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Abstract

We construct a property on 0/1-strings that has a representation by a collection of width-
three read-twice oblivious branching programs, but for which any two-sided ε-testing algorithm
must query at least Ω(nδ) many queries for some fixed ε and δ. This shows that Newman’s
result [18] cannot be generalized to read-k-times functions for k > 1. In addition, we exhibit
a property that has also a representation by a CNF formula of constant clause size. Hence,
the non-testability results extend to properties that in addition have small (constant size) 0-
witnesses.
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1 Introduction

Combinatorial property testing deals with the following relaxation of decision problems: Given a
fixed property and an input x, one wants to decide whether x has the property or is ‘far’ from
having the property. The general notion of property testing was first formulated by Rubinfeld and
Sudan [20] and first studied for combinatorial objects by Goldreich, Goldwasser and Ron [15].

A property in this respect is a collection of 0/1 strings, and being far is measured by the
Hamming distance, namely, in how many places should an input string x be changed so as to have
the property. An ε-test is a randomized algorithm which with probability at least 2/3 distinguishes
between the case that x has the property and the case that x has distance at least εn from any
string having the property. More precisely, if the input x has the property, the algorithm is required
to answer ‘yes’ with probability at least 2/3; if the input x of length n does not have the property
and moreover no x′ which differs from x at most at εn bits has the property, the algorithm is
required to answer ‘no’ with probability at least 2/3. Note that this definition allows two-sided
error; one-sided error algorithms are more restricted, being required in addition to answer ‘yes’
with probability 1 if x has the property.

A property is said to be (ε, q(ε, n))-testable if there is an ε-test that for every input x of size n
queries at most q(ε, n) chosen bits of the input string. When a property P is (ε, q(ε, n))-testable
with q = q(ε) (i.e., q is a function of ε only, and is independent of n), we then say that P is
ε-testable; we say that P is testable if it is ε-testable for every ε > 0.

Property testing has recently become quite an active research area, see [15, 16, 8, 5, 2, 3, 18, 10, 9]
for an incomplete list. Apart from its theoretical appeal, and the many questions it involves, it is
related to PAC learning, program checking [14, 7, 20], probabilistically checkable proofs [4], and
approximation algorithms [15]. For surveys on property testing see [11, 19].

One of the main tasks that emerged in the field, following [15] and then [2, 3], is to identify
natural collections of properties that are efficiently testable (in terms of the number of queries).
Goldreich et al. [15] studied some classes of properties (mainly graph properties) and identified
many properties that are testable. Newman [18], following Alon et al. [3], proved that any property
that can be computed by an oblivious read-once constant-width branching program is testable,
even with one-sided error.

Here we prove that this cannot be generalized to read-twice branching programs. We exhibit
two properties that can be computed by a width 3 read-twice oblivious branching program, but for
which any (possibly two-sided) ε-test requires at least nδ queries, for some 0 < ε < 1 and 0 < δ < 1.
The first property that is described is constructive, it is somewhat simpler than the second one
and admits a simpler proof of non-testability. The existence of the second property involves a
probabilistic argument – hence, in this sense, it is not constructive. On the other hand it serves as
a counter example for the following ‘folklore’ question in the area of property testing.

A Boolean function f is said to have O(1) size 0-witnesses if it can be represented by a CNF
formula in which every clause is of size O(1). Namely, f has a depth two circuit in which the top
gate is ∧ and the bottom gates are ∨, each having a constant number of variables and negations of
variables. For such a function, for every input assignment of the variables for which the function
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evaluates to 0, there are some O(1) variables for which their corresponding values is a ‘proof’ that
the function is 0 (the variables in the corresponding violated clause). So far, all properties that
were known to be hard for (two-sided error) testing were functions whose 0-witnesses were large.

Our second property shows a strong non-testability result for a function with O(1) 0-witnesses,
with the additional feature that it has a CNF representation with O(1) clause-size and such that
every variable appears in O(1) clauses. An example for a function with constant size 0-witnesses
that is hard to test is given in [12]; however, the current lower bound on the number of queries
is only Ω(log n). Very recently, [6] produced an example of a 3CNF function (but one that is not
represented by a read-twice BP) for which the bound on ε-testing is Ω(n); it is interesting to note
that both the property in [6] and the property presented in the following are essentially based on
linear equations modulo 2.

A preliminary version of part of the results presented here appeared in [13].

2 Preliminaries and notation

We identify properties with the collection of their characteristic Boolean functions. Namely, a
property P ⊆ {0, 1}∗ is identified with {fn : {0, 1}n −→ {0, 1}} such that fn(x) = 1 if and only
if x ∈ P ∩ {0, 1}n. For x, y ∈ {0, 1}n we define dist(x, y) = Hamming(x, y) = |{i | xi 6= yi}|.
For a property P ⊆ {0, 1}n, and x ∈ {0, 1}n we define dist(x,P) = miny∈P∩{0,1}n dist(x, y). For
0 < ε < 1, we say that x is ε-far from P if dist(x,P) ≥ εn.

An oblivious leveled branching program (BP) here is a directed graph B, in which the nodes are
partitioned into levels L1, . . . , Lm+1 and which satisfies the following. There are two special nodes;
a ‘start’ node belonging to L1 and an ‘accept’ node belonging to Lm+1. All edges are between
nodes of consecutive levels, and each node apart from those on Lm+1 has exactly two outgoing
edges to the next level, one of which is labeled by 0 and the other by 1. In addition, each level
Li apart from Lm+1 is associated with a member li of {1, . . . , n}, that refers to a location of a bit
in the input. An input x ∈ {0, 1}n naturally defines a path in B: It contains one node from each
level, starting with the start-node at L1; given the choice of a node from a level Li, 1 ≤ i ≤ m, its
outgoing edge which is labeled by xli is followed to select the node at Li+1. A leveled BP defines
naturally a Boolean function g : {0, 1}n −→ {0, 1} in the following way: g(x) = 1 if the path that
x defines reaches accept, otherwise g(x) = 0. The width of a leveled BP is the cardinality of its
largest level.

A read-k-times BP for a function g : {0, 1}n −→ {0, 1} is an oblivious leveled branching pro-
gram computing g, in which no member of {1, . . . , n} is associated with more than k of the levels
L1, . . . , Lm.

In the following we denote by F2 the field of two elements, and denote by Fm the field of
m elements whenever such a field exists. We denote by ⊕ the addition in F2. For two subsets
A and B, with some abuse of notation, we also use A ⊕ B to denote their symmetric difference,
A⊕B = (A\B)∪(B\A). We omit all floor and ceiling signs whenever the implicit assumption that
a quantity is integer makes no essential difference. We make no attempt to optimize the coefficients
involved, just the function types (e.g., polynomial versus logarithmic).
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3 The main result

Theorem 3.1 There exist fixed ε, δ > 0 and a property P that has a width 3, read-twice oblivious
branching program, for which any ε-test must query nδ queries even if we allow two-sided error.

We present two properties that serve as a proof for Theorem 3.1. The first, which is the simpler
of the two and whose existence proof is constructive, is discussed in Section 4. The second one,
which has the extra property of having 0-witnesses of constant size, is discussed in Section 5.

Both properties are based on some fixed Boolean circuits over F2 with ⊕ gates. We now describe
the basic definitions and preliminaries mutual to both constructions.

Let G = (V,E) be a directed acyclic graph with V1 ⊆ V being the set of nodes of in-degree 0.
For each v ∈ V \ V1 let Nin(v) = {u ∈ V | (u, v) ∈ E}, namely u ∈ Nin(v) if and only if there is a
directed edge from u to v. In cases where we allow multiple edges, the above will be a multi-set,
and we will use the usual extensions of the following definitions to multi-sets as well.

We associate a Boolean circuit CG with a graph G as follows. A Boolean variable Xv is
associated with each v ∈ V1. For every Boolean assignment to the formal variables, a Boolean
value is associated with each v ∈ V \V1, that is equal to the parity of the values that are associated
with the vertices of Nin(v). In particular each vertex in V \ V1 is associated with a linear function
(over F2) in the formal Boolean variables {Xv | v ∈ V1}. Clearly, for every Boolean assignment to
the variables associated with V1, the circuit CG defines Boolean values for every other vertex in the
circuit. Such circuits are called ⊕-circuits.

In the following, {0, 1}V denotes the set of all Boolean functions whose domain is V . The
circuit CG is associated with a property PG ⊆ {0, 1}V in the following way: Suppose a Boolean
value xv is assigned to each node v. This assignment is said to have PG if for every v ∈ V \ V1,
xv =

⊕
u∈Nin(v) xu. Namely, the property is satisfied if the assignments to the nodes represent

a consistent computation of CG, where {xv | v ∈ V1} represent the values of the original formal
variables {Xv | v ∈ V1}.

PG in general does not have a read-twice BP. However, it is associated with a semantically close
property P ′G that has a read-twice BP. We add a new Boolean value x(u,v) for every edge (u, v) ∈ E;
we think of the edge values as carrying the Boolean values between the nodes of the circuit. The
property P ′G ⊆ {0, 1}V ∪E is defined as follows: An assignment has property P ′G if (i) for every edge
(v, w) ∈ E we have xv = x(v,w), and (ii) for every node v ∈ V \ V1 we have xv =

⊕
(u,v)∈E x(u,v).

Claim 3.2 Assume that for all v ∈ V \ V1, |Nin(v)| ≤ ∆. Then P ′G has the following properties.

(1) If there is an (ε, q)-test for P ′G then there is also a ((∆ + 1)ε, q)-test for PG.

(2) P ′G has a width 3 oblivious read-twice BP.

(3) P ′G can be expressed by a CNF formula in which every clause is of size at most ∆ + 1, and
every variable appears in at most 4 + 2∆ clauses.

Proof: (1) We define a mapping ρ : {0, 1}V −→ {0, 1}V ∪E that maps inputs for PG to inputs for
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P ′G: For every x ∈ {0, 1}V , ρ(x) ∈ {0, 1}V ∪E is the assignment that assigns v the value xv for every
v ∈ V and assigns (u, v) the value xu for every (u, v) ∈ E. If T is an (ε, q)-test for P ′G then it can
be used to define a test T ′ for PG as follows: for every x ∈ {0, 1}V we apply the test T on ρ(x)
(i.e., every time (u, v) is queried we reply with xu and every time v is queried we reply with xv).
The number of queries in T ′ is the same as in T . If x ∈ PG then obviously ρ(x) ∈ P ′G. If, on the
other hand, dist(x,PG) ≥ (∆ + 1)ε · |V |, then dist(ρ(x),P ′G) ≥ (∆ + 1)ε · |V | ≥ ε · |V ∪ E|, and
hence T ′ is ε-far from P ′G.

(2) We simply check, for each v, (i) and (ii) from the definition of P ′G. Each of these checks
can easily be done by a read-once width-two branching program; overall we need a program of
width three, where the third branch just collects all the negative results of the checks. Every node
value xv is read only by its comparison program and its parity verification program (once by each
program), and every edge value x(v,w) is read only by the comparison program of v and the parity
verification program of w.

(3) The resulting CNF is a conjunction of CNF’s checking (i) and (ii) from the definition of
P ′G. We must be a bit careful in checking (i) to achieve a bounded number of occurrences of each
variable. For a vertex v with outgoing edges (v, wi), i = 1, . . . , t, ordered arbitrarily, we check
xv = x(v,w1) and x(v,wi) = x(v,wi+1) for i = 1, . . . , t − 1. This results in at most 4 clauses of size 2

for each variable. Each parity check (ii) is equivalent to a conjunction of 2∆ clauses of size ∆ + 1.

We need the following well-known tool.

Lemma 3.3 Let x1, . . . , xk be random Boolean variables and suppose that for every ∅ 6= S ⊂
[1, . . . , k], the probability of

⊕
i∈S xi = 1 is exactly 1

2 . Then the distribution on the values of
x1, . . . , xk is the uniform distribution on all k-bit Boolean strings.

Let G(U, V ;E) be a bipartite graph, and let V ′ ⊆ U ∪ V . We denote by N(V ′) the set of all
neighbors of all the vertices in V ′ and denote by OG(V ′) the set of vertices u ∈ N(V ′) for which
|{(u, v) | v ∈ V ′}| is odd. Namely, OG(V ′) are those vertices in that have an odd number of
neighbors in V ′.

The motivation behind this definition is the following. We associate each subset of vertices
S ⊆ V (similarly for T ⊆ U) with the corresponding characteristic vector xS ∈ {0, 1}V . Then
G defines a linear map AG : {0, 1}U −→ {0, 1}V over F2, by AG(x) = (yv | v ∈ V ) where
yv =

⊕
u∈V |(u,v)∈E xu. In this map, viewed as a map between sets, the set S ⊆ U is mapped to the

set OG(S). If we direct all edges from U to V and look at the ⊕-circuit that is defined by G, then
the map between input assignments to output values (viewed as mapping between column vectors
over F2) is exactly the map AG above.

Definition 3.4 Let G(U, V ;E) be a bipartite graph where |V | = |U | = n, and let F be a family of
nonempty sets, each a subset of either V or U . G is said to be (α,F)-odd-expanding if for every
V ′ ∈ F , |OG(V ′)| ≥ min((1 + α)|V ′|, αn).

Unlike the case with the usual notion of expanders, it is easy to show that there exists no “odd
expander” that works for all nonempty subsets of the vertices. To see this, consider the map AG
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defined above. If this map is 1-1 then certainly there exists a set whose image is a singleton (and
thus its size cannot increase), while if it is not 1-1, then there is a non-empty set that is mapped
to the empty set (namely any set that corresponds to a vector in the kernel of this map), which
means that the image of some sets may actually vanish.

4 The first property

In this section we construct a simple bipartite graph G = (U, V ;E) for which PG is not testable.
The construction is simple, but the cost we pay for that is that the degrees are no longer constant.
Thus we cannot directly rely on Claim 3.2 to consider P ′G as our non-testable property, as the
approximation parameter ε would decrease too much. Instead we use the same method but with
some extra padding at the output vertices to construct a property P ′′G that is also non-testable,
and that can be represented by a constant depth read-twice BP.

Let G = (U, V ;E) be a regular balanced bipartite graph with |U | = |V | = n such that deg(v) =
∆ for every v ∈ U ∪ V . In the following we will use ∆ = Θ(

√
n). We direct all edges from U to V .

Clearly the resulting graph will be acyclic. Now PG is defined on strings of length n′ = 2n.

We define a property P ′′G over Boolean assignments to n′′ = 2n(∆ + 1) variables {xu | u ∈
U} ∪ {yv | v ∈ V } ∪ {x(u,v), y(u,v) | (u, v) ∈ E}. An assignment will have the property P ′′G if (i) for
every u ∈ U , all ∆ + 1 variables xu and x(u,v), v ∈ N(u) have the same value, (ii) for every v ∈ V ,
we have yv =

⊕
(u,v)∈E x(u,v), and (iii) for every v ∈ V , all ∆ + 1 variables yv and y(u,v), u ∈ N(v),

have the same value.

Claim 4.1 P ′′G has the following properties.

(1) If there is an (ε, q)-test for P ′′G then there is also an (ε, q)-test for PG.

(2) P ′′G has a width 3 oblivious read-twice BP.

Proof: (1) Assume that there is an (ε, q)-test for P ′′G. We define a mapping from inputs to the
test for PG to inputs for P ′′G, similarly to Claim 3.2. For every w = (x′, y′) ∈ {0, 1}U∪V let ρ(w) be
defined as follows: The value of every variable xu and x(u,v) is x′u, and the value of every variable yv
and y(u,v) is y′v. It is obvious that for every w ∈ PG, ρ(w) ∈ P ′′G. In addition, if dist(x,PG) ≥ ε · 2n
then dist(x,P ′′G) ≥ ε · 2n(∆ + 1). This is true as all the ∆ + 1 values of the copies of each bit of
w are equal for an input to belong to P ′′G. To ε-test PG on an input w = (x′, y′), we perform T on
ρ(w). Every time that xu or x(u,v) is queried in ρ(w) we just query x′u and every time that yv or
y(u,v) is queried in ρ(w) we query y′v. This results in a valid test for PG with at most q queries.

(2) Just like the proof for P ′G in Claim 3.2, we check all the conditions (i)-(iii) from the definition.
Every variable appears in at most two such checks, so the resulting BP is read-twice.

Our aim now is to construct a family of graphs Gn for an infinite sequence of n for which PG
is hard to test.
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Let P = (U, V ) be a finite projective geometry where U is a set of n = m2 + m + 1 points
and V is a set of n lines, with m being an odd prime. For the construction of these well-known
structures one can consult for example the chapter about designs in [21], or read [17] for an in-depth
(algebraic) treatment. We shall use only the following basic regularity properties of these finite
geometries: every line contains exactly m+1 points, every point is contained in exactly m+1 lines,
and for every two points there is exactly one line containing both of them. Let G = (U, V ;E) be
the bipartite graph that corresponds to the incidence relation of P , namely in which (u, v) ∈ E if
the point u is contained in the line v. This defines PG as above. We will shortly prove the following.

Theorem 4.2 Any (2 sided error) 1/20-test for PG requires m+ 2 = Ω(n1/2) queries.

Its corollary which in particular proves Theorem 3.1 is the following.

Theorem 4.3 Any (2 sided error) 1/20-test for P ′′G requires Ω(n1/3) queries, where n is the input
length.

Proof: Immediate from Theorem 4.2, Claim 4.1, and the fact that if the input length of PG is n
then the input length for the corresponding P ′′G is Θ(n3/2).

Proof of Theorem 4.2: We use Yao’s method, [22]. We shall define a distribution A (for
‘accepted’) on inputs that satisfy PG , a distribution N (for ‘non-acceptable’) on inputs that are far
from satisfying it, and a distribution D = 0.5A + 0.5N . Namely, we choose with probability 1/2
either A or N respectively, and then choose an input according to the chosen distribution. Let T
be any deterministic decision tree that makes only q ≤ m+ 1 queries and supposedly distinguishes
between the case that that an input belongs to PG and the case that an input is 1/20-far from
satisfying PG. We prove that T errs with probability at least 1/3 over the distribution D on inputs,
even if it is allowed to give any answer for inputs which do not fall into either of the two cases
above.

The distribution A is defined as follows: We first choose a random assignment on U, xu ∈R {0, 1}
for every u ∈ U . Then, for every l ∈ L, we let yl =

⊕
u∈l xu. In other words, yl is the Boolean

value that the circuit that corresponds to GP is computing on l for the input assignment on U . By
definition, A is concentrated on assignments in PG.

The distribution N is defined as follows: We first choose a random assignment on U, xu ∈R
{0, 1}, for every u ∈ U , as before. Then we choose a random assignment on L independent of the
‘input’ assignment on U . Namely, we choose w = (x, y) according to the uniform distribution R on
2n-bit binary sequences. We then let N be the distribution of the above, conditioned on the event
that the input w thus generated is 1/20-far from PG.

The following asserts that N is well approximated by R. Note that this lemma does not use
the properties of projective planes.

Lemma 4.4 Let w ∈ {0, 1}2n be an assignment that is generated by the uniform distribution R.
Then, for any balanced bipartite graph G, Probw∈R[dist(w,PG) ≤ n/10] = o(1).
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Proof: For any (x′, y′) with dist((x′, y′),PG) ≤ εn, there exists (x, y) ∈ PG such that both
dist(x′, x) ≤ εn and dist(y′, y) ≤ εn. Now consider a fixed w = (x, y) which has the property PG
and count the number of strings (x′, y′) with dist(x′, x) ≤ εn and dist(y′, y) ≤ εn. The number of
eligible values for x′ as well as y′ is bounded by 2H(ε)·n, where H(α) = −α log2 α−(1−α) log2(1−α)
is the entropy function. Since the number of (x, y) ∈ PG is 2n, the probability that random (x′, y′)
satisfies dist((x′, y′),PG) ≤ εn is at most 2n ·(2H(ε)·n)2/22n = 2(2H(ε)−1)n. For ε < 1/10, H(ε) < 1/2
and thus the probability is o(1).

The following lemma show that small subsets of bits of strings generated fromA are independent.
This later implies that with a few queries, strings from A are indistinguishable from those from R.

Lemma 4.5 The bits of strings w = (x, y) from the distribution A are (m+ 1)-wise independent.

Proof: Consider U ′ ⊆ U and V ′ ⊆ V such that |U ′ ∪ V ′| ≤ m+ 1. We prove by induction on |V |
that the bits xu, u ∈ U ′, and yv, v ∈ V ′, are independent. If V = ∅ then this follows trivially from
the definition of the distribution A.

Otherwise, fix an arbitrary v′ ∈ V ′. We claim that there exists u′ ∈ N(v′) such that u′ 6∈ U ′
and for all v ∈ V \ {v′}, u′ 6∈ N(v): By the properties of projective planes, for every v ∈ V ′ \ {v′},
|N(v) ∩N(v′)| ≤ 1. Thus the condition excludes at most |U ′ ∪ V \ {v′}| = m− 1 candidates for u′

out of the m elements of N(v′), and hence u′ exists.

Now consider random values for all xu, u 6= u′. These determine all the values of xu, u ∈ U ′,
and yv, v ∈ V ′ \ {v′}, and by the induction assumption these bits are independent. For any fixed
values of xu, u 6= u′, the bit yv′ is still a random bit, as it depends on xu′ . Thus all bits xu, u ∈ U ′,
and yv, v ∈ V ′, are independent. This completes the inductive step and the proof.

Let T be any deterministic decision tree that makes q ≤ m + 1 queries in the worst case, let
T (w) be the output of T on input w.

For a given leaf l of T , the queried bits are independent random variables both in the dis-
tribution A, by Lemma 4.5, and for R by the definition of R. Thus Probw∈A[w reaches l] =
Probw∈R[w reaches l], which implies Probw∈A[T (w) = 1] = Probw∈R[T (w) = 1] and thus also

Probw∈A[T (w) = 0] + Probw∈A[T (w) = 1] = Probw∈A[T (w) = 0] + Probw∈R[T (w) = 1] = 1 (1)

Let F be the event that for a w ∈ R, dist(w,PG) ≥ n/10. The probability of an error of T on
a random input from D is at least

1

2
Probw∈A[T (w) = 0] +

1

2
Probw∈N [T (w) = 1]

=
1

2
Probw∈A[T (w) = 0] +

1

2

Probw∈R[T (w) = 1 ∧ F ]

Probw∈R[F ]

≥ 1

2
(Probw∈A[T (w) = 0] + (1 + o(1))Probw∈R[T (w) = 1])− 1

2
(1 + o(1))(1− Probw∈R[F ])

=
1

2
− o(1),
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The inequalities are by Lemma 4.4 and equation (1).

5 The second property

In this section we construct a ⊕-circuit G (for infinitely many sizes n) for which the property P ′G is
non-testable. We will have here the extra feature that the in-degree of the circuit will be constant.
Hence, by Claim 3.2, this property has the extra feature of having O(1) 0-witnesses (so it is a CNF
with O(1)-clause size). Also, by the same claim, proving the lower bound on the complexity of PG
immediately implies the bound P ′G.

To define the corresponding graph, we first define the following structure. Let V = [n] × [m].
We think of V as the disjoint union of m disjoint vertex sets of size n, V1, . . . , Vm. Let Gi =
(Vi, Vi+1;Ei), i = 1, . . . ,m− 1, be a sequence of bipartite graphs. This naturally defines a graph
on V by letting the induced subgraph on Vi∪Vi+1 be Gi. We then define the directed acyclic graph
G on V by directing all edges from Vi to Vi+1, i = 1, . . . ,m− 1.

The property PG depends on the exact choice of the collection G = {G1, . . . , Gm−1}. The follow-
ing theorem, whose proof is provided in Section 5.1, asserts that there exists G = {G1, . . . , Gm−1}
for which PG is not testable.

Theorem 5.1 For m = 1
2n

1/4 there exists a family of graphs G = {G1, . . . , Gm−1} with ∆(G) ≤ 7,

for which any algorithm that 5 · 10−7-tests the property PG defined above requires Ω(n1/8) queries.

Note that the total input size (the total number of variables) in both PG and P ′G , for the set of

graphs G that is guaranteed by Theorem 5.1, is Θ(nm) = Θ(n5/4).

5.1 Proof of Theorem 5.1

For PG (and hence P ′G) not to be efficiently testable, we need a family G1, . . . , Gm−1 of bipartite
graphs that are good odd-expanders. We will first develop the machinery and prove that it implies
the non-testability result. In Section 5.2 we will prove that bipartite graphs with the required
properties exist.

In the rest of the sequel let V1, . . . , Vm be disjoint sets of size n. For every 1 ≤ i < m, we
let Gi be a bipartite graph with the vertex set Vi ∪ Vi+1. We now define the notion of (parity)
propagations. Given two vertices u ∈ Vi and v ∈ Vj for some 1 ≤ i ≤ j ≤ m, a propagation
path from u to v is directed path from u to v in G, namely, it is a sequence of vertices vk ∈ Vk,
i ≤ k ≤ j, such that vi = u, vj = v, and for every i ≤ k < j the pair (vk, vk+1) is an edge of Gk.
For 1 ≤ i ≤ m and a set S of vertices from V1 ∪ . . . ∪ Vm, we define the propagation of S into Vi as
the set of vertices Pi(S) ⊆ Vi in the following way: v ∈ Pi(S) if and only if there is an odd number
of distinct propagation paths from vertices of S that end in v (for vertices of S that do not belong
to V1 ∪ . . .∪Vi, there are simply zero propagation paths from them to vertices in Vi). Similarly, for
a set T ⊂ V1∪ . . .∪Vm we define the backpropagation of T into Vi as the set of vertices BPi(S) ⊆ Vi
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that contains v ∈ Vi if and only if there is an odd number of propagation paths from v that end
in T . For every vertex y we define BP (y) = BP1({y}) namely, BP (y) is the backpropagation of
the singleton y into V1. Let ch(y) be the characteristic vector of BP (y), considered as a member
of (F2)n.

Some intuition about propagations can be given by the following: If S ⊆ Vj for some j then its
propagation into Vj is S itself, while its propagation into Vj+1 is just OGj (S). Its propagation into
Vi+1 for i ≥ j can be calculated recursively as OGi(Pi(S)). For S ⊆ V1 ∪ . . . ∪ Vm, the propagation
of S into Vi is equal to

⊕i
j=1 Pi(S ∩ Vj).

More about the meaning of the propagations and backpropagations is given by the following
observations. To state them, we consider a member of PG , given by a value xv for every v ∈ V .

Observation 5.2 For every i let Ui = {v ∈ Vi | xv = 1}. Then Ui is exactly the propagation of U1

into Vi for every i.

Proof: By a simple induction using the connection of propagations to the notion of OGi(Ui).

Observation 5.3 Let v ∈ V , and let BP (v) be the backpropagation of {v} into V1. Then xv =⊕
u∈BP (v) xu.

Proof: By induction on the i such that v ∈ Vi (using also the fact that the backpropagation of a
set S, S ⊂ Vj ∪ . . . ∪ Vm, into Vi equals the backpropagation of its backpropagation to Vj for any
i < j).

The last observation is easy to expand to (note that the following also holds for an S that has
vertices from more than one level):

Observation 5.4 Let S ⊂ V and let BP (S) be the backpropagation of S into V1. Then
⊕

v∈S xv =⊕
u∈BP (S) xu.

An analogue of Observation 5.4 to the characteristic vectors is also true:

Observation 5.5 Let S ⊂ V and let {ch(y) | y ∈ S} be the set of the characteristic vectors
associated with the vertices of S. Let ch(BP (S)) be the characteristic vector of the backpropagation
of S into V1. Then

∑
y∈S ch(y) = ch(BP (S)) (note that the sum in the left hand side is of vectors

over F2).

Proof: The proof is by induction on the size of S. For S = {y} this is just the definition of ch(y).

For S = S′ ∪ {y}, y /∈ S′, let v ∈ V1 be in BP (S′)∩BP (y). Then there is an odd number of paths
from v to S′ and an odd number of paths from v to y, and hence an even number of paths from v
to S′∪{y}. Hence v /∈ BP (S). Similar arguments for the other three cases concerning containment
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in BP (S′) and in BP (y) show that indeed the coordinates that are 1 in ch(BP (S)) are exactly
those that correspond to the vertices in BP (S′)

⊕
BP (y).

The notion of propagation is central to what follows. In order to better understand it consider
the circuit that is defined by G as performing successively the mappings AGj , j = 1, . . . ,m − 1.
Let xi = x(Ui) be the characteristic vector of the set Ui that was defined in Observation 5.2. In
particular, x1 is just the ‘input vector’ to the circuit. Then, observation 5.2 asserts that vector xi
is just the result of AGi−1 · . . . · AG1 · x1. Observation 5.3 provides the specific linear equation for
the ‘coordinate’ xv inside xi in terms of the vector x1.

For the rest of the sequel let (4.52.5 · e12.5)(2/3) < 51000 ≤ C. Fix r = 0.01
√
m = 0.01n1/8. Let

F ⊆ 2V for some set V of size n. We denote by F≤r the family of all subsets S ⊂ V for which
there exists T ∈ F such that |(S − T ) ∪ (T − S)| ≤ r. Namely, F≤r contains all sets that can be
obtained from sets of F by adding or deleting at most r elements.

Our aim now is to define the families Fi for which we want Gi to be odd-expanding.

Definition 5.6 Suppose that G = G1, . . . , Gm−1 is the family of bipartite graphs Gi = (Vi, Vi+1, Ei).

1. Let Xm be the family of all nonempty subsets of Vm of size at most r. The sets Xi, 1 ≤ i ≤
m − 1, are defined inductively (Xi from Xi+1) by: Let Yi = {OGi(V ) | V ∈ Xi+1} and let
Xi = Y≤ri \ {∅}.

2. Let Z1 be the family of all nonempty subsets of V1 of size at most n/(10C). Each Zi, i ≥ 2,
is defined inductively to contain all nonempty subsets of Vi of size at most n/(10C), and in
addition all nonempty subsets that are the propagations of the members of Zi−1 into Vi.

3. Finally we set Fi = Xi+1 ∪ Zi for every 1 ≤ i ≤ m− 1.

Note that by our choice of parameters |Xm| ≤ nr and hence |Xi| ≤ nr(m+1−i) ≤ nrm ≤ 2
√
n for

each i. Also, |Zi| ≤
(

n
(n/(10C))

)
+ |Zi−1| and hence |Zi| ≤ m

(
n

(n/(10C))

)
= o(en/C) for every i, so

|Fi| < en/C for every i, for sufficiently large n.

In the following discussion, we shall restrict ourselves to an instance of G where each Gi is
( 1
C ,Fi)-odd-expanding. The existence of such a setup is proven in Section 5.2.

Proposition 5.7 Let G = {G1, . . . , Gm−1} where Gi = (Vi, Vi+1, Ei), i = 1, . . . ,m−1, and assume
that Gi is ( 1

C ,Fi)-odd-expanding. Then any ( 1
33C − o(1))-testing algorithm for PG requires at least

Ω(n1/8) many queries (even for a two-sided error).

For the proof of Proposition 5.7 we shall use Yao’s method [22], as in the proof of Theorem 4.2.
We now define the two distributions, A and N . We first select a uniformly random integer l such
that 1

3m ≤ l ≤ 2
3m. We define A to be concentrated on PG – we choose independently uniformly

and randomly the values of {xu | u ∈ V1} and then extend them to an assignment to all variables
as per the calculation depicted by G. Although l was not used in choosing the input according to
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A, we shall use it in the analysis that compares A to N , as the latter uses the random choice of l
in choosing its input.

For defining N , we choose two inputs A and A′ that satisfy the property. A is chosen according
to A. To choose A′ we take an arbitrary member z of {xu | u ∈ V1}, and invert its value with
respect to its value in A, keeping all other values of {xu | u ∈ V1}. The rest of A′ is again the
extension of these values. To choose an input B according to N , we first choose l, A and A′ as
above, and let B be identical to A for any value xv, v ∈ V1∪. . .∪Vl, and identical to A′ for any value
xw, w ∈ Vl+1∪ . . .∪Vm. Finally let D be the distribution on all inputs defined by D = 0.5A+0.5N .
We next prove that an input chosen according to N is indeed far from satisfying PG .

Claim 5.8 Any input chosen according to N is nm(1−o(1))
33C -far from satisfying PG.

Proof: Let B be chosen as above by choosing l, z, A and A′. We first note that A′ differs from
A in all vertices that are in the propagation of z into any Vi. Since we assume that each Gi is
( 1
C ,Fi)-odd-expanding this means that for every i ≥ log1+C(n/C), the propagation set of z is of

size at least n/C. Hence for every i ≥ Θ(log n), A differs from A′ in at least n/C places.

We then note that B is at least mn(1−o(1))
3C -far from both A and A′. This is true as B is identical

to A for all Vi, i ≤ l and hence different from A′ on a number of locations which, by the previous
paragraph and the choice of l, totals at least m−o(m)

3 · nC . A similar argument goes for the distance
from A.

Finally, let C be the closest input to B such that C satisfies PG . Assume first that C is identical
to A on Vi for some i ≤ l. Then C must be identical to A on every j ≥ i. This implies that it
differs from A′, and hence from B, in at least n/C places for every Vi, i > l, as was shown by the

first paragraph. This totals to a distance of at least mn(1−o(1))
3C .

Assume then that there is no i ≤ l for which C is identical to A on Vi. Let i be the smallest
index for which C differs from A in at most n/(10C) places in Vi. If i ≥ 10m

33 , then clearly C differs
from A, and hence from B, in at least n/(10C) places for every j ≤ i. This would total a distance
between C and B of at least n

10C ·
10m
33 = nm

33C , which proves the claim. Assume then that i < 10m
33

and let Si be the set of places in Vi where C differs from A. By our assumption on i, |Si| ≤ n/(10C),
and hence by Item 2 in Definition 5.6, Si ∈ Fi. Now, C differs from A in the propagation set of
Si into Vj for every j ≥ i. Note also that Si ∈ Fi implies that its propagation set into Vj is in Fj
for every j ≥ i (Item 2 of Definition 5.6). Hence, by the odd-expansion property for every Gj , this
propagation set contains at least n/C elements for every j ≥ i+ Θ(log n), and hence C differs from
A, and hence also from B, in at least n

C places in every level j > i + Θ(log n). By the definition

of i this totals at least n
C · (

m
3 −

10m(1−o(1))
33 ) = n

C
m−o(m)

33 places, which completes the proof of the
claim.

Let q = o(
√
m). We now analyze the values that A and N induce on a fixed set of q nodes; let us

denote the set of vertices by S = {u1, . . . , uq}, and the corresponding levels by u1 ∈ Vi1 , . . . , uq ∈ Viq .
Let D(S) be the event that |ij − l| >

√
m for every j.

Observation 5.9 For both A and N, Prob(D(S)) ≥ 1− o(1).
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Proof: For every element in S there are 2
√
m choices of l that violateD(S). As there are q = o(

√
m)

elements in S the observation follows.

We shall prove in the following that conditioned on D(S), the restrictions of A and N on
u1, . . . , uq yield the same distribution.

In order to understand the restriction of A to a set S, we use the following lemma.

Lemma 5.10 For any set of vertices T , and any set T ′ ⊂ T such that {ch(y) | y ∈ T ′} is a
maximal linearly independent subset of the set of vectors {ch(y) | y ∈ T}, the following occurs.

The restriction of the distribution A to T ′ is the uniform distribution on a set of |T ′| independent
binary variables, and the values chosen for the variables associated with T ′ completely determine
the values chosen for all of T .

Proof of Lemma 5.10: Fix a set T ′ ⊆ T such that {ch(y) | y ∈ T ′} is a maximal linearly
independent set of vectors among {ch(y) | y ∈ T}. By Observation 5.3 the value of every y is
completely determined by the values of the vertices in BP (y), and is in fact their parity. For a
set T ′′ ⊆ T ′ the probability that

⊕
y∈T ′′ xy = 1 is 1

2 because the backpropagation of T ′′ into the
first layer is nonempty. This means that the distribution over T ′ is uniform and independent, by
Lemma 3.3.

On the other hand, because of the maximality of T ′, for every y′ ∈ T − T ′ there exists T ′′ ⊂ T ′
such that ch(y′) =

⊕
y∈T ′′ ch(y), so the value of y′ is determined by the values of the vertices in

T ′.

For the set S we now define Su as the subset of S that contains all vertices that belong to levels
above Vl (l was chosen while choosing an input according to A or N), and Sd as the set of all vertices
that belong to Vl or below. We also let S′u be a maximal subset of Su for which {ch(y) | y ∈ S′u} is
independent, and S′d be a maximal subset of Sd for which {ch(y) | y ∈ S′d} is independent.

The following observation will be used in proving that conditioned on D(S) happening (which
occurs with high probability), both A and N induce the same distribution on S, assuming that
each Gi is ( 1

C ,Fi)-odd-expanding.

Observation 5.11 Given that D(S) happens, for every nonempty subset S′′u of S′u and nonempty
subset S′′d of S′d, the backpropagation of S′′u ∪ S′′d into V1 is non empty.

Proof: Let i be such that S′′u ∩ (
⋃
j≥i Vj) 6= ∅, and consider the backpropagation of S′′u ∩ (

⋃
j≥i Vj)

into Vi, denoted by Vi(S
′′
u). Since |S| ≤ q = o(

√
m), it holds that Vi(S

′′
u) ∈ Fi (by Item 1 in

Definition 5.6). Hence by the fact that Gi is ( 1
C ,Fi)-odd-expanding and assuming that D(S) holds,

it follows that the backpropagation of S′′u into Vl has size |Vl(S′′u)| = Θ(n). Also, by Item 1 in
Definition 5.6, Vl(S

′′
u) ∈ Fl. Hence, this implies that the backpropagation of (S′′u ∪ S′′d ) ∩ (

⋃
j≥i Vj)

into i for every 1 ≤ i ≤ l is non empty (and is in fact of size Θ(n)), by the fact that Gi is ( 1
C ,Fi)-

odd-expanding. In particular this holds for i = 1.
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And now for the final claims.

Claim 5.12 Given that D(S) happened, the distribution induced by A on S′u ∪ S′d is the uniform
independent one, and the values of the members of S−S′u ∪S′d are determined by those of S′u ∪S′d.

Note that the claim is very similar to Lemma 5.10. The only difference is that while each of
S′u, S

′
d is such that its corresponding vectors are independent, it is not a priory guaranteed that for

the union S′u ∪ S′d the set of its corresponding vectors is also independent.

Proof: It is enough to prove that the set A = {ch(y) | y ∈ S′u∪S′d} is a maximal set of independent
vectors, so that Lemma 5.10 will imply the claim. Hence, it is enough to prove independence, as
maximality is obvious by the assumption on S′d and S′u.

To prove independence it is enough to show that for every two subsets S′′u ⊆ S′u and S′′d ⊆ S′d,∑
y∈S′′u∪S′′d

ch(y) is not the zero vector. By Observation 5.5,
∑

y∈S′′u∪S′′d
ch(y) = ch(BP (S′′u ∪ S′′d )),

and by Observation 5.11 BP (S′′u ∪ S′′d )) 6= ∅, which implies the claim.

Claim 5.13 Given that D(S) happened, the distribution induced by N on S′u ∪ S′d is the uniform
independent one, and the values of the members of S − S′u ∪ S′d are determined by those of S′u ∪ S′d
in the same manner as with the distribution A.

Proof: Recall that to obtain an input according to N we choose an input A according to A and a
vertex z ∈ V1. We then set the input A′ (which is also in A) by flipping the value of z and take the
extension of the input values to each layer. Then the input from N is identical to A at all levels
up to l and to A′ from level l and above. To prove the claim we use again Lemma 3.3.

Let xv, v ∈ V be the values of the input according to N . For every S′′u ⊆ S′u and S′′d ⊆ S′d we
will show that if S′′u ∪ S′′d 6= ∅ then

⊕
v∈S′′u∪S′′d

xv = 1 with probability 1/2. Clearly it is enough to

show this with the assumption that both S′′u and S′′d are non empty (as otherwise, this reduces to
the claim for A, which was already proven in Claim 5.12).

Let Av be the value of v according to A and let A′v be the value of v according to A′. Then
xv = A(v) for v ∈ Vi and i ≤ l, and xv = A′(v) for v ∈ Vi and i > l.

By Observation 5.3,

⊕
v∈S′′u∪S′′d

xv =

⊕
v∈S′′u

⊕
u∈BP (v)

A′(u)

⊕
⊕
v∈S′′d

⊕
u∈BP (v)

A(u)


=

⊕
v∈S′′u

⊕
u∈BP (v)

A(u)

⊕
⊕
v∈S′′d

⊕
u∈BP (v)

A(u)

⊕
 ⊕
v∈S′′u s.t. z∈BP (v)

1


=

 ⊕
v∈S′′u∪S′′d

A(v)

⊕
 ⊕
v∈S′′u s.t. z∈BP (v)

1


13



By Observation 5.4, the above is equal to [
⊕

v∈BP (S′′u∪S′′d ) xv]⊕b, where b =
⊕

v∈S′′u s.t. z∈BP (v) 1

is independent of the input values.

Now, under the assumption that D(S) holds, Observation 5.11 asserts that BP (S′′u ∪ S′′d ) 6= ∅
and hence the parity of the values in it will be 1 with probability 1/2 as required.

The values of the members of S − S′u ∪ S′d have the same dependencies that they have under
the distribution A, because none of these dependencies involves members of both Su and Sd (again
by Observation 5.11).

Proof of Proposition 5.7: We let G, q, A and N be as before, and prove that even an adaptive
algorithm that queries at most q values xu, u ∈ V has an error probability of at least 1/6 on inputs
taken from the distribution D = 0.5A+ 0.5N (by standard amplification this also shows that any
algorithm that uses at most q/3 queries must have error at least 1/3).

Let Q = {u1, . . . , uq} ⊆ V be a set of vertices in the corresponding levels u1 ∈ Vi1 , . . . , uq ∈ Viq .
We denote by D(Q) the event that |ij − l| >

√
m for every j.

Now let T be an adaptive algorithm that queries at most q values xu, u ∈ V . Every leaf in
the decision tree that represents T is labeled by either ‘accept’ or ‘reject’. Let L be the set of all
leaves that are labeled by ‘accept’. We may assume that ProbP (L) ≥ 2

3 , as otherwise the algorithm
errs on positive inputs with probability at least 1

2 − ProbD(L) ≥ 1/6. We shall prove that this
necessarily implies that ProbN (L) > 2

3 · (1− o(1)) > 1/3, which implies that the algorithm errs by
accepting wrong inputs with probability at least 1/6.

Every leaf α ∈ L is associated with the set of vertices Q(α) that were queried along the way
to α and with a set of answers ans(α) : Q(α) −→ {0, 1} to those queries. Clearly, Q(α) and
ans(α) together uniquely define α. Moreover, the algorithm will reach α if and only if the variables
corresponding to the nodes of Q(α) are respectively assigned ans(α), regardless of the assignments
made to other variables that are queried in other branches of the decision tree of T .

Let V ′(α) ⊂ Q(α) be such that {ch(y) | y ∈ V ′} is a maximal linearly independent subset of
the set of vectors {ch(y) | y ∈ Q(α)}. Lemma 5.10 asserts that for positive inputs the answers on
V ′(α) uniquely determine the answers on Q(α)− V ′(α). We may assume that for every α ∈ L the
answers to Q(α)− V ′(α) are consistent with the answers on V ′(α), as otherwise the leaf α may be
changed to ‘reject’ without reducing the success probability of T under either A or N . Let dim(α)
denote the size of V ′(α). The above discussion implies the following.

Claim 5.14 For every α ∈ L, ProbP (α) = 2−dim(α).

Proof: Immediate from Lemma 5.10.

Claim 5.15 Every α ∈ L satisfies that ProbN (α) ≥ (1− o(1))2−dim(α) = (1− o(1))ProbP (α)

Proof: Note that ProbN (α) ≥ ProbN (α ∧ D(Q(α))) = ProbN (D(Q(α))) · ProbN (α|D(Q(α))) ≥
(1 − o(1)) · 2−dim(α). The last inequality follows from Observation 5.9 together with the fact that
ProbN (α|D(Q(α))) = 2−dim(α), which follows from Claim 5.13.
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Claim 5.15 implies that ProbN (L) =
∑

α∈L ProbN (α) ≥ (1−o(1)) ·
∑

α∈L 2−dim(α) = (1−o(1)) ·
ProbP (L) ≥ (1− o(1)) · 2/3, which completes the proof of Proposition 5.7.

5.2 The existence of an odd-expanding circuit

We now prove that there exists G = {G1, . . . , Gm−1} such that every Gi is ( 1
C ,Fi)-odd-expanding

for Fi as per Definition 5.6, which concludes the proof of Theorem 5.1 (by satisfying the conditions
of Proposition 5.7) and hence of the lower bound. First we need the following lemma.

Lemma 5.16 Let (4.52.5 ·e12.5)(2/3) < 51000 ≤ C, let |U | = |V | = n, and suppose that F is a family
of at most en/C nonempty subsets of U . Then G(U∪V,E), where E is the union of 7 random perfect
matchings between U and V , is ( 1

C ,F)-odd-expanding with probability at least (1−O(n−3/2)).

Note that G may have parallel edges with constant probability.

Proof of Lemma 5.16: To prove the odd-expansion properties with regards to a fixed family
F we analyze the odd-expansion of subsets S ⊆ U according to their sizes. We first show that
with very high probability G will be odd-expanding for all small enough sets, using the standard
expansion property of random graphs. Only for larger sets we need the bound on the size of F .

For a set S of size k, k ≤ n/C, let us look at the 7 random sets that are the images of S under
the 7 random matchings. Each such image Mi(S) is a random set of size k and is independent of
the others. We first want to bound the probability that the union of these sets is small: Let S be
fixed and let T ⊆ V be of size 4.5k. Using the inequalities (nk )k ≤

(
n
k

)
≤ (nek )k we get:

Prob

[
7⋃
i=1

Mi(S) ⊆ T

]
≤
(

4.5k
k

)7(
n
k

)7 ≤ (4.5e)7k

(nk )7k
=

(
4.5ek

n

)7k

.

Hence, by summing for all possible k ≤ n/C and for all possible sets S and T we get:

Prob

[
∃S, |S| = k ≤ n/C,

∣∣∣∣ 7⋃
i=1

Mi(S)

∣∣∣∣ ≤ 4.5k

]
≤

n/C∑
k=1

(
n

k

)
·
(

n

4.5k

)
·
(

4.5ek

n

)7k

≤

n/C∑
k=1

(ne
k

)k
·
( ne

4.5k

)4.5k
·
(

4.5ek

n

)7k

=

n/C∑
k=1

(
4.52.5 · e12.5 · k1.5

n1.5

)k
≤

4.52.5 · e12.5

n1.5
+

n
2eC∑
k=2

(
4.52.5 · e12.5 · k1.5

n1.5

)k
+

n/C∑
k= n

2eC

(
4.52.5 · e12.5 · k1.5

n1.5

)k
≤

4.52.5 · e12.5

n1.5
+

n
2eC∑
k=2

4.52.5 · e12.5 · 8
n1.5

· 2−k+2 + n ·
(

4.52.5 · e12.5

C1.5

)n/2eC
= O(n−3/2).
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The last bound on the summands is by our choice of C. It guarantees that the first series is dom-
inated by a geometric series while in the second series each summand is at most (4.52.5·e12.5

C1.5 )n/2eC ,
which is exponentially small in n.

Now note that if |N(S)| ≥ 4.5|S| then |OG(S)| ≥ 2|S|. To see this we define N1(S) to contain
all vertices v ∈ N(S) which have exactly one neighbor in S. Clearly N1(S) ≤ OG(S). However,
|E(G[S,N(S)])| = 7|S| ≥ |N1(S)|+ 2|N(S)−N1(S)|. This, together with |N(S)| ≥ 4.5|S|, implies
that |OG(S)| ≥ |N1(S)| ≥ 2|S|, which is more than what we need.

Now let S ⊆ V be of size k, n/C ≤ k ≤ n/2. Fix i ∈ {1, . . . , 7} and let Tj = V −Mj(S) for
j 6= i. Let Pi = Mi(S) ∩ (

⋂
j 6=i Tj), namely Pi contains all elements that are in the i’th image of S

but not in any Mj(S), j 6= i. Certainly
⋃7
i=1 Pi ⊆ OG(S).

To estimate the size of
⋃
i Pi, we simulate the process of choosing a random matching of S by

marking each element of V independently, with probability k/n. We then repeat it independently
7 times. Finally, we condition this on the event that Mi(S), the set marked in the i’th round,
is of size exactly k for every i, and pick a random 1-1 mapping between S and each of the 7
marked sets. Let Bi be the event that |Mi(S)| = k. Then Prob(Bi) ≥ Ω(1/

√
n) (since |Mi(S)|

is binomially distributed, this follows using the Chebyshev inequality [1]). Note also that in the
random model where we do not condition on the events Br, r = 1, . . . , 7, the expected size of

⋃
i Pi

is 7k · (1− k
n)6 ≥ 6.9n

C by our choice of k. As this is a sum of independent random Boolean variables
we may apply a Chernoff bound on the probability of the deviation from the expectation being
large. Hence we get (for sufficiently large n):

Prob

[∣∣∣∣ 7⋃
i=1

Pi

∣∣∣∣ ≤ n

C
|

7∧
r=1

Br

]
≤ Prob

[∣∣∣∣ 7⋃
i=1

Pi

∣∣∣∣ ≤ n

C

]
·

(
Prob

[
7∧
r=1

Br

])−1

≤ exp
(
−2.48n

C

)
· n3.5 ≤ 1

n2
exp

(
−2.4n

C

)

Hence with probability of at least 1− 1
n2 · e−

2.4n
C the union of the Pi’s has size at least n

C , which

implies that |OG(S)| ≥ n
C as required. Thus for any fixed family F of at most e2.4n/C sets of sizes

of at most n/2 we have that G is (1/C,F)-odd-expanding with probability at least 1− n−2.

Finally, for larger sets: Let S ⊆ V with |S| = k ≥ n/2. Let T be the set of all elements of V
that are the images of S for all Mi, namely T = ∩Mi(S). Certainly T ⊆ OG(S). A similar analysis
to the above shows that the expected value of |T | is n( kn)7 ≥ n

128 . Hence with probability at most
exp(− 9

16 ·
n

2·128) ≤ exp(−n/C) we may get |T | ≤ n/C. Again this makes sure that with probability

1− n−2 the graph G is (1/C,F)-odd-expanding for every fixed F containing at most 2n/C sets of
sizes above n/2 each. This, together with the previous cases, completes the proof of the lemma
(the argument for subsets of V is identical to that for subsets of U).

Lemma 5.17 Suppose that G = G1, . . . , Gm−1 is a family of graphs in which each Gi is constructed
randomly and independently as was done in Lemma 5.16. Suppose also that for every i, Fi is defined
as in Definition 5.6. Then with a positive probability every Gi is ( 1

C ,Fi)-odd-expanding.
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Proof: For every 1 ≤ i ≤ m let Hi be the event that Gi is ( 1
C ,Fi)-odd-expanding. Note that Fi is

dependent only on {Gj | j 6= i} and not on Gi itself, which is chosen independently of them. Also
note that |Fi| ≤ en/C . Thus Lemma 5.16 bounds from below the probability of Hi happening by
1−O(n−3/2). In particular, with positive probability all the events Hi occur.

6 Concluding comments

• It would be interesting to prove a constructive version of Lemma 5.17, thus reducing the
uniform computational complexity class of our second property.

• Using the notation from [18], where a BP is allowed to reject an input before its calculation
is complete, our property has a width-two read-twice BP, while BP’s which are fixed-width
read-once, and BP’s which are width-one, were shown in [18] to decide testable languages
only.

• It would be interesting to formulate restrictions on the order in which the input is read, that
assure testability of the language even if the BP is not read-once. For example, one can see
that certain orderings (e.g., reading the input x = x1, . . . , xn in its natural order twice) assure
testability also for read-twice BP’s.

• It would be interesting to know for which values of k and l there exists α < 1, such that
the number of queries required to test any language recognizable by an oblivious width-k
read-l-times BP is bounded by nα.
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