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Abstract. We show that the spectrum of a sentence φ in Count-
ing Monadic Second Order Logic (CMSOL) using one binary rela-
tion symbol and finitely many unary relation symbols, is ultimately
periodic, provided all the models of φ are of clique width at most
k, for some fixed k. We prove a similar statement for arbitrary
finite relational vocabularies τ and a variant of clique width for τ -
structures. This includes the cases where the models of φ are of tree
width at most k. For the case of bounded tree-width, the ultimate
periodicity is even proved for Guarded Second Order Logic GSOL.
We also generalize this result to many-sorted spectra, which can
be viewed as an analogue of Parikh’s Theorem on context-free lan-
guages, and its analogues for context-free graph grammars due to
Habel and Courcelle.

Our work was inspired by Gurevich and Shelah (2003), who
showed ultimate periodicity of the spectrum for sentences of
Monadic Second Order Logic where only finitely many unary pred-
icates and one unary function are allowed. This restriction implies
that the models are all of tree width at most 2, and hence it follows
from our result.
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1. Introduction and statement of results

Let τ be a vocabulary, i.e., set of relation and function symbols, and
φ be a sentence in some fragment of second order logic SOL(τ). The
spectrum spec(φ) of φ is the set of finite cardinalities (viewed as a subset
of N), in which φ has a model. In 1952 Scholz [Sch52] asked what are
the spectra of sentences of first order logic FOL. In 1955 Asser [Ass55]
asked whether the complement N− spec(φ) is also a spectrum of some
FOL-sentence. We note that for SOL-sentences Asser’s problem has a
trivial solution1. For FOL and MSOL, both problems are still open2.
The second problem has been positively answered for certain restricted
vocabularies, cf. [DFL97].

In the seventies a series of papers related the first order spectra to
complexity theory, cf. [JS72, Fag74a, Fag75, Chr76, LG77, Lyn82].

In the nineties there was renewed interest in first order spectra. Ini-
tiated by É. Grandjean’s work, [BS87, Gra90], the focus was now on
restricted vocabularies. It is known from [Fag74a] that there is a first
order sentence involving only one binary relation symbol the spectrum
of which is NEXPTIME-complete, hence NP1-complete when the
natural numbers are written in unary. It follows from [DR96] that this
is also true if the vocabulary consists of two unary function symbols.

It is an easy observation, however, that when the vocabulary con-
tains only unary relation symbols, the spectrum of an FOL-sentence
is ultimately constant.

Definition 1.1. A set X ⊆ N is ultimately periodic if there are a, p ∈
N such that for each n ≥ a we have that n ∈ X iff n+ p ∈ X.

In [DFL97] the case with finitely many unary relation symbols and
one unary function is studied, and it is shown that those first order
spectra are ultimately periodic. In [GS03] this is generalized to

Theorem 1.2 (Gurevich and Shelah). Let φ be a sentence of
MSOL(τ) where τ consists of finitely many unary relation symbols
and one unary function. Then spec(φ) is ultimately periodic,

Remark 1.3. Given any ultimately periodic function f : N → 2 it is
easy to construct a regular language L such that the lengths | w | of
the words w ∈ L are exactly those n ∈ N with f(n) = 1. Hence, by
Büchi’s Theorem, cf. [Str94], for every ultimately periodic f there is
an existential MSOL-sentence φ with spec(φ) = {n : f(n) = 1}. If we
add the existentially quantified set variables as unary predicates to the
vocabulary, we also get a FOL-sentence.

1If τ = {R1, . . . , Rn} and φ ∈ SOL(τ) put ψ = ∃R1, . . . , Rnφ. Then

spec(φ) = {n : {0, 1, . . . n− 1} |= ψ}
hence the complement is defined by ¬ψ.

2The Chinese logician S. K. Mo, [Mo91] announced some progress, but we could
not get hold of the paper.
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There seem to be a deeper phenomenon hidden here which we know
from infinite model theory, cf. [She90]. There one studies the gener-
alized spectrum, i.e. number specT (κ) of non-isomorphic models of a
theory T (not necessarily first order) as a function of the cardinality κ of
the model. Stable FOL-theories have, roughly speaking, slow growing
generalized spectra, and their models carry a kind of geometric struc-
ture. For unstable theories the generalized spectrum grows fast, and
no such geometry is available. In the proof of Theorem 1.2 ultimate
periodicity is achieved by showing that the models of φ are disjoint
unions of particularily simple structures. Hence the ultimate periodic-
ity of spec(φ) may be viewed as reflecting some structural properties of
the models of φ. The analogue of stability then may be a necessary and
sufficient model theoretic condition for the spectrum to be ultimately
periodic. Contrary to the case of Asser’s problem, looking at larger
fragments of SOL-logic makes the problem more interesting.

In this paper we study spectra of an extension of monadic second or-
der logic by modular counting quantifiers Ck,m, denoted by CMSOL.
Here Ck,mxφ(x) is interpreted as “there are, modulo m, exactly k el-
ements satisfying φ(x)”. Instead of restrictions on the vocabulary we
look at restrictions on the models. Let us explain this in the case
of labeled possibly directed graphs, i.e., models with one binary and
finitely many unary relation symbols. This includes words, viewed as
finite linear orders with unary predicates, and labeled trees. It follows
from well known results in automata theory, cf. [Str94] and [GS97],
that the spectrum of an MSOL-sentence φ, where all the finite models
of φ are words or labeled trees, is ultimately periodic. In the case of
words, one combines the fact that the regular languages are exactly the
MSOL-definable sets of words, with the pumping lemma for regular
languages. In the case of labeled trees, regular is replaced by recogniz-
able.

In the eighties the notion of tree-width of a graph became a central
focus of reserach in graph theory through the work of Robertson and
Seymour and its algorithmic consequences. The literature is very rich,
but good references and orientation may be found in [Die96, Bod93,
Bod97]. Tree-width is a parameter that measures to what extent a
graph is similar to a tree. Additional unary predicates do not affect
the tree-width. Tree-width of directed graphs is defined as the tree-
width of the underlying undirected graph3. Trees have tree-width 1.
The clique Kn has tree-width n − 1. It is easy to see that the models
of one unary function have tree-width at most 2. Furthermore, for
fixed k, the class of finite graphs of tree-width atmost k, TW (k), is
MSOL-definable. We shall give the necessary definitions in Section 3.

3In [JRST03] a different definition is given, which attempts to capture the specific
situation of directed graphs. But the definition above is the one which is used when
dealing with hypergraphs and general relational structures.
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Our first result is:

Theorem 1.4. Let φ be an CMSOL sentence and k ∈ N. Assume that
all the models of φ are in TW (k). Then spec(φ) is ultimately periodic.

This generalizes Theorem 1.2. Our proof uses Courcelle’s version of
the Feferman-Vaught Theorem, [Cou90], and very little of the proper-
ties of TW (k). All we need is that TW (k) can be generated by some
eNCE graph grammar, cf. [Kim97].

Theorem 1.4 follows from:

Theorem 1.5. Let K be a class of graphs which is generated by some
eNCE-grammar and let φ be a CMSOL sentence. Assume that all
the models of φ are in K. Then spec(φ) is ultimately periodic.

Special cases of classes of graphs generated by an eNCE-grammar
are TW (k) and the classes CW (k) of graphs of clique-width at most
k. The notion of clique-width was introduced in [CER93] and studied
more systematically in [CO00]. Cliques are in CW (2) and trees are in
CW (3). In [CER93] it is shown that for every k, TW (k) ⊆ CW (2k+1 +
1).

In [GM03] the following is shown:

Theorem 1.6 (Glikson and Makowsky). Let K be a class of graphs
which is generated by some eNCE-grammar. Then there exists k ∈ N
such that K ⊆ CW (k).

So Theorem 1.5 follows from the following:

Theorem 1.7. Let φ be an CMSOL(τ) sentence and k ∈ N. Assume
that all the models of φ are in CW (k). Then spec(φ) is ultimately
periodic.

The most general form of Theorem 1.7 will be given in Section 6
as Theorem 6.1. Theorem 1.7 gives also a new method to show that
certain classes of graphs or relational structures are not of bounded
clique-width. Previous methods for graphs only were introduced in
[MR99].

The following example is noteworthy because the spectrum is easily
computed and exhibits the features which are at the heart of our main
theorem.

Example 1.8. Let Gridn,m be the structure with four partial unary
successor functions snorth, ssouth, swest, seast, which cancel and commute



6 E. FISCHER AND J.A. MAKOWSKY

in the obvious way whenever they are defined:

snorth(ssouth(x)) = ssouth(snorth(x)) = x,

seast(swest(x)) = swest(seast(x)) = x,

snorth(seast(x)) = seast(snorth(x)),

snorth(swest(x)) = swest(snorth(x)),

ssouth(seast(x)) = seast(ssouth(x)),

ssouth(swest(x)) = swest(ssouth(x)).

The north-boundary is the set where snorth is not defined. Similarly for
ssouth, swest, seast.

Let SGridn,m obtained from Gn,m by identifying the west-boundary
with the east-boundary pointwise, and identifyng all points of the north-
boundary (south-boundary) into one point, the north pole (the south-
pole). This is like a grid on a sphere. All points different from the pole
have in/out degree 2. The poles have degree m.

Let TGridn,m obtained from Gn,m by identifying the west-boundary
with the east-boundary, and the south-boundary with the north-
boundary, pointwise. This is like a grid on a torus. All points have
in/out degree 2.

We denote by Grid (SGrid, TGrid) the class of all grids (sphere
grids, torus grids) with n,m ≥ 2, and by SGridr the grids on the
sphere where the poles have exactly r-neighbors. They are all MSOL-
definable, even as graphs where the edge relation is the symmetric clo-
sure of the union of the successor relations. Furthermore,

(i) SGrid4 is of tree-width at most 8 with spectrum {4n + 2 : n ∈
N− {0, 1}}. This is ultimately periodic.

(ii) TGrid is of unbounded clique-width with spectrum {mn : m,n ∈
N− {0, 1}}. This is not ultimately periodic.

R. Parikh’s celebrated theorem, first proved in [Par66], counts the
number of occurences of letters in k-letter words of context-free lan-
guages. For a given word w, the numbers of these occurences is denoted
by a vector n(w) ∈ Nk, and the theorem states

Theorem 1.9 (Parikh 1966). For a context-free language L, the set
Par(L) = {n(w) ∈ Nk : w ∈ L} is semilinear.

Detailed definitions of semilinear sets4 and related concepts are given
in Section 7.

B. Courcelle has generalized this further to context-free vertex re-
placement graph grammars, [Cou95]. Our Theorems 7.4 and 7.15. give

4The terminology is from [Par66], and has since become standard terminology
in formal language theory.
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further generalizations of Parikh’s Theorem. Rather than counting oc-
curences of letters we look at many-sorted structures and the sizes of
the different sorts, which we call many-sorted spectra. We prove that

Theorem 1.10. Let K be a class of CMSOL-definable many-sorted
relational structures which are of patch-width at most k. Then the
many-sorted spectrum of K forms a semilinear set.

In [FM03a], the relative strength of the weaker assumption that all
the structures are of patch-width at most k is discussed in detail.
Here we just note that, for relational structures, there are classes of
τ -structures K which are of unbounded (relational) clique-width, but
of bounded patch-width.

The proofs of all the main results have two ingredients:

• Reduction
• Pumping

If we wanted to prove the theorems only for graphs of bounded clique-
width, the reduction part of the proof could be shortened by using
a theorem due to B. Courcelle, [Cou95, Theorem 3.2]. On the other
hand, using Courcelle’s Theorem would require more prerequisites on
graph grammars, which our proof avoids.

Outline of the paper. The paper is organized as follows. In Section 2
we give the necessary background for the logic CMSOL. In Section
3 we define tree-width, clique-width and patch-width. In Section 4 we
prove a reduction from finite models of a CMSOL-sentence φ to labeled
finite trees satisfying some MSOL-sentence ψ. In Section 5 we state
the Pumping Lemma for MSOL-definable classes of labeled trees, In
Section 6 we prove Theorem 6.1, from which all the others follow, and
give some applications. In Section 7 we look at many-sorted spectra, i.e
spectra of definable classes of many-sorted structures. This allows us to
extend the results to Guarded Second Order Logic GSOL, introduced
first in [Mak99, GHO00], provided the the models are all of tree-width
at most k. In Section 8, finally, we discuss further research and how
our results compare to recent unpublished work of S. Shelah [She04].

2. The logic CMSOL

We assume the reader is familiar with basic finite model theory
and descriptive complexity theory as described in, say, [EFT80, EF95,
Imm99, Str94].

2.1. General background. A vocabulary τ is a finite set of relation
symbols, function symbols and constants. FOLq(τ) and MSOLq(τ)
denote the set of τ -formulas in first order logic, respectively monadic
second order logic, of quantifier rank at most q. For the definition
of quantifier rank we do not distinguish between first order or second
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order quantification. If q is omitted, we mean all formulas. A sentence
is a formula without free variables. For a class of τ -structures K,
ThqFOL(K) is the set of sentences of FOLq(τ) true in all A ∈ K. We
write ThqFOL(A) for K = {A}. Similarly, ThqMSOL(K) denotes the
corresponding sets of sentences for MSOL. For a set of sentences
Σ ⊆ MSOL(τ) we denote by Mod(Σ) the class of τ -structures which
are models of Σ.

We treat free variables as uninterpreted constants. In particular, we
tacitly assume that whenever we write φ(x̄, Ū) ∈ MSOL(τ) we think
of φ(ā, P̄ ) ∈ MSOL(τ ∪ {ā, P̄}) where ā are the uninterpreted con-
stants corresponding to x̄ and P̄ are the uninterpreted unary relation
symbols corresponding to Ū . This allows us to speak of theories with
free variables without having to deal with the free variables separately.

2.2. Modular counting quantifiers. We now add to the inductive
definition ofMSOL the quantifiers Ck,m where k,m ∈ N and Ck,mxφ(x)
is interpreted as “there are, modulo m, exactly k elements x satisfying
φ(x)”. This gives us the logic CMSOL.

The notion of quantifier rank qr(φ) of a formula φ extends naturally.
For technical reasons we give the quantifier Ck,m rank m. CMSOLq(τ)
denotes the set of CMSOL-formulas of quantifier rank at most q.
For a class of τ -structures K, ThqCMSOL(K) is the set of sentences
of CMSOLq(τ) true in all A ∈ K. A set σ ⊆ CMSOLq(τ) is a q-
complete theory if it is logically equivalent to ThqCMSOL(A) for some
finite τ -structure A.

The following is folklore. It forms the basis of our argument in
Section 4.

Lemma 2.1. Up to logical equivalence, CMSOLq(τ) is finite and there
are only finite many q-complete theories.

Proof. Here we use the fact that the quantifier rank qr(Ck,mφ) of Ck,mφ
is defined as qr(φ) +m. The rest is standard, cf. [EF95]. �

2.3. Expressive power. We look at graphs G = 〈V,E〉 as τ 1
graph-

structures. The edge relation E is the interpretation of binary relation
symbol RE, τ 1

graph = {RE}. The cardinality of G is the cardinality of

V . Sometimes graphs are made into τ 2
graph-structures U, V,E, S with

universe U = V t E, two unary relation V and E and a ternary inci-
dence relation S, hence τ 2

graph = {PV , PE, RS}. The cardinality of such
a graph is the sum of the cardinalities of V and E, which is unnatural
for the spectrum problem. But in Section 7 we shall look at this case
more closely.

All the non-definability statements in the examples below can be
proved using Ehrenfeucht-Fräıssé games. The definability statements
are straightforward.

Example 2.2. Typical graph theoretic concepts expressible in FOL are
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(i) The presence or absence (up to isomorphism) of a fixed subgraph
H.

(ii) The presence or absence (up to isomorphism) of a fixed induced
subgraph H.

(iii) fixed lower or upper bounds on the degree of the vertices (hence
also r-regularity).

Example 2.3. Typical graph theoretic concepts expressible in MSOL
but not in FOL are

(i) Connectivity, k-connectivity, reachability.
(ii) k-colorability (of the vertices).

(iii) The classes of grids Grids, SGrids, TGrids, when considered
as simple graphs.

(iv) The presence or absence of a fixed topological minor. This in-
cludes planarity.

(v) The presence or absence of a fixed minor. This includes pla-
narity. and more generally, graphs of a fixed genus g.

Example 2.4. Typical graph theoretic concepts expressible in CMSOL
but not in MSOL are

(i) The existence of an Eulerian circuit (path),
(ii) The size of a connected component is a multiple of k.

(iii) The number of connected components is a multiple of k.

Example 2.5. The following are not MSOL-definable classes of
graphs:

(i) The existence of a Hamiltonian circuit or path is not definable
in CMSOL(τ 1

graph), but it is in MSOL(τ 2
graph).

(ii) The class of partial grids, i.e., spanning subgraphs of the
grids Grid, is not MSOL(τ 1

graph)-definable, and not even

CMSOL(τ 2
graph)-definable, cf. [Rot98].

2.4. Complete theories of disjoint unions. The disjoint union of
two τ -structures A and B is denoted by A tB.

In [Cou90], Courcelle showed that an analogue of a Theorem of Beth,
[Bet54]5 holds for CMSOL.

Theorem 2.6 (Courcelle 1990).
For every q ∈ N and every sentence φ ∈ CMSOLq(τ) one can compute
in polynomial time in the size of φ a sequence of sentences

〈ψA1 , . . . , ψAm, ψB1 , . . . , ψBm〉 ∈ CMSOLq(τ)2m

5This is a very special case of the Feferman-Vaught Theorem from [FV59], and its
generalizations by Gurevich and Shelah, cf. [She75, Gur79] . But this special case
suffices for our applications. For a history of the precursors of the Feferman-Vaught
Theorem, and its algorithmic applications , cf. [Mak01].
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and a boolean function Bφ : {0, 1}2m → {0, 1} such that

A tB |= φ

if and only if
Bφ(bA1 , . . . b

A
m, b

B
1 , . . . b

B
m) = 1

where bAj = 1 iff A |= ψAj and bBj = 1 iff B |= ψBj .

A detailed proof is found in [Cou90, Lemma 4.5, page 46ff].
From Theorem 2.6 we get

Corollary 2.7. Let A A′ and B B′ be τ -structures such that
ThqCMSOL(A) = ThqCMSOL(A′) and ThqCMSOL(B) = ThqCMSOL(B′).
Then ThqCMSOL(A tB) = ThqCMSOL(A′ tB′)

3. Tree-Width, Clique-Width and Patch-width

Here we define the notions of tree-width and clique-width, and a fur-
ther generalization, the patch-width6. The reader not so familiar with
graph theory may consult the encyclopedic [BLS99] for the terminology
used in the examples. However, to understand our main result, this is
not needed.

3.1. Tree-width. For a survey on tree-width see [Bod98] or [DF99].

Definition 3.1 (Tree-width). A k-tree decomposition of a graph G =
(V,E) is a pair ({Xi | i ∈ I}, T = (I, F )) with {Xi | i ∈ I} a family of
subsets of V , one for each node of T , and T a tree such that

(i)
⋃
i∈IXi = V .

(ii) for all edges (v, w) ∈ E there exists an i ∈ I with v ∈ Xi and
w ∈ Xi.

(iii) for all i, j, k ∈ I: if j is on the path from i to k in T , then
Xi ∩Xk ⊆ Xj.

(iv) for all i ∈ I, |Xi| ≤ k + 1.

A graph G is of tree-width at most k if there exists a k-tree decompo-
sition of G. A class of graphs K is a TW (k)-class iff all its members
have tree width at most k.

Given a graph G and k ∈ N there are efficient algorithms which
determine whether G has tree-width k, and if the answer is yes, produce
a tree decomposition, cf. [Bod97].

We can easily modify this definition for relational structures by that
(ii) in the above definition is replaced by

(ii-rel): For each r-ary relation R, if v̄ ∈ R, there exists an i ∈ I
with v̄ ∈ Xr

i .

Example 3.2. The following graph classes are of tree-width at most k:

6The second author has defined this some time ago, and it appears implicitely
in [CMR01] and [CM02]. A slightly more general notion appears in [Mak01].
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(i) Planar graphs of radius r with k = 3r.
(ii) Chordal graphs with maximal clique of size c with k = c− 1.

(iii) Interval graphs with maximal clique of size c with k = c− 1.

Example 3.3. The following graph classes have unbounded tree-width
and are all MSOL-definable.

(i) All planar graphs and the class of all planar grids Gm,n.
Note that if n ≤ n0 for some fixed n0 ∈ N, then the tree-width
of the grids Gm,n, n ≤ n0, is bounded by 2n0.

(ii) The regular graphs of degree 4 have unbounded tree-width.
To see this note that the grids Grid, SGrid, TGrid considered
as simple graphs, have unbounded tree-width, but the grids in
SGrid4 have bounded tree-width.

3.2. Clique-width. A k-coloured τ -structures is a τk = τ ∪
{P1, . . . , Pk}-structure where Pi, i ≤ k are unary predicate symbols
the interpretation of which are disjoint (but can be empty).

Definition 3.4. Let A be a k-coloured τ -structure.

(i) (Adding hyper-edges) Let R ∈ τ be an r-ary relation symbol.
ηR,Pj1 ,...,Pjr (A) denotes the k-coloured τ structure B with the
same universe as A, and for each S ∈ τk, S 6= R the interpre-
tation is also unchanged. Only for R we put

RB = RA ∪ {ā ∈ Ar : ai ∈ PA
ji
}.

We call the operation η hyper edge creation, or simply edge
creation in the case of directed graphs. In the case of undi-
rected graphs we denote by ηPj1 ,Pj2 the operation of adding the
corresponding undirected edges.

(ii) (Recolouring) ρi,j(A) denotes the k-coloured τ structure B with
the same universe as A, and all the relations unchanged but for
PA
i and PA

j . We put

PB
i = ∅ and PB

j = PA
j ∪ PA

i .

We call this operation recolouring.
(iii) (modification via quantifier free translation) More generally, for

S ∈ τk of arity r and B(x1, . . . , xr) a quantifier free τk-formula,
δS,B(A) denotes the k-coloured τ structure B with the same uni-
verse as A, and for each S ′ ∈ τk, S ′ 6= S the interpretation is
also unchanged. Only for S we put

SB = {ā ∈ Ar : ā ∈ BA}.

The operations of type ρ and η are special cases of the operation of type
δ.

Definition 3.5 (Clique-Width, [CO00, Mak01]).
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(i) Here τ = {RE} is symbol for the edge relation. Given a graph
G = (V,E), the clique-width of G (cwd(G)) is the minimal
number of colours required to obtain the given graph as an
{RE}-reduct from a k-coloured graph constructed inductively
from coloured singletons and closure under the following op-
erations:
(i.a) disjoint union (t)
(i.b) recolouring (ρi→j)
(i.c) edge creation (ηE,Pi,Pj)

(ii) For τ containing more than one binary relation symbol, we re-
place the edge creation by the corresponding hyper edge creation
ηR,Pj1 ,...,Pjr for each R ∈ τ .

(iii) A class of τ -structures is a CW (k)-class if all its members have
clique-width at most k.

Remark 3.6. If τ contains a unary predicate symbol U , the interpre-
tation of U is not affected by the operations recoloring or edge creation.
Only the disjoint union affects it.

A description of a graph or a structure using these operations is
called a clique-width parse term (or parse term, if no confusion arises).
Every structure of size n has clique-width at most n. The simplest
class of graphs of unbounded tree-width but of clique-width at most
2 are the cliques. Given a graph G and k ∈ N, determining whether
G has clique-width k is in NP. A polynomial time algorithm was
presented for k ≤ 3 in [CHL+00]. It remains open whether for some
fixed k ≥ 4 the problem is NP-complete. The recogniztion problem for
clique-width of relational structures has not been studied so far even
for k = 2.

Theorem 3.7 (Courcelle and Olariu, Glikson and Makowsky). Let K
be a TW (k)-class. Then

(i) If K is class of graphs, then K is a CW (m)-class with m ≤
2k+1 + 1.

(ii) In general, K is a CW (m′)-class with m′ ≤ f(k) for some
function f(k) = O(2p(k)) where p is a polynomial in k.

Remark 3.8. In contrast to TW (k), we do not know whether the class
of all CW (k)-graphs is MSOL-definable.

The following examples are from [MR99, GR00].

Example 3.9. The following graph classes are of clique-width at most
k:

(i) The cographs with k = 2.
(ii) The distance-hereditary graphs with k = 3.

(iii) The cycles Cn with k = 4.
(iv) The complement graphs C̄n of the cycles Cn with k = 4.
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The cycles Cn have tree-width at most 2, but the other examples have
unbounded tree-width.

Example 3.10. The following graph classes have unbounded clique-
width:

(i) The class of all finite graphs.
(ii) The class of unit interval graphs.

(iii) The class of permutation graphs.
(iv) The regular graphs of degree 4 have unbounded clique-width.

The grids Grid, SGrid, TGrid considered as simple graphs,
have unbounded clique-width, but, as stated before, the grids in
SGrid4 have bounded tree-width, hence bounded clique-width.

For more non-trivial examples, cf. [MR99, GR00].
To find more examples it is useful to note, cf. [MM03]:

Proposition 3.11. If a graph is of clique-width at most k and G′ is
an induced subgraph of G, then the clique-width of G′ is at most k.

3.3. Patch-width. Here is a further generalization of clique-width for
which our theorem still works. The choice of operation is discussed in
detail in [CM02].

Definition 3.12. Given a τ -structure A, the patch-width of G
(pwd(G)) is the minimal number of colours required to obtain S as an
{τ}-reduct from a k-coloured τ -structure inductively from fixed finite
number of τk-strcutures and closure under the following operations:

(i) disjoint union (t),
(ii) recoloring (ρi→j) and

(iii) modifications (δS,B).

A class of τ -structures is a PWτ (k)-class if all its members have patch-
width at most k.

A description of a τ -structure using these operations is called a patch
term.

Example 3.13.

(i) In [CO00] it is shown that if a graph G has clique-width at
most k then its complement graph Ḡ has clique-width at most
2k. However, its patch-width is also k as Ḡ can be obtained
from G by δE,¬E.

(ii) The clique Kn as a τ 1
graph-structure has clique-width 2. Con-

sidered as a τ 2
graph-structure it has clique-width c(n) and patch-

width p(n) where c(n) and p(n) are functions which tend to
infinity. This will easily follow from Theorem 7.4. For the
clique-width of Kn as a τ 2

graph-structure this was already shown
in [Rot98].
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Remark 3.14. In [CM02] it is shown that a class of graphs of patch-
width at most k is of clique-width at most f(k) for some function f .
It is shown in [FM03a] that this is not true for relational structures in
general.

As in the operation δS,B the formula B is quantifier free we have
directly.

Lemma 3.15. Let A and B be two τ -structures such that
ThkCMSOL(A) = ThkCMSOL(B). Then ThkCMSOL(δS,B(A)) =
ThkCMSOL(δS,B(B)).

As there are, up to logical equivalence, only finitely many quantifier
free τ -formulas with a fixed number of free variables, we get:

Lemma 3.16. For fixed finite relational τ , there are only finitely many
operations δS,B.

Remark 3.17. In the definition of patch-width we allowed only unary
predicates as auxiliary predicates (colours). We could also allow r-ary
predicates and speak of r-ary patch-width. The theorems where bounded
patch-width is required are also true for this more general case. The
relative strength of clique-width and the various forms of patch-width
are discussed in [FM03a].

For further use we note

Lemma 3.18. Let A be a τk-structure with universe A and with patch-
term t(A)7. Then the size of A is the sum of the sizes of the structures
which are labels of the leaves of t(A).

3.4. Classes of unbounded patch-width. Theorem 6.1 will give us
a method to show that certain classes K of graphs have unbounded
patch-width. Hence, as this is also true for every K ′ ⊇ K, the class of
all graphs is of unbounded patch-width.

Without Theorem 6.1 there was only a conditional proof of un-
bounded patch-width available. This used the following:

(i) Checking patch-width at most k of a structure A, for k fixed, is
in NP. Given a structure A, one just has to guess a patch-term
of size polynomial in the size of A.

(ii) Using the results of [Mak01] one gets that checking a
CMSOL(τ)-property φ on the class PWτ (k) is in NP, whereas,
by [MP96], there are ΣP

n -hard problems definable in MSOL for
every level ΣP

n of the polynomial hierarchy.
(iii) Hence, if the polynomial hierarchy does not collapse to NP, the

class of all τ -structures is of unbounded patch-width, provided
τ is large enough.

7By abuse of notation we write for the patch-term t(A) rather than t(A).
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Problem 3.19. What is the complexity of checking whether a τ -
structure A has patch-width at most k, for a fixed k?

3.5. Clique-width and graph grammars. It follows from [GM03],
that in the case of graph languages generated by eNCE-grammars,
an upper bound of the clique-width of a graph can be computed in
polynomial time from a derivation tree of the graph. On the one hand
the upper bound obtained does not depend on the particular derivation
(only on the grammar), but on the other hand, the upper bound may
be far from optimal.

In [CM02] the classes of graphs generated by C − NCE-grammars
(context-free VR-grammars) are characterized as those defined as the
least solution of systems of recursive set equations based on the op-
erations used in the definition of clique-width. Also in [CM02], based
on [CE95, Cou95, Cou92, EvO97], a characterization of context-free
Hyperedge Replacement grammars (HR-grammars) is given in similar
terms adapted to the operations used in computing a graph from its
tree decomposition (disjoint union, renaming and fusion).

4. Reduction to MSOL-definable classes of labeled trees

In this section we prove the main lemma needed for the proof of The-
orem 1.7 and its generalizations. The lemma is a generalization of a
theorem due to B. Courcelle, [Cou95, Theorem 3.2], which is phrased in
terms of graph grammars, MSOL-definable transductions of recogniz-
able trees, cf. also [Cou97]. Our presentation is purely model theoretic
and self-contained.

Let φ ∈ CMSOLq(τ). For each τk-structure A of patch-width at
most k with patch-width parse term t(A) we construct a labeled Σ-tree
t(t(A)), where Σ depends only on τ , q and k.

Lemma 4.1 (Main Lemma). Let φ ∈ CMSOLq(τ). There is a set of
labels Σφ, and sentence ψ ∈ MSOL over Σφ-trees, such that for every
A of patch-width at most k

A |= φ iff t(t(A)) |= ψ

The proof has two parts: the construction of the labeling and the
construction of φ.

4.1. The labelings. The parse term t(A) is itself a labeled binary tree
where

(i) the leaves are each labeled with one of finitely many τk-
structures Aa : a ∈ A for some finite set A;

(ii) the internal nodes of degree 2 are all labeld by t;
(iii) the internal nodes of degree 1 are labeled by one of the finite

many possibilities of the versions of δb, b ∈ τ × FOL0(τk) .
(iv) We denote the set of labels used so far by Σ0.
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By Lemma 3.16 we note that Σ0 is finite.
Let σ1, σ2 be q-complete theories. So there are A1,A2 with σi logically

equivalent to ThqCMSOL(Ai), i = 1, 2 respectively. We denote by σ1tσ2

the q-complete CMSOL-theory of A1 t A2. This is well defined, by
Corollary 2.7. We proceed similarly for δS,B(A) and denote by δS,B(σ1)
the q-complete CMSOL-theory of δS,B(A1). This is justified by Lemma
3.15.

We now add inductively new labels to t(A). The set of new labels will
be denoted by Σ1. The labels σ ∈ Σ1 are q-complete CMSOL-theories.
Here we use Lemma 2.1. Recall that Let φ ∈ CMSOLq(τ).

(i) the leaves with Σ0 label A are each labeled with ThqCMSOL(A).
(ii) the internal nodes d of degree 2 where s1(d) has Σ1-label σ1 and

s2(d) has Σ1-label σ2, have Σ1-label σ1 t σ2.
(iii) the internal nodes d of degree 1 where d has Σ0-label δS,B and

s1(d) has Σ1-label σ, have Σ1-label δS,B(σ).

We put Σφ = Σ0 × Σ1. The labeled tree t(t(A)) is now the Σφ-tree
obtained from t(A) as defined above.

4.2. The MSOL-sentence. ψ is the conjunction of the following
statements:

(i) t is a Σφ-tree.
(ii) The leaves have one of the finitely many labels (A, σA) with

σA = ThqCMSOL(A).

(iii) The finite set of FOL-sentences describing inductively the la-
beling.

(iv) The Σ1-label of the root is one of the σ’s with σ |= φ.

Only (i) is an MSOL-sentence, all the others are FOL-sentences.
Clearly every t with t |= ψ is a parse tree of some structure A which

satisfies φ. This completes the proof of Lemma 4.1. �

5. The pumping lemma for MSOL-definable classes of
trees

In this section we present a pumping lemma for MSOL-definable
classes of trees as we need it in the sequel. We take the material
from [GS97]. But we eliminate some automata theoretic terminol-
ogy, namely the notion of recognizable sets of labeled trees. In [GS97],
Proposition 12.2 states that a class of labeled trees T (viewed as rela-
tional structures) is MSOL-definable iff T (viewed as terms) is recog-
nizable. But Proposition 5.2. states that a class of recognizable labeled
trees T has the pumping property. So here we state the pumping prop-
erty directly for binary trees viewed as relational structures.

Definition 5.1 (Labeled trees).
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(i) A labeled (binary) tree structure is a structure of the form

t = 〈D,<, s1, s2, {Pz : z ∈ Σ}〉
where D is the domain of the tree, < is a partial order, s1 and
s2 are (binary) successor relations, Σ is a finite set of labels,
and for every z ∈ Σ, Pz are disjoint unary predicates. We call
these structures Σ-trees and denote the the set of Σ-trees by TΣ.
The unary predicates Pz, z ∈ Σ are the labels.

(ii) s1 and s2 are partial one-one functions and the partial order <
is the transitive closure of s1 ∪ s2. Moreover, there exists no
u 6= v such that s1(u) = s2(v).

(iii) The root is the only element which is not a successor.
(iv) The leaves are the elements which have no successor.
(v) The height of t, denoted by hg(t), is defined inductively: leaves

have height 0, and hg(d) = 1+max{hg(s1(d)), hg(s2(d))}. This
includes the case when d has only one successor.

(vi) t′ is a subtree of t, if it is a substructure which is closed under
the successor relations.

(vii) Every node of the tree carries a label.

We want to define an analogue to concatenation of words for trees.
The idea is to mark a distinguished leaf and attach a new tree at this
leaf. We make this precise:

Definition 5.2.

(i) Let ξ 6∈ Σ. A Σ-context is a (Σ ∪ {ξ})-tree, where Pξ consists
of a unique leaf. We denote the set of Σ-contexts by CtΣ.

(ii) Let p ∈ CtΣ∪TΣ and q ∈ CtΣ. We denote by p ·q the Σ-context
or Σ-tree obtained by substituting the ξ appearing in q by p. If
p ∈ CtΣ we obtain a context, if p ∈ TΣ we obtain a tree.

(iii) For p ∈ CtΣ we denote by pk the context p · p · . . . · p︸ ︷︷ ︸
k

.

(iv) p′ is subcontext of p if it is a subtree with the same interpretation
of ξ.

As we shall use some details of the following Pumping Lemma in
Section 7, we have to set up some terminology.

Definition 5.3. Let K be a class of finite Σ-trees. A context p ∈ CtΣ
with 1 ≤ hg(p) is a pump for a tree t ∈ K if there are s ∈ TΣ and
q ∈ CtΣ such that

(i) t = s · p · q;
(ii) for every k ∈ N the tree t′ = s · pk · q ∈ K.

A pump p for T ∈ K is minimal if it does not have a subcontex p′ which
is also a pump for t. We denote by MinPump(K) the set of minimal
pumps for K.
If no ambiguity arises, we just speak of a pump for K.
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Proposition 5.4 (Pumping lemma). Let K be a class of finite Σ-trees
defined by an MSOL-sentence φ.

(i) Then there is a number n ∈ N, n ≥ 1 which depends only on φ
such that, if t ∈ K and hg(t) ≥ n, then t has a pump for K
with hg(p) ≤ n.

(ii) MinPump(K) is finite.

Proof. (i) is Proposition 5.2 from [GS97].
(ii) follows easily from (i) and the fact that the number of trees of
height ≤ n is finite. �

We shall need in Section 7 a stronger version of the Pumping Lemma,
where we have several independent pumps.

Definition 5.5. Let K be a class of finite Σ-trees and t ∈ K. The
contexts p1, p2, . . . , pm ∈ CtΣ are independent pumps in t for K if
there exist contexts q1, q2, . . . , qm ∈ CtΣ and trees s1, s2, . . . , sm ∈ TΣ

such that for each i ≤ m we have t = si · pi · qi, the vertices of the
pi’s in t are pairwise disjoint, and the pi’s are simultaneous pumps for
t, i.e. if t′ is the tree obtained from t by replacing p1, p2, . . . , pm by
pk11 , p

k2
2 , . . . , p

km
m simultaneously, then t′ ∈ K.

Remark 5.6. Without making it clearer, one should really define the
occurrences of the pi’s in t, possibly as multiple contexts, and then
proceed with an inductive definition of simultaneous substitution.

Theorem 5.7 (Independent Pumping Lemma). Let K be an MSOL-
definable class of Σ-trees. Let t ∈ K with m independent pumps
p1, . . . , pm in t for K. There is a number n = n(K, p1, . . . , pm) such that
if hg(t) ≥ n then there is another pump p in t such that p, p1, . . . , pm
are independent pumps in t for K.

Proof. Same techniques as for Theorem 5.4. �

6. The main theorem and some applications

6.1. Main theorem. Our most general theorem can now be stated:

Theorem 6.1. Let φ ∈ CMSOLq(τ) be such that all its finite models
have patch-width at most k. Then there are m0, n0 ∈ N such that if φ
has a model of size n ≥ n0 then φ has also a model of size n+m0.

Proof. W.l.o.g., we can assume that φ has arbitrarily large models.
Let Kφ consist of all the tree presentations t(t(A)) of models A of φ.
Using Lemma 4.1, all models do have tree presentations and there are
Σφ-trees t |= ψ of arbitrarily large height.

We now apply the Pumping Lemma (Proposition 5.4). There is a
number n1 ∈ N, n1 ≥ 1 such that, if t |= ψ and hg(t) ≥ n1, then for
some s ∈ TΣφ and p, q ∈ CtΣφ with hg(p) ≥ 1 and p ∈MinPump(Kφ)
we have



SPECTRA OF CMSOL-SENTENCES 19

(i) t = s · p · q,
(ii) hg(p) ≤ n1, and

(iii) for t(k) = s · pk · q we have for every k ∈ N the tree t(k) |= φ.

Let n be the size of A with t = t(t(A)). Let m(p) be the sum of the
sizes of the structures which are labels of the leaves of p, i.e., all the
leaves but the one labeled ξ.

Let Bk with t(k) = t(t(Bk)). Then the size of Bk is n+ (k− 1)m(p).
To complete the proof, let m0 be the least common multiplier of the

finite set of numbers {m(p) : p ∈MinPump(Kφ)}. �

From this we get immediately:

Corollary 6.2. Let φ ∈ CMSOLq(τ) be such that all its finite models
have patch-width at most k. Then spec(φ) is ultimately periodic.

Theorems 1.4 and 1.7 now follow immediately, as from the parse
terms for tree-width or clique-width we can get the parse terms for
patch-width, cf. [CO00, GM03].

6.2. Applications. From Theorem 6.1 we get immediately a criterion
for classes of structures to have unbounded patch-width.

Corollary 6.3. Let φ be FOL(τ)-sentence with a non-linear poly-
nomial spectrum. Then Mod(φ) is of unbounded patch-width (resp.
clique-width, tree-width).

We want to use this to show that indeed most first order spectra
cannot be represented by sentences with models of bounded patch-
width. This is of interest, as it represents so far the only methods of
proving that a class K contains structures of unbounded patch-width.

Definition 6.4. Let f : N → N be a function. A spectrum is an f -
spectrum if it is of the form {f(n) : n ∈ N}. A spectrum is polynomial
if it is a g-spectrum for some polynomial g ∈ Z[x] with all its values in
N.

Clearly, a polynomial spectrum is ultimately periodic iff g is a linear
function.

Example 6.5.

(i) Let φsq(τ) be with relation symbols τ = {U, S}, U unary and
S ternary. Let φsq say in a structure A that SA is a bijection
between (UA)2 and A − UA. Then the spectrum of φsq is an
f -spectrum with f(n) = n2 + n.

(ii) The FOL-sentence axiomatizing fields of characteristic p has
an f -spectrum with pn+1.

In [Mor94] it is shown:
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Theorem 6.6 (M. More, 1994). Let g ∈ Z[x] with all its values in N.
Then there is an FOL-sentence φg with spectrum spec(φg) = {g(n) :
n ∈ N}.

Corollary 6.7. For each g ∈ Z[x] with all its values in N, the sentence
φg of Theorem 6.6 has models of arbitrarily large patch-width.

7. Many-sorted spectra

In this section we want to analyze spectra of many-sorted structures.
Our motivation stems from the representation of graphs as two-sorted
structures with vertices and edges as elements and an incidence rela-
tion. The vocabulary corresponding to this was denoted in Section 2.3
by τ 2

graph.

7.1. Many-sorted structures. Let s ∈ N. An s-sorted vocabulary
τ is a relational vocabulary which contains s unary relation symbols
U1, . . . Us. The Ui : i ≤ s are called sort predicate symbols. To simplify
notation we represent s-sorted τ -structures A as structures with one
universe A, s unary (sort)-predicates UA

1 , . . . U
A
s with

⋃s
i=1 U

A
i = A

and for each i 6= j UA
i ∩ UA

j = ∅. As A 6= ∅ at least one Ui has to be
non-empty. A is finite if A is finite. A structure is many-sorted if it is
s-sorted for some s ≥ 2. The size msizes(A) of an s-sorted structure
is the vector (| UA

1 |, | UA
2 |, . . . , | UA

s |).
k-coloured many-sorted structures have additionally k unary relation

symbols which are different from the sort predicate symbols. The defi-
nition of tree-width, clique-width, and patch-width can now be applied
verbatim.

7.2. Many-sorted spectra.

Definition 7.1. (i) Let A be a finite s-sorted structure. The
many-sorted size msize(A) is the s-vector n̄ = (n1, . . . n2) with
ni =| UA

i |.
(ii) The s-sorted spectrum of a τ -sentence φ is the set of s-tuples

mspecs(φ) = {n̄ ∈ Ns : there is A |= φ with msize(A) = n̄}

(iii) For j ≤ s we denote by specj(φ) the set

specj(φ) = {n ∈ N : there is A |= φ with | UA
j |= n}

(iv) A set X ⊆ Ns is an arithmetic ray in Ns if there are ā, b̄ ∈ Ns

with

X = Aā,b̄ = {(a1 + k · b1, . . . , as + k · bs) ∈ Ns : k ∈ N}

Singletons are arithmetic rays with b̄ = 0̄. If b̄ 6= 0̄ the ray is a
proper ray.
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(v) A set X ⊆ Ns is linear in Ns iff there is vector ā ∈ Ns and a
matrix M ∈ Ns×r such that

X = Aā,M̄ = {b̄ ∈ Ns : there is ū ∈ Nr with b̄ = ā+M · ū}
Singletons are linear sets with M = 0. If M̄ 6= 0 the series is
nontrivial.

(vi) X ⊆ Ns is semilinear in Ns iff X is a finite union of linear sets
Ai ⊆ Ns.

Example 7.2. For p ∈ N the set

Xp = {(m,n) : there is k ∈ N with m = k · p,m ≤ n}
is a countable union of proper arithmetic rays and also a linear set.
Note that every linear set is a countable union of arithmetic rays, but
not conversely.

Inspecting the proof of Theorem 6.1 and using Remark 3.6 we get
immediately:

Proposition 7.3. Let τ be an s-sorted vocabulary and φ ∈ CMSOL(τ)
with all its models of patch-width at most k. Then the many-sorted
spectrum mspecs(φ) is a countable union of proper arithmetic rays and
a finite number of singletons.

To get the following characterization one has to work a bit harder.

Theorem 7.4. Let τ be an s-sorted vocabulary and φ ∈ CMSOL(τ)
with all its models of patch-width at most k. Then the many-sorted
spectrum mspecs(φ) is a semilinear set.
In particular, for every s′ ⊆ s, all the spectra specs′(φ) are semilinear
sets in Ns′.

Proof. We use Lemma 4.1. Let φ the MSOL-sentence over Σφ-trees
encoding the models of φ, and let K = Mod(φ). MinPump(K) is
finite by Lemma 5.4(ii). Let A be the finite set of structures with
t(t(A)) ∈MinPump(K). Finally, let

P = {p̄ ∈ Ns : p̄ = sizes(B) and t(t(B)) ∈MinPump(K)}
with | P |= rP . Let X be the s-spectrum of φ. Let X be the set
of maximal linear sets Y ⊆ X of the form Aā,M , defined by ā ∈ Ns

and M ∈ Ns×r′ , with r′ ≤ rP , which result from pumping in a single
structure the independendent pumps p1, . . . , pr corresponding to the
column vectors of M , which are from P ∪ {0̄}.

Claim 1. There are only finitely many such matrices M .

Define XM ⊆ X by

{Y ∈ X : there is ā ∈ Ns such that Y = Aā,M}
Obviously we have
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Claim 2. X =
⋃
X .

Claim 3. X is finite.

Assume otherwise. Using Claim 1, we conclude that for some M
also XM is infinite. Using Theorem 5.7, there is some A |= φ such that
sizes(A) = ā with Aā,M = XM such that t = t(t(A)) = s′ · p · q′ has a
pump p, such that p, p1, . . . , pr are independent pumps in t for K.

Let B be a structure such that t(t(B)) = p. Denote by p̄ = sizes(B)

Case 1. p̄ is a linear combination of column vectors of M with coeffi-
cients in N.

Let A′ be the structure such that

t(t(A′)) = t′ = s′ · p0 · q′ = s′ · q′

and ā′ = sizes(A
′). Then Aā,M is a proper subset of Aā′,M , which

contradicts the maximality of Aā,M .

Case 2. p̄ is not a linear combination of column vectors of M with
coeeficients in N.

Then r′ < rP , Let M ′ be the matrix obtained from M by adding p̄
as a new column to M . Then Aā,M is a proper subset of Aā,M ′ , which
contradicts the maximality of Aā,M . �

The converse is also true, even for FOL-definable classes where all
the models are of bounded tree-width. As we have in general specs(φ)∪
specs(ψ) = specs(φ ∨ ψ) it suffices to show that every linear set is a
spectrum.

Theorem 7.5. Let k, s ∈ N and ā ∈ Ns,M ∈ Ns×r, and M linear.
There is an s-sorted FOL(τ)-sentence φ such that

(i) All sufficiently large models of φ of have tree-width exactly k.
(ii) specs(φ) = Aā,M

This follows immediately from the following

Lemma 7.6. Let G0, G1, . . . , Gt be a set of pairwise distinct connected
s-sorted graphs (that is, s-sorted structures with one binary edge rela-
tion). Let K be the class of s-sorted graphs whose universe consists of
exactly one copy of G0, and of any number of disjoint copies of graphs
from G1, . . . , Gt. Then K is FOL-definable.

Proof. Let g(j) be the size of V (Gj) for 0 ≤ j ≤ t, and set
g = max0≤j≤t g(j). For any s-sorted graph G with n vertices, let
φG(v1, . . . , vn) be an FOL-formula which says that the s-sorted graph
induced by the vertices v̄ = (v1, . . . , vn) is isomorphic to G. We also let
θn(v1, . . . , vn) be the FOL sentence stating that {v1, . . . , vn} is a con-
nected component (the sizes of both φG and θn depend on the number
of variables). Our FOL formula is the conjunction of the following.
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(i) There exist no connected components of size greater than g;
this is definable by

∀v1∃v2, . . . , vgψ(v1, . . . , vg),

where ψ is the disjunction of all possible θn statements on sub-
sets of v1, . . . , vg which include v1.

(ii) Every connected component of size g or less is isomorphic to
one of G0, . . . , Gt; this is definable by forbidding any connected
component of size 1 ≤ j ≤ g for j 6∈ {g(0), . . . , g(t)}, and for
j ∈ {g(0), . . . , g(t)} stating that θj(v1, . . . , vj) implies that the
spanned induced subgraph is one of the appropriate Gi (with a
disjunction of the corresponding φGi predicates).

(iii) There exist v1, . . . , vg(0) such that

θg(0)(v1, . . . , vg(0)) ∧ φG0(v1, . . . , vg(0)).

(iv) There exist no v1, . . . , v2g(0) for which

θg(0)(v1, . . . , vg(0)) ∧ φG0(v1, . . . , vg(0))∧
θg(0)(vg(0)+1, . . . , v2g(0)) ∧ φG0(vg(0)+1, . . . , v2g(0)).

�

Proof of Theorem 7.5. We let G1, . . . , Gr each be an s-sorted tree, for
which the number of vertices of each sort corresponds to a column of
A. If ā is sufficiently large in terms of the sum of its coordinates, then
we let G0 be any s-sorted graph of tree-width exactly k, and use the
class K of the lemma above to obtain our first order sentence, in which
the number of vertices of each sort corresponds to ā.

If ā is not large enough, then it is easy find ā1, . . . , āl such that each
of them is large enough to admit a corresponding s-sorted graph of
tree-width k, and satisfying also that

⋃l
i=1Aāi,M ⊂ Aāi,M , and that

Aāi,M \
⋃l
i=1Aāi,M is finite. We then let our first order sentence be the

conjunction of the sentences for Aāi,M , with explicit descriptions of the

finite number of models corresponding to Aāi,M \
⋃l
i=1Aāi,M . �

7.3. Many-sorted spectra and Parikh’s Theorem. Spectra of
many-sorted structures are similar to Parikh Mappings in the case of
words, cf. [Hab92, Chapter IV.4]. Parikh Mappings associate with
each word w over an alphabet Σ = {a1, . . . , as} with s letters a vec-
tor n(w) = (n1(w), . . . ns(w)) ∈ Ns where ni(w) denotes the num-
ber of occurences of ai in w. For a language L ∈ Σ∗, we define
Par(L) = {n(w) : w ∈ L}. This definition is easily adapted to vertex-
labeled graphs.
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Parikh’s Theorem (Theorem 1.9) from the introduction asserts that
for a context-free language L, the set Par(L) is semilinear. A. Ha-
bel generalized Parikh’s Theorem to hyperedge-replacement graph lan-
guages, [Hab92], and B. Courcelle extended this to context-free vertex-
replacement graph languages, [Cou95]. Our Theorem 7.4 can be viewed
as another variation of Parikh’s Theorem, as stated in the introduction
as Theorem 1.10.

7.4. Application to graph theory. Here we want to compare spec-
tra of graphs viewed as τ 1

graph and as τ 2
graph-structures8. We call the

many-sorted spectrum here the vertex-edge spectrum, and the spectra
of the particular sorts vertex-spectrum and edge-spectrum respectively.
From Courcelle’s and our work we know the following, cf. [CMR01]:

Let G = 〈V,E〉 be a graph viewed as a τ 1
graph-structure. Let tr(G) =

A be the τ 2
graph-structure with universe UA = V tE, PA

V = V , PA
E = E

and RA = {(u, e, v) ∈ V × E × V : e = (u, v) ∈ E}. Let K1 be a class
of τ 1

graph-structures and let K2 = {tr(G) : G ∈ K1} the corresponding

class of τ 2
graph-structures.

Proposition 7.7.

(i) If K1 is MSOL-definable (CMSOL-definable), so is K2.
(ii) The class of Hamiltonian graphs is MSOL-definable as a class

of τ 2
graph-structures, but not CMSOL-definable as a class of

τ 1
graph-structures.

(iii) If K1 is of bounded tree-width, so is K2.
(iv) The class of cliques is of clique-width at most 2 as a class of

τ 1
graph-structures, but of unbounded patch-width as a class of

τ 2
graph-structures, cf. Example 6.5.

Hence we get from Theorem 7.4 and Proposition 7.7

Corollary 7.8. Let K be a class of graphs as τ 2
graph-structures defined

by φ ∈ CMSOL(τ 2
graph) which is of bounded patch-width. Then the

spectra mspecve(φ), specv(φ), spece(φ) are semilinear, respectively ulti-
mately periodic.

7.5. Guarded Second Order Logic. As we have seen concerning the
difference between τ 1

graph and τ 2
graph, MSOL as a logic is very sensitive

to the choice of representations of graphs and the choice of vocabulary
in general, cf. also [Cou97]. A more stable version is Bounded Second
Order Logic BSOL, introduced in [Mak99], which also appears under
the name of Guarded Second Order Logic GSOL in [GHO00]. Here we
can quantify over subsets of the basic relations as well. More precisely,
GSOL (CGSOL) is obtained from MSOL (CMSOL) by adding in
the inductive definition of formulas the clause:

8B. Courcelle has studied the difference in the expressive power of MSOL for
these two vocabularies in [Cou94].
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For R ∈ τ and S a second order variable of the same
arity as R, ∃S ⊆ Rφ is an CGSOL(τ)-formula whenever
φ is an CGSOL(τ)-formula.

By changing the vocabulary such that tuples of the old relations
become elements of the new structure and by introducing many binary
relations for the projections of these tuples we can reduce GSOL to
MSOL. In the case of the binary edge relation of graphs G = 〈V,E〉
this corresponds to the passage from G to the incidence graph I(G).

Definition 7.9. The incidence graph of G = 〈V,E〉 is a bipartite graph
I(G) = 〈I(V ), I(E)〉 of edges and vertices of G with I(V ) = V ∪E and
for e = (v, w) (v, w) ∈ E iff (v, e) ∈ I(E) and (w, e) ∈ I(E). In other
words we replace every edge in E by a path of length 2.

Remark 7.10. If we replace the binary edge relation EG
I of I(G) by

the ternary relation relation RG defined by (u, e, w) ∈ RG iff both
(u, e), (w, e) ∈ EG

I , we get exactly the passage from tau1
graph -structures

to tau2
graph,

Furthermore, it seems to be folklore9 that

Proposition 7.11. If G is an undirected graph and has tree-width at
most k, then its incidence graph I(G) has also tree-width at most k.

Proof. We take a k-tree decompostion of G. where the nodes of the tree
are the subsets Vt of V (G). Choose for each edge e of G the uppermost
node in the tree decomposition where the edge e occurs first. To this
node we attach a new son Ve which contains three vertices of I(G), the
edge e and its two end points. For k ≥ 2 this gives k-tree decomposition
of I(G). If k = 1, G is a forest, and so is I(G). Hence I(G) also has a
1-tree decomposition. �

Remark 7.12. Using Theorem 7.4 we see that the patch-width of the
incidence graphs of cliques is unbounded, because the edge spectrum
grows quadratically. But the clique-width of the cliques is 2. In fact, in
general, the clique-width cw(I(G)) of I(G) is not bounded by a function
of cw(G).

For arbitrary relational structures we proceed as follows:

Definition 7.13. Let τ{R1, . . . , Rm} be a vocabulary and denote
by ρ(Ri) the arity of Ri ∈ τ . Denote by τI{S1, . . . , Sm} the vo-
cabulary obtained from τ with ρ(Si) = ρ(Ri) + 1. The incidence
structure of a τ -structure A is a two-sorted τI-structure I(A) =

〈I(A), P
I(A)
A , P

I(A)
rel , S

I(A)
i : i ≤ m〉 of hyperedges and vertices with

I(A) = A t
⊔
i≤mA

ρ(Ri), P
I(A)
A = A, P

I(A)
rel =

⊔
i≤mA

ρ(Ri), and for

e ∈ P I(A)
rel we have e = ā ∈ RA

i iff (ā, e) ∈ SI(A)
i .

9As was pointed out by the referee.
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Using this definition we get easily:

Proposition 7.14. (i) For every formula φ ∈ CGSOL(τ) one can
compute a formula tr(φ) ∈MSOL(τI) such that

A |= φ iff I(A) |= tr(φ)

(ii) If the tree-width of A is at most k, then also the tree-width of
I(A) is at most k.

We note that a similar argument as in Remark 7.12 shows that in
general the clique-width cw(I(A)) of I(A) is not bounded by a function
of cw(A).

Using Theorem 7.4 and Proposition 7.14 we get

Theorem 7.15. Let φ ∈ CGSOL(τ) be such that all its models are of
tree-width at most k. Then the spectrum of φ is ultimately periodic.

8. Conclusions and open problems

We have shown that the many-sorted spectra of CMSOL-sentences
φ are ultimately s-periodic provided the models of φ are all of bounded
patch-width, a generalization of tree-width and clique-width known
from graph theory.

Our proofs are quite non-constructive, although very unfeasible
bounds for the ultimate periodicity can be computed. These bounds
depend only on the vocabulary τ , the quantifier rank q and the width
under consideration, k, but are the same for all φ ∈ CMSOLq(τ).

Problem 8.1. Find better estimates, exploiting features of φ as well.

We have also shown that every ultimately s-periodic set X ⊆ Ns can
be realized as an s-sorted FOL-spectrum with all large enough models
of given tree-width exactly k.

We could think of sharpening this. Assume φ is an FOL(τ)-sentence
with s-ultimately periodic spectrum. Is there a finite axiomatizable
theory interpretable in the deductive closure of φ with the same spec-
trum, and all its models of bounded tree-width (clique-width or patch-
width)? More precisely:

Problem 8.2. Assume φ is an FOL(τ)-sentence with an s-ultimately
periodic spectrum. Is there a vocabulary σ = {S1, S2, . . . , Sm} with Si of
arity ρi, an FOL(σ)-sentence ψ, and FOL(τ)-formulas θi(x1, . . . , xρi)
such that

(i) mspecs(φ) = mspecs(ψ);
(ii) All models of ψ are of tree-width at most k for some k depending

on φ;
(iii) φ |= ψ |θiSi.

Here the θi’s define the interpretation and ψ |θiSi is the result of substi-
tuting the Si’s by the θi’s with appropriate choices of free variables.



SPECTRA OF CMSOL-SENTENCES 27

For one-sorted spectra we have that the complement of an ultimately
periodic set X ⊆ N is also ultimately periodic. Hence Asser’s question
has a positive answer for FOL-sentences φ where all its models are of
bounded patch-width.

For semilinear sets in Ns, s ≥ 2, the following was shown by S. Gins-
burg and E.H. Spanier in [GS66]:

Proposition 8.3. The family of semilinear sets in Ns is closed under
finite boolean operations.

Hence we have, using Proposition 8.3 together with Theorem 7.5:

Corollary 8.4. The complement Ns − mspec(φ) of an s-sorted spec-
trum of an FOL-sentence φ, where all its models are of patch-width at
most k, is also a many-sorted spectrum. In fact it may be taken from
an FOL-sentence where all the models are of tree-width at most 1.

However, without the assumption on patch-width, the following re-
mains open:

Problem 8.5. Is the complement of a many-sorted spectrum of an
FOL-sentence also a many-sorted spectrum of an FOL-sentence?

Finally, we may want to count the number Nφ(n) of labeled models
of φ of fixed cardinality n, rather than look at the spectrum. The
remarkable Specker-Blatter Theorem, [Spe88], says that for every m ∈
N the function Nφ(n) is ultimately periodic modulo m, provided φ ∈
MSOL(τ) where τ contains only unary and binary relation symbols.

Theorem 8.6 (Specker and Blatter, 1981). Let φ ∈ MSOL(τ) where
τ contains only unary and binary relation symbols. For every m ∈ N,

there are dm, a
(m)
j ∈ N such that the function Nφ satisfies the linear

recurrence relation Nφ(n) ≡
∑dm

j=1 a
(m)
j Nφ(n− j) (mod m), and hence

is ultimately periodic modulo m.

Fischer showed that this does not hold even for FOL-sentences if
we allow quaternary relation symbols, [Fis03]. In [FM03b] we showed
that it does hold for φ ∈ CMSOL for arbitrary relational vocabularies
provided the relations have all bounded degree. For structures of size
n of tree-width at most k the number of hyperedges is bounded by a
function O(n). This is not true for bounded clique-width. Hence we
ask

Problem 8.7. Does the Specker-Blatter Theorem hold for φ ∈
CMSOL provided all its models are of tree-width at most k?

S. Shelah in [She04] looks at decomposability conditions to obtain
an analysis of the spectrum. We give here the definitions which allow
us a comparison of the results.

Definition 8.8. Let A be a τ -structure and k ≤ m ∈ N.
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(i) A is (k,m)-decomposable, if it has size at least k + 2 and there
are τ -structures B,C, both of size at least m, such that A =
B ∪ C and B ∩ C has at most k elements.

(ii) A class K of τ -structures is k-decomposable10, or is a Dτ (k)-
class, if for every m ∈ N there is an n ∈ N such that every
A ∈ K of size at least n is (k,m)-decomposable.

Observation 8.9. Clearly, a k-tree decomposition of a structure A of
size at least k+2 can be used to show that A is (k, k+2)-decomposable.
Furthermore, if K is in TW (k) and has arbitrarily large finite struc-
tures then K is in D(k + 1).

S. Shelah in [She04] studies the spectrum of φ ∈ MSOL(τ) where
all the models are in Dτ (k) for some k. However, he does not prove
ultimate periodicity for this case, but does gain some structural infor-
mation concerning the gaps in the spectrum.

Definition 8.10. Let φ ∈ CMSOL. We define the function

gapφ(n) = Mint{t ∈ spec(φ) : t ≥ n}

Theorem 8.11 (Shelah 2003). If φ ∈ MSOL(τ) such that its finite
models are in Dτ (k), and α > 0 is a real number, then for n ∈ N large
enough

gapφ(n)

n+ 1
< (1 + α).

In comparison to Shelah’s Theorem, we get the following immediately
from Lemma, 4.1, Lemma 5.4 and the proof of Theorem 6.1 for classes
of bounded patch-width.

Corollary 8.12. If φ ∈ MSOL(τ) such that φ has arbitrarily large
finite models in PWτ (k), then there is a real β > 0 such that for n ∈ N
large enough

gapφ(n)

n+ 1
<
β

n
.

Problem 8.13. What is the exact relationship between the class
PWτ (k) of τ -structures of patch-width at most k and the corresponding
class Dτ (k)?

**********
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[BLS99] A. Brandstädt, V.B. Le, and J. Spinrad. Graph Classes: A survey. SIAM
Monographs on Discrete Mathematics and Applications. SIAM, 1999.

[Bod93] H. Bodlaender. A tourist guide through tree width. Acta Cybernetica,
11:1–23, 1993.

[Bod97] H. Bodlaender. Treewidth: Algorithmic techniques and results. In
I. Privara and P. Ruzicka, editors, Proceedings of the 22th Interna-
tional Symposium on the Mathematical Foundation of Computer Sci-
ence, MFCS’97, volume 1295 of Lecture Notes in Computer Science,
pages 29–36. Springer, 1997.

[Bod98] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theoretical Computer Science, 209:1–45, 1998.

[BS87] C. Blatter and E. Specker. First order spectra with one variable. In Com-
putation Theory and Logic, volume 270 of Lecture Notes in Computer
Science, pages 166–180. Springer, 1987.

[CE95] B. Courcelle and J. Engelfriet. A logical characterization of the sets of
hypergraphs defined by hyperedge replacement grammars. Mathematical
Systems Theory, 28:515–552, 1995.

[CER93] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hyper-
graph grammars. Journal of Computer and System Sciences, 46:218–270,
1993.

[CHL+00] D. G. Corneil, M. Habib, J.-M. Lanlignel, B. Reed, and U. Rotics. Poly-
nomial time recognition of clique-width ≤ 3 graphs. In Proceedings of
LATIN’2000, volume 1776 of Lecture Notes in Computer Science, pages
126–134. Springer, 2000.

[Chr76] C.A. Christen. Spektralproblem und Komplexitätstherie. In E. Specker
and V. Strassen, editors, Komplexität von Entscheidungsproblemen, vol-
ume 43 of Lecture Notes in Computer Science, pages 102–126. Springer,
1976.

[CM02] B. Courcelle and J.A. Makowsky. Fusion on relational structures and the
verification of monadic second order properties. Mathematical Structures
in Computer Science, 12(2):203–235, 2002.

[CMR01] B. Courcelle, J.A. Makowsky, and U. Rotics. On the fixed parameter
complexity of graph enumeration problems definable in monadic second
order logic. Discrete Applied Mathematics, 108(1-2):23–52, 2001.

[CO00] B. Courcelle and S. Olariu. Upper bounds to the clique–width of graphs.
Discrete Applied Mathematics, 101:77–114, 2000.



30 E. FISCHER AND J.A. MAKOWSKY

[Cou90] B. Courcelle. The monadic second–order logic of graphs I: Recognizable
sets of finite graphs. Information and Computation, 85:12–75, 1990.

[Cou92] B. Courcelle. Monadic second-order logic of graphs VII: Graphs as rela-
tional structures. Theoretical Computer Science, 101:3–33, 1992.

[Cou94] B. Courcelle. The monadic second-order logic of graphs VI: On sev-
eral representations of graphs by relational structures. Discrete Applied
Mathematics, 54:117–149, 1994.

[Cou95] B. Courcelle. Structural properties of context-free sets of graphs gener-
ated by vertex replacement. Information and Computation, 116:275–293,
1995.

[Cou97] B. Courcelle. The expression of graph properties and graph transforma-
tions in monadic second-order logic. In G. Rozenberg, editor, Handbook
of graph grammars and computing by graph transformations, Vol. 1 :
Foundations, chapter 5, pages 313–400. World Scientific, 1997.

[DF99] R.G. Downey and M.F Fellows. Parametrized Complexity. Springer,
1999.

[DFL97] A. Durand, R. Fagin, and B. Loescher. Spectra with only unary function
symbols. In M. Nielsen and W. Thomas, editors, CSL’97, volume 1414
of Lecture Notes in Computer Science, pages 189–202. Springer, 1997.

[Die96] R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer,
1996.

[DR96] A. Durand and S. Ranaivoson. First order spectra with one binary pred-
icate. Theoretical Computer Science, 160:305–320, 1996.

[EF95] H.D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in
Mathematical Logic. Springer, 1995.

[EFT80] H.D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Un-
dergraduate Texts in Mathematics. Springer-Verlag, 1980.

[EvO97] J. Engelfriet and V. van Oostrom. Logical description of context-free
graph-languages. Journal of Computer and System Sciences, 55:489–
503, 1997.

[Fag74a] R. Fagin. Generalized first-order spectra and polynomial time recogniz-
able sets. In R. Karp, editor, Complexity of Computation, volume 7 of
American Mathematical Society Proc, pages 27–41. Society for Industrial
and Applied Mathematics, 1974.

[Fag75] R. Fagin. Monadic generalized spectra. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik, 21:89–96, 1975.

[Fis03] E. Fischer. The Specker-Blatter theorem does not hold for quaternary
relations. Journal of Combinatorial Theory, Series A, 103:121-136, 2003.

[FM03a] E. Fischer and J.A. Makowsky. Patch-width, a generalization of clique-
width for relational strcutures. in preparation, 2004.

[FM03b] E. Fischer and J.A. Makowsky. The Specker-Blatter theorem revisited.
In COCOON’03, volume 2697 of Lecture Notes in Computer Science,
pages 90–101. Springer, 2003.

[FV59] S. Feferman and R. Vaught. The first order properties of algebraic sys-
tems. Fundamenta Mathematicae, 47:57–103, 1959.
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