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Abstract

The framework of distribution testing is currently ubiquitous in the field of property testing.
In this model, the input is a probability distribution accessible via independently drawn samples
from an oracle. The testing task is to distinguish a distribution that satisfies some property
from a distribution that is far from satisfying it in the ℓ1 distance. The task of tolerant testing
imposes a further restriction, that distributions close to satisfying the property are also accepted.

This work focuses on the connection of the sample complexities of non-tolerant ("traditional")
testing of distributions and tolerant testing thereof. When limiting our scope to label-invariant
(symmetric) properties of distributions, we prove that the gap is at most quadratic. Conversely,
the property of being the uniform distribution is indeed known to have an almost-quadratic gap.

When moving to general, not necessarily label-invariant properties, the situation is more
complicated, and we show some partial results. We show that if a property requires the
distributions to be non-concentrated, then it cannot be non-tolerantly tested with o(

√
n) many

samples, where n denotes the universe size. Clearly, this implies at most a quadratic gap, because
a distribution can be learned (and hence tolerantly tested against any property) using O(n)
many samples. Being non-concentrated is a strong requirement on properties, as we also prove a
close to linear lower bound against their tolerant tests.

To provide evidence for other general cases (where the properties are not necessarily label-
invariant), we show that if an input distribution is very concentrated, in the sense that it is
mostly supported on a subset of size s of the universe, then it can be learned using only O(s)
many samples. The learning procedure adapts to the input, and works without knowing s in
advance.
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1 Introduction

Let D be a distribution over a finite set Ω, and P be a property, that is, a set of distributions
over Ω. Given access to independent random samples from Ω according to the distribution D, we
are interested in the problem of distinguishing whether the distribution D is η-close to having the
property P , or is ε-far from having the property P , where η and ε are two fixed proximity parameters
such that 0 ≤ η < ε ≤ 2. The distance of the distribution D from the property P is defined as
min
D′∈P

||D −D′||1, where ||D −D′||1 denotes the ℓ1-distance between distributions D and D′ ∗. The

goal is to design a tester that uses as few samples as possible. For η > 0, this problem is referred to
as the tolerant distribution testing problem of P, and the particular case where η = 0 is referred
to as the non-tolerant distribution testing problem of P. The sample complexity (tolerant and
non-tolerant) is the number of samples required by the best algorithm that can distinguish with
high probability (usually with probability at least 2

3) whether the distribution D is η-close to having
the property P, or is ε-far from having the property P.

While results and techniques from distribution testing are already interesting in their own
right, they have also found numerous applications in central problems in Theoretical Computer
Science, and in particular in Property Testing, e.g. graph isomorphism testing [FM08, Gol19] and
function isomorphism testing [ABC+13], learning theory [BDBC+10, DKS17, DK16], and differential
privacy [ADKR19, GKK+20, Zha21, ACF+21]. Thus, understanding the tolerant and non-tolerant
sample complexity of distribution testing is a central problem in theoretical computer science.

There have been extensive studies of non-tolerant and tolerant testing of some specific distribution
properties like uniformity, identity with a fixed distribution, equivalence between two distributions
and independence of a joint distribution [BFR+00, BFF+01, Pan08, Val11, VV11, VV17a]. Various
other specific distribution properties have also been studied [BC17, DKS18]. Then, some works
investigated general tests for the large class of all shape-restricted properties of distributions, which
contains properties like monotonicity, log-concavity, modality etc. [CDGR18, FLV19]. This paper
proves general results about the gap between tolerant and non-tolerant distribution testing that hold
for large classes of properties.

1.1 Our results

We now informally present our results. The formal definitions are presented in Section 2. We
assume that the distributions are supported over a set Ω = [n] = {1, 2, . . . , n}. We first prove a result
about label-invariant distribution properties (properties that are invariant under all permutations of
Ω). We show that, for any label-invariant distribution property, there is at most a quadratic blowup
in its tolerant sample complexity as compared to its non-tolerant counterpart.

Theorem 1.1 (Informal). Any label-invariant distribution property that can be non-tolerantly tested
using Λ samples, can also be tolerantly tested using Õ(min{Λ2, n}) samples, where n is the size of
the support of the distribution †.

This result gives a unified way for obtaining tolerant testers from their non-tolerant counterparts.
The above result will be stated and proved formally in Section 4. Moreover, in Section 5, we give a
constructive variant of the tolerant tester of Theorem 1.1, when the property can be expressed as
the feasible solution to a set of linear inequalities.

∗Strictly speaking it is an infimum, but since all properties we consider are compact sets, it is equal to the
minimum.

†Õ(·) hides a poly-logarithmic factor.
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Theorem 1.2 (Informal). Any label-invariant distribution property that can be non-tolerantly tested
using Λ samples and can be expressed as a feasible solution to m linear inequalities, can also be
tolerantly tested using Õ(min{Λ2, n}) samples and in time polynomial in m and n, where n is the
size of the support of the distribution.

We believe that a similar result can also be proved when the property can be expressed as the
feasible solution to a set of convex constraints, using more advanced techniques.

Note that if Λ = Ω(
√
n), Theorem 1.1 is obvious. It is only interesting if Λ = o(

√
n). Now we

present a property for which this connection is useful. Consider a natural distribution property:
given a distribution D and a parameter k, we want to decide whether the support size of D is at most
k or ε-far from it. If k = o(

√
n), the query complexity for testing this problem is O( k

log k ) [VV17b].
It is a natural question to investigate the extent to which the above theorem can be generalized.

Though we are not resolving this question completely, as a first step in the direction of extending
the above theorem for properties that are not necessarily label-invariant, we consider the notion
of non-concentrated properties. By the notion of a non-concentrated distribution, intuitively, we
mean that there is no significant portion of the base set of the distribution that carries only a
negligible weight, making the probability mass of the distribution well distributed among its indices.
Specifically, any subset X ⊆ [n], for which |X| is above some threshold (say βn with β ∈ (0, 12)),
has probability mass of at least another threshold (say α with α ∈ (0, 12)). A property is said to be
non-concentrated if only non-concentrated distributions can satisfy the property. We prove a lower
bound on the testing of any non-concentrated property (not necessarily label-invariant).

Theorem 1.3 (Informal). In order to non-tolerantly test any non-concentrated distribution property,
Ω(

√
n) samples are required, where n is the size of the support of the distribution.

The quadratic gap between tolerant testing and non-tolerant testing for any non-concentrated
property follows from the above theorem, since by a folklore result, only O(n) many samples are
required to learn any distribution approximately.

The proof of Theorem 1.3 for label-invariant non-concentrated properties is a generalization of
the proof of the Ω(

√
n) lower bound for classical uniformity testing, while for the whole theorem,

that is, for the general (not label-invariant) non-concentrated properties, a more delicate argument
is required. The formal proof is presented in Section 7.

The next natural question is about the sample complexity of any tolerant tester for non-
concentrated properties. We address this question for label-invariant non-concentrated properties by
proving the following theorem in Section 6.2. However, the question is left open for non-label-invariant
properties.

Theorem 1.4 (Informal). The sample complexity for tolerantly testing any non-concentrated label-
invariant distribution property is Ω(n1−o(1)), where n is the size of the support of the distribution.

A natural question related to tolerant testing is:

How many samples are required to learn a distribution?

As pointed out earlier, any distribution can be learnt using O(n) samples. But what if the
distribution happens to be very concentrated? We present an upper bound result for learning a
distribution, in which the sample complexity depends on the minimum cardinality of any set S ⊆ [n]
over which the unknown distribution is concentrated.

Theorem 1.5 (Informal). To learn a distribution approximately, O(|S|) samples are enough, where
S ⊆ [n] is an unknown set of minimum cardinality whose mass is close to 1. Note that |S| is also
unknown, and the algorithm adapts to it.
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Observe that we cannot learn a distribution supported on the set S using o(|S|) samples, so the
above result is essentially tight.

1.2 Related works

Several forms of distribution testing have been investigated for over a century in statistical
theory [Kin97, CF14], while combinatorial properties of distributions have been explored over the last
two decades in Algorithm Theory, Machine Learning and Information Theory [Gol17, Mac03, Cov99].
In Algorithm Theory, the investigation into testing properties of distributions started with the
work of Goldreich and Ron [GR00], even though it was not directly stated there in these terms.
Batu, Fortnow, Rubinfeld, Smith and White [BFR+00] formally initiated the study of property
testing of distributions with the problem of equivalence testing ‡. Later, Batu, Fischer, Fortnow,
Kumar, Rubinfeld and White [BFF+01] studied the problems of identity and independence testing
of distributions §. Since then there has been a flurry of interesting works in this model. For example,
Paninski [Pan08] proved tight bounds on uniformity testing, Valiant and Valiant [VV11] resolved
the tolerant sample complexity for a large class of label-invariant properties that includes uniformity
testing, Acharya, Daskalakis and Kamath [ADK15] proved various optimal testing results under
several distance measures, and Valiant and Valiant [VV17a] studied the sample complexity of instance
optimal identity testing. In [BC17], Batu and Cannone studied the problem of generalized uniformity
testing, where the distribution is promised to be supported on an unknown set S, and proved a tight
bound of Θ̃(|S|2/3) samples for non-tolerant uniformity testing. This is in contrast to the non-tolerant
uniformity testing of a distribution supported over [n], whose sample complexity is Θ(

√
n), ignoring

the dependence on the proximity parameter. Daskalakis, Kamath and Wright [DKW18] studied the
problem of tolerant testing under various distance measures. Very recently, Canonne, Jain, Kamath
and Li [CJKL21] revisitied the problem of determining the sample complexity of tolerant identity
testing, where they proved the optimal dependence on the proximity parameters. Going beyond
studying specific properties, Canonne, Diakonikolas, Gouleakis and Rubinfeld [CDGR18] studied
the class of shape-restricted properties of a distribution, a condition general enough to contain
several interesting properties like monotonicity, log-concavity, t-modality etc. Their result was later
improved by Fischer, Lachish and Vasudev [FLV19]. See the survey of Cannone [Can20a] for a more
exhaustive list.

While the most studied works concentrate on non-tolerant testing of distributions, a natural
extension is to test such properties tolerantly. Since the introduction of tolerant testing in the
pioneering work of Parnas, Ron and Rubinfeld [PRR06], that defined this notion for classical (non-
distribution) property testing, there have been several works in this framework. Note that it might
be nontrivial to construct tolerant testers from their non-tolerant counterparts, as in the case of
tolerant junta testing [BCE+19] for example. In a series of works, it has been proved that tolerant
testing of the most natural distribution properties, like uniformity, requires an almost linear number
of samples [Val11, VV11] ¶. Now a natural question arises about how the sampling complexity of
tolerant testing is related to non-tolerant testing of distributions in general. To the best of our
knowledge, there is no known example with more than a quadratic gap.

It would also be interesting to bound the gap for sample-based testing as defined in the work of
‡Given two unknown probability distributions that can be accessed via samples from their respective oracles,

equivalence testing refers to the problem of distinguishing whether they are identical or far from each other.
§Given an unknown distribution accessible via samples, the problem of identity testing refers to the problem of

distinguishing whether it is identical to a known distribution or far from it.
¶To be precise, the exact lower bounds for non-tolerant uniformity testing is Ω(

√
n), and for tolerant uniformity

testing it is Ω( n
logn

), where n is the support size of the distribution and the proximity parameter ε is constant.
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Goldreich and Ron [GR16]. This model was investigated further in the work of Fischer, Lachish and
Vasudev [FLV15], where a general upper bound for strongly testable properties was proved.

2 Notation and definitions

For a probability distribution D : Ω → [0, 1] over a universe Ω = [n], we refer to D(i) as the mass
of i in D, where i ∈ Ω. For S ⊆ Ω, the mass of S is defined as D(S) =

∑
i∈S

D(i). The support of a

probability distribution D on Ω is denoted by Supp(D). For any distribution D, by top t elements
of D, we refer to the first t elements in the support of D when the elements in the support are sorted
according to the non-increasing order of their probability masses in D. When we write Õ(·), it
suppresses a poly-logarithmic term in n and the inverse of the proximity parameter(s). We subsume
coefficients depending only on the proximity parameters in our results for clarity of presentation.

Definition 2.1 (Distribution property). Let D denote the set of all distributions over Ω. A
distribution property P is a topologically closed subset of D ‖. A distribution D ∈ P is said to be
in the property or to satisfy the property. Otherwise, D is said to be not in the property or to not
satisfy the property.

Definition 2.2 (Label-invariant property). Let us consider a property P . For a distribution D and
a permutation σ : Ω → Ω, consider the distribution Dσ defined as Dσ(σ(i)) = D(i) (equivalently,
Dσ(i) = D(σ−1(i))) for each i ∈ Ω. If for every distribution D in P, Dσ is also in P for every
permutation σ, then the property P is said to be label-invariant.

Definition 2.3 (Distance between two distributions). The distance between two distributions
D1 and D2 over Ω is the standard ℓ1 distance between them, which is defined as ||D1 −D2||1 :=∑
i∈Ω

|D1(i)−D2(i)|. For η ∈ [0, 2], D1 and D2 are said to be η-close to each other if ||D1−D2||1 ≤ η.

Similarly, for ε ∈ [0, 2], D1 and D2 are said to be ε-far from each other if ||D1 −D2||1 ≥ ε.

Definition 2.4 (Distance of a distribution from a property). The distance of a distribution D from
a property P is the minimum ℓ1-distance between D and any distribution in P. For η ∈ [0, 2], a
distribution D is said to be η-close to P if the distance of D from P is at most η. Analogously, for
ε ∈ [0, 2], a distribution D is said to be ε-far from P if the distance of D from P is at least ε.

Definition 2.5 ((η, ε)-tester). An (η, ε)-tester for a distribution property is a randomized algorithm
that has sample access to the unknown distribution (upon query it can receive elements of Ω,
each drawn according to the unknown distribution, independently of any previous query or the
algorithm’s private coins), and distinguishes whether the distribution is η-close to the property or
ε-far from the property, with probability at least 2

3 , where η and ε are proximity parameters such
that 0 ≤ η < ε ≤ 2. The tester is said to be tolerant when η > 0, and non-tolerant when η = 0.

Now we define the notions of non-concentrated distributions and non-concentrated properties.

Definition 2.6 (Non-Concentrated distribution). A distribution D over the domain Ω = [n] is said
to be (α, β)-non-concentrated if for any set S ⊆ Ω with size βn, the probability mass on S is at least
α, where α and β are two parameters such that 0 < α ≤ β < 1

2 .

Definition 2.7 (Non-Concentrated Property). Let 0 < α ≤ β < 1
2 . A distribution property P is

defined to be (α, β)-non-concentrated, if all distributions in P are (α, β)-non-concentrated.
‖We put this restriction to avoid formalism issues. In particular, the investigated distribution properties that we

know of (such as monotonicity and being a k-histogram) are topologically closed.
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Note that the uniform distribution is (α, α)-non-concentrated for every α, and so is the property
of being identical to the uniform distribution. Also, for any 0 < α < 1

2 such that αn is an integer,
the uniform distribution is the only (α, α)-non-concentrated one. Finally, observe that any arbitrary
distribution is both (0, β)-non-concentrated and (α, 1)-non-concentrated, for any α, β ∈ (0, 1).

3 Overview of our results

In this section, we give an overview of our results as follows:

3.1 Overview of proof of Theorem 1.1 and Theorem 1.2

We first show that for any label-invariant distribution property, the sample complexities of
tolerant and non-tolerant testing are separated by at most a quadratic factor. More specifically, in
Theorem 1.1, we prove that for any label-invariant distribution property P that has a non-tolerant
tester with sample complexity Λ, there exists a tolerant tester for P that uses Õ(Λ2) samples,
ignoring poly-logarithmic factors. Since we can learn a distribution using O(n) samples, our proof is
particularly useful when Λ = o(

√
n), where n is the support size of the distribution that is being

tested.
In order to prove Theorem 1.1 (restated as Theorem 4.1), we provide an algorithm for tolerant

testing of P with sample complexity Õ(Λ2), based on the existence of a non-tolerant tester of P with
sample complexity O(Λ). Given the existence of such a non-tolerant tester with sample complexity
O(Λ), one crucial observation that we use here is that there cannot be two distributions D1 and D2

that are identical on the elements with mass Ω( 1
Λ2 ) (we call them as high elements), yet D1 is in the

property P, and D2 is far from P. This is formally stated as Lemma 4.3.
Given that the two distributions D1 and D2 are identical on all elements with mass Ω( 1

Λ2 ), by the
birthday paradox, we can say that O(Λ) samples are not enough to obtain any low elements, that is,
elements with mass o( 1

Λ2 ), that appear more than once. Since the property P is label-invariant, we
can apply uniformly random permutations over the low elements of both D1 and D2, making the
samples obtained from both D1 and D2 appear as two uniformly random sequences. Thus, from
the view of any tester that takes only O(Λ) samples, D1 and D2 will appear the same, which would
contradict the existence of a non-tolerant tester that distinguishes D1 from D2 using O(Λ) samples.
At this point, we would like to point out that the proof of Lemma 4.3 only assumes the existence of
a non-tolerant tester, and is oblivious to its internal details. Later, in Lemma 4.4, we generalize this
idea to show that when D1 and D2 are close with respect to the high elements, it cannot be the case
that D1 is in the property P, while D2 is far from P. Although the proof follows a similar line to
that of Lemma 4.3, more careful analysis is required to prove Lemma 4.4. Note that Lemma 4.4 is
the main technical lemma required to prove Theorem 1.1.

Once we have Lemma 4.3 and Lemma 4.4, we can describe the algorithm of Theorem 1.1. Broadly
speaking, we show that partial learning of the distribution is sufficient for constructing a tolerant
tester for any label-invariant property, as opposed to the more familiar paradigm of testing by
learning [DLM+07, Ser10]. Using Lemma 4.4, we show that estimating the masses of only the
high elements is enough for us, along with the fact that the property P that we are testing is
label-invariant. Roughly, the algorithm has three steps. In the first step, we identify and measure the
high elements of the unknown distribution D. In the second step, we construct a new distribution D̃
that adheres to the high mass elements obtained from the first step. Finally, in the third step, we
check whether there exists any distribution D1 in P that is close to D̃. If such a distribution exists,
we accept, and otherwise we reject. In the first step, we need Õ(Λ2) many samples to correctly
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estimate the masses of the high elements, which dominates the sample complexity of our tolerant
tester.

It is important to note that the computational efficiency of the tolerant tester depends on how
fast we can check whether the distribution D̃ (constructed by the algorithm) is close to a known
property P, where we have the complete description of D̃. Later, in Theorem 1.2 (restated as
Theorem 5.5), we show that when the property P can be expressed as a feasible solution to a set of
linear inequalities, there exists an algorithm that tolerantly tests for P in time polynomial in the
support size of the distribution and the number of linear inequalities required to represent it. The
algorithm is similar to that of Theorem 1.1, whereas its polynomial running time follows by using
the Ellipsoid method.

3.2 Overview of Theorem 1.3 and Theorem 1.4

In Theorem 1.3, we show that in order to non-tolerantly test any non-concentrated property
(defined in Definition 2.7), Ω(

√
n) samples are required, where n denotes the support size of the

distribution. Before directly proceeding to prove the result, as a warm-up, we first show an analogous
result for label-invariant non-concentrated properties in Theorem 6.1. To prove the theorem, for
any distribution Dyes in the label-invariant non-concentrated property P that we are testing, we
construct a new distribution Dno that is far from P, whose support is a subset of the support of
Dyes. The two distributions are identical over their high elements, and they only differ in their low
elements, where a low element is an element with mass O( 1n). Since Dyes and Dno differ only on the
elements with mass O( 1n), by the birthday paradox and the fact that the property is label-invariant,
any tester that takes o(

√
n) samples cannot distinguish between Dyes and Dno, and the result follows.

We note that the proof of Theorem 6.1 is a generalization of the lower bound proof for uniformity
testing.

Though the proof of Theorem 1.3 (restated as Theorem 7.1) follows similarly to that of The-
orem 6.1, delicate analysis is required to take care of the fact that the properties are no longer
label-invariant. We also discuss briefly the reason why the technique used to prove Theorem 6.1 does
not work to prove Theorem 1.3, in the beginning of Section 7.

As a step further, in Theorem 1.4 (restated as Theorem 6.3), we show that Ω(n1−o(1)) samples are
necessary to tolerantly test any non-concentrated label-invariant property. This proof follows from
an application of the low frequency blindness theorem of Valiant [Val11]. The question of tolerant
testing of general non-concentrated properties remains open.

3.3 Overview of Theorem 1.5

Finally, we consider the problem of learning a distribution D, where D is concentrated over a
unknown set S ⊆ Ω. In Theorem 1.5 (restated as Theorem 8.1), we give an algorithm that achieves
this with O(|S|) many samples, even when |S| is also unknown. Note that this problem is reminiscent
of the folklore result of learning a distribution over any set S that takes O(|S|) samples. However,
the folklore result holds only for the case where the set S is known ∗∗.

Broadly, the algorithm iterates over possible values of |S|. Starting from s = 1, we first take s
many samples from the the unknown distribution D, and construct a new empirical distribution Ds

based upon the samples obtained. Once we have the distribution Ds, we apply the result of Valiant
and Valiant [VV11] to test whether the unknown distribution D is close to the newly constructed
distribution Ds, by using number of samples that is slightly smaller than s. If Ds is close to D, we

∗∗There are also prior results where only |S| is known, such as in the work of Acharya, Diakonikolas, Li and
Schmidt [ADLS17].
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report the distribution Ds as the output and terminate the algorithm. Otherwise, we double the
value of s and perform another iteration of the two steps as mentioned above. Finally, we show that
when s ≥ |S|, where S is the unknown set on which D is concentrated, Ds will be close to D with
high probability, and we will output a distribution satisfying the statement of Theorem 1.5. To the
best of our knowledge, this is the first result of a tester of this kind that adapts to an unknown
support size |S|.

4 Non-tolerant vs. tolerant sample complexities of label-invariant
properties (Proof of Theorem 1.1)

We will prove that for any label-invariant property, the sample complexities of tolerant and
non-tolerant testing are separated by at most a quadratic factor (ignoring some poly-logarithmic
factors). Formally, the result is stated as follows:

Theorem 4.1 (Theorem 1.1 formalized). Let P be a label-invariant distribution property. Also, let
there exist an (0, ε)-tester (non-tolerant tester) for the property P with sample complexity Λ(n, ε),
where Λ ∈ N and 0 < ε ≤ 2. Then for any γ1, γ2 with γ1 < γ2 and 0 < γ2 + ε < 2, there exists
a (γ1, γ2 + ε)-tester (tolerant tester) that has sample complexity O

(
1

(γ2−γ1)2
·min{Λ2 log2 Λ, n}

)
,

where Λ = Λ(n, ϵ), and n is the size of the support of the distribution.

Let us assume that D is the unknown distribution and Λ(n, ϵ) ≥ Ω(1ε )
††. First note that if

Λ = Ω(
√
n), then we can construct a distribution D̂ such that ||D − D̂||1 < γ2−γ1+ε

2 , by using

O
(

n
(γ2−γ1+ε)2

)
samples from D. Thereafter we can report D to be γ1-close to the property if and

only if D̂ is γ2+γ1+ε
2 -close to the property. In what follows, we discuss an algorithm with sample

complexity Õ(Λ2) when Λ = o(
√
n). Also, we assume that n and Λ are larger than some suitable

constant. Otherwise, the theorem becomes trivial.
The idea behind the proof is to classify the elements of Ω with respect to their masses in D into

high and low, as formally defined below in Definition 4.2. We argue that since P is (0, ε)-testable
using Λ(n, ε) = O(q) samples, there cannot be two distributions D1 and D2 that are identical on all
elements whose probability mass is at least 1

q2
, for q = O(Λ) (the set High1/q2 defined below), where

D1 ∈ P but D2 is ε-far from P. We will formally show this in Lemma 4.3, where we will use the
fact that P is label-invariant. Using Lemma 4.3, we prove Lemma 4.4, that (informally) says that if
two distributions are close with respect to the high mass elements, then it is not possible that one
distribution is close to P while the other one is far from it. In our algorithm, we intend to maintain
the masses of the set High1/q2 , and the term Λ2 in the query complexity of our algorithm correlates
to that.

Definition 4.2. For a distribution D over Ω and 0 < κ < 1, we define

Highκ(D) = {x ∈ Ω | D(x) ≥ κ}

Now we define a quantity q ∈ N where q = Θ(Λ). Assume that c∗ is a suitable large constant
(independent of Λ) such that, if we take Λ many samples from a distribution, then with probability
at least 3

4 , we will not get any sample x whose mass is at most ( c
∗

Λ )2 more than once. We define

q :=
Λ

c∗
. (1)

††This is a reasonable assumption for any non-trivial property.
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We will complete the proof of Theorem 4.1 by using the following two lemmas which we will
prove later.

Lemma 4.3. Let P be a label-invariant property that is (0, ε)-testable using Λ(n, ε) samples and
consider q as defined in Equation 1. Let D1 and D2 be two distributions such that High1/q2(D1) =
High1/q2(D2), and for all x ∈ High1/q2(D1), the probability of x is the same for both distributions,
that is, D1(x) = D2(x). Then it is not possible that D1 satisfies P while D2 is ε-far from satisfying
P.

Lemma 4.4. Let P be a label-invariant property that is (0, ε)-testable using Λ(n, ε) samples, and
consider q as defined in Equation (1). Let D and D̃ be two distributions over Ω (|Ω| > 4q2) and let
H contain the top q2 elements of D. Also, assume that

∣∣∣D̃(Ω \H)−D(Ω \H)
∣∣∣ ≤ γ. If

∑
x∈H

∣∣∣D(x)− D̃(x)
∣∣∣ ≤ α, (2)

then the following hold:

1. If D is β-close to P, then there exists a distribution D1 in P such that High1/q2(D1) ⊆ H and∑
x∈H

∣∣∣D1(x)− D̃(x)
∣∣∣+ ∣∣∣D1(Ω \H)− D̃(Ω \H)

∣∣∣ ≤ (α+ β + γ). (3)

2. If D is (ε+3α+ β +2γ)-far from P and D1 is a distribution such that High1/q2(D1) ⊆ H and∑
x∈H

∣∣∣D1(x)− D̃(x)
∣∣∣+ ∣∣∣D1(Ω \H)− D̃(Ω \H)

∣∣∣ ≤ (α+ β + γ), (4)

then the distribution D1 does not satisfy the property P.

Using the above two lemmas, we first prove Theorem 4.1 in Section 4.1. Then we proceed to
prove Lemma 4.3 and Lemma 4.4 in Section 4.2.

4.1 Proof of Theorem 4.1

Let D be the unknown distribution that we need to test, and assume that ζ = γ1, η = γ2 − γ1,
and η′ = η

64 . We now provide a tolerant (γ1, γ2 + ε)-tester, that is, a (ζ, ζ + ε + η)-tester for the
property P, as follows:

1. Draw W = O
(
q2

η′ log q
)

many samples from the distribution D. Let S ⊆ Ω be the set of
(distinct) samples obtained.

2. Draw additional O
(

W
η′2 logW

)
many samples Z to estimate the value of D(x) for all x ∈ S ‡‡.

3. Construct a set H as the union of S and arbitrary q2 many elements from Ω \ (S ∪ Z).
‡‡Instead of two sets of random samples (where the first one is to generate the set S and the other one is the

multi-set Z), one can work with only one set of random samples. But in that case, the sample complexity becomes
O(q2 logn), as opposed to O(q2 log q) that we are going to prove.
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4. Define a distribution D̃ such that, for x ∈ H,

D̃(x) =
# x in the multi-set Z

|Z|
.

And for each x ∈ Ω \H,

D̃(x) =

1−
∑
x∈H

D̃(x)

|Ω| − |H|
.

5. If there exists a distribution D1 in P that satisfies both the following conditions:

(A)
∑
x∈H

∣∣∣D1(x)− D̃(x)
∣∣∣+ |D1(Ω \H)− D̃(Ω \H)| ≤ 26η′ + ζ.

(B) High1/q2(D1) ⊆ H.

then ACCEPT D.

6. If there does not exist any D1 in P that satisfies both Conditions (A) and (B) above, then
REJECT D.

Note that Step 5 as mentioned above is not completely constructive in a computational sense. In
Section 5, we give a constructive variant of the tester when the property P can be expressed as a set
of linear inequalities. We also give examples of natural properties that can be expressed as a set of
either linear or convex inequalities.

Sample Complexity. The sample complexity of the tester is O( q
2

η2
log2 q) = O(Λ

2 log2 Λ
(γ2−γ1)2

), which
follows from the above description.

Correctness of the algorithm. The correctness of our algorithm is divided into a sequence of
lemmas.

Lemma 4.5. The set H and the distribution D̃ satisfies the following three properties:

(i) With probability at least 1− 1
q , Highη′/q2(D) ⊆ S ⊆ H.

(ii) For any x ∈ H, if D(x) ≥ η′

10W , (1− η′)D(x) ≤ D̃(x) ≤ (1 + η′)D(x) holds with probability at
least 1− 1

q4
.

(iii) For any x ∈ Ω with D(x) ≤ η′

10W , either x /∈ H, or D̃(x) ≤ (1 + η′) η′

10W holds with probability
at least 1− 1

q4
.

Proof. Let us prove the three parts one by one:

• (i) Consider any x ∈ Highη′/q2(D), that is, D(x) ≥ η′

q2
. Then the probability that x /∈ H is at

most (1 − η′

q2
)|H| ≤ 1

q4
. Applying the union bound over all the elements in Highη′/q2(D) (at

most q2

η′ = O(q3) §§ many elements), the claim follows.

§§This follows from the assumption that Λ(n, ϵ) is at least Ω(1/ϵ).
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• (ii) Since |Z| = O(W
η′2 logW ), applying Chernoff bound (Lemma 9.1), we see that (1−η′)D(x) ≤

D̃(x) ≤ (1 + η′)D(x) does not hold with probability at most 1
q4

.

• (iii) Since |Z| = O(W
η′2 logW ), if x is in H (otherwise, we are already done), applying Chernoff

bound (only on one side), the bound follows.

We now bound the ℓ1-distance between D and D̃ with respect to H.

Lemma 4.6.
∑
x∈H

∣∣∣D(x)− D̃(x)
∣∣∣ ≤ 5η′(1 + η′) ≤ 10η′ holds with probability at least 1− 3

q .

Proof. Recall the definition of Highη′/10W (D). Note that∑
x∈H

∣∣∣D(x)− D̃(x)
∣∣∣ = ∑

x∈Highη′/10W (D)

∣∣∣D(x)− D̃(x)
∣∣∣+ ∑

x∈H\Highη′/10W (D)

∣∣∣D(x)− D̃(x)
∣∣∣

Applying Lemma 4.5 (ii) for each x ∈ Highη′/10W (D), and then using union bound over all such
x ∈ Highη′/10W (D), the first term is bounded by η′ with probability at least 1− 1

q .

Now the second term, notice that for each x ∈ H \ Highη′/10W (D), D(x) ≤ η′

10W . By Lemma 4.5
(iii), and using the union bound over all elements in H\Highη′/10W (D) (note that |H| ≤ 2W = O(q3)),
with probability at least 1− 2

q , D̃(x) ≤ η′(1+η′)/10W for all x ∈ H\Highη′/10W (D). Since |H| ≤ 2W ,
the second term is bounded by 4η′(1 + η′) with probability at least 1− 2

q .

Now we prove a lemma that shows that for every distribution D, there is a another distribution
D that is “similar” to D, and for which H contains the top q2 elements of D.

Lemma 4.7. There exists a distribution D such that H contains top q2 elements of D. Moreover,
the following hold:

(i) ||D −D||1 ≤ 2η′, with probability at least 1− 2
q .

(ii)
∑
x∈H

∣∣∣D(x)− D̃(x)
∣∣∣ ≤ 12η′, with probability at least 1− 5

q .

(iii) |D(Ω \H)− D̃(Ω \H)| ≤ 12η′, with probability at least 1− 5
q .

Proof. Let T be the set of q2 largest elements of D. If T ⊆ S, H (as S ⊂ H) contains the largest q2

elements of D. In that case, setting D to be D gives us the above results.
Now, let us consider the case where T ̸⊆ S. By Lemma 4.5 (part (i)), with probability at least

1− 2
q , Highη′/q2(D) ⊆ S. Thus for any x ∈ H \ S, D(x) < η′

q2
. Consider the set U = T \H. Notice

that since |H \ S| = q2 and |T | = q2, |U | ≤ |H \ (T ∪ S)|. Let U = {y1, . . . , y|U |} ⊂ Ω \H, and let
z1. . . . , z|U | be some |U | elements of H \ (T ∪S). Note, by definition of T and U , the set {z1. . . . , z|U |}
and the set {y1. . . . , y|U |} are disjoint.

Consider the distribution D defined as follows:

• For elements in {z1. . . . , z|U |}, we define D(zi) = D(yi).

• For elements in {y1. . . . , y|U |}, we define D(yi) = D(zi).
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• For all other x, we define D(x) = D(x).

Note that since all the elements in the sets {z1. . . . , z|U |} and {y1. . . . , y|U |} were from Ω \ S,
from Lemma 4.5 (part (i)), with probability at least 1 − 2

q , D(yi) ≤ η′

q2
and D(zi) ≤ η′

q2
, for all

i ∈ Ω \ S. Moreover, as |U | ≤ q2, we have condition (i) as well. Furthermore, H contains the largest
q2 elements of D due to its construction.

Using the triangle inequality (relative to H) along with Lemma 4.6 and the above expression, we
can say that, with probability at least 1− 5

q , (ii) follows.
Let us now prove (iii). Since D and D̃ are distributions,

∑
x∈H

D(x) +
∑

x∈Ω\H
D(x) =

∑
x∈H

D̃(x) +∑
x∈Ω\H

D̃(x). Thus,

∣∣∣D(Ω \H)− D̃(Ω \H)
∣∣∣ =

∣∣∣∣∣∑
x∈H

D̃(x)−
∑
x∈H

D(x)

∣∣∣∣∣ ≤ ∑
x∈H

∣∣∣D̃(x)−D(x)
∣∣∣ ≤ 12η′

The last inequality follows from (ii).

Now we finally establish the correctness of the algorithm.

Proof of correctness of the algorithm. For completeness, consider the case where D is ζ-close to P.
By Lemma 4.7 (i) and the triangle inequality, we know that there exists a distribution D that is
(ζ + 2η′)-close to P and H contain the largest q2 elements of D. Since

∑
x∈H

∣∣∣D(x)− D̃(x)
∣∣∣ ≤ 12η′

and
∣∣∣D(Ω \H)− D̃(Ω \H)

∣∣∣ ≤ 12η′ hold from Lemma 4.7 (ii) and (iii), following Lemma 4.4 for
α = 12η′, β = ζ + 2η′ and γ = 12η′, we can say that there exists a distribution D1 in P satisfying
Equation (3) (which is same as satisfying Condition (A) and Condition (B) in Step 5 of the
algorithm). Hence, our algorithm accepts D in Step 5.

For soundness, consider a distribution D that is (ε+ζ+η)-far from P . Then following Lemma 4.7
(i), we know that there exists a distribution D that is (ε + ζ + η − 2η′)-far from P, that is,
(ε + 3α + β + 2γ)-far from P, where α = 12η′, β = ζ + 2η′. Here, we are using that η = 64η′

and γ = 12η′. Also Lemma 4.7 guarantees that H contains the top q2 elements of D. Following
Lemma 4.4, we know that there does not exist any such distribution D1 in P that satisfies both
Condition (A) and Condition (B) of Step 5 of the algorithm. Thus the algorithm will REJECT
the distribution D in Step 6.

Note that the total failure probability of the algorithm is bounded by the probability that
Lemma 4.7 does not hold, which is at most 12

q .

4.2 Proof of Lemma 4.3 and Lemma 4.4

Proof of Lemma 4.3. We will prove this by contradiction. Let us assume that there are two distri-
butions Dyes and Dno such that

• Dyes ∈ P;

• Dno is ε-far from P;

• High1/q2(Dyes) = High1/q2(Dno) = A;

• For all x ∈ A, Dyes(x) = Dno(x).
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Now, we argue that any (0, ε)-non-tolerant tester requires more than Λ(n, ε) samples from the
unknown distribution D to distinguish whether D is in the property or ε-far from it.

Let DY be an distribution obtained from Dyes by permuting the labels of Ω\H using a uniformly
random permutation. Specifically, consider a random permutation π : Ω\A → Ω\A. The distribution
DY is as follows:

• DY (x) = Dyes(x) for each x ∈ H and

• DY (π(x)) = Dyes(x) for each x ∈ Ω \H.

Similarly, consider the distribution DN obtained from Dno by permuting the labels of Ω \ A
using a uniformly random permutation. Note that DY is in P, whereas DN is ε-far from P, which
follows from P being label-invariant.

We will now prove that DY and DN provide similar distributions over sample sequences. More
formally, we will prove that any algorithm that takes at most Λ(n, ε) many samples, cannot distinguish
DY from DN with probability at least 2

3 . We argue that this claim holds even if the algorithm is
provided with additional information about the input: Namely, for all x ∈ H, it is told the value of
DY (x) (which is the same as DN (x)). When the algorithm is provided with this information, it can
ignore all samples obtained from H.

By the definition of A, for all x ∈ Ω \A, both DY (x) and DN (x) are at most 1
q2

. Let SY be a
sequence of samples drawn according to DY . If |SY | ≤ Λ(n, ε), then with probability at least 3

4 , the
sequence (Ω \H) ∩ SY has no element that appears twice. In other words, the set (Ω \H) ∩ SY is
a set of at most Λ(n, ε) distinct elements from Ω \A. Since the elements of Ω \A were permuted
using a uniformly random permutation, with probability at least 3

4 , the sequence (Ω \H) ∩ SY is a
uniformly random sequence of distinct elements from Ω \H. Similarly, if SN is a sequence of samples
drawn according to DN , then with probability at least 3

4 , the sequence (Ω \A) ∩ SN is a uniformly
random sequence of distinct elements from Ω \A. Thus, the distributions over the received sample
sequence obtained from DY or DN are of distance 1

4 of each other, which is strictly less than 1
3 .

Hence, if the algorithm obtains at most Λ(n, ε) many samples from the unknown distribution
D, it cannot distinguish, with probability at least 2

3 , whether the samples are coming from DY or
DN .

For the proof of Lemma 4.4, we will need the following simple claim.

Claim 4.8. Let σ : [n] → [n] be a permutation and let a1, a2, . . . , an and b1, b2, . . . , bn be two sets of
n positive real numbers. If a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn and

∑
i∈[n]

ai =
∑
i∈[n]

bi = 1, then

the sum
∑
i∈[n]

∣∣ai − bσ(i)
∣∣ is minimized when σ is the identity permutation.

Proof. First observe that if a, b, c, d are four real numbers with a ≥ b and c ≥ d, then the following
holds:

|a− c|+ |b− d| ≤ |a− d|+ |b− c| . (5)

The above can be proved by checking all possible orderings of the numbers a, b, c, d.
Once we have the above observation, we can now proceed to prove the claim. Let us consider the

set of permutations that minimize
∑
i∈[n]

∣∣ai − bσ(i)
∣∣. Let σ be one such minimizing permutation that

also minimizes the size for the following set S:

S = {(i, j) : i < j and σ(i) > σ(j)}
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Let i be an index such that σ(i) < σ(i + 1) (such an index i exists unless σ is the identity
permutation). Let σ′ be the permutation obtained from σ by swapping σ(i) and σ(i+ 1). Then the
sum

∑
i∈[n]

∣∣ai − bσ′(i)

∣∣ does not increase from
∑
i∈[n]

∣∣ai − bσ(i)
∣∣, because of Equation 5. However, the size

of the set S with respect to the permutation σ′ strictly decreases, and we have a contradiction.

Now we present the proof of Lemma 4.4.

Proof of Lemma 4.4. We consider the two cases separately.
(1) If D is β-close to P, there exists a distribution D1 in P such that

∑
x

∣∣D(x)−D1(x)
∣∣ ≤ β.

Since P is label-invariant, any permutation of D1 is also in P. Without loss of generality, let us
assume that the domain Ω is a subset of {1, . . . , n}.

By Claim 4.8, the permutation σ that minimizes
∑
x

∣∣D(x)−D1(σ(x))
∣∣ ≤ β is the one that orders

the i-th largest element of D1 with the i-th largest element of D, that is, if x is the element with the
i-th largest probability mass in D1, then σ(x) has the i-th largest probability mass in D. Consider
the distribution Dσ

1 that is defined by Dσ
1 (x) = D1(σ(x)). Clearly, H contains the largest q2 elements

of D, and hence also High1/q2(D
σ
1 ) ⊆ H.

As
∑
x∈Ω

∣∣Dσ
1 (x)−D(x)

∣∣ ≤ β,
∑
x∈H

∣∣∣D(x)− D̃(x)
∣∣∣ ≤ α and |D(Ω \H) − D̃(Ω \H)| ≤ γ, by the

triangle inequality, we obtain∑
x∈H

∣∣∣Dσ
1 (x)− D̃(x)

∣∣∣+ ∣∣∣Dσ
1 (Ω \H)− D̃(Ω \H)

∣∣∣
≤

∑
x∈H

|Dσ
1 (x)−D(x)|+

∑
x∈H

|D(x)− D̃(x)|

+|Dσ
1 (Ω \H)−D(Ω \H)|+ |D(Ω \H)− D̃(Ω \H)|

≤
∑
x∈H

|Dσ
1 (x)−D(x)|+

∑
x∈H

|D(x)− D̃(x)|

+
∑

x∈Ω\H

|Dσ
1 (x)−D(x)|+ |D(Ω \H)− D̃(Ω \H)|

=
∑
x∈Ω

|Dσ
1 (x)−D(x)|+

∑
x∈H

|D(x)− D̃(x)|+ |D(Ω \H)− D̃(Ω \H)|

≤ α+ β + γ

(2) We will prove this case by contradiction. Let D1 ∈ P be a distribution such that
High1/q2(D1) ⊆ H and

∑
x∈H

∣∣∣D1(x)− D̃(x)
∣∣∣ + ∣∣∣D1(Ω \H)− D̃(Ω \H)

∣∣∣ ≤ α + β + γ. Then, as∑
x∈H

∣∣∣D(x)− D̃(x)
∣∣∣ ≤ α, by the triangle inequality, we have

∑
x∈H

|D1(x)−D(x)|+
∣∣∣D1(Ω \H)− D̃(Ω \H)

∣∣∣ ≤ 2α+ β + γ. (6)

Consider the distribution D̂ defined as follows:

• For all x ∈ H, D̂(x) = D1(x).

13



• If D1(H) ≥ D(H), then for all x ∈ Ω \H,

D̂(x) = D(x) · ϕ,

where ϕ = 1−D1(H)

1−D(H)
. Notice that in this case ϕ ≤ 1.

• If D1(H) ≤ D(H), then pick the set T ⊂ Ω \H with |T | = 2q2 that minimizes D(T ). Then
for all x ∈ T ,

D̂(x) = D(x) +
D(H)−D1(H)

2q2

and for all x ∈ Ω \ (T ∪H), D̂(x) = D(x)

Let us first prove that High1/q2(D̂) ⊆ H. In the case where D1(H) ≥ D(H), for all x ∈ Ω \H,
D̂(x) ≤ D(x). Since High1/q2(D) ⊆ H, High1/q2(D̂) ⊆ H. Now, in the case where D1(H) ≤ D(H),
the only x ∈ Ω \H for which D̂(x) > D(x) are those in T . Since |Ω| > 4q2, the lowest 2q2 elements
on D must each have mass less than 1

2q2
. So even if we add 1

2q2
for any element x ∈ T , D̂(x) < 1/q2.

Hence in this case also High1/q2(D̂) ⊆ H since High1/q2(D) ⊆ H and High1/q2(D1) ⊆ H.
Now let us bound the ℓ1 distance between D̂ and D. Observe that∑

x∈Ω\H

∣∣∣D̂(x)−D(x)
∣∣∣ = ∣∣∣D̂(Ω \H)−D(Ω \H)

∣∣∣ .
This is because, in the case where D̂(H) ≥ D(H), we have D̂(x) = ϕ ·D(x) ≤ D(x) for all x ∈ Ω \H.
On the other hand, in the case where D̂(H) ≤ D(H) then for all x ∈ Ω \H, D̂(x) ≥ D(x). Thus,

∑
x∈Ω\H

∣∣∣D̂(x)−D(x)
∣∣∣ =

∣∣∣D̂(Ω \H)−D(Ω \H)
∣∣∣

≤
∣∣∣D̂(Ω \H)− D̃(Ω \H)

∣∣∣+ ∣∣∣D(Ω \H)− D̃(Ω \H)
∣∣∣

≤
∣∣∣D̂(Ω \H)− D̃(Ω \H)

∣∣∣+ γ

Also note that, from the construction of D̂, we have for all x ∈ H, D̂(x) = D1(x) and thus
D̂(Ω \H) = D1(Ω \H). Thus,

||D̂ −D||1 =
∑
x∈H

|D̂(x)−D(x)|+
∑

x∈Ω\H

|D̂(x)−D(x)|

≤
∑
x∈H

|D̂(x)−D(x)|+
∣∣∣D̂(Ω \H)− D̃(Ω \H)

∣∣∣+ γ

=

(∑
x∈H

|D1(x)−D(x)|+
∣∣∣D1(Ω \H)− D̃(Ω \H)

∣∣∣)+ γ

(From the construction of D̂)

≤ 2α+ β + 2γ (By Equation (6))

Moreover, as High1/q2(D1) ⊆ H and by the construction of D̂, we have High1/q2(D1) =

High1/q2(D̂) and for all x ∈ High1/q2(D1), D1(x) = D̂(x). Since we assumed that D1 is in P,
using Lemma 4.3, D̂ is ε-close to P. And since ||D̂ −D||1 ≤ 2α+ β + 2γ, we conclude that D is
(ε+ 2α+ β + 2γ)-close to P, which is a contradiction.
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5 Computationally efficient tolerant testers

In this section we present a constructive variant of the tolerant tester studied in Section 4.1. Let
us first recall the definitions of polyhedron and projection map.

Definition 5.1 (Polyhedron). Let A be a M ×N real matrix, b ∈ RM be a real vector and Ax ≤ b
be a system of linear inequalities. The solution set {x ∈ RN | Ax ≤ b} of the system of inequalities
is called a polyhedron. The complexity of a polyhedron is defined as MN .

Definition 5.2 (Projection map). Let n be an integer. For all integers N ≤ n, a projection map
is denoted as πn : RN → Rn and is defined as the projection of the points in RN on the first n
coordinates.

Before directly proceeding to our results, we first define two variants of distribution properties.

Definition 5.3 (Linear property). Without loss of generality, let us assume Ω = [n]. A distribution
property P is said to be a linear property if there exists a polyhedron LP =

{
x ∈ RN | Ax ≤ b

}
,

where A is a M×N real matrix and b ∈ RM be a real vector, and πn (LP) ¶¶ is the set of distributions
satisfying the property P, that is, z := (z1, . . . , zn, . . . , zN ) ∈ LP if the distribution Dz, defined as

Dz(i) = zi, ∀i ∈ [n]

satisfies the property P. The complexity of P is defined as M ×max {N,n}.

Similar to linear properties, we can also define properties that are feasible solutions to a system
of convex constraints.

Definition 5.4 (Convex property). A distribution property P is said to be a convex property if P is
the set of all feasible solutions to a system of convex constraints over D(i) for i ∈ Ω, where Ω is the
sample space of D. In other words, the set P forms a convex set.

Now we show that some well studied label-invariant distribution properties can be represented
as linear or convex properties.

Remark 1 (An example of a linear property: Approximate uniformity property). A distribution D
over [n] is said to be uniform if D(i) = 1

n for all i ∈ [n]. Let the property Pu,ε denote the set of all
distributions that are ε-close to the uniform distribution, where ε ∈ (0, 1) is a parameter. Consider
the following polyhedron LPu,ε in R2n:∑

i∈[n]

zn+i ≤ ε

zi ≥ 0 ∀i ∈ [2n]

− zn+i ≤ zi −
1

n
≤ zn+i ∀i ∈ [n]

Now, observe that πn (LPu,ε) will give us the set of distributions that are ε-close to uniform, i.e.,
the set Pu,ε (this would serve as the linear transformation mentioned in Definition 5.3). Also, note
that approximate uniformity property has complexity O

(
n2
)
.

¶¶Note that πn (LP) will also be a polyhedron in Rn, see, e.g., Corollary 2.5 in Chapter 2 from the book by
Bertsimas and Tsitsiklis [BT97]. However, the number of linear inequalities defining the property, which affects the
running time of the tester, can sometimes be greatly reduced by using this projection.
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Now we present a property that can be expressed as a feasible solution to a system of convex
inequalities, but that cannot be expressed as feasible solution to a system of linear inequalities.

Remark 2 (An example of a convex property: Entropy property). Let D be a distribution supported
on [n]. Given a parameter k ∈ R, let PE,k denote the set of all distributions with entropy at least k.
PE,k can be expressed as a convex inequality as follows:∑

i∈[n]

D(i) log
1

D(i)
≥ k.

For a distribution property P, let CP ⊂ Rn denote the geometric representation of the set of
probability distributions over the set [n] that satisfy P by considering of each distribution over [n]
as a point in Rn.

For all β ∈ [0, 1], k ≤ n and a ∈ Rn, we define the following convex set:

∆(k, q, a, β) :=

x ∈ Rd :
k∑

i=1

|xi − ai|+

∣∣∣∣∣∣
∑
j>k

xj −
∑
j>k

aj

∣∣∣∣∣∣ ≤ β, and ∀i > k we have xi <
1

q2


Theorem 5.5. Let P be a label-invariant distribution property. If there is a (0, ε)-tester (non-tolerant
tester) with sample complexity Λ(n, ε), then for any γ1, γ2 with γ1 < γ2 and 0 < γ1 < γ2 + ε < 2,
there exists a (γ1, γ2 + ε)-tester (tolerant tester) that takes s = Õ(Λ2) many samples and makes a
single emptiness query to the set CP ∩∆(Õ(s),Λ, D̃, β), where D̃ is a known probability distribution
and β = γ1 +

γ2−γ1
3 .

Proof. Recall that in Step 5 of the tolerant tester presented in Section 4.1, the tester checks whether
there is any distribution D1 ∈ P that satisfies the following two conditions:∑

x∈H

∣∣∣D1(x)− D̃(x)
∣∣∣+ ∣∣∣D1(Ω \H)− D̃(Ω \H)

∣∣∣ ≤ 26η′ + ζ

and
High1/q2(D1) ⊆ H

where ζ = γ1, η = γ2 − γ1, η = γ2 − γ1 and η′ = η
64 . The set H and the distribution D̃ are defined

in the tolerant tester presented in Section 4.1.
Without loss of generality, we can assume that H = {1, . . . , |H|}. Therefore, in order to perform

Step 5 of the tolerant tester, the following equations are needed to be satisfied:

D1 ∈ CP (7)

D1 ∈ ∆
(
|H| , q, D̃, 26η′ + ζ

)
(8)

We now present the tolerant (γ1, γ2 + ε)-tester in its entirety, that is, a (ζ, ζ + ε+ η)-tester for
the property P, where ζ = γ1, η = γ2 − γ1, and η′ = η

64 .

1. Draw W = O
(
q2

η′ log q
)

many samples from the distribution D. Let S ⊆ Ω be the set of
(distinct) samples obtained.

2. Draw additional O
(

W
η′2 logW

)
many samples Z to estimate the value of D(x) for all x ∈ S.
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3. Construct a set H as the union of S and arbitrary q2 many elements from Ω \ (S ∪ Z).

4. Define a distribution D̃ such that, for x ∈ H,

D̃(x) =
# x in the multi-set Z

|Z|
.

And for each x ∈ Ω \H,

D̃(x) =

1−
∑
x∈H

D̃(x)

|Ω| − |H|
.

5. If there exists a distribution D1 ∈ CP ∩∆
(
|H| , q, D̃, 26η′ + ζ

)
, then ACCEPT D.

6. If there does not exist any distribution D1 that passes Step 5, then REJECT D.

Observe that the sample complexity of the tester is O
(
q2

η2
log2 q

)
= Õ(Λ2) in addition to a single

emptiness query to the set P ∈ CP ∩∆
(
|H| , q, D̃, 26η′ + ζ

)
in Step 5. The correctness proof of the

above tester follows from the correctness argument presented in Section 4.1.

5.1 Emptiness checking when P is a linear property: Proof of Theorem 1.2

Now we proceed to analyze the time complexity of the (γ1, γ2+ε)-tester described in Theorem 5.5
when P is also a linear property. Recall that as P is a linear property, there exists a polyhedron
LP =

{
x ∈ RN | Ax ≤ b

}
, where A is a M × N real matrix and b ∈ RM be a real vector, and

πn (LP) is the set of distributions satisfying the property P. (See, Definition 5.3)
Now in Observation 5.6, we show that checking emptiness of πn(LP) ∩∆

(
|H| , q, D̃, 26η′ + ζ

)
is equivalent to testing the feasibility of a family of inequalities.

Observation 5.6. Without loss of generality, assume that H = {1, . . . , |H|} and Ω = {1, . . . , n}.
Checking emptiness of πn(LP) ∩∆(|H| , q, D̃, 26η′ + ζ) is equivalent to testing the feasibility of the
following set of inequalities:

Az ≤ b (9)
|H|∑
i=1

∣∣∣zi − D̃(i)
∣∣∣+
∣∣∣∣∣∣

n∑
i=|H|+1

zi −
n∑

i=|H|+1

D̃(i)

∣∣∣∣∣∣ ≤ 26η′ + ζ (10)

zi <
1

q2
∀i ∈ [n] \ {1, . . . , |H|} (11)

Note that the inequality in Equation (10) can be expressed as the following set of linear inequalities
using slack variables zN+i for all i ∈ [|H|+ 1]:

|H|∑
i=1

zN+i + zN+|H|+1 ≤ 26η′ + ζ

zN+i ≥ 0 ∀i ∈ [|H|+ 1]

− zN+i ≤ zi − D̃(i) ≤ zN+i ∀i ∈ [|H|]

− zN+|H|+1 ≤
n∑

i=|H|+1

zi −
n∑

i=|H|+1

D̃(i) ≤ zN+|H|+1
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Therefore checking the emptiness of πn(LP) ∩∆
(
|H| , q, D̃, 26η′ + ζ

)
is equivalent to checking

the feasibility of the following set of linear inequalities:

Az ≤ b

|H|∑
i=1

zN+i + zN+|H|+1 ≤ 26η′ + ζ

zN+i ≥ 0 ∀i ∈ [|H|+ 1]

− zN+i ≤ zi − D̃(i) ≤ zN+i ∀i ∈ [|H|]

− zN+|H|+1 ≤
n∑

i=|H|+1

zi −
n∑

i=|H|+1

D̃(i) ≤ zN+|H|+1

zi <
1

q2
∀i ∈ [n] \ {1, . . . , |H|}

The feasibility of the above set of linear inequalities can be solved in a polynomial time in the
complexity of the polyhedron, that is, in a polynomial time in N and M using the Ellipsoid Method,
where recall that A is a M ×N real matrix (see, e.g., [BT97, MG07]). Thus, we have an efficient
(γ1, γ2 + ε)-tester for P, that runs in time polynomial in the complexity of the linear property P
which is also label-invariant. This concludes the proof of Theorem 1.2.

6 Sample complexity of testing non-concentrated label-invariant
properties

In this section we first prove a lower bound of Ω(
√
n) on the sample complexity of non-tolerant

testing of any non-concentrated label-invariant property. Then we proceed to prove a tolerant lower
bound of Ω(n1−o(1)) samples for such properties in Section 6.2.

6.1 Non-tolerant lower bound (Proof of Theorem 1.3 for label-invariant proper-
ties)

Here we first prove a lower bound result analogous to Theorem 1.3, where the properties are
non-concentrated and label-invariant. In Section 7, we discuss why the proof of Theorem 6.1 does
not directly work for Theorem 1.3, and then prove Theorem 1.3 using a different argument.

Theorem 6.1 (Analogous result of Theorem 1.3 for non-concentrated label-invariant properties).
Let P be any (α, β)-non-concentrated label-invariant distribution property, where 0 < α ≤ β < 1

2 .
For ε with 0 < ε < α, any (0, ε)-tester for property P requires Ω(

√
n) many samples, where n is the

size of the support of the distribution.

Proof. Let us first consider a distribution Dyes that satisfies the property. Since P is an (α, β)-non-
concentrated property, by Definition 2.7, Dyes is an (α, β)-non-concentrated distribution. From Dyes,
we generate a distribution Dno such that the support of Dno is a subset of that of Dyes, and Dno is
ε-far from P. Hence, if we apply a random permutation over the elements of Ω, we show that Dyes

and Dno are indistinguishable, unless we query for Ω(
√
n) many samples. Below we formally prove

this idea.
We will partition the domain Ω into two parts, depending on the probability mass of Dyes on

the elements of Ω. Given the distribution Dyes, let us first order the elements of Ω according to
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their probability masses. In this ordering, let L be the smallest 2βn elements of Ω. We denote Ω \L
by H. Before proceeding further, note that the following observation gives an upper bound on the
probabilities of the elements in L.

Observation 6.2. For all x ∈ L, Dyes(x) ≤ 1−2α
1−2β

1
n .

Proof of Observation 6.2. By contradiction, assume that there exists x ∈ L such that Dyes(x) >
1−2α
1−2β

1
n . This implies, for every y ∈ H, that Dyes(y) >

1−2α
1−2β

1
n . So,

1 =
∑
x∈Ω

Dyes(x) =
∑
x∈L

Dyes(x) +
∑
y∈H

Dyes(y) > Dyes(L) + |H| 1− 2α

1− 2β

1

n
.

As |L| = 2βn and Dyes is an (α, β)-non-concentrated distribution, Dyes(L) ≥ 2α. Also, |H| =
(1− 2β)n. Plugging these into the above inequality, we get a contradiction.

Note that Observation 6.2 implies that if S is a multi-set of o
(√

1−2β
1−2αn

)
samples from Dyes,

then with probability 1 − o(1), no element from L appears in S more than once. Now using the
distribution Dyes and the set L, let us define a distribution Dno such that Dno is ε-far from P . Note
that Dno is a distribution that comes from a distribution over a set of distributions, all of which are
not (α, β)-non-concentrated. The distribution Dno is generated using the following random process:

• We partition L randomly into two equal sets of size βn. Let the sets be {x1, . . . , xβn} and
{y1, . . . , yβn}. We first pair the elements of L randomly into βn pairs. Let (x1, y1), . . . , (xβn, yβn)
be a random pairing of the elements in L, which is represented as PL, that is, PL =
{(x1, y1), . . . , (xβn, yβn)}.

• The probability mass of Dno at z is defined as follows:

– If z ̸∈ L, then Dno(z) = Dyes(z).

– For every pair (xi, yi) ∈ PL, Dno(xi) = Dyes(xi) +Dyes(yi), and Dno(yi) = 0.

We start by observing that the distribution Dno constructed above is supported on a set of at
most (1 − β)n elements. So, any distribution Dno constructed using the above procedure is ϵ-far
from satisfying the property P for any ε < α.

We will now prove that Dyes and Dno both have similar distributions over the sequences of
samples. More formally, we will prove that any algorithm that takes o(

√
n) many samples, cannot

distinguish between Dyes from Dno with probability at least 2
3 .

Since any Dno produced using the above procedure has exactly the same probability mass
on the elements in H as Dyes, any tester that distinguishes between Dyes and Dno must rely on
samples obtained from L. Recall that the algorithm is given a uniformly random permutation of the
distribution. Since Supp(Dno) ⊂ Supp(Dyes) (particularly, Supp(Dno) ∩ L ⊂ Supp(Dyes) ∩ L), it
is not possible to distinguish between Dyes and Dno, unless an element of L appears at least twice.
Otherwise, as in the proof of Lemma 4.3, the elements drawn from L are distributed identically to a
uniformly random non-repeating sequence. But observe that Dyes(i) = O( 1n) and Dno(i) = O( 1n)
when i is in L. Thus any sequence of o(

√
n) samples will provide only a distance of o(1) between

the two distributions, completing the proof.
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6.2 Tolerant lower bound (Proof of Theorem 1.4)

Theorem 6.3 (Theorem 1.4 formalized). Let P be any (α, β)-non-concentrated label-invariant
distribution property, where 0 < α ≤ β < 1

2 . For any constant ε1 and ε2 with 0 < ε1 < ε2 < α, any
(ε1, ε2)-tester for P requires Ω(n1−o(1)) samples, where n is the size of the support of the distribution.

To prove the above theorem, we recall some notions and a theorem from Valiant’s paper on a
lower bound for the sample complexity of tolerant testing of symmetric properties [Val11]. These
definitions refer to invariants of distributions, which are essentially a generalization of properties.

Definition 6.4. Let Π : Dn → R denote a real-valued function over the set Dn of all distributions
over [n].

1. Π is said to be label-invariant if for any D ∈ Dn the following holds: Π(D) = Π(Dσ) for any
permutation σ : [n] → [n].

2. For any γ, δ with γ ≥ 0 and δ ∈ [0, 2], Π is said to be (γ, δ)-weakly-continuous if for all
distributions p+, p− satisfying ||p+ − p−||1 ≤ δ, we have |Π(p+)−Π(p−)| ≤ γ.

For a property P of distributions, we define ΠP : Dn → [0, 2] with respect to property P as
follows:

For D ∈ Dn,ΠP(D) := the distance of D from P.

From the triangle inequality property of ℓ1 distances, ΠP (which refers to the distance function
from the property P) is (γ, γ)-weakly continuous, for any γ ∈ [0, 2].

Theorem 6.5 (Low Frequency Blindness [Val11]). Consider a function Π : Dn → R that is label-
invariant and (γ, δ)-weakly-continuous, where γ ≥ 0 and δ ∈ [0, 2]. Let there exist two distributions
p+ and p− in Dn with n being the size of their supports, such that Π(p+) > b, Π(p−) < a, and they
are identical for any index occurring with probability at least 1

n in either distribution, where a, b ∈ R.
Then any tester that has sample access to an unknown distribution D and distinguishes between
Π(D) > b− γ and Π(D) < a+ γ, requires Ω(n1−oδ(1)) many samples from D ∗∗∗.

Note that in Theorem 6.5, we have assumed that p+ and p− are identical for any index that has
probability mass at least 1

n . We can actually replace this condition to O( 1n) by adding O(n) many
“dummy elements” to the support of p+ and p−. Now we are ready to prove Theorem 6.3.

Proof of Theorem 6.3. Consider ΠP as defined above. As P is a label-invariant property, the function
ΠP is also label-invariant. We have already noted that ΠP is (γ, γ)-weakly continuous as “distance
from a property” satisfies the triangle inequality, for any γ ∈ [0, 2]. Now recall that the distributions
Dyes and Dno considered in the proof of Theorem 6.1. The probability mass of each element in the
support of Dyes and Dno is O( 1n). Note that Dyes is in P and Dno is ε-far from P, for any ε < α,
and both of them have a support size of Θ(n). Here we take ε > ε2. Now, we apply Theorem 6.5
with a = 0, some b < ε and γ with γ < min{ε1, ε− ε2}. Observe that this completes the proof of
Theorem 6.3.

7 Sample complexity of non-concentrated properties (Proof of The-
orem 1.3)

Theorem 7.1 (Theorem 1.3 formalized). Let P be any (α, β)-non-concentrated distribution property
for 0 < α < β < 1

2 . For any ε with 0 < ε < α, any (0, ε)-tester for P requires Ω(
√
n) many samples,

where n is the size of the support of the distribution.
∗∗∗oδ(·) suppresses a term in δ.
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Why does the proof of Theorem 6.1 work only for label-invariant properties? Note that
the proof of Theorem 6.1 crucially uses the fact that the property P is label-invariant. Recall that,
while constructing Dno from Dyes, for each i ∈ [βn], moving the masses of both xi and yi in Dyes

to xi to produce Dno is possible as the property P is label-invariant. Because of this feature, we
can apply a random permutation over Ω, and still the permuted distribution will behave identically
with respect to P. After applying the random permutation, the samples coming from Dyes and
Dno are indistinguishable as long as there are no collisions among the elements in L, which is the
case when we take o(

√
n) samples. However, this technique does not work when the property is not

label-invariant, as the value of the distribution with respect to P may not be invariant under the
random permutation over Ω. This requires a new argument; although the proof is similar in spirit to
the proof of Theorem 6.1, there are some crucial differences, and we present the proof next. In order
to prove Theorem 7.1, instead of moving the masses of both xi and yi in Dyes to xi to produce Dno,
we randomly move the sum to either xi or yi proportionally to the masses of xi and yi.

7.1 Proof of Theorem 7.1

The proof of Theorem 7.1 starts off identically to the proof of Theorem 6.1, but there is a
departure in the construction of Dyes and Dno.

Let us first consider Dyes, L and PL as discussed in the proof of Theorem 6.1, only here we cannot
and will not pass Dyes through a random permutation. The difference starts from the description of
the distribution Dno. In fact, Dno will be randomly chosen according to a distribution over a set of
distributions, all of which are not (α, β)-non-concentrated. The distribution Dno is generated using
the following random process:

• We partition L arbitrarily into two equal sets of size βn. Let the sets be {x1, . . . , xβn} and
{y1, . . . , yβn}. We first pair the elements of L arbitrarily into βn pairs. Let (x1, y1), . . . , (xβn, yβn)
be an arbitrary pairing of the elements in L. Let PL be the set of pairs. So PL =
{(x1, y1), . . . , (xβn, yβn)}. We refer to xi and yi as the corresponding elements of each other
with respect to PL, and denote π(xi) = yi and π(yi) = xi.

• The probability mass of Dno at z is defined as follows:

– If z ̸∈ L, then Dno(z) = Dyes(z).

– For every pair (xi, yi) ∈ PL, use independent random coins and

∗ With probability Dyes(xi)
Dyes(xi)+Dyes(yi)

, set Dno(xi) = Dyes(xi)+Dyes(yi) and Dno(yi) = 0.

∗ With the remaining probability, that is, with probability Dyes(yi)
Dyes(xi)+Dyes(yi)

, set Dno(xi) =

0 and Dno(yi) = Dyes(xi) +Dyes(yi).

Observe that any Dno constructed by the above procedure is supported on a set of at most
(1 − β)n elements. So, any distribution Dno constructed using the above procedure is ε-far from
satisfying the property P , for any ε < α. But since any Dno produced using the above procedure has
exactly the same probability mass on elements in H as Dyes, any tester that distinguishes between
Dyes and Dno must rely on samples obtained from L. However, we can prove that unless we receive
two samples from the same pair in L (which occurs with low probability), the sample sequence
cannot distinguish Dyes from Dno.

Note that there is an upper bound of O( 1n) on the probability mass of any element in L. In fact,
for any pair (xi, yi) ∈ PL, the total probability mass of the pair is at most O( 1n).
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Observation 7.2 (Follows immediately from Observation 6.2). For all pairs (xi, yi) ∈ PL, Dno(xi) +
Dno(yi) ≤ 21−2α

1−2β
1
n . Also note that Dno(xi) +Dno(yi) = Dyes(xi) +Dyes(yi) with probability 1 over

the construction of Dno.

From Observation 7.2, observe that if S is a multi-set of o
(√

1−2β
1−2αn

)
samples from Dyes, then

with probability 1− o(1), no two elements in S (identical or not) are from the same pair in PL. The
same holds for Dno as well. We will now prove that Dyes and Dno have similar distributions over
sample sequences.

Note that under the condition that at most one element is drawn from any pair (xi, yi) ∈ PL, the
probability that the sample is xi instead of yi is equal to Dyes(xi)

Dyes(xi)+Dyes(yi)
, irrespective of whether

the distribution is Dyes or Dno. So, we have the following lemma.

Lemma 7.3. Let a1, ..., aq be a sequence of elements, where no element of L appears twice, addi-
tionally containing no two elements of the same pair (elements of H can appear freely). Then

Pr
s1,...,sq∼Dyes

[(s1, . . . , sq) = (a1, . . . , aq)] = Pr
s1,...,sq∼Dno

[(s1, . . . , sq) = (a1, . . . , aq)]

Proof. Let us begin by defining an event E as follows:

E := no element of L appears twice, and no two elements from the same pair appear.

Observe that we will be done by proving

Pr
s1,...,sq∼Dyes

[si = ai for each i ∈ [q] | E ] = Pr
s1,...,sq∼Dno

[si = ai for each i ∈ [q] | E ]. (12)

We will prove this by using induction over q. Let us assume that we have generated samples
s1 = a1, . . . , sk = ak from the unknown distribution, where 1 ≤ k < q. Let Xk = {s1, . . . , sk} ∩L be
the samples we have seen until now from L, and X ′

k = {π(x) : x ∈ Xk}. By the induction hypothesis,
assume that Equation (12) holds for each q with q ≤ k. We will show that Equation (12) holds for
q = k + 1.

To do so, let us now define two distributions Dk+1
yes and Dk+1

no as follows, and consider a claim
(Claim 7.4) about them.

Dk+1
yes (x) = Pr

s1,...,sq∼Dyes

[sk+1 = x | E and si = ai for i ≤ k] .

Similarly,
Dk+1

no (x) = Pr
s1,...,sq∼Dno

[sk+1 = x | E and si = ai for i ≤ k].

Claim 7.4. Dk+1
yes (x) = Dk+1

no (x) for every x ∈ Ω.

Proof. We prove the claim separately when x ∈ Xk ∪X ′
k ⊆ L, x ∈ L \ (Xk ∪X ′

k), and x /∈ L.

(i) x ∈ Xk ∪X ′
k: Dk+1

yes (x) = Dk+1
no (x) = 0. This follows from the condition that no element of L

appears twice, additionally containing no two elements of the same pair.

(ii) x ∈ L \ (Xk ∪X ′
k): As Dk+1

yes (x) = Dk+1
no (x) = 0 for every x ∈ Xk ∪X ′

k, we have the followings
for each x ∈ L \ (Xk ∪X ′

k).

Assume that x = xi ∈ L \ (Xk ∪ X ′
k) for some i ∈ [βn] (using the notation defined for the

partition of L into pairs while we have described the random process for generating Dno). The
argument for the case where x = yj for some j ∈ [βn] is analogous to this.
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Under Dyes, a direct calculation gives the probability for obtaining x = xi ∈ L \ (Xk ∪X ′
k) as

the (k + 1)-th sample sk+1.

Dk+1
yes (x) = Dyes(x | x /∈ Xk ∪X ′

k)

=
Dyes(x)

1−
∑

y∈Xk∪X′
k

Dyes(y)

=
Dyes(x)

1−
∑

y∈Xk

(Dyes(y) +Dyes(π(y)))
,

Let us now consider Dno. Note that xi ∈ L \ (Xk ∪X ′
k), and neither xi nor yi is present in

the set of first k samples {s1, . . . , sk}. So, the probability of getting s1, . . . , sk as the sequence
of first k samples is completely independent of how Dno(xi) and Dno(yi) are assigned while
generating Dno, that is, whether we chose Dno(xi) to be Dyes(xi) + Dyes(yi), or chose it
to be zero (and made Dno(yi) equal to Dyes(xi) + Dyes(yi) instead). That is, even when
conditioned on the event that s1, . . . , sk is the sequence of first k samples, the probability that
Dno(xi) is Dyes(xi) + Dyes(yi) is Dyes(xi)

Dyes(xi)+Dyes(yi)
. Note that Dno(xi) is 0 with probability

Dyes(yi)
Dyes(xi)+Dyes(yi)

.

Now we can calculate the probability of obtaining x = xi ∈ L as the (k+ 1)-th sample sk from
the corresponding conditional probabilities.

Dk+1
no (x) = Dno

(
x | x /∈ Xk ∪X ′

k

)
=

Dyes(xi) +Dyes(yi)

1−
∑

y∈Xk∪X′
k

Dno(y)
· Dyes(xi)

Dyes(xi) +Dyes(yi)

=
Dyes(x)

1−
∑

y∈Xk

(Dno(y) +Dno(π(y)))
.

From the construction of Dyes and Dno, for each y ∈ L, Dyes(y) + Dyes(π(y)) = Dno(y) +
Dno(π(y)). As Xk ⊆ L,∑

y∈Xk

(Dyes(y) +Dyes(π(y))) =
∑
y∈Xk

(Dno(y) +Dno(π(y))) .

Hence, we have Dk+1
yes (x) = Dk+1

no (x).

(iii) x /∈ L: Recall that for any x /∈ L, Dyes(x) = Dno(x). Proceeding in similar fashion to Dk+1
yes (x)

in Case (ii), we conclude that Dk+1
yes (x) = Dk+1

no .
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Now we are ready to prove Equation (12) for q = k + 1.

Pr
s1,...,sk+1∼Dyes

[si = ai for each i ∈ [k + 1] | E ]

= Pr
s1,...,sk+1∼Dyes

[si = ai for each i ∈ [k] | E ] · Pr[sk+1 = ak+1 | E and si = ai for each i ∈ [k]]

= Pr
s1,...,sk∼Dyes

[si = ai for each i ∈ [k] | E ] ·Dk+1
yes (ak+1) (By the definition of Dk+1

yes )

= Pr
s1,...,sk∼Dno

[si = ai for each i ∈ [k] | E ] ·Dk+1
no (ak+1)

(By the induction hypothesis and Claim 7.4, respectively)
= Pr

s1,...,sk∼Dno

[si = ai for each i ∈ [k] | E ] · Pr[sk+1 = ak+1 | E and si = ai for each i ∈ [k]]

= Pr
s1,...,sk+1∼Dno

[si = ai for each i ∈ [k + 1] | E ].

Following the construction of Dyes and Dno, we know that the two distributions differ only on

the elements of L. Moreover, following Observation 7.2, we know that if we take o

(√
1−2β
1−2αn

)
many samples, then with probability 1− o(1), neither any element of L will appear more than once
nor two elements of same pair in PL will appear. Under these two conditions, Lemma 7.3 states
that Dyes and Dno will appear to be the same. Thus we can say that any (0, ϵ)-tester that receives

o

(√
1−2β
1−2αn

)
samples cannot distinguish between Dyes and Dno, and obtain Theorem 7.1.

8 Learning a distribution (Proof of Theorem 1.5)

In this section, we prove an upper bound related to the tolerant testing of more general properties.
Following a folklore result, when provided with oracle access to an unknown distribution D, we
can always construct a distribution D′, such that the ℓ1 distance between D′ and D (the unknown
distribution) is at most ε, by using O( n

ε2
) samples from D †††. In this section, we provide a procedure

that can be used for tolerant testing of properties, and in particular hints at how general tolerance gap
bounds could be proved in the future. Our algorithm learns an unknown distribution approximately
with high probability, adapting to the input, using as few samples as possible. Specifically, we prove
that given a distribution D, if there exists a subset S ⊆ [n] which holds most of the total probability
mass of D, then the distribution D can be learnt using O(|S|) samples (even if the algorithm is
unaware of |S| in advance). Our result is formally stated as follows:

Theorem 8.1 (Theorem 1.5 formalized). Let D denote the unknown distribution over Ω = [n], and
assume that there exists a set S ⊆ [n] with D(S) ≥ 1 − η

2
‡‡‡, where η ∈ [0, 2) is known but S and

|S| are unknown. Then there exists an algorithm that takes δ ∈ (0, 2] as input and constructs a
distribution D′ satisfying ||D −D′||1 ≤ η + δ with probability at least 2

3 . Moreover, the algorithm

uses, in expectation, O
(
|S|
δ2

)
many samples from D.

Note that in the above theorem, the algorithm has no prior knowledge of |S|. Before directly
proving the above, we first show that if |S| is known, then O(|S|) many samples are enough to
approximately learn the distribution D.

†††There is a writeup of this folklore result by Cannone [Can20b].
‡‡‡Recall that the variation distance between two distribution is half than that of ℓ1 distance between them. So, we

take D(S) ≥ 1− η
2

(with η ∈ [0, 2)) instead of D(S) ≥ 1− η (with η ∈ [0, 1)) .
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Lemma 8.2 (Theorem 8.1 when |S| is known). Let D be the unknown distribution over Ω = [n] such
that there exists a set S ⊆ [n] with |S| = s, and η ∈ [0, 2) such that D(S) ≥ 1− η

2 , where s ∈ [n] and
η ∈ (0, 1) are known. Then there exists an algorithm that takes δ ∈ (0, 2] as an input and constructs
a distribution D′ satisfying ||D −D′||1 ≤ η + δ with probability at least 9

10 . Moreover, the algorithm
uses O

(
s
δ2

)
many samples from D.

We note that Lemma 8.2 can be obtained from the work of Acharya, Diakonikolas, Li and
Schmidt [ADLS17] (Theorem 2). For completeness, we give a self-contained proof for this lemma
below.

We later adapt the algorithm of Lemma 8.2 to give a proof to the scenario where |S| is unknown,
using a guessing technique. The idea is to guess |S| = s starting from s = 1, and then to query for
O (s) many samples from the unknown distribution D. From the samples obtained, we construct
a distribution Ds, and use Lemma 8.3 presented below to distinguish whether Ds and D are close
or far. We argue that, for s ≥ |S|, Ds will be close to D with probability at least 9

10 . We bound
the total probability for the algorithm reporting a D′ that is too far from D (for example when
terminating before s ≥ |S|), and also bound the probability of the algorithm not terminating in time
when s becomes at least as large as |S|.

Lemma 8.3 ([VV11]). Let Du and Dk denote the unknown and known distributions over Ω =
[n] such that the support of Du is a set of s elements of [n]. Then there exists an algorithm
Tol-Alg(Du, Dk, ε1, ε2, κ) that takes the full description of Dk, two proximity parameters ε1, ε2

with 0 ≤ ε1 < ε2 ≤ 2 and κ ∈ (0, 1) as inputs, queries O
(

1
(ε2−ε1)2

s
log s log

1
κ

)
many samples from Du,

and distinguishes whether ||Du −Dk||1 ≤ ε1 or ||Du −Dk||1 ≥ ε2 with probability at least 1− κ §§§.

Note that Theorem 8.1 talks about learning a distribution with O(s) samples, where there exists
an unknown set S with s elements and D(S) ≥ 1− η/2. To prove Theorem 8.1, we use Lemma 8.3
that crucially uses less than s queries for tolerant identity testing (as opposed to learning).

The original bound following the paper of Valiant and Valiant [VV11] is O
(

1
(ε2−ε1)2

n
logn

)
, which

holds for any general distributions Du and Dk with constant success probability. When deploying
Lemma 8.3, we ‘contract” the set Ω\Supp(Dk) to a single element, which allows us to substitute s+1

for n. Note that this does not change the distance between Dk and Du. Hence, O
(

1
(ε2−ε1)2

s
log s

)
samples from Du are enough for constant success probability. Following a recent work of Cannone,
Jain, Kamath and Li [CJKL21], the dependence on the proximity parameters can be slightly improved.
However we are not using that result since the focus of this work is different.

We first prove Lemma 8.2, and then proceed to prove Theorem 8.1.

Proof of Lemma 8.2. Let Z be a multi-set of O
(

s
δ2

)
samples taken from D. The algorithm constructs

a distribution D′ : [n] → [0, 1] such that

D′(x) =
# times x appears in Z

|Z|
.

Observe that ||D−D′||1 = 2 max
E⊆[n]

|D(E)−D′(E)|. So, we will be done by showing the following:

With probability at least 9
10 , |D(E)−D′(E)| ≤ η+δ

2 for all E ⊆ [n] (13)

Note that there are 2n possibilities for E. So, a direct application of the union bound would
require a failure probability of at most O( 1

2n ) for each E not satisfying |D(E)−D′(E)| ≤ η+δ
2 , that is,

§§§The multiplicative factor log 1
κ

is for amplifying the success probability from 2
3

to 1− κ.
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O( n
δ2
) samples would be needed. Assuming that D is concentrated (D(S) ≥ 1− η

2 ), we argue below
that it is enough to have a failure probability of O( 1

2s ) for each T not satisfying |D(T )−D′(T )| ≤ δ
4 ,

but first we show that this is indeed the probability that we achieve.

Observation 8.4. Consider T ⊆ [n]. |D(T )−D′(T )| ≤ δ
4 holds with probability at least 1− 1

100·2s .

Proof. Let Xi denote the binary random variable that takes value 1 if and only if the i-th sample in

Z is an element of T , where i ∈ [|Z|]. So, D′(T ) = 1
|Z|

|Z|∑
i=1

Xi.

Observe that the expectation of D′(x) is E [D′(x)] = D(x). Applying Chernoff bound (Lemma 9.2),
we get the desired result.

By the above observation for every subset of S, applying the union bound over all possible
subsets of S, we have |D(T )−D′(T )| ≤ δ

4 for every T ⊆ S with probability at least 99
100 . Further

applying the observation for T = Ω \ S, we have |D(Ω \ S) −D′(Ω \ S)| ≤ δ
4 with probability at

least 1− 1
100·2s .

Let E be the event that |D(T )−D′(T )| ≤ δ
4 for every T ⊆ S, and |D(Ω \ S)−D′(Ω \ S)| ≤ δ

4 .
Note that Pr(E) ≥ 9

10 . So, to prove Equation (13) and conclude the proof of Lemma 8.2, we show
that |D(E) − D′(E)| ≤ η+δ

2 holds, in the conditional probability space when E occurs, for any
E ⊆ [n].

|D(E)−D′(E)| ≤ |D(E ∩ S)−D′(E ∩ S)|+ |D(E ∩ (Ω \ S))−D′(E ∩ (Ω \ S))|

≤ δ

4
+ max {D(Ω \ S), D′(Ω \ S)}

≤ δ

4
+D(Ω \ S) + δ

4

≤ η + δ

2
.

Proof of Theorem 8.1. The algorithm is as follows:

1. Set s = 1.

2. Query for a multi-set Zs of O
(

s
δ2

)
many samples from D.

3. Construct a distribution Ds : [n] → [0, 1] such that

Ds(x) =
# times x appears in Zs

|Zs|

4. Call the algorithm Tol-Alg
(
Ds, D, η + δ

2 , η + δ, 1
100 log2 s

)
(corresponding to Lemma 8.3) to

distinguish whether ||D −Ds||1 ≤ η + δ
2 or ||D −Ds||1 ≥ η + δ. If we get ||D −Ds||1 ≤ η + δ

2
as the output of Tol-Alg, then we report D′ as the output and Quit. Otherwise, we double
the value of s. If s ≤ 2n, go back to Step 2. Otherwise, report Failure.
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Let S denote the event that the algorithm quits with the desired output. We first show that
Pr(S) ≥ 2

3 . Then we analyze the expected sample complexity of the algorithm.
Observe that the algorithm quits after an iteration with guess s such that Alg-Tol reports

||D −Ds||1 ≤ η + δ
2 . So, in that case, the probability that the algorithm exits with an output not

satisfying ||D −Ds||1 ≤ η + δ is at most 1
100 log2 s

. When summing this up over all possible s (all
powers of k, even up to infinity), the probability that the algorithm does not produce the desired

output, given that it quits, is at most
∞∑
k=1

1
100k2

≤ 1
10 . So, denoting Q as the event that the algorithm

quits without reporting Failure, Pr(S | Q) ≥ 9
10 .

For the lower bound on Pr(Q), consider the case where s ≥ |S|. In this case, ||Ds −D||1 ≤ η+ δ
2

with probability at least 9
10 , and Tol-Alg quits by reporting Ds as the output with probability at

least 1− 1
100 log2 s

. So, for any guess s ≥ |S|, the algorithm quits and reports the desired output with
probability at least 4

5 . So, the probability that the algorithm quits without reporting failure is at
least the probability that the algorithm quits with a desired output at some iteration with a guess
s ≥ |S|, which is at least 1− (15)

(logn−log |S|+1). That is, Pr(Q) ≥ 4
5 .

Hence, the success probability of the algorithm can be lower-bounded as

Pr(S) ≥ Pr(Q) · Pr(S | Q) ≥ 9

10
· 4
5
>

2

3
.

Now, we analyze the sample complexity of the algorithm. The algorithm queries for O(s) samples
when it runs the iteration whose guess is s. The algorithm goes to the iteration with guess s > |S|
if all prior iterations which guessed more than |S| failed, which holds with probability at most
O
(
(15)

⌊log s/|S|⌋). Hence the expected sample complexity of the algorithm is at most

∑
k:s=2k<|S|

O(s) +
∑

k:s=2k≥|S|

O

((
1

5

)⌊log(s/|S|)⌋
· s

)
= O(|S|).

To explain the above equality, note that in the LHS of the above equation, each term of the
second sum is bounded by O((15)

(k−log |S|) · 2(k−log |S|) · |S|). Thus, substituting k − log(|S|) by r, we
see that the second part of the LHS is upper bounded by

∑
r≥0

O
(
(25)

r · |S|
)

which is clearly O(|S|).

Thus we have the above bound.
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9 Some probability results

Lemma 9.1 (Multiplicative Chernoff bound [DP09]). Let X1, . . . , Xn be independent random

variables such that Xi ∈ [0, 1]. For X =
n∑

i=1
Xi and µ = E[X], the following holds for any 0 ≤ δ ≤ 1.

P(|X − µ| ≥ δµ) ≤ 2 exp

(
−µδ2

3

)
Lemma 9.2 (Additive Chernoff bound [DP09]). Let X1, . . . , Xn be independent random variables

such that Xi ∈ [0, 1]. For X =
n∑

i=1
Xi and µl ≤ E[X] ≤ µh, the following hold for any δ > 0.

(i) P (X ≥ µh + δ) ≤ exp
(
−2δ2

n

)
.

(ii) P (X ≤ µl − δ) ≤ exp
(
−2δ2

n

)
.
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