of (Ai, B1), . . . , (Ai, Bs). Using averaging calculations,
we obtain that there exists a connected component Bj such that Q contains more than
1
2 |E(Ai, Bj)| edges going from Ai to Bj . Note in addition that there are no edges between
Bj and other connected components Bk’s of V \Ai, and therefore (Ai, Bj) = (V \Bj , Bj).
We conclude that Q contains more than 1

2 |E(V \Bj , Bj)| edges going from V \Bj to Bj ,
and hence, Q is a witness to the invalidity of (V \ Bj , Bj). Bj is clearly connected. To
complete the proof, we need to show that V \Bj is connected as well. Recall that V \Bj is
a union of Ai and all the connected components Bk’s of V \Ai for k 6= j. The Bk’s are not
connected to each other. However, the torus T is a connected graph, and therefore, every
Bk must be connected to Ai. Since Ai is connected, V \Bj is connected. To conclude, we
set A = V \Bj and B = Bj .

In the following, we let T = (V, E) be an `× ` torus and use the notation of Definition
24. For every i ∈ [`], define the ith row of T as Ri

def= {vi,j ∈ V | j ∈ [`]}. For every j ∈ [`],
define the jth column of T as Cj

def= {vi,j ∈ V | i ∈ [`]}. Given a set A ⊆ V , let R(A) be
the set of rows Ri of T such that A ∩Ri 6= ∅, and let C(A) be the set of columns Cj of T

such that A ∩ Cj 6= ∅.
Given a cut (A,B) of V we say that a row Ri is mixed if Ri ⊆ R(A) ∩ R(B), that is,

if Ri includes vertices in A as well as vertices in B. Similarly, we say that a column Cj is
mixed if Cj ⊆ C(A)∩C(B). Let rmix be the number of mixed rows with respect to (A,B)
and let cmix be the number of mixed columns with respect to (A,B).

Observation 8.3.13. |E(A,B)| ≥ 2(rmix + cmix).

Proof. Looking at the cycle of vertical edges connecting all the vertices in every mixed
column, it is easy to see that every mixed column has at least two vertical edges in (A,B).
Similarly, it can be shown that every mixed row has at least two horizontal edges in
(A,B).

Observation 8.3.14.

1. If |R(A)| < ` then cmix = |C(A)|.

2. If |C(A)| < ` then rmix = |R(A)|.

The analogous claims also hold for B.

Proof. We give the proof of the first item. The proof of the second item is similar. Let Ri

be a row of T that is not in R(A). Then vi,j ∈ B for every j ∈ [`]. Hence, every column
Cj ∈ C(A) has a vertex in A as well as a vertex in B (namely, vi,j), which proves the
claim.
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Observation 8.3.15.

1. If |R(A)| = ` then rmix = |R(B)|.

2. If |C(A)| = ` then cmix = |C(B)|.
Proof. We give the proof of the first item. The proof of the second item is similar. Suppose
that |R(A)| = `. Then every row includes a vertex in A. Let Ri ∈ R(B). Then Ri includes
a vertex in A as well as a vertex in B, which completes the proof.

We say that a set A ⊆ V of vertices in T is grid-bounded if |R(A)| < ` and |C(A)| < `.

Lemma 8.3.16. Let (A,B) be a cut of V where |E(A, B)| < 2`. Then at least one of A

and B is grid-bounded.

Proof. From Observation 8.3.13 we have that rmix+cmix < `. Note that |R(A)|+ |R(B)|−
rmix = ` and |C(A)| + |C(B)| − cmix = `. Hence |R(A)| + |C(A)| + |R(B)| + |C(B)| ≤
2`+rmix +cmix < 3`, and thus, at most two of the sets R(A), C(A), R(B), C(B) are of size
`. Assuming that both A and B are not grid-bounded, we have max(|R(A)|, |C(A)|) = `

and max(|R(B)|, |C(B)|) = `. Therefore, we must have |R(A)| = ` and |C(A)| < `

or |R(A)| < ` and |C(A)| = `. The proofs of both cases are similar. We give the
proof for the case where |R(A)| = ` and |C(A)| < `. From Observation 8.3.15 we have
|R(B)| = rmix < `, and thus, from Observation 8.3.14, cmix = |C(B)|. Now, |C(B)| = `,
as otherwise B is grid-bounded. We hence obtain cmix = `, a contradiction.

Observation 8.3.17. If A is connected then there exists a row index i∗ ∈ [`] such that
R(A) = {Ri∗ , Ri∗⊕1, . . . , Ri⊕(s−1)} where s = |R(A)|, and there exists a column index
j∗ ∈ [`] such that C(A) = {Cj∗ , Cj∗⊕1, . . . , Cj⊕(t−1)} where t = |R(B)|. Hence, A is
contained in a subgraph G of T which is an |R(A)| × |R(B)| grid. Renaming i∗ as 1 and
j∗ to 1, we have that G is a grid with the vertex set VG = {vi,j | i ∈ [s], j ∈ [t]}.
Proof. Let Ri1 , Ri2 be rows in R(A). Hence, both Ri1 and Ri2 include at least one vertex in
A. Since A is connected, there exists a path of vertices in A between Ri1 and Ri2 . Clearly,
for every edge in the path, the endpoints are in the same row (in case of a horizontal
edge) or in subsequent rows (in case of a vertical edge). We thus conclude that R(A) is
a set of successive rows in the torus. Similarly, C(A) is a set of successive columns in the
torus.

Lemma 8.3.18. Let T be an `×` torus, and let
−→
T be a non-Eulerian orientation of T . Let

U ⊆ V (T ) denote the set of unbalanced vertices with respect to
−→
T . Let Q ⊆ E(T ) be a set of

edges forming a witness that
−→
T is not Eulerian, where |Q| < 1

2`. Let q denote the minimal
distance of an edge in Q to an unbalanced vertex, that is, q

def= mine∈Q, u∈U{dist(e, u)}.
Then |Q| ≥ q.
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Proof. By Lemma 8.3.12, we assume without loss of generality that Q contains more than
half of the edges of an invalid cut (A,B), where both A and B are connected. Since
|Q| < 1

2`, we have |E(A,B)| < `, and hence, from Lemma 8.3.16, one of the sets A and
B is grid-bounded. Assume, without loss of generality, that A is grid-bounded. Denote
s = |R(A)| and t = |C(A)|. Then s, t < `. Since A is connected, from Observation 8.3.17,
A is contained in an s× t grid G.

Suppose that |Q| < q. Then |E(A,B)| < 2q, and from Observation 8.3.13 we have
rmix + cmix < q. Let e = (wA, wB) be an edge in Q ∩ E(A, B), where wA ∈ A and
wB ∈ B. Since A is invalid, there exists an unbalanced vertex u ∈ A. By the definition
of q we have dist(e, u) ≥ q and hence dist(u, wA) ≥ q. Using the notation of Observation
8.3.17, we denote u = vi1,j1 and wA = vi2,j2 , where i1, i2 ∈ [s] and j1, j2 ∈ [t]. Then
clearly |i1 − i2| + |j1 − j2| ≥ q. We thus have s = |R(A)| ≥ |i1 − i2| + 1 and t =
|C(A)| ≥ |j1 − j2| + 1. Since A is grid-bounded, from Observation 8.3.14 we obtain
|C(A)| + |R(A)| = rmix + cmix ≥ |i1 − i2| + 1 + |j1 − j2| + 1 > q. Finally, Observation
8.3.13 gives that |E(A,B)| > 2q, a contradiction.

Proof. of Theorem 8.3.2 Let Q ⊆ E(T ) be the fixed set of 1
100m1/4 edge queries that

a deterministic non-adaptive algorithm makes. By Lemma 8.3.18, in order to form a
witness that

−→
T is not Eulerian, one of the edges in Q must be within distance at most

|Q| = 1
100m1/4 <

√
` from an unbalanced vertex in

−→
T ∼ F ′`. But according to Lemma

8.3.11, the probability of the above is at most 1/5. We thus conclude that discovering a
witness that

−→
T ∼ F ′` is not Eulerian with probability larger than 1/5 requires more than

1
100m1/4 nonadaptive queries.

108



Part III

Probabilistically Checkable Proofs

of Proximity
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Chapter 9

Length-Soundness tradeoffs for

3-query PCPPs

In this chapter we study the tradeoff between the length of a probabilistically checkable
proof of proximity (PCPP) and the maximal soundness that can be guaranteed by a 3-
query verifier with oracle access to the proof. Our main observation is that a verifier
limited to querying a short proof cannot obtain the same soundness as that obtained
by a verifier querying a long proof. Moreover, we quantify the soundness deficiency as
a function of the proof-length and show that any verifier obtaining the “best possible”
soundness must query an exponentially long proof.

In terms of techniques, we focus on the special class of inspective verifiers that read
at most two proof-bits per invocation. For such verifiers we prove exponential length-
soundness tradeoffs that are later on used to imply our main results for the case of general
(i.e., not necessarily inspective) verifiers. To prove the exponential tradeoff for inspective
verifiers we show a surprising connection between PCPP proof length and property-testing
query complexity. The connection is that any property that can be verified with proofs of
length ` by inspective verifiers must be testable with query complexity ≈ log `.

9.1 Background and introduction

This chapter discusses the relationship between two basic parameters of probabilistically
checkable proofs of proximity (PCPPs) – their proof length and soundness. PCPPs were si-
multaneously introduced in [BSGH+04] and (under the name assignment testers) in [DR04]
and a similar notion also appeared earlier in [Sze99]. The interest in PCPPs stems first
and foremost from the role they play within the proof of the celebrated PCP Theorem
of [AS98, ALM+98]. All recent constructions of PCPs, starting with [BSGH+04, DR04],
use PCPPs to simplify the proof of the PCP theorem and improve certain aspects of it,
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most notably, to decrease the length of proofs as in [BSGH+04, BSS05, Din07]. All pre-
vious proofs of the PCP theorem implicitly use PCPPs and can be augmented to yield
them. (See, e.g., [BSGH+04, Theorem 3.2] for a conversion of the original PCP system of
[AS98, ALM+98] into a PCPP). But PCPPs are also interesting beyond the scope of the
PCP Theorem. They can be used to transform any error correcting code into a locally
testable one and to construct “relaxed” locally decodable codes [BSGH+04]. Additionally,
as shown in [FF05, GR05], they have applications to questions in the theory of “tolerant”
property testing that was introduced in [PRR06].

A PCPP verifier, (or, simply, verifier) for a property P ⊂ {0, 1}n is a randomized,
sublinear-time algorithm that distinguishes with high probability between inputs that
belong to P and inputs that are far in relative Hamming distance from all members
of P . In this respect a verifier is similar to a property-tester as defined in Section 3.2.
However, in contrast to a tester, the verifier may query an auxiliary proof, called a proof
of proximity. A PCPP system has four basic parameters of interest, described next –
length, query complexity, completeness and a soundness function. The proof length is the
length of the auxiliary proof that is queried by the verifier1. The query complexity is
the maximal number of bits that can be read from both the input and the proof. The
completeness parameter is the minimal probability with which inputs that belong to P

are accepted when they are presented along with a “good” proof of proximity. Finally,
the soundness function s(δ) is the minimal rejection probability of inputs that are δ-far
(in relative Hamming distance) from P , where the minimum is taken over all such δ-far
inputs and all possible proofs that may accompany them.2 One additional property of a
verifier is adaptiveness, but in this thesis we will only focus on non-adaptive verifiers. See
Section 9.2 for a formal definition of PCPPs and further discussion of their parameters.

9.1.1 Informal description of the results

To describe our results, let us discuss the range of parameters we can expect from a
verifier for a linear property over the binary alphabet, i.e., a property that is closed under
addition modulo 2 (this amounts to saying P is a linear subspace of Fn

2 where F2 denotes
the two-element field). We look at nonadaptive 3-query verifiers with perfect (probability
1) completeness, thereby fixing two of the four basic parameters, and look at the tradeoff
between proof length and soundness. We point out that all known constructions of PCPPs
naturally yield nonadaptive 3-query verifiers with perfect completeness, so the results

1In PCP literature one often encounters randomness complexity as a means for bounding proof-length.
The two parameters are closely related, i.e., proof-length ≈ 2randomness, and we stick to the former param-
eter.

2Often, in literature on PCPs, the term “soundness” refers to “soundness-error” which is defined to be
the maximal acceptance probability of a “bad” input. The connection between soundness (used here) and
soundness-error, denoted serror, is given by s = 1− serror.
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described next apply to all of them.
Suppose we are interested in minimizing the proof length. The results of [Din07, BSS05]

give constructions with proofs of length at most m ·polylog n where m is the minimal size
of circuit deciding P (notice that the linearity of P implies m = O(n2)). Regarding
the soundness function, consider a random word that can be shown to have, with high
probability, distance δ ≈ 1

2 from P . The “short PCPP” construction mentioned above
gives s(δ) > ε for some small and unspecified constant ε > 0 that depends only on δ and
neither on P , nor on n.

Next, let us try to increase the soundness. We show in Theorem 9.2.2 that the sound-
ness can be boosted to s(δ) ≥ δ and that this soundness is obtained by a linear verifier. A
verifier is called linear if the set of answer-bits that cause it to accept forms a linear space.
For F2 this amounts to saying the verifier accepts iff the sum (mod 2) of the queried bits
is 0. For such verifiers, it can be shown that s(δ) is at most 1

2 and thus the soundness of
our construction is optimal. On the down side, the length of the proof used by this verifier
is exponential in n (this soundness-optimal construction can be carried out over any finite
field of prime size – see Theorem 9.2.2 for details).

To sum up the situation so far, we have constructions that are nearly optimal in
length, but are deficient in soundness, and we have constructions that are optimal in
soundness but are deficient in length. One could conjecture that a “super-PCPP” with
short proofs and optimal soundness exists. Our first main result, stated in Theorem 9.2.3
and Corollary 9.2.4, rules this out. We show a tradeoff between proof length and soundness
that essentially matches our soundness-optimal construction. In plain words, for some
properties (discussed below) any PCPP verifier that queries a short proof of length ` must
incur a soundness deficiency, and this deficiency increases as ` decreases (see Definition 31
for a formal definition of deficiency).

Our next main result, stated in Theorem 9.2.5 and Corollary 9.2.6, proves a tighter
tradeoff similar to the one mentioned above for the case of Fp-linear verifiers for Fp-linear
properties over a finite field of size p. Our results in this case are stronger even though
the query complexity, when measured in bits, is greater than 3 (however, the bits are read
from three “blocks”, where each block encodes a field element).

So far we have not specified which properties cause this kind of tradeoff to arise, i.e.,
which properties are “hard to verify”. These are in fact properties that are “hard to test”.
Informally, we say that P ⊂ {0, 1}n is “hard to test” if any property-tester for P (as
defined in [GGR98]) that rejects (say) 1

3 -far inputs with probability greater than 1/100,
requires query complexity q À 3. Our main theorems (Theorems 9.2.3 and 9.2.5) show
an exponential tradeoff between the property-testing query complexity q and the minimal
length of a 3-query verifier with large soundness (e.g., achieving a soundness function
s(δ) ≥ δ − 1/100). In a certain sense we show that any property that is hard to test is
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also hard to verify.

9.1.2 Context and motivation

We are motivated by the attempt to understand the limitations of PCP constructions.
One interesting open question related to our research is that of obtaining 3-query PCPs
with quasilinear length, completeness 1− ε and soundness 1

2 − ε for any language in NP.
For the sake of reference, we informally call such a construction a “super-PCP”. The
celebrated result of [H̊as97] obtains three out of four of these parameters (the proof length
there is a large polynomial). Numerous other works such as [GLST98, HK01, ST00,
EH05, KS06, ST06] investigate optimal, or nearly optimal, tradeoffs between the three
parameters of query complexity, completeness and soundness, while settling for polynomial
length proofs. A different line of research focused on optimizing the tradeoff between proof
length and query complexity [PS94, HS01, GS02, BSSVW03, BSGH+04, BSS05, Din07,
MR06, MR07], and all of these constructions obtain perfect completeness. Several of
these works, most notably [HS01, GS02, MR06, MR07], also strive to optimize the fourth
parameter, soundness, but have stopped short of constructing a “super-PCP”.

Our results show why a certain natural class of PCP constructions will not be suitable
for reaching our goal. All constructions of “short” PCPs (i.e., with proof length n1+o(1) for
NP instances of size n) start by encoding a witness for an NP-instance by some good error
correcting code, usually based on univariate or multivariate polynomials. These codes are
inherently “hard to test” because they have relatively high degree and are converted into
locally testable codes by composition with a PCPP. Our results show that no matter how
one tries to compose such codes with a PCPP, the resulting soundness will not come
close to 1

2 unless the proof is exponentially long. If a different error correcting code will
someday replace the aforementioned codes as a starting point for PCP constructions, our
results imply this code should be locally testable, at least if we hope to use it to obtain a
“super-PCP” construction.

This work can also be placed within the larger context of the study of limitations of
PCPs and objects related to them. There are preciously few results that give nontrivial
tradeoffs between the basic parameters of a PCP system. One notable example presented
in [Zwi98] shows that the soundness of a 3-query PCP verifier with perfect-completeness
cannot exceed 3/8 unless NP ⊆ BPP. A larger number of works try to understand the
limitations of PCP systems by either showing limitations of specific techniques used in PCP
constructions, or proving limitations on computational and combinatorial objects that are
closely related to PCPs. Along the first line of research one can mention [FK95] that shows
limitations on derandomizing the parallel repetition method of [Raz98], and [Bog05] that
shows upper bounds on the soundness that can be obtained from the gap amplification
technique of [Din07]. The second line of research includes the study of the limits of
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various basic parameters of locally decodable codes [KT00, KdW03], locally testable codes
[BSGS03], unique games [Kho02, Tre05, CMM06], and a large number of results regarding
the limits of property testing (see the survey [Fis04] for further information). Our work
relates to both of these lines of research because PCPPs are computational objects that
are closely related to PCPs and constitute the method of choice for constructing them.
We also hope that the research initiated here will contribute to a better understanding of
the inherent limits of the PCP theorem.

Last but not least, the actual soundness parameter one obtains from a small query
PCPP (and the PCPs and LTCs resulting from it) may someday in the future tell whether
such objects can be put to practical use in proof checking (as in [BFLS91]), communica-
tion and cryptography (as in [Kil92, Mic00]). Therefore, the study of tradeoffs between
soundness and proof length is of inherent importance.

9.1.3 Proof techniques

Inspective PCPPs Consider a 3-query verifier that rejects inputs that are δ-far from
P with probability ≈ δ. At first sight it may seem that reaching soundness s(δ) ≥ δ is
impossible because such high soundness forces the verifier to make at least one out of
three queries to the input, leaving only two queries for “checking” the proof. Indeed, a
verifier that seldom queries the input can be easily fooled to accept with high probability
a “legitimate” proof accompanying an input that is δ-far from P . The need to look at the
input naturally leads us to define an inspective verifier as one that inspects the input on
every invocation. Formally, an inspective verifier is one that makes at most two queries to
the proof; all other queries are to the input.3 Our main positive result, Theorem 9.2.2, says
that every Fp-linear property over a prime field of size p has a 3-query Fp-linear inspective
verifier with soundness function s(δ) ≥ δ and proof length at most pdim(P ). “Good” proofs
for inputs w ∈ P turn out to be certain “folded” Hadamard codewords, and we analyze
soundness using the Fourier analytic approach to linearity testing that was introduced in
[BCH+95] (see Section 9.3 for more details). The soundness obtained by the verifier of
Theorem 9.2.2 is the benchmark against which we measure all other 3-query verifiers.

Exponential tradeoffs between soundness and proof length for inspective

PCPPs All our results about the soundness deficiency of short PCPPs are based on
exponential tradeoffs between soundness and proof length for inspective PCPPs. Since
these results are similar in spirit let us informally describe how we obtain them in the
simplest setting – that of F2-linear verifiers.

3Alternatively, an inspective verifier could be defined as one that makes at least one query to the input.
For query complexity 3 the two definitions coincide, but for larger query complexity there is a big difference.
In particular, our main technical lower bound can be extended to any q-query inspective PCPP, as long
as we limit the number of proof-queries to be at most two.
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Roughly speaking, we show that if the linear property P ⊂ Fn
2 has a linear inspective

verifier that makes q queries4 to a proof of length ` and achieves soundness function s(δ),
then for every ε > 0 the property P has a tester, i.e., a verifier that queries only input
bits (not requiring proof), with query complexity O((q log `)/ε) and soundness function
s(δ) − ε. The contrapositive formulation for δ ≈ 1/2 and ε = 0.01 gives the following
statement. Suppose that P is “hard to test”, i.e., any tester for P with large soundness
requires large query complexity. Then any inspective linear verifier for P with small query
complexity must use proofs of exponential length. Examples of “hard to test” properties
include most random Low Density Parity Check (LDPC) codes as defined in [Gal62] and
linear spaces P for which the dual space, denoted P ∗, has no elements of small support
(in coding terminology, P is a linear code with large dual distance). As mentioned earlier,
most error correcting codes actually used as the starting point for constructing PCPs,
PCPPs and LTCs fall within this latter class.

From inspective to general PCPP tradeoffs Given the exponential tradeoff between
soundness and proof length for inspective verifiers, the proof of our main results (stated in
Section 9.2) goes along the following lines. A verifier is forced to choose between two “bad”
options. Either the probability that it reads only proof-bits is large. In this case we fool it
by presenting a legitimate proof for some word and make use of the fact that the verifier
seldom looks at the input (that is δ-far from P ). Otherwise, the probability that the verifier
makes an inspective query is large. In this case we use the tradeoff for the inspective case
to fool verifiers that use short proofs. In either of these two cases we manage to fool the
verifier into accepting words that are δ-far from P with probability approaching 1− δ/2,
i.e., the soundness-deficiency of short-proof verifiers when compared to the exponential
length verifier of Theorem 9.2.2 is close to δ/2. To complete the overview of our proof
techniques we describe next how we obtain exponential length-soundness tradeoffs for
inspective verifiers.

Proving Tradeoff Theorems for inspective verifiers Informally, we convert a q-
query inspective verifier for P that uses a proof of length ` and obtains soundness function
s, into a tester (not requiring proof) with query complexity O(q log `)/ε and soundness
s − ε. We first notice that an inspective verifier gives rise to a natural induced labeled
multigraph. The vertices of this graph are indices of proof bits, so the number of vertices
equals the length of the proof. For simplicity assume that each query-tuple reads exactly
two bits of the proof. Thus, every query-tuple defines an edge whose endpoints are the
proof bits read, and we label this edge by the set of indices of input bits read when making
the query (note that the resulting graph may have multiple edges between two vertices

4Our tradeoffs for inspective PCPPs hold for query complexity larger than 3, even though for the proof
of our three main theorems query complexity 3 suffices.

115



and these edges may have different labels). The induced graph is actually a representation
of the verifier in the sense that a single invocation of the verifier corresponds to picking
a random edge of the graph and making the set of queries given by the names of the
end-vertices and the edge-label. More to the point, the labeled graph also constitutes
a “partially-defined” constraint graph, meaning that if all input bits are read then the
resulting set of constraints (over proof bits) forms a constraint satisfaction problem with
two variables per constraint.

We apply a decomposition lemma (Lemma 9.5.3) due to [LR99] to the constraint graph
and remove some of its edges. The decomposition lemma guarantees that if the graph
was small to start with (i.e., the proof was short), then after removing a tiny fraction
of edges we are left with disconnected components of small radius5. The “decomposed”
graph corresponds to a new linear inspective verifier whose soundness has not decreased
significantly because it has pretty much the same possible queries as the original verifier.
Our analysis is completed (in Lemma 9.5.2) by showing that inspective PCPPs whose
induced graph has radius R can be converted without loss in soundness into (proofless)
testers with query complexity O(R). Summing up, if the proof is short to start with, then
its decomposed graph has small radius, also P has a tester with small query complexity
and good soundness.

The decomposition lemma mentioned above was previously used in a closely related
context in [Tre05] to provide algorithms for approximating unique games. We use it for
similar purposes, namely for analyzing constraint graphs, but our setting differs from that
of [Tre05] in three important aspects. First, in our setting the constraints that label edges
of the constraint graph are not given to the verifier and only the structure of the graph
itself is known in advance. This difference also explains why the techniques relying on
linear and semidefinite programming that were used in [Kho02, Tre05, CMM06, GT06]
do not seem appropriate for our setting. The second difference is that for our constraint
graphs that are induced by 3-query verifiers, perfect completeness can be assumed. In
the context of the unique games conjecture, assuming perfect completeness makes the
problem trivial to solve. Finally, we use the decomposition lemma to construct a tester
for the constraint graph rather than just decide whether the constraint graph is close to
be satisfiable.

We end our discussion of the proof techniques by pointing out Lemma 9.4.1, a gener-
alization of the decomposition lemma to the case of non-unique constraint graphs. This
lemma, which is required for obtaining our main result for general verifiers (Theorem 9.2.3),
may be of independent interest. It says that any 2-CSP with ` constraints over the binary
alphabet that is ε-far from being satisfiable, must contain a contradiction with O(log `/ε)

5The radius of a connected graph is the minimum maximal distance between any vertex and any other
vertex, i.e, rad(G) = minv maxu d(u, v), where d(u, v) denotes the distance between the vertices u and v.
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constraints.
This chapter is organized as follows. In the next section we give some specific definitions

and statements of our main results. Section 9.3 constructs 3-query verifiers with optimal
soundness and exponentially long proofs. The last sections 9.4 and 9.5 prove our main
tradeoffs for general and linear verifiers respectively.

9.2 Specific definitions and statement of the main results

We start by recalling the basic definitions and parameters of a PCPP system. Then, in
Subsection 9.2.2 we introduce and define the best soundness and the soundness deficiency
which are the quantities that we use to measure the tradeoff between proof length and
soundness. In Subsection 9.2.3 we summarize our main results for both general PCPPs
over the binary alphabet, and linear PCPPs over finite fields. Finally, in Subsection 9.2.4
we formally define inspective PCPPs and state the tradeoffs for these PCPPs.

9.2.1 Probabilistically checkable proofs of proximity (PCPPs)

Let Σ be a finite alphabet. A set P ⊆ Σn is called a property of length n over Σ. We are
interested in deciding the promise problem whose set of YES instances is P and whose
set of NO instances is NOδ0 = {w ∈ Σn | δ(w, P ) > δ0}, where δ(·) denotes fractional
Hamming distance and δ0 is called the proximity parameter. In the context of property
testing, decision should be made after making a small number of queries into the input
word w ∈ Σn and the decision should be correct with high probability. In the context of
proximity testing we try to decide the very same promise problem but the difference is that
we allow oracle access to an additional proof of proximity π ∈ Σ` of length `, and restrict
the total number of queries that can be made to both w and π. In the following, we call
the usual property tester simply a tester, and whenever we allow oracle access to a proof
we call it a verifier. The formal definition follows (see [BSGH+04] for more information
on PCPPs).

To simplify exposition we view w and π as functions, from [n] = {1, . . . , n} and from
[n + 1, n + `] = {n + 1, . . . , n + `} respectively to Σ, and define the word-proof pair as the
function (w t π) : [n + `] → Σ that is the concatenation of w and π. We call (w t π)[i] a
word-symbol whenever i ≤ n and a proof symbol when i ∈ {n + 1, . . . , n + `}. For a set of
indices I ⊆ [n + `] let (w t π)|I : I → Σ denote the restriction of w t π to I.

Definition 27 (Verifier, Tester). A query of size q into a word of length n and a proof
of length ` is a pair Q = (I, C) where I ⊆ [n + `], |I| ≤ q denotes the query’s index-set
and C : ΣI → {accept, reject} is the query’s constraint. Given a word w and a proof π, let
Q(wtπ) = C((wtπ)|I). A (q, n, `)-verifier for a property of length n is a pair V = 〈Q, D〉
where
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• Q is a finite set of queries of size at most q into a word of length n and proof of
length `.

• D is a distribution over Q. We use Q ∼D Q to denote that Q is sampled from Q
according to distribution D.

A q-tester is a (q, n, 0)-verifier, i.e., a verifier that queries only the input, and a (q, n,∞)-
verifier is a (q, n, `)-verifier for some value of ` (this notation will be used as a shorthand
to verifiers querying proofs of unbounded length).

Notice that as opposed to other parts of this thesis, in this chapter the testers have
restricted query complexity, and we measure their quality according to their error proba-
bility (soundness).

Often we will restrict our attention to a subclass of verifiers that use special kinds of
constraints. In particular, we will be interested in linear verifiers, defined next.

Definition 28 (Linear verifiers). A query is called F-linear if Σ = F is a finite field and
the set of assignments accepted by the query-constraint forms an F-linear space.

A verifier is called linear if all its queries are linear. Let F-linV denote the set of
F-linear verifiers.

Informally, if a (q, `)-verifier solves the promise problem associated with P “with high
probability” then we say that P “has a PCPP” with query complexity q and length `.
The completeness and soundness parameters quantify the success probability of the verifier.
The formal definition follows.

Definition 29 (PCPP, Testability). A property P ⊂ Σn is said to have a PCPP of length
`, query complexity q, completeness parameter c and soundness function s : (0, 1] → [0, 1]
if there exists a (q, n, `)-verifier for the property satisfying the following requirements.

• Completeness: For all w ∈ P ,

max
π∈Σ`

Pr
Q∼DQ

[Q(w t π) = accept] ≥ c.

If c = 1, we say the verifier has perfect completeness.

• Soundness: For all w ∈ Σn \ P ,

min
π∈Σ`

Pr
Q∼DQ

[Q(w t π) = reject] ≥ s(δ(w, P )),

where δ(w,P ) denotes the minimal fractional Hamming distance between w and an
element of P .
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If P has a PCPP of length 0, query complexity q, completeness parameter c and soundness
function s, we say that P is q-testable with completeness c and soundness s.

A verifier is said to be adaptive if it’s query indices depend on answers given to previous
queries. The verifier defined above is nonadaptive. All results in this chapter refer to
nonadaptive verifiers with perfect completeness. We point out that all known PCPP
constructions use nonadaptive verifiers and achieve perfect completeness, so our deficiency
bounds apply to all of them (see [BHLM08] for further discussion).

9.2.2 Soundness deficiency

We study the tradeoff between proof length and soundness. Our aim is to show that short
PCPPs cannot attain the same soundness as long ones. To quantify this tradeoff we start
by defining the best soundness that can be obtained by a class of verifiers with restricted
proof length.

Definition 30 (Best Soundness). Let P ⊆ Σn be a property. For integers q, ` and δ ∈
[0, 1], define the best soundness SP (q, `, δ) to be the maximum – taken over all (q, n, `)-
verifiers V – of the soundness of V with respect to inputs that are δ-far from P . Formally,

SP (q, `, δ) = max
(q, n, `)-verifiers

min
wtπ∈Σn+`, δ(w,P )=δ

Pr
Q∼DQ

[Q(w t π) = reject].

The best tester soundness is SP (q, 0, δ).
The best soundness with respect to a class of verifiers V, denoted SP

V (q, `, δ), is defined
by taking the maximum above over all (q, n, `)-verifiers in V. Notice that SP

V (q, `, δ) ≤
SP (q, `, δ).

The soundness-deficiency, defined next, is the reduction from the best soundness in-
curred by 3-query verifiers limited to using short proofs.6 As customary in computational
complexity, we measure the asymptotic deficiency over a family of properties of increasing
length. In the remark following the definition, we further explain the need for complexity
assumptions.

Definition 31 (Soundness deficiency). For a family of properties P = {P ⊆ Σn | n ∈ Z+},
a class of verifiers V and a function measuring proof length ` : Z+ → Z+, let the
soundness-deficiency be the function measuring the decrease in soundness due to limited
proof length. Formally, it is the function from (0, 1] to [0, 1] defined by

s-Def.V[P, `](δ) = lim inf
n→∞ SPn

V (3,∞, δ)− SPn
V (3, `(n), δ) .

6The definition could be naturally generalized to query complexity greater than 3. However, since all
our results are limited to q = 3 we omit the query complexity parameter to simplify notation.
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For a complexity class C and a family of complexity functions L, let s-Def.V[C,L](δ) be the
maximal soundness deficiency function taken over all P ⊆ C and ` ∈ L. Let in addition
max-s-Def.V[C,L] = maxδ∈(0,1] s-Def.V[C,L](δ) be the maximal value that this function
obtains over all δ ∈ (0, 1]. As before, whenever there is no restriction to a specific class of
verifiers, the subscript V is omitted.

Remark 9.2.1 (Complexity restrictions). If no restriction is placed on the complexity of
P, then one may end up with trivial and uninteresting results. For instance, if Pn ⊂ {0, 1}n

is random, then with high probability any nondeterministic circuit deciding the promise
problem associated with Pn requires size 2Ω(n/ log n). This implies that there are no constant
query PCPPs with positive soundness and proof length 2o(n/ log n). Thus, to get meaningful
results, we focus on properties P ∈ P/poly for which the existence of polynomial-length
PCPPs is guaranteed.

9.2.3 Summary of results

In this section, we summarize our main results bounding the maximum soundness defi-
ciency for two different classes of verifiers – general verifiers and linear verifiers. Deficiency
bounds are obtained by bounding from below the soundness of inspective verifiers that
have access to long proofs and then bounding from above the soundness obtained by ver-
ifiers limited to short proofs. The next theorem shows the first bound, namely that large
soundness is obtainable if no restriction is placed on proof length. Its proof is based on
the Fourier analytic approach introduced in [BCH+95] and appears in Section 9.3.

Theorem 9.2.2 (Best soundness with unbounded proof length). Let Fp be a prime field.
Every Fp-linear property P ⊆ Fn

p has a 3-query Fp-linear verifier using a proof of length
at most |F|dim(P ) ≤ |F|n that achieves a soundness function s(δ) ≥ δ. Formally,

SP
linV

(
3, |Fp|dim(P ), δ

)
≥ δ.

Deficiency of short PCPPs

Our first main theorem says that for some properties, proofs of sub-exponential length
incur constant soundness-deficiency. This deficiency can be reduced, but only at the
expense of using exponentially long proofs.

Theorem 9.2.3 (Main). Let α ∈ (0, 1) be a positive constant and let P , {Pn ⊆ {0, 1}n :
n ∈ Z+} be a family of binary linear properties (codes) with dual distance7 at least αn.
The properties in P have no sub-exponential PCPP’s achieving soundness larger than 1/3.

7The dual distance of a linear property P is defined to be the minimal support-size of a nonzero vector
in the space dual to P .
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Namely, for every ε > 0 there are β > 0 and n0 ∈ N such that for any property Pn ∈ P,
n > n0 the following is satisfied for all δ ∈ [0, 1]:

SPn

(
3, 2βn, δ

)
≤ 1

3
+ ε.

We show in Theorem 9.2.2 that every (in particular) binary linear property P ⊆ {0, 1}n

of dimension k ≤ n has a (3, 2k)-verifier with soundness function s(δ) ≥ δ. This implies
constant deficiency for short PCPPs over the binary alphabet as formalized in the following
corollary.

Corollary 9.2.4 (Soundness deficiency). Let SUBEXP denote the set of sub-exponential
functions, i.e., functions satisfying f(n) = 2o(n). There exists a family P of linear prop-
erties over the binary alphabet such that

s-Def.[P,SUBEXP](δ) ≥ δ − 1
3
.

Consequently, since there are words that are roughly 1
2 -far from P, the maximal deficiency

with sub-exponential proofs is at least 1
6 , i.e.,

max-s-Def.[P/poly,SUBEXP] ≥ 1
6
.

Deficiency of short Linear PCPPs

Our next main theorem presents stronger deficiency bounds for linear PCPPs and states
the following intuitively appealing implication: Let p be a prime. Every Fp-linear property
that is “untestable” – in the sense that testers with small query complexity for it have low
soundness – is also ”unverifiable”, i.e., 3-query Fp-linear verifiers with short proofs must
incur a large loss in soundness. Limiting our attention to linear verifiers seems natural
in light of the fact that all current PCPP constructions produce linear verifiers for linear
properties.

Theorem 9.2.5 (Main, linear case). Let P ⊆ Fn be a F-linear property. Let s[`](δ) denote
the best soundness of a (3, `)-linear verifier for P , i.e., s[`](δ) = SP

linV (3, `, δ). Let t[q](δ)
denote the best soundness of a q-tester for P , i.e., t[q](δ) = SP (q, 0, δ). Then

s[`](δ) ≤ min
0<ε≤1

{
t

[
36 log `

ε

]
(δ) +

1
2
·
(

1− 1
|F| + ε

)}
.

Using Theorem 9.2.2 again for arbitrary prime p we get the following bound on the
deficiency of linear verifiers.
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Corollary 9.2.6 (Soundness deficiency, linear case). Let SUBEXP denote the set of
subexponential functions, i.e., functions satisfying f(n) = 2o(n). For every prime field Fp

there exists a family of Fp-linear properties P such that

s-Def.Fp−linV[P,SUBEXP](δ) ≥ δ − 1
2
·
(

1− 1
p

)
.

Consequently, the maximal deficiency of linear verifiers with sub-exponential proofs is at
least 1

2 · (1− 1/p). In other words,

max-s-Def.Fp−linV[Fp − linear,SUBEXP] ≥ 1
2
·
(

1− 1
p

)
.

We point out that even if we restrict our attention to families of linear properties with
constant dual distance, the soundness deficiency can be very large. This last point is
explained in detail in the proof of Corollary 9.2.6.

9.2.4 Inspective PCPPs

The deficiency bounds stated above follow from much stronger bounds on the soundness
achieved by a special family of inspective verifiers, defined next. Informally, inspective
verifiers are called so because every 3-query they make inspects the word w in at least one
location.

Definition 32 (Inspective PCPP). A query Q = (I, C) is called inspective if its index-set
involves at most two symbols of the proof, i.e., |I ∩ [n + 1, n + `]| ≤ 2. We refer to the
above quantity as the inspective size (i-size) of the query Q.

A verifier V = 〈Q, D〉 is said to be inspective if all its queries are inspective. We
denote by Vi be the set of inspective verifiers, and by linVi the set of inspective linear
verifiers.

A property P ⊂ Σn is said to have an inspective PCPP of length `, query complexity
q and soundness function s : (0, 1] → [0, 1] if there exists a (q, n, `)-inspective verifier with
soundness function s. Inspective linear PCPPs are similarly defined.

Remark 9.2.7. We note that the linear verifier mentioned in Theorem 9.2.2 is in
fact an inspective verifier that makes inspective queries of size exactly two. Thus,
SP

linVi

(
3, |Fp|dim(P ), δ

) ≥ δ.

The main technical components in the proofs of Theorems 9.2.3 and 9.2.5 are the fol-
lowing respective upper bounds on the soundness of inspective verifiers limited to querying
only short proofs. The proof of these theorems rely on defining a natural inspective graph
(Definition 36) and applying a decomposition lemma to it. In the case of general PCPPs
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over the binary alphabet we use Lemma 9.4.1, and in the remaining two cases we apply
Lemma 9.5.3 which is very similar to the original decomposition lemma of [LR99].

Definition 33 (d-Universal Properties). A property P ⊆ Σn is d-universal if for all subsets
I ⊂ [n], |I| ≤ d, the restriction of P to I equals ΣI , i.e. {w|I | w ∈ P} = ΣI . Observe that
any linear property P with dual distance d is also d-universal.

Theorem 9.2.8 (Best soundness with inspective verifiers). Let P ⊆ {0, 1}n be a d-
universal property, and let q ∈ Z+. Let si denote the best soundness of a (q, `)-inspective
verifier for P , i.e., si(δ) = SP

Vi
(q, `, δ). Then for every δ ∈ [0, 1],

si(δ) ≤ min
ε>0

{
4 log(ε−2(n + `))

d
q−1 − 2

+ ε

}
.

Theorem 9.2.9 (Best soundness with inspective linear verifiers). Let P ⊆ Fn be an F-
linear property. Let si(δ) denote the best soundness of a (3, `)-linear inspective verifier for
P , i.e., si(δ) = SP

linVi
(3, `, δ). Let t[q](δ) denote the best soundness of a q-tester for P ,

i.e., t[q](δ) = SP (q, 0, δ). Then

si(δ) ≤ min
ε>0

{
t

[
36 log `

ε

]
(δ) + ε

}
.

9.3 Long PCPPs with best possible soundness

In this section, we will prove that any Fp-linear property P ⊆ Fn
p over a prime field

Fp has a 3-query linear inspective PCPP of length at most pdim(P ). Furthermore, the
soundness of this verifier on words that are δ-far from P satisfies s(δ) ≥ δ, thereby proving
Theorem 9.2.2. We point out that if P is “nontrivial”, meaning there is no i ∈ [n] such
that wi = 0 for all w ∈ P , then the soundness of linear verifiers can be shown to be
bounded from above by 1−1/p. This shows that for δ approaching 1−1/p the term “best
possible” aptly describes the soundness function of our verifier.

9.3.1 Fourier transform – preliminaries

We interpret Zp as the multiplicative group of pth complex roots of unity. Let ω , e
2πi
p , and

let µp = {ω0, ω1, . . . , ωp−1} be the pth complex roots of unity. For every α = (α1, . . . , αn) ∈
Zn

p we define the function χα : Zn
p → C as

χα(x1, . . . , xn) = ω(x·α) = ω
∑

i xiαi
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For two functions f : Zn
2 → C and g : Zn

p → C, we define their inner product as

〈f, g〉 , 1
pn

∑

x∈Zn
p

f(x) · g(x) = Ex∈Zn
p

[
f(x) · g(x)

]

It is easy to verify that the functions χα : Zn
p → C are orthonormal with respect to this

inner product. Namely, that for every α ∈ Zn
p ,

〈χα, χα〉 = 1

and for every α, β ∈ Zn
p , α 6= β,

〈χα, χβ〉 = 0

Therefore the functions {χα}α∈Zn
p

form a basis for the space of functions f : Zn
p → C (the

dimension of which is exactly pn). Hence, every function f : Zn
p → C can be written as a

linear combination of the elements of this basis

f(x) =
∑
α

f̂α · χα(x)

where the coefficients f̂α (called the Fourier coefficients of f) are defined as follows:

f̂α = 〈f, χα〉

We have the following equality (Parseval’s identity).

∑

α∈Zn
p

|f̂α|2 = 〈f, f〉 = Ex∈Zn
p

[|f(x)|2].

In particular, if f : Zn
p → µp, then

∑
α∈Zn

p
|f̂α|2 = 1 and for all α, |f̂α| ≤ 1.

We also have the following well known lemma.

Lemma 9.3.1. Let η ∈ µp be a pth root of unity. Then the sum
∑

i∈[p]\{0} ηi equals p− 1
if η = 1, and equals −1 for any η 6= 1.

9.3.2 Proof of Theorem 9.2.2

Let P ⊆ Zn
p be a Zp-linear space of dimension k. Fix G ∈ Zn×k

p to be a matrix such that
P equals the span of the columns of G:

P = {Gx : x ∈ Zk
p}.

124



Let gi ∈ Zk
p denote the ith row of G. Thus, if w = Gx, then we have that wi = (gi · x)

for all i. In the terminology of error correcting codes G is a generating matrix for the
[n, k]p-code P , and so we refer to the elements w ∈ P as “codewords”.

For every x ∈ Zk
p we denote by Hx : Zk

p → C the Hadamard encoding of x, which is
defined as Hx(y) = ω(x·y) = ω

∑
i xiyi . The function Hx can be explicitly written as a vector

of values (of the exponents) in Zpk

p . However, the following folded representation of Hx

will be simpler to analyze. We partition the set Zk
p \ {0} into disjoint classes of the form{

j · y : j ∈ {1, . . . , p− 1}
}

, each of size p− 1. Then for each of these classes we choose one
of its elements as a representative, and keep the values of Hx only for these representative
elements. Now we can extract the value of Hx(y) for every y ∈ Zk

p as follows.

• If y = 0 then Hx(y) = ω0 = 1.

• If y is one of the representatives, then we read the appropriate value according to
the folded encoding.

• Otherwise, we find a representative u and j such that y = j · u, read Hx(u) by the

previous rule, and set Hx(y) =
(
Hx(u)

)j
.

Since Hx is a linear function, these extraction rules are consistent with the original func-
tion.

For every codeword w ∈ P , we denote by xw ∈ Zk
p the vector that satisfies w = Gxw,

and we denote by πw : Zk
p → C the Hadamard encoding of xw, i.e. πw = Hxw . We assume

that πw is represented in its folded form, so the actual representation of πw takes pk−1
p−1

values in Zp.
Consider the following 3-query linear inspective verifier V for P

Inspective Verifier V

Input (as oracles): w ∈ Zn
p , π : Zk

p → C

1. Choose y ∈ Zk
p and i ∈ [n] uniformly at random

2. Output accept if and only if π(y) · ωwi = π(y + gi)

Claim 9.3.2. The inspective verifier V satisfies the following properties

• Completeness: If w ∈ P and π = πw then Pr
[
V (w,πw) = accept

]
= 1

• Soundness: For any w ∈ Zn
p and any (folded) π ∈ Z

pk−1
p−1

p , Pr
[
V (w,π) = reject

] ≥
δ(w,P )

Before proceeding to the proof of Claim 9.3.2, we note that Theorem 9.2.2 follows
immediately from this claim.
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Proof. For a codeword w = G ·xw ∈ P and a legal proof πw = Hxw we have wi = (gi ·xw),
and together with the fact that Hxw is linear we have

πw(y + gi) = πw(y) · πw(gi) = πw(y) · ω(gi·xw) = π(y) · ωwi

and the completeness condition is satisfied. Now we prove that the soundness of V is as
required.

In the following we use the fact that the function π is represented in folded form, and

hence for every y ∈ Zk
p and j ∈ [p] we have π(j · y) =

(
π(y)

)j
. Denote by s the soundness

of V , i.e., the probability that it rejects a word-proof pair. We are going to express s in
terms of δ(w, P ) by making some manipulations on the Fourier expansion of π. According
to the description of algorithm V ,

s = Pry,i[π(y)ωwiπ(y + gi) = 1]

and according to Lemma 9.3.1, if η is a pth root of unity, then the sum
∑

j∈[p]\{0} ηj equals
p− 1 when η = 1, and it equals −1 otherwise. Thus for all pairs (w, π) we have

(p− 1)(1− s)− s = Ey,i

[ ∑

j∈[p]\{0}

(
π(y)ωwiπ(y + gi)

)j]
=

Ey,i

[ ∑

j∈[p]\{0}
π(jy)ωjwiπ(jy + jgi)

]
=

Ey,i

[ ∑

j∈[p]\{0}
ωjwi(

∑
α

π̂αχα(jy))
( ∑

β

π̂βχβ(jy)χβ(jgi)
)]

=

∑

α,β

π̂απ̂β

∑

j∈[p]\{0}
Ei

[
ωjwiχβ(jgi)

]
Ey

[
χα(jy)χβ(jy)

]
.

By the orthonormality of the character functions this equals

∑
α

|π̂α|2
∑

j∈[p]\{0}
Ei

[
ωjwiχα(jgi)

]
=

∑
α

|π̂α|2Ei

[ ∑

j∈[p]\{0}
ωjwiχα(jgi)

]
=

∑
α

|π̂α|2Ei

[ ∑

j∈[p]\{0}

(
ωwiχα(gi)

)j]
=

∑
α

|π̂α|2Ei

[ ∑

j∈[p]\{0}

(
ωwi−α·gi

)j]
.
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By Lemma 9.3.1, for every i such that wi = αgi (the agreeing indices) the sum
∑

j∈[p]\{0}
(
ωwi−α·gi

)j
evaluates to p − 1, and for all other indices i this sum evaluates

to −1, therefore the above equals to

∑
α

|π̂α|2
((

1− δ(w,Gα)
)
(p− 1)− δ(w, Gα)

)
≤

((
1− δ(w, P )

)
(p− 1)− δ(w, P )

)∑
α

|π̂α|2 =

p− 1− pδ(w, P )

The last inequality is due to Parseval’s identity. To conclude, we have (p − 1) − ps ≤
(p− 1)− pδ(w, P ), or simply s ≥ δ(w, P ) as required.

9.4 Proof of Length-Soundness tradeoff (Theorem 9.2.3)

The proof is organized as follows. In Section 9.4.1 we define constraint graphs, which are
later used to analyze inspective verifiers. In Section 9.4.2 we prove an auxiliary lemma that
allows us to convert any verifier V = 〈Q, D〉 to a verifier V ′ = 〈Q′, D′〉 such that V ′ achieves
almost the same soundness as V, but the size of Q is linear in the length of the proof,
and the distribution D′ is uniform over Q. In Section 9.4.3 we prove that the soundness
of inspective verifiers goes to zero as long as the proof length is sub-exponential. Based
on these, we prove Theorem 9.2.3 in Section 9.4.4 and complete several missing proofs in
Section 9.4.5.

9.4.1 Constraint graphs and the generalized Decomposition Lemma

Definition 34 (Constraint Graphs). A constraint graph is a pair φ = (G,C), where
G = (V, E) is a directed multigraph and C =

{
ce : {0, 1}2 → {accept, reject} | e ∈ E

}
is a

set of binary constraints associated with the edges of G.
If an assignment π : V → {0, 1} satisfies a δ-fraction of the constraints in φ then we

say that π δ-satisfies φ. Namely, π is δ-satisfying if
∣∣∣
{

e = (u, v) ∈ E : ce

(
π(u), π(v)

)
=

accept
}∣∣∣ = δ|E|.

A constraint graph φ is unsatisfiable if there is no assignment that 1-satisfies it. We
also say that φ is ε-far from being satisfiable if there is no assignment π : V → {0, 1} that
(1− ε)-satisfies φ.

We say that a constraint graph φ′ = (G′, C ′) is a subgraph of φ = (G,C) if G′ is a
subgraph of G, and in addition, for every e ∈ E(G′) the corresponding constraints ce ∈ C

and c′e ∈ C ′ are identical.
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The following main lemma is a natural generalization of the decomposition lemma
from [LR99], which is useful when analyzing graphs with general edge-constraints (rather
than linear ones). The lemma states that any constraint graph which is far from being
satisfiable has a small unsatisfiable subgraph (witness of unsatisfiability).

Lemma 9.4.1. Let φ = (G,C) be a constraint graph which is ε-far from being satisfiable.
Then φ has an unsatisfiable subgraph φ′ with at most 4 log |E(G)|

ε + 2 edges.

Observe that an immediate corollary of Lemma 9.4.1 is that if a 2-CSP formula with
m constraints is ε-far from being satisfiable (meaning that any assignment falsifies at least
εm constraints) then it has an unsatisfiable subset of at most 4 log m

ε + 2 constraints.
Before proving the lemma we need some definitions.

Definition 35 (Forcing). Let φ = (G,C) be a constraint graph, and let u ∈ V (G) and
bu ∈ {0, 1} be a vertex of G and a value assigned to it, respectively. For every vertex
v ∈ V (G) \ {u} and any value bv ∈ {0, 1}, we say that (u ← bu) forces (v ← bv) if

• the partial assignment π : {u, v} → {0, 1} defined as π(u) = bu and π(v) = bv does
not violate any constraint in C

• the partial assignment π′ : {u, v} → {0, 1} defined as π′(u) = bu and π′(v) = 1− bv

violates at least one constraint ce ∈ C (and the violated constraints are called the
forcing constraints).

Observe that (u ← bu) forces (v ← bv) if and only if (v ← 1− bv) forces (u ← 1− bu).

We can naturally extend the notion of forcing for subsets of vertices as follows. Let
U ⊂ V (G) be a subset of G’s vertices, and let πU : U → {0, 1} be a partial assignment
on U . For every vertex v ∈ V (G) \ U and every value bv ∈ {0, 1} we say that πU forces
(v ← bv) if there exists a vertex u ∈ U such that (u ← πU (u)) forces (v ← bv).

In some cases there is no immediate forcing between assignments, but there is an
indirect implication. We say that (u ← bu) implies (v ← bv) if there are k > 0 vertices
x1, x2, . . . , xk ∈ V \ {u, v} and k values b1, b2, . . . , bk ∈ {0, 1} such that:

• (u ← bu) forces (x1 ← b1)

• for all 1 ≤ i < k, (xi ← bi) forces (xi+1 ← bi+1)

• (xk ← bk) forces (v ← bv).

We also define the implication path from (u ← bu) to (v ← bv) as the corresponding path
of k + 1 forcing edges from u to v.

If for some pair of vertices u, v ∈ V and a value bu ∈ {0, 1} the assignment (u ← bu)
implies both (v ← 0) and (v ← 1), it means that (u ← bu) leads to contradiction, and
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hence any assignment π for which π(u) = bu cannot satisfy φ. In this case we call the pair
of corresponding implication paths a contradiction cycle. Furthermore, if both (u ← 0)
and (u ← 1) lead to contradiction, then clearly the constraint graph is unsatisfiable. In
this case we call the pair of corresponding contradiction cycles a witness of unsatisfiability.

Given a subset U ⊂ V , a partial assignment πU : U → {0, 1} has no consistent
extensions if one of the following holds:

• πU forces two different values on some v ∈ V \ U

• there exists an edge e = (v1, v2) ∈ E(V \ U) such that πU forces the values b1, b2 on
v1, v2 respectively, and ce(b1, b2) = reject

Notice that in both cases there is a contradiction cycle witnessing the inextensibility of
πU .

If πU has a consistent extension, then we denote by f(U) , {v1, . . . , vk} ⊆ V \ U the
set of all vertices that are forced by πU to have the values bv1 , . . . , bvk

respectively, and
we define the forced extension of πU which is an assignment πU∪f(U) : U ∪ f(U) → {0, 1}
given by

πU∪f(U)(v) =
{

πU (v) , v ∈ U

bv , v ∈ f(U)
.

Proof of Lemma 9.4.1. Assume for the sake of contradiction that φ = (G,C) is the small-
est constraint graph that violates the conditions of Lemma 9.4.1. Namely, φ is ε-far from
being satisfiable, but it has no unsatisfiable subgraph with at most 4 log |E(G)|

ε + 2 edges.
Pick an arbitrary vertex r ∈ V (G) and consider the executions FindContradiction(r, 0)
and FindContradiction(r, 1) of the following algorithm, which is basically a BFS algo-
rithm starting from vertex r that proceeds along forcing edges.

FindContradiction(r, b)

1. Set U = {r}, i = 0, and define a partial assignment πU as πU (r) = b.

2. i = i + 1.

3. If i > log|E(G)|
ε output FAIL.

4. If πU has a consistent extension πU∪f(U) to the set f(U) of the forced
neighbors of U :

(a) If |E(f(U), U)| ≥ ε|E(U)| then set U = U ∪ f(U), set πU = πU∪f(U)

and go to step 2.

(b) Else output FAIL.
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5. Else there must be a contradiction cycle W of length at most 2i + 1 ≤
2log|E(G)|

ε + 1 for the assignment (r ← b)8. Output W.

If both executions FindContradiction(r, 0) and FindContradiction(r, 1) reached
Step 5 then we have a pair of contradiction cycles (each of length at most 2 log |E(G)|

ε +1) for
both (r ← 0) and (r ← 1). Joined together, these cycles form a witness of unsatisfiability
of length at most 4 log |E(G)|

ε + 2, contradicting our assumption that φ has no unsatisfiable
subgraph with at most 4 log |E(G)|

ε + 2 edges. Therefore, one of the executions must output
FAIL either in Step 3 or in Step 4b.

Since in every iteration of the algorithm |E(U)| grows by a multiplicative factor of at
least (1 + ε), after log|E(G)|

ε > log(1+ε) |E(G)| iterations we get |E(U)| > |E(G)|, which is
of course impossible. This completely rules out the possibility of outputting FAIL in Step
3.

Finally, assume towards a contradiction that one of the executions outputs FAIL in
Step 4b. Consider the induced subgraphs GU = G(U) and GV \U = G(V \ U), and the
corresponding induced constraint graphs φU = (GU , CU ) and φV \U = (GV \U , CV \U ) where
CU and CV \U are the sets of all original constraints associated with E(U) and E(V \ U)
respectively.

According to Algorithm FindContradiction(r,b), the set U is enlarged only when
the assignment πU has a consistent extension. This fact preserves the invariant that the
constraints {ce : e ∈ E(U)} are always satisfied by πU . Therefore πU completely satisfies
the subgraph φU . On the other hand, by the minimality condition φV \U must be 1 − ε

satisfiable by some assignment πV \U . Let π : V (G) → {0, 1} be the union of πU and πV \U ,
defined as

π(v) =
{

πU (v) , v ∈ U

πV \U (v) , v ∈ V \ U
.

Since the execution was terminated in Step 4b, π falsifies at most ε|E(U)| of the constraints
on E(U, V \U). So the total number of unsatisfied constraints by π is bounded by ε|E(V \
U)|+ ε|E(U, V \ U)| ≤ ε|E(G)|, contradicting our initial assumption.

9.4.2 The uniform (sparse) verifier lemma

In this section we claim that without loss of generality we can concentrate on (q, n, `)-
verifiers that make roughly O(n+ `) uniformly distributed queries. This assumption eases
the application of Lemma 9.4.1, which bounds the size of contradiction witnesses as a
function of number of edges (rather than number of vertices as in Lemma 9.5.3).

We note that a similar lemma was already proved in [GS02] for (q, n, 0)-verifiers (prop-
erty testers).

8The bound on the cycle length is due to the fact that every implication in U has a corresponding
implication path of length at most i that follows the iterative extension of πU .
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Lemma 9.4.2. For every γ > 0 and property P ⊂ Σn, if P has a (q, n, `)-verifier V =
〈Q, D〉 with perfect completeness and soundness function s : (0, 1] → [0, 1] then P also has
a (q, n, `)-verifier V ′ = 〈Q′, U〉 with the following properties.

1. V ′ has perfect completeness.

2. V ′ has soundness function s′ that for all δ satisfies s′(δ) ≥ s(δ)− γ.

3. The number of queries in Q′ is γ−2(n + `) log |Σ|.

4. U is the uniform distribution over Q′.

Proof. We prove the lemma by the following probabilistic argument. Construct a multi-
set Q′ by choosing independently at random γ−2(n + `) log |Σ| queries Q ∈ Q according
to distribution D. Given Q′, the new verifier V ′ operates similarly to V, but instead of
choosing queries from Q according to distribution D, it chooses them from Q′ according
to the uniform distribution.

Since the original verifier V had perfect completeness and since Q′ ⊆ Q, V ′ has perfect
completeness too. Conditions 3 and 4 of the lemma follow (with probability 1 over the
choice of Q′) from the definition of Q′ and V ′. We only need to show that the soundness
function s′ of V ′ satisfies s′(δ) ≥ s(δ) − γ for all δ > 0. Clearly, this is satisfied for all δ

for which s(δ) ≤ γ because the rejection probability is always non-negative. Therefore, to
complete the proof it is enough to show that with positive probability the set Q′ satisfies
the following: For every word w such that s

(
δ(w, P )

)
> γ and every proof π, at least an(

s
(
δ(w, P )

)
−γ

)
-fraction of the queries in Q′ reject the pair wtπ (we say that the query

Q = (I, C) rejects the pair w t π if C(w t π|I) = reject).
Fix a word w ∈ Σn such that s

(
δ(w,P )

)
> γ and a proof π ∈ Σ`. For every Q ∈ Q,

we define the indicator variable xQ,wtπ which is equal to 1 if Q rejects the pair w t π.
Notice that once w is fixed, for any proof π we have EQ∼DQ[xQ,wtπ] ≥ s

(
δ(w, P )

)
.

We also define an indicator variable Iwtπ which equals 1 if the fraction of queries in Q′
that reject the pair w t π is at least s

(
δ(w, P )

)
− γ. Since the queries in Q′ were chosen

independently (according to the distribution D), by Chernoff’s bound for any w and any
π we have

Pr
Q′

[Iw,π = 0] = Pr
Q′

[( 1
|Q′|

∑

Q∈Q′
xQ,wtπ

)
< s

(
δ(w,P )

)
− γ

]
≤

≤ exp(−2γ2|Q′|) = exp(−2γ2γ−2(n + `) log |Σ|) <

< |Σ|−n−`
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and if we apply the union bound over all word-proof pairs w t π we get

Pr
Q′

[Iw,π = 0 for some pair w t π as above] < |Σ|n+` · |Σ|−n−` < 1.

We conclude that there must be a query set Q′ that satisfies the required soundness
condition.

9.4.3 Best soundness for inspective verifiers (proof of Theorem 9.2.8)

Before proceeding to the proof we need to define the following object, which is basically
a graph that is induced by a verifier. This graph plays a crucial role also in the proof of
Lemma 9.5.2.

Definition 36 (Inspective Graph). Let V = 〈Q, D〉 be a (q, n, `)-verifier. For Q = (I, C)
of i-size 2 we say Q generates the pair I ∩ [n + 1, n + `]. Similarly, if Q is of i-size 1 then
we say that it generates the pair 0, I ∩ [n + 1, n + `]. A query of i-size different from 1, 2
generates no pair. The inspective graph of V, denoted GV , is the multigraph with vertex
set V = {0} ∪ [n + 1, n + `] and edge set E being the multiset of pairs generated by Q.

Proof of Theorem 9.2.8. Let P ⊂ {0, 1}n be a d-universal property, and let us fix ε ∈ (0, 1)
and δ ∈ (0, 1). Let Vi be an inspective (q, n, `) verifier for P and let Vi

′ = 〈Q′, U〉 be
the corresponding “sparse” verifier (which is also inspective) described in Lemma 9.4.2 for
γ = ε.

Fixing a δ-far word w defines a constraint graph φw = (G, C) over ` + 1 vertices as
follows:

• G is the inspective graph induced by Vi
′ as per Definition 36.

• for every e = (u, v) ∈ E(G), the constraint ce evaluates to accept whenever the
valuation π(u), π(v) and the word w satisfy the query in Q′ (with i-size 2) that
generates the edge e.

• for every e = (0, v) ∈ E(G), the (unary) constraint ce evaluates to accept when-
ever the valuation π(v) and the word w satisfy the query in Q′ (with i-size 1) that
generates the edge e.

Note that according to Lemma 9.4.2, the number of edges in E(G) is bounded by ε−2(n+`).
In addition, every constraint ce depends on at most q − 1 word bits.

Since the minimal rejection probability of δ-far words by Vi
′ is si(δ)−ε, the constraint

graph φw must be (si(δ) − ε)-far from being satisfiable. Hence by Lemma 9.4.1, φw has
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an unsatisfiable subgraph φ with at most

4 log |E(G)|
si(δ)− ε

+ 2 ≤ 4 log(ε−2(n + `))
si(δ)− ε

+ 2

edges. Let i1, i2, . . . , ik ∈ [n] be the word bits associated with the constraints (edges) of
the unsatisfiable subgraph φ, where k ≤ (q − 1) · (4 log(ε−2(n+`))

si(δ)−ε + 2). It is clear that any
word w′ ∈ {0, 1}n that agrees with w on indices i1, i2, . . . , ik cannot be in the property P .
Therefore, because of the universality condition k must be larger than d, implying

(q − 1) · (4 log(ε−2(n + `))
si(δ)− ε

+ 2) > d

or equivalently

si(δ) <
4 log(ε−2(n + `))

d
q−1 − 2

+ ε.

Corollary 9.4.3. Let α ∈ (0, 1) be a positive constant and let P , {Pn ⊆ {0, 1}n :
Pn is αn−universal} be a family of αn-universal properties. The properties in P have
no sub-exponential inspective PCPP’s achieving constant soundness. Namely, for every
ε′ ∈ (0, 1] there are β > 0 and n0 ∈ N such that for any property Pn ∈ P, n > n0 the
following is satisfied for all δ ∈ [0, 1]:

SPn
Vi

(
3, 2βn, δ

)
≤ ε′.

Proof. Fix an arbitrary ε′ > 0, and set β > 0 and n0 ∈ N such that all n > n0 satisfy the
inequality

2βn < 2
ε′
8

(αn
2
−2)+2 log ε′−2 − n.

Since Pn is an αn-universal property, we can apply Theorem 9.2.8 (with q = 3 and ε = ε′/2)
and get that for every δ ∈ [0, 1]:

SPn
Vi

(
3, 2βn, δ

)
≤

4
(

log(n + 2βn)− 2 log ε′ + 2
)

αn
2 − 2

+ ε′/2,

additionally, according to our choice of β and n0 we also have:

4
(

log(n + 2βn)− 2 log ε′ + 2
)

αn
2 − 2

≤ ε′/2,

completing the proof.
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9.4.4 Proof of Theorem 9.2.3

Theorem 9.2.3 (restated) Let α ∈ (0, 1) be a positive constant and let P , {Pn ⊆
{0, 1}n : n ∈ N} be a family of linear properties (codes) with dual distance at least αn.
The properties in P have no sub-exponential PCPP’s achieving soundness larger than 1/3.
Namely, for every ε ∈ (0, 1] there are β > 0 and n0 ∈ N such that for any property Pn ∈ P,
n > n0 the following is satisfied for all δ ∈ [0, 1]:

SPn

(
3, 2βn, δ

)
≤ 1

3
+ ε.

Before proceeding to the proof of Theorem 9.2.3 we need the following lemma, which
is proved in the next section.

Lemma 9.4.4. Let V be a (3, n, `) verifier for an Fp-linear property P ⊆ Fn
p with dual

distance at least 4. Let µ be the probability that V makes an inspective query (i.e., one
that makes at most two queries into the proof). Then, using sV to denote the soundness
function of V, we have for every δ < 1/2

sV(δ) ≤ min
{

1− µ + SP
Vi

(3, `, δ) , (1− 1
p
)µ

}
.

Proof of Theorem 9.2.3. Fix any ε ∈ (0, 1], and let β > 0 and n0 be the parameters
promised by Corollary 9.4.3, so that SPn

Vi

(
3, 2βn, δ

)
< ε for every n > n0.

Notice that the right hand side of the inequality in Lemma 9.4.4 (p = 2 in our case) is
maximized when the two terms are equal, i.e., when µ = 2

3

(
1 + SP

Vi
(3, `, δ)

)
. Therefore,

for n > n0 and proofs of length 2βn,

sV(δ) ≤ 1
3
(1 + SPn

Vi

(
3, 2βn, δ

)
) <

1
3

+ ε,

where the second inequality follows from Corollary 9.4.3.

9.4.5 Proof of Lemma 9.4.4

Proof. To see why sV(δ) ≤ 1−µ+SP
Vi

(3, `, δ) convert V = 〈Q, D〉 into an inspective verifier
V ′ as follows. V ′ picks Q ∼ D in the same manner that V does. If Q is an inspective query,
V ′ performs it. Otherwise, V ′ performs the trivial (inspective) query that always accepts
(without reading any information). Since V ′ is inspective, we conclude sV ′ ≤ SP

Vi
(3, `, δ),

i.e., there exists some input w that is δ-far from C and a proof π such that (w t π) is
rejected by V ′ with probability at most SP

Vi
(3, `, δ). Even if V rejects all non-inspective
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queries on this particular pair, this can only increase the soundness by an additive factor
1− µ, implying the first inequality.

To show that sV(δ) ≤ (1 − 1
p)µ we need the following two lemmas, which we prove

shortly.

Lemma 9.4.5. Let C ⊂ Fn
p be a linear code. For any x ∈ Fn

p and any codeword w ∈ C,

δ(x + w, C) ≥ δ(x, C).

Lemma 9.4.6. Let C ⊂ Fn
p be a linear code with dual distance at least d + 1, and let

I ⊂ [n] be a set of at most d indices. For any x ∈ Fn
p and any y ∈ Fd

p,

Prw∼UC [(x + w)|I = y] = p−d,

and in particular, for any y ∈ Fd
p,

Prw∼UC [w|I = y] = p−d.

The proof proceeds as follows. First we fix a δ-far word x ∈ Fn
p , and pick ŵ ∈ C

uniformly at random. Let π denote the legitimate proof for the codeword ŵ. Then, we
pick another codeword w′ ∈ C uniformly at random, and set w , x + w′. Recall that
according to Lemma 9.4.5, w is δ-far from C. We use the word-proof pair (w t π) to fool
the verifier V = 〈Q, D〉, i.e. to make it reject with probability at most (1− 1

p)µ.
Let Q0,Q1,Q2,Q3 be a partition of Q, where Qi contains all queries that read i bits

from the proof. Since the verifier V has perfect completeness, all queries in Q3 must be
satisfied because π is a legitimate proof and all queries in Q0 (tester queries) must be
satisfied because the dual distance of C is larger than three. In addition, the queries in
Q2 are satisfied with probability at least 1/p, since according to Lemma 9.4.6 for every
i ∈ [n], wi = ŵi with probability 1/p. To complete the proof, it is enough to show that
every query Q ∈ Q1 is satisfied with probability at least 1/p over the choice of ŵ and w′.

Let Q = (I, C) be a query in Q1. Let i1, i2 be the indices in I ∩ [n] and let j be the
index in I ∩ [n+1, n+ `], so that the query Q is satisfied whenever C(α1, α2, πj) = accept.
For every β ∈ Fp, let kβ denote the number of assignments (α1, α2) ∈ F2

p for which
C(α1, α2, β) = accept. Since the dual distance of C is larger than two, we know that for
each one of the p2 possible assignments (α1, α2) ∈ F2

p there exists a value πj ∈ Fp such
that C(α1, α2, πj) = accept, therefore

∑
β∈Fp

kβ ≥ p2.
Recall that we chose π by the following distribution: by picking a codeword ŵ ∈

C uniformly at random, and setting π to be the legitimate proof for the codeword ŵ.
According to Lemma 9.4.6, the values of all pairs of indices in the word w are distributed
uniformly. Therefore, once ŵ is chosen (and the corresponding proof π is set), the query
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Q is satisfied by
(
w t π

)
with probability kπj/p2 over the choice of w′ ∈ C.

Let ηβ denote the probability (over the random choice of ŵ ∈ C) that πj = β. By
Lemma 9.4.6 the values ŵi1 and ŵi2 are distributed uniformly and independently of each
other, and therefore

ηβ = Pr[πj = β] ≥ kβ∑
γ kγ

.

So the overall acceptance probability is

Prŵ,w′ [C(wi1 , wi2 , πj) = accept] =
∑

β

ηβ ·
kβ

p2
≥

∑

β

(
kβ∑
γ kγ

· kβ

p2
) =

1
p2

∑
γ kγ

∑

β

k2
β.

Recall that
∑

β kβ ≥ p2. In addition, by Cauchy-Schwartz inequality we know that

∑

β

k2
β ≥

1
p
(
∑

β

kβ)2 ≥ p
∑

β

kβ

hence the acceptance probability is at least 1/p as required.
We constructed a distribution of word-proof pairs (w t π) in which all words are δ-

far from C, and all proofs are legitimate proofs. Any query from Q3 is satisfied with
probability 1 under this distribution, and all other queries are satisfied with probability
at least 1/p. So by linearity of expectation, we conclude that there must be a pair (wtπ)
(where w is δ-far from C) that is accepted by the verifier V with probability at least
(1− µ) · 1 + µ · 1

p = 1− (1− 1
p)µ.

Proofs of Lemma 9.4.5 and Lemma 9.4.6

Proof of Lemma 9.4.5. Assume towards a contradiction that for some x ∈ Fn
p and w ∈ C

we have δ(x+w, C) < δ(x, C). Let w′ ∈ C be the closest codeword to x+w, i.e. a codeword
for which δ(x + w, w′) = δ(x + w, C). Observe that δ(x + w, w′) = δ(x, w′ + (−w)), and
that w′ + (−w) ∈ C. This, together with our initial assumption, leads to the following
contradiction,

δ(x, C) > δ(x + w, C) = δ(x + w, w′) = δ(x,w′ + (−w)) ≥ δ(x, C).

Proof of Lemma 9.4.6. The second part of the lemma follows from the fact that C has no
linear constraints of weight less than d + 1, so any projection to d (or less) indices is a
surjective linear function. The first part of the lemma follows from the second part, since
a constant shift of a uniform distribution yields a uniform distribution.

136



9.5 Proof of Length-Soundness tradeoff for linear verifiers

(Theorem 9.2.9)

We start by restating our main theorem regarding linear verifiers and its main corollary.
In Subsection 9.5.1 we reduce both of these results to our main technical lemma,
Lemma 9.5.2. To prove the lemma we need a variant of the decomposition lemma of
[LR99], which is proved in Subsection 9.5.2. We then complete our proof by proving the
last details in Subsection 9.5.3.

Theorem 9.2.5 (restated) Let P ⊆ Fn be a F-linear property. Let s[`](δ) denote the best
soundness of a (3, `)-linear verifier for P , i.e., s[`](δ) = SP

linV (3, `, δ). Let t[q](δ) denote
the best soundness of a q-tester for P , i.e., t[q](δ) = SP (q, 0, δ). Then

s[`](δ) ≤ min
ε>0

{
t

[
36 log `

ε

]
(δ) +

1
2
·
(

1− 1
|F| + ε

)}
.

Corollary 9.2.6 (restated) Let SUBEXP denote the set of subexponential functions,
i.e., functions satisfying f(n) = 2o(n). For every prime field Fp there exists a family of
Fp-linear properties P such that

s-Def.Fp−linV[P,SUBEXP](δ) ≥ δ − 1
2
·
(

1− 1
p

)
,

Consequently, the maximal deficiency of linear verifiers with subexponential proofs is at
least 1

2 · (1− 1/p):

max-s-Def.Fp−linV[Fp − linear,SUBEXP] ≥ 1
2
·
(

1− 1
p

)
.

We start by proving that the main theorem implies the corollary.

Proof of Corollary 9.2.6. Take P = {Pn | n ∈ Z+} to be a family of linear properties sat-
isfying both (a) (dim(Pn)/n)−−−→n→∞0 and (b) the best soundness of an o(n)-tester for Pn

goes to 0 as n goes to ∞. One construction of such a family is based on properties that
have linear dual distance, i.e., where the minimal weight of a nonzero element in the dual
space of Pn is Ω(n). Any o(n)-tester with perfect completeness for such a property must
have soundness function 0. A different construction is obtained by taking P to be a family
of random Low Density Parity Check (LDPC) codes that satisfy (a). These codes were
shown in [BSHR05] to satisfy (b). Let wn ∈ Fn be δ-far from Pn. The verifier in Theorem
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9.2.2 achieves soundness at least δ on w when the proof-length is exponential in n. On the
other hand, take εn to be a sequence approaching 0 when n approaches ∞ while satisfying
36 log `(n)

εn
= o(n). Such a sequence exists because `(n) = 2o(n). In this case Theorem 9.2.5

shows that the soundness of (3, `(n))-verifiers approaches 1
2 ·

(
1− 1

p

)
as n approaches ∞.

This proves the first part of the corollary. To get the second part notice that (a) implies
that a random w′ ∈ Fn

p has distance δ = ((1− 1/p)− o(1)) from Pn. This completes the
proof.

9.5.1 Proof of Theorem 9.2.5

Overview Given a verifier V and a word w that is δ-far from P , we need to describe
a proof π such that V accepts w ◦ π with relatively high probability. We divide this into
two cases. If a large fraction of the queries of V are inspective, then we try to satisfy
these queries and care little about the rejection probability on the other queries. This
part is argued in Lemma 9.5.2. On the other hand, if V rarely queries w, then we present
a proof that is good for some codeword w′ ∈ P and making it so that V doesn’t notice the
difference between w and w′. Details follow.

Notation When discussing F-linear verifiers, we view a word-proof pair as a vector
w t π ∈ Fn+` by setting (w t π)i = (w t π)[i]. A q-query constraint Q = (I, C) can be
represented by a vector vQ ∈ Fn+` such that the support of vQ, denoted supp(vQ), is I

and

C(w t π|I) = accept ⇔ 〈vQ, w t π〉 =
n+∑̀

i=1

(vQ)i(w t π)i = 0.

Abusing notation, we identify Q with its representing vector and say that (wtπ) satisfies
Q whenever 〈Q, (w t π)〉 = 0. For I ′ ⊂ [n + `] we denote supp(Q) ∩ I ′ by suppI′(Q).
Similarly, let 〈Q,w ◦ π〉I′ =

∑
i∈I′ Qi · (w ◦ π)i, where Qi denotes the ith entry of the

vector Q. Finally, for a linear space P we denote its dual space by P ∗.
To simplify the proof of Theorem 9.2.5, we assume that our verifier makes no redundant

queries according to the following definition and claim.

Definition 37. A query Q ∈ Fn+`, with |supp(Q)| ≤ 3, is called redundant for the
property P if |supp[n](Q)| > 0, |supp[n+1,n+`](Q)| > 0 and there exists u ∈ P ∗, u 6= 0 with
supp(u) ⊆ supp[n](Q).

If the dual distance of P is greater than 2 then all queries are nonredundant. The
next claim says that even if the dual distance of P is 2, we may assume without loss of
generality that its verifier makes no redundant queries.

Claim 9.5.1. If P has a (3, `)-linear verifier with soundness function s, then P has a
(3, `)-linear verifier that makes no redundant query and has soundness function s as well.
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Proof. Let V be a (3, `)-linear verifier for P using redundant queries. We replace these
queries, one at a time, without increasing query complexity and length and without de-
creasing soundness.

Let Q be redundant. Since
∣∣∣supp[n](Q)

∣∣∣ ≤ 2 and there exists u ∈ P ∗ with supp(u) ⊆
supp[n](Q) there exists a nonzero vector Q′ ∈ span(P ∗, Q) such that

∣∣∣supp[n](Q′)
∣∣∣ <∣∣∣supp[n](Q)

∣∣∣. Replace Q by Q′. Note that |supp(Q′)| ≤ 2 and
∣∣∣supp[n+1,n+`](Q′)

∣∣∣ ≥ 1,
so Q′ is a constraint that requires a proof symbol, say πn+`, be equal to one of the fol-
lowing three possibilities: (i) the constant 0 (if |supp(Q′)| = 1); (ii) a different proof
symbol πi′ (if |supp(Q′)| =

∣∣∣supp[n+1,n+`](Q′)
∣∣∣ = 2); or (iii) a word symbol wi′ (if

|supp(Q′)| = |supp(Q)| = 1). In each of these three cases we can eliminate the use of
πi and calculate its value by querying a single different proof-symbol or word-symbol.
By construction, the query complexity does not increase and the proof length decreases
because πn+` is not queried anymore. By linearity, the new verifier retains perfect com-
pleteness, because every new query lies in span(Q, P ∗). Finally, to argue soundness notice
that a proof π′ of length ` − 1 can be extended to a proof of length ` such that w ◦ π

satisfies a query Q̂ of V if and only if w ◦ π′ satisfies the modified form of Q̂.

Proof (of Theorem 9.2.5). Let V = 〈Q, D〉 be a 3-query linear verifier. Let µ =
PrQ∼DQ[supp[n](Q) 6= ∅]. Fix ε > 0. We prove the following bound:

s[`](δ) ≤ min
{

t

[
36 log `

ε

]
(δ) + ε + (1− µ) ·

(
1− 1

|F|
)

, t

[
36 log `

ε

]
(δ) + µ ·

(
1− 1

|F|
)}

.

(9.1)
The right hand side attains its maximal value when

µ =
1
2

+
ε

2
(
1− 1

|F|
) .

Plugging this value of µ back into (9.1) completes the proof.
Now we argue (9.1). The first element on the right hand side of (9.1) is given by the

following lemma which is proved in the next subsection.

Lemma 9.5.2. Let V = 〈Q, D〉 be a F-linear verifier for the F-linear property P ⊆ Fn

with soundness function s, let ε > 0 and let µ = PrQ∼DQ[supp[n](Q) 6= ∅]. Then

s(δ) ≤ t

[
36 log `

ε

]
(δ) + ε + (1− µ) ·

(
1− 1

|F|
)

.

To complete the proof we only need to show

s[`](δ) ≤ t

[
36 log `

ε

]
(δ) + µ ·

(
1− 1

|F|
)

. (9.2)
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Let w0 be δ-far from P . By linearity, the all-zero proof π0 = 0 is a legitimate proof
(accompanying the zero codeword). Consider the soundness of V when presented with
w ◦ π0 where w is the sum of w0 and a random word w′ ∈ P . Every query Q with
supp[n](Q) = ∅ is satisfied by the legitimate proof π0. Additionally, every query Q with
supp[n+1,n+`](Q) = ∅ corresponds to a test, so the accumulated rejection probability of

such tests is at most t
[

36 log `
ε

]
(δ) because increasing query complexity does not decrease

soundness. Finally, consider a query Q such that both supp[n](Q) and supp[n+1,n+`](Q)
are not empty. By Claim 9.5.1 we may assume that V is nonredundant, so there is no
u ∈ P ∗, u 6= 0 such that supp(u) ⊆ supp[n](Q). Since P is linear, by Lemma 9.4.6 for
a random w′ ∈ P we know that 〈Q,w′〉[n] is a random element of F. This implies that
the rejection probability over such tests is at most µ · (1 − 1/|F|). This gives (9.2) and
Theorem 9.2.5 follows.

We end this subsection with the formal proof of Theorem 9.2.9.

Proof of Theorem 9.2.9. This follows from Lemma 9.5.2 by noticing that in the case of an
inspective verifier we have µ = 1.

9.5.2 The Decomposition Lemma

In the proof of Lemma 9.5.2 we use the decomposition lemma of [LR99], stated next. The
proof is included because we use a stronger version than the one appearing in [LR99, Tre05].
Our version deals with multigraphs while still bounding the radius of the decomposed
graph as a function of the number of vertices. The proof follows along the lines of [LR99].

Before stating the lemma we need to introduce some notation. For any subset V ′ ⊆ V

of vertices of a multigraph G, let G(V ′) denote the induced subgraph of G on the vertex
set V ′. Also, let E(V ′) = E(G(V ′)). Similarly, let E(V ′, V \ V ′) denote the set of edges
between V ′ and V \ V ′ (i.e., E(V ′, V \ V ′) = E∩(V ′× (V \ V ′)). For any connected graph
G, define the radius of G as follows:

rad(G) = min
v∈V

max
u∈V

d(u, v),

where d(u, v) denotes the length of the shortest path between vertices u and v. Note that
for any connected graph, the distance between any two vertices is at most twice the radius
of the graph.

Lemma 9.5.3 (Decomposition [LR99]). For every ε ∈ (0, 1) and every multigraph G =
(V,E), there exists a subset of edges E′ ⊆ E of size at most ε|E|, such that every connected
component of the graph GDecomp = (V, E \E′) has radius strictly lesser than log |V |/ε. The
graph GDecomp is said to be an ε-decomposition of G.
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Proof. Assume on the contrary that for some ε > 0, there exists a graph G which cannot
be decomposed into components of radius less than log |V |/ε by removing at most an
ε-fraction of the edges. Let G be such a graph with the minimum number of vertices.

Let v be a vertex of maximum degree in V . Hence, deg(v) ≥ 2|E|/|V |. Now, consider
the set of vertices V ′ defined by the following sequence of operations. In the following,
Γ(V ′) denotes the neighborhood of V ′ (i.e., Γ(V ′) = {u ∈ V ′|(u, v) ∈ E for some v ∈ V ′}).
Algorithm 3.

1. Set V ′ ← {v}∪Γ(v)

2. While |E(V ′, V \ V ′)| > ε|E(V ′)| do

Set V ′ ← V ′∪Γ(V ′)

3. Output V ′

Clearly, |E(V ′, V \ V )| ≤ ε|E(V ′)|. Let t be the number of iterations of the while loop
in the above procedure. Clearly, t + 1 upper bounds the radius of the induced subgraph
G(V ′) because d(v, u) ≤ t + 1 for all u ∈ G(V ′). Furthermore, each iteration of the while
loop increases the number of edges in G(V ′) by a multiplicative factor of at least (1 + ε).
Hence,

|E(V ′)| > (1 + ε)t deg(v) ≥ (1 + ε)(rad(G(V ′))−1)

(
2|E|
|V |

)
≥ (1 + ε)rad(G(V ′)) · |E||V |

where in the last inequality we have used the fact 2 > (1 + ε). However, since E(V ′) ⊆ E,
we have that rad(G(V ′)) < log |V |/ log(1 + ε) < log |V |/ε. Here, we have used the fact
that log2(1 + ε) > ε for all ε ∈ (0, 1).

Now, consider the induced subgraph G′ = G(V \ V ′). Since |V \ V ′| < |V |, by the
minimality condition we have that there exists a set of edges E′′ ⊆ E(G′) of size at most
ε|E(G′)|, such that every connected component of the graph G′

Decomp = (V \V ′, E(G′)\E′′)
has radius strictly less than log |V \ V ′|/ε.

Let E′ = E(V ′, V \ V ′)∪E′′. We first observe that |E′| ≤ ε|E(V ′)|+ ε|E(G′)| ≤ ε|E|.
Furthermore, the components of the graph GDecomp = (V, E \ E′) are G(V ′) and the
components of G′

Decomp. Hence, their radius is strictly less than log |V |/ε. This contradicts
the assumption that G is a counterexample to the lemma.

9.5.3 Proof of Lemma 9.5.2

Overview Given a verifier V = 〈Q, D〉, we construct a tester V ′ = 〈Q′, D〉 with a one-
to-one correspondence between the queries of V and those of V ′. The query complexity
of V ′ is O

(
log `

ε

)
. Additionally, we construct a set of proofs Π such that for every proof

π ∈ Π, a (1− ε)-fraction of the inspective queries Q satisfy 〈Q,w ◦ π〉 = 〈Q′, w ◦ π〉, where
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Q′ is the test of V ′ corresponding to Q. Finally, we show that if π is a random proof from
Π then the expected acceptance probability of a noninspective query is at least 1− 1/|F|.
Summing up, the differece between the rejection probability of the tester V ′ and that of
the verifier V is at most ε + (1− 1/|F|)(1− µ), completing our proof. The construction of
V ′ and Π uses the F-linearity of the constraints and the ε-decomposition of the inspective
graph of V given in Lemma 9.5.3. We now focus on these two aspects.

Decomposed F-linear verifiers Let V be an F-linear verifier and let G = G(V) be its
inspective graph. Recall from Definition 36 that if

∣∣∣supp[n+1,n+`](Q)
∣∣∣ = 1 then Q induces

an edge between 0 and a vertex i ∈ [n + 1, n + `], whereas if
∣∣∣supp[n+1,n+`](Q)

∣∣∣ = 2 then

both vertices of the edge generated by Q lie in [n + 1, n + `] (if
∣∣∣supp[n+1,n+`](Q)

∣∣∣ 6= 1, 2
then Q generates no edge).

Let G′ be an ε-decomposition of G as per Lemma 9.5.3 with E′ being the set of removed
edges, |E′| ≤ ε|E|. Let V0, V1, . . . , Vm be the set of connected components of G′, where V0

is the component to which the vertex 0 belongs. Let F0, . . . , Fm be a set of corresponding
spanning trees, one per component, of radius at most log `

ε each and let F = ∪jFj (the
existence of these trees is guaranteed by Lemma 9.5.3). Let r1, . . . , rm be arbitrary roots
for F1, . . . , Fm and set r0 = 0 to be the root of F0. To describe V ′ and Π we define two
types of constraints that belong to span(Q). They are described next.

Vertex constraints For i ∈ Vj \{rj} let Q(i) be the set of constraints that generate the
edges along the unique path in Fj leading from rj to i. Let Q(i) be the unique nonzero
vector in span(Q(i)) satisfying

(Q(i))i′ =

{
−1 i′ = i

0 i′ ∈ [n + 1, n + `] \ {rj , i}
(9.3)

Such a constraint can be shown to exist by performing Gaussian elimination to remove
the variables appearing in internal nodes i1, . . . , it along the path from rj to i. We call
Q(i) the vertex constraint corresponding to i.

Claim 9.5.4 (Basic properties of vertex constraint). For i ∈ Vj \ {rj} we have
(a) {i} ⊆ supp[n+1,n+`](Q(i)) ⊆ {i, rj},
(b) |supp[n](Q(i))| ≤ 4 log `

ε and
(c) rj ∈ supp[n+1,n+`](Q(i)) if and only if j 6= 0.

Proof. Part (a) follows by construction. Part (b) holds because a query Q that generates
an edge has

∣∣∣supp[n](Q)
∣∣∣ ≤ 2 and Q(i) lies in the span of at most 2 log `

ε constraints.
Regarding part (c), clearly j = 0 implies rj 6∈ supp[n+1,n+`](Q(i)) because 0 is not in
the support of any query. For the other direction, if j 6= 0 note that every constraint
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has exactly two vertices in its support. Additionally, every internal vertex along the path
from rj to i, except i and rj themselves, appears in the support of exactly two constraints.
Thus, any Q ∈ span(Q(i)) satisfying (9.3) must have rj in its support.

Edge constraints For an edge e = (i, i′) ∈ Vj × Vj in G′ generated by Q, let

Q̂(e) =





Q + Qi ·Q(i) i′ = rj

Q + Qi′ ·Q(i′) i = rj

Q + Qi ·Q(i) + Qi′ ·Q(i′) i, i′ 6= rj

and Q(e) =





Q̂(e) (Q̂(e))rj = 0
−Q̂(e)

(Q̂(e))rj

(Q̂(e))rj 6= 0
.

In words, Q(e) is the unique linear combination of Q and Q(i), Q(i′) (if one or both of the
latter two are defined) that satisfies

Q(e)rj ∈ {−1, 0} and Q(e)i′′ = 0 for i′′ ∈ [n + 1, n + `] \ {rj} . (9.4)

We call Q(e) the edge constraint corresponding to e.

Claim 9.5.5. For e = (i, i′) ∈ Vj × Vj we have (a) supp[n+1,n+`](Q(e)) ⊆ {rj}, (b)
|supp[n](Q)| ≤ 8 log `

ε and (c) if j = 0 then supp[n+1,n+`](Q(e)) = ∅.

Proof. Let Q be the constraint that generates e and note that supp[n+1,n+`](Q) ⊆
{i, i′}. For part (a) assume that i ∈ supp[n+1,n+`](Q). Recall from Claim 9.5.4 that
supp[n+1,n+`](Q(i)) ⊆ {rj , i} and Q(i)i = −1. This implies that supp(Q + Qi · Q(i)) ⊆
{i′, rj}. The case of i′ is handled identically and this proves part (a). Part (b) fol-
lows because Q(e) lies in the span of at most 4 log `

ε constraints and each constraint has∣∣∣supp[n](Q)
∣∣∣ ≤ 2. Part (c) follows from part (a) by observing that 0 is not in the support

of any constraint.

Forced components The construction of the tester V ′ and the corresponding proofs
Π depend on a partition of the components of G′ into forced and unforced components,
defined next.

Definition 38 (Forced component). If e ∈ Vj × Vj satisfies supp[n+1,n+`](Q(e)) = {rj}
then we say that e forces Vj. If Vj contains an edge that forces it then we say that Vj is
forced. Pick an arbitrary ordering of the edges and set the designated forcing edge of Vj to
be the smallest edge that forces it. Components without a forcing edge are called unforced.

Construction of the Tester V ′ We construct V ′ = 〈Q′, D〉 from V = 〈Q, D〉 in three
consecutive steps. Assume without loss of generality that V1, . . . , Vk are the forced com-
ponents of G′. (Notice that Claim 9.5.5(c) implies that V0 is unforced.) First we convert
each query Q into a query Q(1) with supp[n+1,n+`](Q(1)) ⊆ {r1, . . . , rm}. Then we convert
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Q(1) into a Q(2) with supp[n+1,n+`](Q(2)) ⊆ {rk+1, . . . , rm}. Finally, we replace Q(2) by Q′

with supp[n+1,n+`](Q′) = ∅, i.e., Q′ is a test. All the time we keep the same distribution
over tests, i.e., D(Q′) = D(Q(2)) = D(Q(1)) = D(Q). The detailed construction follows.

1. For every query Q set

Q(1) = Q +
∑

i∈[n+1,n+`]\{r1,...,rm}
Qi ·Q(i).

2. For every query Q(1) set

Q(2) = Q(1) +
k∑

j=1

(Q(1))rj ·Q(ej).

3. For every query Q(2) set

Q′ =

{
0 |supp[n+1,n+`](Q(2))| > 0
Q(2) otherwise

Next we bound all of the important parameters of V ′ but for it’s soundness function.

Claim 9.5.6 (Basic properties of V ′). V ′ is a tester with perfect completeness and query
complexity ≤ 36 log `

ε .

Proof. V ′ is a tester because the last conversion step enforces supp(Q′) ⊆ [n] for all
Q′ ∈ Q′. Perfect completeness of V ′ follows from the perfect completeness of V by F-
linearity, because Q′ ⊆ span(Q).

Finally, the bound on the query complexity follows from Claims 9.5.4(b), 9.5.5(b) by
noting that Q′ lies in the span of Q and at most 3 vertex constraints and 3 edge constraints.
Indeed,

Q(1) ∈ span(Q,
{

Q(i) | i ∈ supp[n+1,n+`](Q) \ {r1, . . . , rm}
}

),

and since
∣∣∣supp[n+1,n+`](Q)

∣∣∣ ≤ 3 we conclude that Q(1) is in the span of Q and at most 3
vertex constraints. By Claim 9.5.4(a) and Equation (9.4) we have

supp[n+1,n+`](Q
(1)) ⊆

{
rj | ∃i ∈ supp[n+1,n+`](Q) ∩ Vj

}
,

so
∣∣∣supp[n+1,n+`](Q)

∣∣∣ ≤ 3 also implies
∣∣∣supp[n+1,n+`](Q(1))

∣∣∣ ≤ 3. This implies that Q(2)

lies in the span of Q(1) and at most 3 edge constraints and our proof is complete.

Construction of the proof-set Π To argue the soundness of V ′ we introduce a family
of proofs designed to fool inspective verifiers.
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Definition 39. Let V1, . . . , Vk be the forced components of G′ and let e1, . . . , ek be their
respective designated forcing edges. A proof π is called F -compliant for w if w ◦ π satisfies
every constraint that generates an edge in F ∪ {e1, . . . , ek}. Let Π = Π(w) denote the set
of F -compliant proofs for w.

The next claim shows that F -compliant proofs exist for any word and describes the
structure of these proofs. This structure will be used to analyze the soundness of V ′.

Claim 9.5.7. For every w ∈ Fn and αk+1, . . . , αm ∈ F there exists a unique F -compliant
proof for w such that πrj = αj for k < j ≤ m.

Proof. The set of constraints that generate the edges of F , denoted Q(F ), is linearly
independent and any setting of values for πr1 , . . . , πrj can be extended in a unique way to
a proof that satisfies Q(F ) (this can be proved by induction along paths in F ; we omit
the full details).

To complete the proof we have to argue uniqueness. To do so we show that all F -
compliant proofs assign the same values to πi, i 6∈ V1 ∪ . . . ∪ Vk

First, consider V0, the special component whose root is 0. Let e = (0, i) ∈ F0 be gener-
ated by Q. There is a unique setting of πi that satisfies Q because

∣∣∣supp[n+1,n+`](Q)
∣∣∣ = 1.

Once all vertices at distance 1 from 0 have been fixed, there is a unique assignment to
πi, i ∈ V0 that satisfies Q(F0) – the set of constraints that generate edges in F0.

Next, consider e = (i, i′) – generated by Q – that is the designated forcing edge of
Vj . By definition 38 we have supp[n+1,n+`](Q(e)) = {rj}, so there is a unique setting for
πrj that satisfies Q. By the linear independence of Q(Fj) this can be extended to an
assignment to πi, i ∈ Vj that satisfies Q(Fj). This completes the proof.

F -compliant proofs are important because on certain types of queries the output of Q

on w ◦ π is equal to the output of the test Q′ performed on w. This is argued in our next
claim.

Claim 9.5.8. If π is F -compliant for w and Q ∈ Q has one of the following properties

1. supp[n+1,n+`](Q) = ∅, or

2. Every i ∈ supp[n+1,n+`](Q) belongs to a forced component, or

3. Q generates an edge e ∈ E \ E′.

Then
〈Q′, w ◦ π〉 = 〈Q,w ◦ π〉.

Proof. We prove each case separately.

1. By construction Q′ = Q(2) = Q(1) = Q and the claim follows.
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2. By assumption and Claim 9.5.4(a) we have supp[n+1,n+`](Q(1)) ⊆ {r1, . . . , rk}.
Suppose that rj ∈ supp[n+1,n+`](Q(1)). Definition 38 and Equation (9.4) imply
(Q(ej))rj = −1, so by construction rj 6∈ supp[n+1,n+`](Q(2)). This is argued for
each rj ∈ supp[n+1,n+`](Q(1)) and shows supp[n+1,n+`](Q(2)) = ∅ . By construction
this implies Q′ = Q(2). Note that Q(2) = Q + Q′′ where Q′′ is a linear combination
of constraints that generate edges in F ∪ {e1, . . . , ek}. We conclude that

〈Q′, w ◦ π〉 = 〈Q(2), w ◦ π〉 = 〈Q,w ◦ π〉+ 〈Q′′, w ◦ π〉 = 〈Q,w ◦ π〉, (9.5)

The last equality follows because π is F compliant for w.

3. We may assume that e belongs to a component Vj that is not forced, because the
other case (of forced Vj) was argued in part 2. By construction Q(1) = Q(e). By
assumption e does not force Vj , so by Definition 38 we have supp[n+1,n+`](Q(e)) = ∅.
By construction Q′ = Q(2) = Q(1) and the F -compliancy of π implies as argued
in Equation (9.5) that 〈Q′, w ◦ π〉 = 〈Q(2), w ◦ π〉 = 〈Q,w ◦ π〉. This completes the
proof.

We are ready to argue the soundness of V ′ and complete the proof of Lemma 9.5.2.

Claim 9.5.9 (Soundness). Let σ = PrQ∼DQ[
∣∣∣supp[n+1,n+`](Q)

∣∣∣ = 3]. There exists an
F -compliant proof π such that

Pr[V ′w◦π = reject] ≥ Pr[Vwtπ = reject]− ε− (1− 1/|F|) · σ.

Proof. If π is F -compliant for w then by Claim 9.5.8 the output of V and V ′ on w ◦ π

may differ only if the query performed is one of two types. The first type is a query that
generates an edge e ∈ E′. The fraction of these queries is at most ε. The second type is
a query with

∣∣∣supp[n+1,n+`](Q)
∣∣∣ = 3 where there exists i ∈ supp[n+1,n+`](Q) such that i

belongs to an unforced component Vj . Let σ′ denote the fraction of queries of the second
type and note that σ′ ≤ σ. We can already conclude

Pr[V ′w◦π = reject] ≥ Pr[Vwtπ = reject]− ε− σ,

but to reach the stronger claim stated above we need one additional observation regarding
constraints of the second type.

Let Q be such a constraint and suppose that i ∈ supp[n+1,n+`](Q) belongs to the un-
forced component Vj . Consider the uniform distribution over F -compliant proofs obtained
by randomly fixing values αk+1, . . . , αm for πrk+1

, . . . , πrm and extending these values to
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an F -compliant proof for w. Notice the value assigned to πi depends linearly on the
value of πrj . Thus, assigning a uniformly random value to πrj implies that 〈Q,w ◦ π〉 is
a random variable ranging uniformly over F, i.e. Q accepts w ◦ π with probability 1/|F|.
This implies the expected number of constraints of the second type that are satisfied is
1/|F|. We conclude the existence of an F -compliant proof which is rejected by at most a
(1− 1/|F|)-fraction of the queries of the second type. This completes our proof.

Proof of Lemma 9.5.2. Let w be δ-far from P . Let V ′ be the tester constructed from V
as described earlier in this subsection. Let π be the F -compliant proof for w satisfying
Claim 9.5.9. Note that σ ≤ 1− µ so this claim implies

s(δ) ≤ Pr[Vw◦π = reject] ≤ Pr[V ′w◦π = reject] + ε + (1− 1/|F|)(1− µ).

The proof is completed by recalling from Claim 9.5.6 that V ′ is a
(

36 log `
ε

)
-tester, and

hence Pr[V ′w◦π = reject] ≤ t
[

36 log `
ε

]
(δ).
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orem, manuscript, 2006.

[GLST98] V. Guruswami, D. Lewin, M. Sudan and L. Trevisan. A tight characterization
of np with 3 query pcps. In Proceedings of the 39th Annual Symposium on
Foundations of Computer Science(FOCS-98), pages 8–17, Los Alamitos, CA,
1998. IEEE Computer Society.

[GR05] V. Guruswami and A. Rudra. Tolerant locally testable codes. In Chan-
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cations in graph theory. In: Combinatorics, Paul Erdős is Eighty, Vol II
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Peter van Emde Boas, and Mogens Nielsen, editors, ICALP, volume 1644 of
Lecture Notes in Computer Science, pages 676–686. Springer, 1999.
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