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Abstract

Combinatorial property testing, initiated by Rubinfeld and Sudan [23] and formally defined
by Goldreich, Goldwasser and Ron in [18], deals with the following relaxation of decision prob-
lems: Given a fixed property P and an input f , distinguish between the case that f satisfies
P , and the case that no input that differs from f in less than some fixed fraction of the places
satisfies P . An (ε, q)-test for P is a randomized algorithm that queries at most q places of an
input f and distinguishes with probability 2/3 between the case that f has the property and
the case that at least an ε-fraction of the places of f need to be changed in order for it to have
the property.

Here we concentrate on labeled, d-dimensional grids, where the grid is viewed as a partially
ordered set (poset) in the standard way (i.e. as a product order of total orders). The main result
here presents an (ε, poly(1/ε))-test for every property of 0/1 labeled, d-dimensional grids that
is characterized by a finite collection of forbidden induced posets. Such properties include the
‘monotonicity’ property studied in [9, 8, 13], other more complicated forbidden chain patterns,
and general forbidden poset patterns. We also present a (less efficient) test for such properties
of labeled grids with larger fixed size alphabets. All the above tests have in addition a 1-sided
error probability. This class of properties is related to properties that are defined by certain first
order formulae with no quantifier alternation over the syntax containing the grid order relations.

We also show that with one quantifier alternation, a certain property can be defined, for
which no test with query complexity of O(n1/4) (for a small enough fixed ε) exists. The above
results identify new classes of properties that are defined by means of restricted logics, and that
are efficiently testable. They also lay out a platform that bridges some previous results.
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1 Introduction

Combinatorial property testing deals with the following relaxation of decision problems: Given a
fixed property and an input f , one wants to decide using as few queries to f as possible whether
f has the property or is ‘far’ from having the property. The general notion of property testing
was first formulated by Rubinfeld and Sudan [23], who were motivated mainly by its connection
to the study of program checking. The study of this notion for combinatorial objects, and mainly
for labeled graphs, was introduced by Goldreich, Goldwasser and Ron [18]. A property in this
respect is an infinite language, where each member is a Boolean functions from a set (usually with
some structure) to {0, 1} (sometimes a larger range is considered). Being far is measured by the
hamming distance, namely, in how many places should the input function be changed so as to have
the property. An input function here is identified with its table, namely its 0/1 value for each
of the points of the domain. A property is said to be (ε, q(ε, n))-testable if there is a randomized
algorithm that for every input function f over a domain of size n, queries the values of f on at
most q(ε, n) chosen points of the domain, and with probability 2

3 distinguishes between the case
that f has the property and the case that f is εn-far from having the property. When a property
P is (ε, q)-testable with q = q(ε) (i.e. q is a function of ε only, and is independent of n) then we say
that P is ε-testable; we say that P is testable if it is ε-testable for every ε > 0. 1-sided testability
is defined in the same manner, but with the additional requirement that the algorithm accepts an
input that satisfies P with probability 1.

Property testing has recently become quite an active research area, see e.g. [18, 19, 8, 5, 1,
3, 21, 11] for an incomplete list, and also the surveys [22, 12]. Apart from its theoretical appeal,
and the many questions it involves, it emerges in the context of PAC learning, program checking
[16, 6, 23], probabilistically checkable proofs [4] and approximation algorithms [18]. The advantage
of the ‘property testing’ relaxation is that many properties have a randomized test that reads a
very short piece of the input and also runs very fast (in sublinear time).

One of the main tasks that emerged in the field, following [18], is to identify natural collections
of properties that are efficiently testable (in terms of the number of queries). Goldreich et al. [18]
studied some classes of properties (mainly graph properties) and identified many properties that
are testable. Alon et al. [3] considered properties of functions f : {1, . . . , n} −→ {0, 1}, namely,
where each function is a binary string of length n. They suggested that properties that are defined
by restricted logics might be testable. They proved that every regular language is testable, which is
equivalent to saying that every property that is expressible by a certain second order monadic logic
over ordered sequences is testable. Additional work in this direction was done by [21], generalizing
the above, and by [1, 11] on graph properties. In [9, 17, 8, 10], the specific property of ‘monotonicity’
is studied.

The results in [3, 9, 10] deal with properties whose definition relies on a linear ordering of the
domain of the input, and in [17, 8, 13] the definition of the monotonicity property relies on other
partial orderings. Here we make another step in the direction established above: We present a logical
model (and discuss some variants) such that all properties that can be expressed in it are testable.
Our structure is the d-dimensional grid {1, . . . , n}d, equipped with the natural product order. The
logical model we use is that of first order formulae with the order relation. Our main positive result
is that for every fixed d, every such formula that uses no quantifier alternation (i.e. using only
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one quantifier on a fixed sequence of points) is testable. ’Non trivial’ such properties (this will be
formally defined in the next section) have another equivalent combinatorial formulation: Every such
property is characterized by a finite collection of forbidden induced sub-posets (and the converse
also holds). Such properties include ‘monotonicity’ (stating that there are no two points x, y, x ≤ y,
that are labeled 1, 0 respectively). The model also includes more complicated properties of chains,
e.g: “All 2-dimensional, 0/1-labeled grids that when going towards the north-east direction in any
possible way, contain no sequence of 4 points A,B,C,D labeled 0,1,0,1”. More complicated examples
are, e.g: “All 2-dimensional, 0/1-labeled grids that contain no four points A,B,C,D labeled by, say,
1,1,0,1 respectively, and such that A is south-west (SW) of all, D is NE (north-east) of all, and
neither B is SW of C, nor C is SW of B”. We present a 1-sided error (ε, poly(1/ε))-test for such
properties for every fixed dimension d. We also consider matrices over an alphabet (i.e. set of
possible labels) which is not 0/1, but any fixed finite set. For these we obtain a less efficient 1-sided
test, that makes exp(exp(poly(1/ε))) many queries.

On the negative side, we show that there exists a poset (matrix) property expressed by using
only one “∀∃” quantifier alternation which is not ε-testable for some ε. This puts a bound on
the complexity of the relevant logical model that still guarantees testability. To put the results in
perspective, we note that our model for the one dimensional case includes only regular properties,
so our result for the case of 1-dimensional “grids” is a special case of the results of [3]. We also
note that an instance of the matrix properties that we discuss here (for all d) is the extensively
studied property of ‘monotonicity’, namely the property: ∀x1, x2 ((x1 ≤ x2)→ (M(x2) ∨ ¬M(x1))),
[9, 17, 8] (‘M(x)’ means ‘the value of the input matrix at x is 1’).

The rest of the paper is organized as follows: In Section 2 we define the basic model and prove
some basic preliminaries, in Section 3 we construct as a warm-up a simple to prove, 2-sided error,
ε-test, and then construct the full 1-sided error test for the basic model of properties (one quantifier,
binary matrices). In Section 4 we construct the test for properties of matrices over any fixed, non-
binary, alphabet. In Section 5 we construct a property that can be expressed as a formula with
one quantifier alternation and which is not testable, by starting with a property that belongs to a
more general model of matrix properties and deriving our property from it. Finally, in Section 6
we discuss variants of the poset-models, and pose some open problems and future directions.

2 Some preliminaries and notations

In the following, we omit all floor and ceiling signs whenever the implicit assumption that a quantity
is an integer makes no essential difference. We make no attempt to optimize the coefficients involved,
just the function types (e.g. polynomial versus exponential).

Let [n] = {0, . . . , n − 1} with the natural order “≤”. The n-length d-dimensional grid is the
poset (partially ordered set) G(n, d) = [n]d with the product order, namely the order defined by
stating that (α1, . . . , αd) ≤ (β1, . . . , βd) if αi ≤ βi for all i = 1, . . . , d.

For α = (α1, . . . , αd) and β = (β1, . . . , βd), if αj = βj for some 1 ≤ j ≤ d, then we say that α
and β share a coordinate.

A Boolean function f : G(n, d) −→ {0, 1} is identified with a copy of G(n, d) whose points

2



are labeled by 0/1. Such a function will be called a 0/1 (n, d)-matrix, or just an (n, d)-matrix. A
standard 2-dimensional 0/1, n × n matrix is by this notation an (n, 2)-matrix. Hence a property
P = {Pn}∞n=1, of functions over the structure G(n, d), n ∈ N, is just a set of (n, d)-matrices for each
n ∈ N. For two (n, d)-matrices M and R, their distance is defined by dist(M,R) = |{x : M(x) 6=
R(x)}|. For an (n, d)-matrix M and a property P we define dist(M,P) = minR∈Pn dist(M,R).

In the basic logical model that we study, the variables range over G(n, d). The syntax includes
the poset (binary) relation and the function unary relation M(·) (“being labeled 1”). Given a fixed
set of variables, x1, . . . , xk, a Boolean formula φ(x1, . . . , xk) using the above relations specifies an
allowed set of 0/1-labeled posets that are its truth assignments. The basic model of properties of
(n, d)-matrices contains the properties that can be expressed as ∀x1, . . . , xkφ(x1, . . . , xk) where φ
is a formula as above and k is a fixed constant (independent of n). For example, the well studied
property ‘monotonicity’ is such: ∀x1, x2 ((x1 ≤ x2)→ (M(x2) ∨ ¬M(x1))). We call this model the
∀-poset model. Similarly the ∃-poset, the ∀∃-poset models, etc. are defined.

Clearly if a property is expressible as an ∃φ(x1, . . . , xk) formula then either every matrix has
distance at most k to it, or the property is empty. Hence, such properties are trivially ε-testable.
Things start to be more complex for ∀ properties. Our main result is that any such property is
testable for d = O(1). We then show that there exists a ∀∃-poset property that is not testable even
for dimension d = 2.

We first note that testing a ∀-poset property is equivalent to testing that there is no forbidden
fixed substructure. To make this explicit we need some definitions and observations: We say that
a poset P of size k is a subgrid poset of dimension d if there is a set of k points in G(n, d) (for
some n) on which the induced order is isomorphic to P . We say that P is a 0/1-labeled poset if
every point of P is labeled by 0 or 1. An (n, d)-matrix M contains a labeled poset P of size k as
an induced labeled poset if there are k points in M on which the order relation is isomorphic to P
and the point labels are consistent with the labeling of P .

Definition 2.1 Let F be a set of 0/1-labeled posets. The following property of (n, d)-matrices is
defined: MF = {M : M does not contain any member of F as an induced labeled poset }.

Observation 2.2 Let P be a ∀x1, . . . , xkφ(x1, . . . , xk) type property of (n, d)-matrices. Then there
exists a set F of labeled k-size posets, |F | ≤ 2k

2
, such that P =MF .

Proof: We can rewrite the negation of P as ∃x1, . . . , xk¬φ(x1, . . . , xk). In turn, we can write an
equivalent DNF formula

∨
imi(x1, . . . , xk) for ¬φ, where each mi(x1, . . . , xk) represents a labeled

poset Fi on at most k elements. Hence, a matrix satisfies P if and only if it has no Fi as a labeled-
subgrid-poset.

We also note that every propertyMF is a ∀x1, . . . , xkφ(x1, . . . , xk) type property and therefore
the above reduction is an equivalence. Along the sequel, our strategy for testing M for the property
MF will be to query some points in M and try to locate a member of F as an induced labeled
poset within the queried points.
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3 Algorithms for testing poset properties

We present here a 1-sided error test for MF whose query complexity is polynomial in ε−1. To
illustrate the basic scheme and highlight the issues that occur with it, we start with the following
almost trivial algorithm for the 1-dimensional case (the assertion of the following observation is
mostly a special case of previous works such as [3], and is proven here only for imparting some
basic ideas).

Observation 3.1 For every string (1-dimensional matrix) s of length k, there exists an ε-test of
strings for the property of not containing s as a substring, which makes a number of queries that
is polynomial in ε−1.

Proof: Given an input string T of size n, we partition it into m = 2k/ε contiguous blocks. From
every block we make Θ(logm/ε) many queries to detect with probability at least 1

6m whether the
block contains at least an ε/2 fraction of ‘1’ entries, and/or at least an ε/2 fraction of ‘0’ entries.
Let E denote the event that there was no undetected value occurring in more than an ε/2 fraction
of the entries of any block. Clearly, the probability of E is at least 2

3 .

If at least k blocks were detected to contain both ‘0’ and ‘1’ entries, the input clearly contains
any string of size k as a substring and we reject it. Otherwise, we construct a string of length n
(that is, a (1, n)-matrix ), TQ from T in the following manner. For every block of T in which no
‘1’ was found, we make the entire block of TQ consist of ‘0’ entries. For every block of T in which
no ‘0’ was found, we make the entire block of TQ consist of ‘1’ entries. For a block that is known
to have both ‘0’ and ‘1’ entries, the corresponding entries in TQ will all be equal in value to those
of the nearest block in which not both ‘0’ and ‘1’ were detected.

The string TQ can be constructed using only the queries that were actually made to T . Also,
it is not hard to see that given that E happened, and since at most k blocks contained both ‘0’
entries and ‘1’ entries, TQ is ε-close to T . Also, for n large enough (so that every block contains
at least 2k entries), if TQ contains the forbidden string s then so does T . Hence, we can accept or
reject T based on TQ, and thus conclude our test.

The above is a scheme that is used throughout this paper: We try to obtain an approximation
of the input matrix which consists mostly of “simple” blocks. In the binary setting these are blocks
which are known to be almost monochromatic; all ‘0’ or all ‘1’.

In the move to the d-dimensional case, two problems occur. First, it is no longer immediately
apparent that we can immediately reject a matrix for which many blocks were detected to have
both ‘0’ and ‘1’. This is the easier problem, solvable by using an appropriate Zarankiewicz type
lemma.

The second problem is that now we can no longer assume that it is enough to check an approx-
imate version of our original matrix all of whose blocks are monochromatic. In Subsection 3.1, we
formally present the extension of the basic ideas to the d-dimensional context, where this second
problem is solved by the brute-force approach of just checking every other imaginable approxi-
mating matrix. This results in a relatively simple testing algorithm, but one that has a 2-sided
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error, and even worse, has a running time that is exponential in the input size despite the constant
query complexity. However, the algorithm serves as a good interim result on the road towards the
improved one.

To construct a 1-sided error test and reduce the running time (by avoiding the need for brute
force search), we will need to consider the partition into blocks together with a refinement, and
use a Ramsey-like lemma that will allow us to come back to the case where all blocks in the
approximating matrix are uniform. The lemma is stated and proven in Subsection 3.2, and then
in Subsection 3.3 we are finally able to present our 1-sided test for MF and prove its correctness.
This test will make a number of queries polynomial in ε−1 (for a fixed F ) and will have a running
time that is polynomial in the time it takes to make the queries.

3.1 Preliminaries and a simple 2-sided error test

Let F be a finite collection of k-size posets. We present here a basic approach to matrix property
testing, along with a 2-sided error ε-test forMF , whose number of queries is polynomial in ε−1 for
any fixed dimension d.

Proposition 3.2 For every fixed ∀ poset property of (n, d) matrices with d = O(1), there exists a
2-sided ε-test which makes a number of queries that is polynomial in ε−1 and is independent of the
size of the input.

The proof of Proposition 3.2 is implied by the algorithm below and the following Lemmata.

Let M be an (n, d)-matrix which we want to ε-test forMF . Let m = (2k+1k
εk+1 )d−1 + 1, where k is

the size of the largest labeled poset in F . We divide M into md blocks of size (n/m)d, by dividing
[n] into m equal-size intervals and taking Cartesian products. We now make 8d lnm

ε queries in every
block of M , choosing each query uniformly at random and independently of the other queries. We
tag each block as being 1, 0 or X according to the queries made: If all points that are queried
in a block are labeled by ‘1’ we tag it as ‘1’, similarly if all points are labeled by ‘0’ the block is
tagged by ‘0’. Otherwise, we tag it as X. Hence we get an (m, d)-matrix MB, in which each entry
represents a block of M and is labeled by 0,1 or X.

There are two major cases: The first one is the case where at least an (ε/2)-fraction of the
blocks are tagged X. In this case we answer ‘No’. It will be proven below that if this happens then
there exists an actual member of F within the entries of M that were queried.

The second case is when there are less than an (ε/2)-fraction of the blocks that are tagged X. In
this case our intention is to check whether there is a matrix that is consistent with our knowledge
of M as represented by MB, and has the property. If we find such a matrix we answer ‘Yes’, and if
not we answer ‘No’. Formally, Let MQ be the following (n, d)-matrix: For every 0-block of M , all
corresponding entries of MQ are ‘0’, and for every 1-block of M all corresponding entries in MQ are
‘1’. The entries of MQ that correspond to an X-block of M remain undefined. Now, each possibility
of assigning 0/1 values to the undefined entries of MQ and each possible choice of flipping the values
in at most an ε/4 fraction of the entries in every other block results in a 0/1-labeled matrix; we
denote the set of all such matrices by MQ,ε. We check if any of the members of MQ,ε has the
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property. If there is such a member, the algorithm answers ‘Yes’. Otherwise, if every member
of MQ,ε contains a member of F , the answer is ‘No’. Note that this last phase of the algorithm
involves no additional queries and is just a (lengthy) computation phase.

Clearly the query complexity of this algorithm is poly(1/ε) and is independent of n. We now
show that it is correct with high probability.

We first show that if the algorithm answers ‘No’ due to the fact that at least an ε/2 fraction of
the blocks are X-tagged, then it is correct with probability 1:

Claim 3.3 If the fraction of X-blocks is at least ε/2, then the queried locations in the X-blocks
already contain a counter-example to the property.

Proof: Let MB be the (m, d)-matrix that was defined above. We use the following d-dimensional
Zarankiewicz type theorem (see [26, 20]) that locates a (k, d)-submatrix of a given label inside any
large enough matrix with enough entries of this label.

Lemma 3.4 ([20]) For δ < 1 let M be an (m, d)-matrix in which at least δmd of the entries are
marked by ‘X’. If m > ( k

δk+1 )d−1 then there is a (k, d)-submatrix all of whose entries are ‘X’.

Now, MB satisfies Lemma 3.4 with δ = ε
2 , so there is a (k, d)-submatrix W of MB which is

all X. Our intent is to look back at the blocks of M that correspond to the entries of W . Each
such block, being tagged by X, contains both a ‘0’ and a ‘1’ entry. We intend to argue that any
labeled poset with k elements may be found within these blocks by choosing the right labeled entry.
The only difficulty is that for two entries that share a coordinate in W and are comparable, the
corresponding sampled entries in M might not be comparable. To overcome this difficulty we use
the following lemma.

Lemma 3.5 Any d-dimensional grid poset P with |P | = k can be embedded in G(k, d) with no two
points sharing a coordinate.

Proof: It is enough to prove that P can be embedded in some d-dimensional grid with no two
points sharing a coordinate, since we can then take the minimum subgrid containing it and it will
clearly be a (k, d)-grid.

Suppose that f : P → {0, . . . ,m − 1}d is any embedding of P into G(m, d) for some m. Then
we can think of f as a sequence of d functions fi : P → {0, . . . ,m− 1}, i = 1, . . . , d, so that fi(p)
is the i-th coordinate of the point p in G(m, d). We define a new embedding f ′ : P → G(md+1, d)
by the following formula (here f(p) is taken as a d-dimensional row vector and f ′(p) is defined as
a linear combination of such vectors).

f ′(p) = md ·f(p) +
d∑
i=1

fi(p)m
i−1 ·(1, . . . , 1)
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It is not hard to see that this is an embedding of the poset too, and that no two members share
a coordinate (as the location of every member modulo md is unique in all coordinates).

To end the proof of Claim 3.3, let P be an arbitrary member of F . By Lemma 3.5, P can be
embedded in W with no two points sharing a coordinate. For each point of W that corresponds
to a point of P in this embedding, let us choose an entry in the corresponding block of M that
has the same value (such a point exists as the points of W correspond to X-tagged blocks). These
entries are an embedding of P in M .

We now claim that with high probability, the tagging of the blocks of M essentially represents
the true situation.

Definition 3.6 For a set Q of queries, we denote by E the following event: “Every 1-tagged block
contains at most an ε/4 fraction of ‘0’ entries, and every 0-tagged block contains at most an ε/4
fraction of ‘1’ entries”.

Claim 3.7 With probability at least 1− 1/md the event E happens.

Proof: Assume that a block contains at least a fraction of ε/4 ‘0’s. To be tagged ‘1’, all queries in

it must be ‘1’, hence this will happen with probability at most (1 − 1
4ε)

8d lnm
ε ≤ e−2d lnm ≤ m−2d.

The bound for a block with at least an ε/4 fraction of ‘1’s is similar. Hence the probability that
there is a block violating E is bounded by 1/md.

The following claim gives us the final missing piece in the proof of the correctness of the
algorithm.

Claim 3.8 If there are less than an ε/2 fraction of the blocks that are tagged by X, and the event
E has happened, then the algorithm will not reject a matrix that satisfies MF or accept a matrix
that is ε-far from satisfying it.

Proof: Assume that indeed there are less than an ε/2 fraction of the blocks that are tagged by X,
and that the event E has happened. If there exists a member of MQ,ε that has the property, then
we claim that M is close to having the property. Indeed, if E has happened then M is clearly at
most 1

4ε-far from MQ (disregarding the entries in the X-tagged blocks), while MQ is at most 3
4ε-far

from any member of MQ,ε (counting all the entries in the X-tagged blocks), so M is at most ε-far
from the member of MQ,ε having the property. Hence, if the algorithm answered ‘Yes’ then M is
ε-close to satisfying MF .

On the other hand, if no member of MQ,ε has the property, then clearly M does not have the
property since given that E happened, M is in particular a member of MQ,ε. This completes the
proof the claim.

Proof of Proposition 3.2 The algorithm presented above clearly has the required queried com-
plexity. By Claim 3.3 the algorithm will never err if it rejects the input matrix on account of finding
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too many X-tagged blocks. In all other cases, by Claim 3.8 the algorithm may only err if the event
E did not occur. However, this event occurs with probability at least 1− 1/md by Claim 3.7, and
so the algorithm is correct with at least this probability.

We note that the running time of the algorithm (as opposed to its query complexity) involves
checking (or preparing answers in advance to) all possibleMQ,ε resulting from MQ. Although this
seems to be exponential in n, it can be reduced considerably. However, since a better and faster
algorithm is presented in the following, we omit the details.

3.2 More preliminaries – pseudomatrices and a Ramsey-like lemma

Our aim in this section is to develop the machinery necessary for constructing a 1-sided error test.
From the definition of such a test, in most cases a 1-sided error test can reject only if it finds a
witness within the actual sampled points. Thus we will need to construct a sampling scheme that
provably contains a witness with high probability if the input matrix M is ε-far from the property.
Note that the analysis of the 2-sided error test that is presented in Section 3.1 does not provide
such a guarantee.

In the above algorithm use was made of the following fact: Given the (k, d) ‘matrix of blocks’
which are all tagged X, one could choose any entry (with the right label) from each block to find
the counter-example. Such ‘loose formations’ of entries are formalized below, with the definition of
pseudogrids and pseudomatrices.

Definition 3.9 A (k, d)-pseudogrid is a subset (xi)i∈[k]d of the grid G(n, d), such that if i, j ∈ [k]d

do not share a coordinate, then xi ≤ xj if and only if i ≤ j (in the ordering of G(k, d)).

Alternatively, (xi)i∈[k]d is a pseudogrid if and only if there exist {ra,s : 1 ≤ a ≤ d, 0 ≤ s ≤ k}
(one may assume ra,0 = 0 and ra,k = n) such that for every a and i the a’th coordinate of xi is at
least ra,ia but less than ra,ia+1. Namely, there exists a partition of G(n, d) into kd blocks, that is
defined by the above set of intervals, such that (xi)i∈[k]d consists of exactly one member from each
block (see Figure 1 for an illustration).

A pseudomatrix in an (n, d)-matrix A consists of a (k, d)-pseudogrid in G(n, d) and its labeling
according to A. Given a (k, d)-pseudomatrix in A defined by the pseudogrid (xi)i∈[k]d, its label
matrix is the (k, d)-matrix B (which is not necessarily in itself a submatrix of A) consisting of
the entries of the given pseudomatrix in the corresponding locations, that is, the one satisfying
B(i) = A(xi) for all i ∈ [k]d.

See Figure 1 for an example of a (3, 2)-pseudomatrix with its label 3× 3 matrix.

Pseudomatrices will be used to show the existence of counter-examples within the queried values
in 1-sided tests. Their main property is established in the following:

Fact 3.10 Let A be a (k, d)-pseudomatrix of M with a label matrix W . Assume that W contains a
k size labeled poset F such that no two entries share a coordinate. Then M also contains F .
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Figure 1: The 9 points in the grid on the left form a (3, 2)-pseudogrid. Along with their labels (filled dots

are 1’s, hollow dots are 0’s) they form a (3, 2)-pseudomatrix. On the right is the label (3, 2)-matrix of this

pseudomatrix

For 1-sided algorithms, to guarantee the existence of a counter example, we will find a subset of
the queries that will form a pseudomatrix whose restriction with each block of M is monochromatic.
This is done by the following Ramsey-type lemma.

Lemma 3.11 For every d and k there exists c = c(k, d) such that for any l ≥ cmc, every 0/1-labeled
(ml, d)-matrix which is partitioned into md blocks of size ld contains an (mk, d)-pseudomatrix, so
that its intersection with each of these blocks is a (k, d)-pseudomatrix whose entries are all identical.

In order to prove the above lemma, we first need the following one, which deals with a 1-
dimensional context. From now on we will mainly refer to the alternative definition of pseudogrids
and pseudomatrices that involves the partition {ra,s : 1 ≤ a ≤ d, 0 ≤ s ≤ k}. In the sequel the
locations in strings of length l are numbered by 0, . . . , l − 1.

Lemma 3.12 For every k and every set of m binary strings of length l ≥ (2m + 2)k/2 − 1, there
exist 0 = r0 < r1 < · · · < rk = l such that each string contains a monochromatic substring
(i.e. a substring all of whose entries are of identical values) with exactly one entry in the interval
[ri, . . . , ri+1 − 1] for every i = 0, . . . , k − 1.

Proof: We prove the claim first for odd values of k. The proof is by induction. The basis k = 1 is
trivial (it holds even for m strings of length 1).

Let us denote lk = (2m+ 2)k/2− 1 and assume that the theorem was proven for k− 2. We now
prove it for k. We assume that none of the strings is monochromatic, as a monochromatic string
will have a corresponding monochromatic substring for any 0 = r0 < r1 < · · · < rk = l.

We first set the values of r1 and rk−1 as follows: Let l′ = lk−2, choose r1 in the interval
[1, . . . , l − 1− l′] uniformly at random, and set rk−1 = r1 + l′.

For every fixed string s let L0 be the location of its first (‘leftmost’) ‘0’ entry, L1 the location of its
first ‘1’ entry, and R0 and R1 the locations of its last (’rightmost’) ‘0’ and ‘1’ entries respectively. We
are interested in the event that none of {L0, L1, R0, R1} fall into the interval I = [r1, . . . , rk−1− 1].
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The significance of this event is that if it occurs for a string s, then for any entry v in the interval
[r1, . . . , rk−1 − 1] there are at least two entries of s with an identical label as v, one in the interval
[0, . . . , r1 − 1], and one in the interval [rk−1, . . . , l − 1].

Since one of L0 and L1 is equal to 0 and one of R0 and R1 is equal to l − 1, at most two of
the four numbers above may fall into the interval I. Calculating the probability that any of L0,
L1, R0 and R1 is in the interval I, it is clearly bounded by 2 l′

l−1−l′ . But if l ≥ lk then l′

l−1−l′ <
1
m .

In particular, for such an l there exist r1 and respectively rk−1 for which the above event does not
happen for any of the m strings. This means that for every string from the set and any of its entries
in the interval [r1, . . . , rk−1 − 1], there exist identical entries in the interval [0 = r0, . . . , r1 − 1] and
in the interval [rk−1, . . . , rk − 1 = l − 1].

We now consider for each string its substring of length l′ = lk−2 consisting of the entries in the
interval [r1, . . . , rk−1−1]. To these we apply the induction hypothesis, and find r2, . . . , rk−2 so that
each string contains a monochromatic substring with one entry in the interval [ri, . . . , ri+1 − 1] for
every 1 ≤ i < k − 1. By the above discussion, this substring can be extended to a monochromatic
substring of the original string by finding identically labeled entries, one in the interval [r0, . . . , r1−1]
and one in the interval [rk−1, . . . , rk − 1]. This concludes the proof for odd k.

The proof for even values of k is identical to that for odd values except for the base case of
k = 2 which can easily be verified.

As an aside, before we continue we note that the bounds of Lemma 3.12 cannot be made linear
in m.

Observation 3.13 There is a set of 2m−2 strings of length m2, for which there exist no 0 = r0 <
r1 < r2 < r3 < r4 = m2 which satisfy the assertion of Lemma 3.12 for k = 3.

Proof: For every 1 ≤ i ≤ m − 1 let si denote the string consisting of im ‘1’ entries followed
by (m − i)m ‘0’s, and let ti denote the string consisting of of the concatenation of m copies of
the string with i ‘1’s followed by m − i ‘0’s. Our set is the union of {si : 1 ≤ i ≤ m − 1} and
{ti : 1 ≤ i ≤ m− 1}.

Now, assuming that r0 < · · · < r4 exist, we divide into cases according to whether there exists
j such that jm ≤ r1 < r3 ≤ (j + 1)m. If there exist such j, then let i = r2 − jm and note that
the string ti has no substring satisfying the requirements, as it contains only ‘1’s between r1 and
r2, and only ‘0’s between r2 and r3.

If there exists no j as above, then there exists i such that r1 ≤ im ≤ r3. In this case si has
no substring satisfying the requirements, as it contains only ‘1’s between r0 and r1, and only ‘0’s
between r3 and r4.

We now turn back to the proof of the main lemma.

Proof of Lemma 3.11: We use here the alternative definition of pseudomatrices, about the
existence of a partition given by {rd′,j : 1 ≤ d′ ≤ d, 0 ≤ j ≤ mk} such that (xi)i∈[mk]d consists of
one member from each block. In our case, the partition also has to satisfy rd′,k·j = l · j for every
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0 ≤ j ≤ m to ensure that the intersection of the (mk, d)-pseudomatrix with each of the md blocks
of A is a (k, d)-pseudomatrix.

The proof is by induction on d. We shall actually prove the (seemingly stronger) statement that
given p such matrices (for any p > 0) with l ≥ c(mp)c, there exists a corresponding pseudomatrix
for each of them, all with the same partition {rd′,j : 1 ≤ d′ ≤ d, 0 ≤ j ≤ mk} of [n]d. The basis,
d = 1, follows directly from Lemma 3.12, by cutting each string into m equal length substrings and
applying Lemma 3.12 to these p ·m new strings.

Given that the lemma is known for the (d − 1)-th dimensional case, we now show it for the d
dimensional case. Suppose that we are given p matrices A0, . . . , Ap−1 over [ml]d for which we want
to find the partition. Note that every matrix can actually be viewed as being a collection of m
different matrices by dissecting the matrix along the dth dimension into m parts, each of which is
an [ml]d−1× [l] matrix, see Figure 2. In turn, each of the m matrices resulting from this dissection
can be thought of as an [ml]d−1 matrix where each entry is a binary string of length l.

Figure 2: On the left a (3l, 3)-matrix with 33 blocks. It is viewed as 3 matrices, each with 32 blocks, by

‘slicing’ the matrix along the third dimension.

The basic idea of the proof is the following: We look at the individual (ml)d−1 strings that are the
entries to those mp matrices, and apply Lemma 3.12 to find a collection of rd,j ’s so that each string
has a k-size monochromatic substring with exactly one point in each interval [rd,j−1, . . . , rd,j − 1].
Once this is done, we may replace each l-length string with the single value that is identical to
the value of the monochromatic substring that is found. This reduces each of the d-dimensional
matrices to a (d − 1)-dimensional matrix. Finding a common partition for these mp matrices
will end the proof. By the induction hypothesis we obtain such a partition as we are now in the
(d− 1)-dimensional case.

The only technical problem in the above outline is that the number of strings we begin with is
too large to apply Lemma 3.12, and hence we first pick a suitable sub collection. Formally this is
done as follows: First, for every 0 ≤ s < p, i = (i1, . . . , id−1) ∈ [ml]d−1 and 0 ≤ q′ < m, we consider
the string of length l consisting of the entries of As in locations {(i1, . . . , id−1, q

′l + q) : 0 ≤ q < l}.
We refer to such string as the string indexed by i = (i1, . . . , id−1). This is a collection of pld−1md

strings of size l, corresponding to the entire collection of (md)d−1 lines along the d’th dimension
in each of the p · m matrices obtained after we have ‘sliced’ each of the p original matrices into
m matrices. As this collection is of a size too large to apply Lemma 3.12 according to our plan,
we just restrict ourselves to a subset of them: For some l′ < l, we consider only strings that are
indexed by i = (i1, . . . , id−1) for which every coordinate modulo m is between 0 and l′−1. This will
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yield a collection of pl′d−1md strings. We do this for l′ = c(k, d− 1)(pm·m)c(k,d−1), so in particular
to ensure that l′ ≤ l, we require that

c(k, d− 1)(pm·m)c(k,d−1) ≤ l (1)

For every fixed 0 ≤ q′ < m, we now want to find r0, . . . , rk that will partition all m′ = p(l′m)d−1

strings consisting of the entries of As in {(i1, . . . , id−1, q
′l + q) : 0 ≤ q < l} (for any 0 ≤ s < p and

the values for i1, . . . , id−1 considered above) according to Lemma 3.12. As we do this for each of
the m collections that is defined by different q’s independently, this requires that:

l ≥ (2m′ + 1)k/2 − 1 = (2p(l′m)d−1)k/2 − 1 (2)

For each 0 ≤ s < p, 0 ≤ q′ < m and i = (i1, . . . , id−1) we take the common label of the
substring found by Lemma 3.12 to be the entry of a new (ml′, d − 1)-matrix A′ms+q′ , at location
l′bi/lc + (i mod l) (we “delete” in the definition of the new matrices the strings which were not
considered when finding r0, . . . , rk). On these (ml′, d − 1)-matrices, A′0, . . . , A

′
pm−1, we invoke the

induction hypothesis to find the values {r′d′,j : 1 ≤ d′ ≤ d− 1, 0 ≤ j ≤ mk}, and the corresponding
(mk, d − 1)-pseudomatrices. Now set rd,q′k+j = q′l + rj for 0 ≤ j ≤ k (remember that r0 = 0
and rk = l), which defines {rd,j : 0 ≤ j ≤ mk} of the pseudomatrix partition along the d’th
dimension. These clearly refine the original partition of the matrices into blocks. We then set rd′,j =
lbr′d′,j/l′c+ (r′d′,j mod l′) for 1 ≤ d′ ≤ d− 1, and note that the refinement of the block partition of
A′0, . . . , A

′
pm−1 translates to a refinement of the block partition of A0, . . . , Apm−1. In order to find the

required (mk, d)-pseudomatrix in As for any 0 ≤ s < p, we can consider the pseudomatrices found
in A′ms, . . . , A

′
ms+m−1, and substitute each of their entries with the corresponding monochromatic

string of length k found earlier in As that was used to set the entry.

The only thing that remains to be done is to ensure that the two conditions (1) and (2) above
on the relations between l,m and l′ are met, which is not hard for an appropriate choice of c in the
requirement that l ≥ c(mp)c.

3.3 A 1-sided test

Here we present the 1-sided test forMF . We essentially follow the 2-sided error algorithm described
in Subsection 3.1. The problem is that in the case that there are less than an ε/2 fraction of the
blocks that are tagged by X, the above algorithm may err in both ways as its correctness is based
on the assumption that the event E (of correctly detecting the X-blocks) happens. To overcome
this we will make additional queries in each block to assure us that if the approximated matrix is
far from satisfying the property, then a counter-example to the property exists within the points
already queried. In turn, this also avoids the necessity of checking all (n, d)-matrices approximable
by the queried values, as we need only to check the queries themselves. This makes the running
time of the algorithm polynomial in ε−1 too.

Theorem 3.14 For every fixed ∀ poset property of (n, d)-matrices, with d = O(1), there exists a
1-sided error ε-test which makes poly(1

ε ) many queries, independently of the size of the input.
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We shall use the Ramsey-like lemma presented in the previous section. In order for us to be able
to work with it, we need to consider only embeddings in which no two entries share a coordinate,
so pseudomatrices can be considered. The following lemma, in the vain of Lemma 3.5, grants this;
the proof is also very similar to that of Lemma 3.5 and is therefore omitted.

Lemma 3.15 Let the grids G(mk, d) and G(ml, d) be considered as structures over G(m, d) in
which every entry is a (k, d)-block and an (l, d)-block respectively. If a k-size poset P embeds into
G(ml, d), then there is an embedding of P into G(mk, d) so that the two embeddings map each
point of P to the same respective block in G(ml, d) and G(mk, d), the mappings are isomorphic on
corresponding blocks (in terms of the poset relation), and moreover no two points share a coordinate
in G(mk, d).

Proof of Theorem 3.14: We present the 1-sided error test. We start exactly as in the algorithm
of Subsection 3.1 by dividing M into md blocks of equal size, for m = (2k+1k

εk+1 )d−1+1. We query
8d lnm

ε uniformly random queries independently in every block of M and tag each block as being
1, 0 or X according to the queries made: ‘1’/ ‘0’ if all values that were queried inside the block
are 1/0 respectively, and X otherwise. If there are at least an ε/2 fraction of the blocks that are
X-tagged then we answer ‘No’.

If there are less than an ε/2 fraction of the blocks that are X-tagged then we further divide each
block into ld = (c ·mc)d sub-blocks, where c = c(k, d) is the constant of Lemma 3.11, and query
one arbitrary query in each sub-block. We now set the outcome of the test as follows: We answer
‘No’ if there is a counter example among the queried points and answer ‘Yes’ otherwise (meaning
that M is close to having the property).

Clearly the overall query complexity of this algorithm is polynomial in ε−1 (for a fixed d and
k) and independent of n. We now prove its correctness.

Claim 3.16 The algorithm is a 1-sided error algorithm with an error probability bounded by 1/md.

Proof: To show correctness, let us analyze the various cases in which the algorithm may end. If
after the first round of queries there are at least an (ε/2)-fraction of the blocks that are X-tagged,
then, exactly as in the proof of the 2-sided test, a counter example to the property is guaranteed to
exist already within the queried locations (with probability 1). Hence in this case, the algorithm
answers ‘No’ and is correct with probability 1.

Assume then that there are less than an ε/2 fraction of the blocks that are X-tagged. We then
have the second phase of queries in each sub-block after which we re-tag each block according to
the union of the old and new queries in it. Namely, some old 1-blocks and/or 0-blocks may become
X-blocks. Again we may assume that there are less than an ε/2 fraction of the blocks that are X,
as otherwise we are back in the first case. Define now the (ml, d)-matrix MQ, in which every entry
corresponds to a sub-block of M that is labeled by 0/1 as determined by the value of the query in
this sub-block. By Lemma 3.11 there is an (mk, d)-pseudomatrix W , containing a monochromatic
(k, d)-pseudomatrix in each of the md blocks of MQ. Note that in the natural correspondence
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between blocks of W and blocks of M , the label of every 0/1 block of M is identical to the label
of the corresponding block of W (on X-blocks of M the label of the corresponding block of W
may be either ‘0’ or ‘1’). We claim that even when we consider only the entries queried in the
sub-blocks that appear in W , and decide to accept or reject according to whether they contain a
counter example, this decision is correct with very high probability (and is 1-sided). Indeed, if a
counter example is found among these points then certainly the algorithm rejects correctly.

We now claim that if the event E happened (as in Definition 3.6) and W does not contain a
counter example, then M is ε-close to having the property. This will conclude the proof of the
algorithm, because the event E occurs with probability at least 1 − 1/md, and so the algorithm
will be correct with at least this probability (as in addition to this the algorithm never incorrectly
rejects the input).

Assume then that W does not contain a counter example and that E has happened. We show
how to obtain a matrix MW from M that has no counter example by changing at most εnd entries
of M . First we change the entries in every 0/1 block of M to have the label of the corresponding
block. As in Section 3.1, we may assume that this will incur a change in at most ε

4n
d of the entries.

We then change every entry in an X-block to have the label of the corresponding intersection with
W . As there are at most an (ε/2) fraction of X-blocks, this may result in at most ε

2n
d additional

changed entries. Hence we get a matrix MW , that is at most 3ε
4 -far from M .

We now claim that MW has no counter example. Indeed, assuming that MW contains a counter
example P , by Lemma 3.15 (looking at MW as an (ml, d)-matrix with l = n/m) there is a counter
example in an (mk, d)-matrix in which its md-size blocks are labeled as the blocks of MW . Moreover,
no two points of this counter example share a coordinate, and so its existence in a label matrix of
some pseudomatrix implies its existence in the pseudomatrix itself. Now the label matrix of W is
such an (mk, d)-matrix, and W in itself is a pseudomatrix contained in MQ. Hence MQ contains P
with no two points sharing a coordinate. However, each entry of MQ corresponds to a sub-block of
the actual input M that contains at least one queried point that is labeled by the same label as the
corresponding entry of MQ. We therefore conclude that there is a counter example in the queried
points of M in the sub-blocks that correspond to the points of W , contrary to our assumption.

An additional remark is due here: The algorithm was described as if it is adaptive, however
as queries at the second stage do not depend on the answers at the first stage, the algorithm is in
fact non-adaptive (we can clearly first make the queries of both stages, and only then count the
number of the X-blocks to decide whether the matrix should be rejected on the grounds of having
too many of them).

4 Testing of non-binary matrices

In this section we extend the result of the previous section to include forbidden poset properties
for matrices that are not 0/1, but have entries from a fixed finite alphabet Σ. Such properties are
natural extensions of 0/1-matrix properties.

The main result here is:
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Theorem 4.1 For every fixed ∀ poset property of (n, d)-matrices over a fixed finite alphabet and
with d = O(1), there exists a 1-sided ε-test whose number of queries and running time are doubly
exponential in poly(ε−1), and are independent of the size of the input.

The proof uses some general ideas from the previous section, and in particular the idea of arriving
to a partition into blocks for which most of them have almost no ‘internal features’ (similarly to
them being nearly monochromatic in the 0/1 case). It turns out, however, that this situation is
much harder then the 0/1 case. We will first need some additional definitions and machinery.

4.1 Homogeneity in partitions and a strengthening of Lemma 3.11

Given a partition of the input matrix into blocks, and a set of queries from each block, unlike in
the 0/1 case, it cannot be guaranteed that if more than one type of label was found in many of the
blocks then a counter-example to a given propertyMF exists. It could be for example that a 0/1/2
matrix property is defined by a forbidden collection of labeled posets F , all of whose members
contain the label ‘2’, while the partition of the input matrix into blocks may contain many blocks
with both 0’s and 1’s but no 2. Therefore, a notion of a block being monochromatic is replaced
with a more general notion of being ‘featureless’.

For the rest of this section Σ will always be a finite alphabet of size h. In the new framework,
we consider two partitions of a matrix at a time. We consider as before a partition P of M into
md blocks, and a refinement achieved by repartitioning each block of the first partition into ld sub-
blocks, thereby obtaining a partition Q of M into (ml)d blocks. We label every block and every
sub-block with a subset of the alphabet Σ. In the construction of the tester this subset corresponds
to the set of all labels found while querying entries from this block. Note that in particular a
sub-block is always labeled with a subset of the set used to label the whole block.

We will treat a block of P as featureless if all its sub-blocks have the same label. However, in
some cases it is only possible to find blocks that are close to satisfying this, which motivates the
following definition.

Definition 4.2 A labeled set is called ε-homogeneous if all but at most an ε fraction of its labels
are identical. For such a set we call this common label the (1− ε)-dominant label of the set.

Given a partition P of the matrix M and a refinement Q of P , and given a labeling as above of
these partitions, we call a block of P ε-homogeneous if its label in P is the (1 − ε)-dominant label
for the set of the corresponding sub-blocks in Q with their labels.

Just as Lemma 3.11 was used in Section 3 to find a matrix which is both close to M and simple
to check for MF , we shall use a similar lemma here. The pseudomatrix which we will find will be
‘monochromatic’ in each block, in the sense that all corresponding sub-blocks will have the same
label (which is a subset of Σ). However, here we also need to ensure that for most blocks which are
homogeneous enough, the sub-blocks will have the label of the block, so we will not need to modify
many of the entries of M inside these blocks to arrive at the simplified matrix. We thus need the
following strengthening of Lemma 3.11.
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Lemma 4.3 For every h, d and k there exists c = c(h, k, d) such that for any l ≥ cmc, every
(ml, d)-matrix W labeled with a set of h labels which is partitioned into md blocks of size ld contains
an (mk, d)-pseudomatrix satisfying the following. The intersection of the pseudomatrix with each
of the blocks of W is a (k, d)-pseudomatrix whose entries are all identical, and moreover for all but
at most an ε fraction of the 1

c ε
c-homogeneous blocks of W (for any ε > 0), the common label of the

intersection with them will be identical to the corresponding dominant label.

The proof here follows closely the outline of the proof of Lemma 3.11, with additional care taken
for the homogeneous blocks (the generalization to non-binary alphabets is not hard by itself). In
the proof of this lemma, we also need a corresponding strengthening of Lemma 3.12, as formulated
in the following definition.

Definition 4.4 Let M be a collection of strings over Σ. For δ < 1 we denote by DOMM (δ) all
strings in M that have a (1− δ)-dominant label. For each such string s ∈ DOMM (δ) we denote by
doms the appropriate dominant label.

Lemma 4.5 For every integers h, k and ε < 1 there exists b = b(h, k, ε) such that for any set M
of m strings over Σ, of length l ≥ bmb, and every set S ⊆ DOMM (1− ε/b), there exist a sequence
of indices R = (0 = r0 < r1 < · · · < rk = l) such that:

1. Every string s ∈M contains a monochromatic substring (i.e. a substring all of whose entries
are identical) with exactly one entry in the location range ri, . . . , ri+1−1 for every 0 ≤ i ≤ l−1.
We denote this substring as s(R) and its label by lab(s(R)).

2. For all but at most an ε fraction of the strings in s ∈ S, lab(s(R)) = doms

Proof: The proof here is by induction on k, namely we assume the existence of b(h, k − 2, ε′) for
all ε′ and show the existence of b(h, k, ε). This is done almost identically to the proof of Lemma
3.12, with extra care taken to ensure the second condition of the Lemma. The basis k = 1 is also
trivial here.

Assuming that the existence of b(h, k − 2, ε′) was shown, we show the existence of b(h, k, ε)
(for any ε < 1): Let l′ = b(h, k − 2, ε/2)mb(h,k−2,ε/2). Let b > b(h, k − 2, ε/2) be an integer to be
specified later (with the appropriate choice, this will be the suitable b(h, k, ε)), let M be a collection
of strings over Σ of length l ≥ bmb > l′, and let S ⊆ DOMM (1 − ε/b). We will show that for an
appropriate choice of b there is a sequence of indices as required.

Similarly to the proof of Lemma 3.12, let r1 be randomly chosen in the range 1, . . . , l − 1 − l′
and set rk−1 = r1 + l′. For every string s ∈ M and every x ∈ Σ we set Lx(s) and Rx(s) as
the locations of its first occurrence and its last occurrence in s. If x does not appear in s we set
Lx(s) = −1, Rx(s) = n+ 1.

For a string s ∈ M and a given choice of r1 let A(s) be the event that none of Lx(s), Rx(s)
falls into r1, . . . , r1 + l′ − 1 for every x ∈ Σ. For every s ∈ S, we denote by B(s) the event that
s′ = s[r1], . . . , s[r1 + l′ − 1] has doms as its (1 − ε/(2b(h, k − 2, ε/2)))-dominant label, where s[i]
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denotes the ith place in s. Finally, let A be the event
⋂
s∈M A(s) namely, the event that A(s)

happens for every s.

Our aim is to show that: (1) Prob[A] is large enough. (2) for every s ∈ S, Prob[B(s) |A]
is large enough. Then, this would imply that there is a choice of r1 for which the following two
conditions hold simultaneously: (1’) A is true and (2’) for most s ∈ S, B(s) is true. This will
imply that if we apply the induction hypothesis with k − 2 on the substrings defined by the range
r1, . . . , r1 + l′ − 1, we get (k − 2)-length monochromatic substrings (for each string) that can be
augmented into k-length monochromatic substrings in all strings, by (1’). Also, for the suitable
fraction of strings that have (1 − ε/b(h, k − 2, ε/2))-dominant labels, the substring found has the
required dominant label. But, by (2’) those strings come from (suitably many) original strings that
have the same consistent (1− ε/b) dominant label. This proves the additional requirement on the
label of the monochromatic strings that are found. The details follow.

Let s ∈M . As there are 2h events of the form {r1 ≤ Lx < r1 + l′, r1 ≤ Rx < r1 + l′}, x ∈ Σ, it
follows that Prob[A(s)] ≥ 1− 2hl′

l−l′−1 . We will require that l is large enough to satisfy

2hl′

l − l′ − 1
≤ ε/8m (3)

which will imply that Prob[A] ≥ 1− ε/8.

Let s ∈ S, and let α(r1) be the number of occurrences of doms in s[r1], . . . , s[r1 + l′ − 1]. Then
clearly Σl−l′−1

r1=1 α(r1) ≥ ((1− ε
b)l − 2l′)l′, hence the expected value of α(r1) satisfies:

E[α(r1)] ≥ (1− ε/b)l − 2l′

l − l′ − 1
· l′ ≥ (1− ε

b
− 2l′

l − l′
)l′

.

By Markov Inequality this implies that Prob[B(s)] ≥ 1− β where β = ( εb + 2l′

l−l′ )/(ε/(2b(h, k −
2, ε/2)). We require that l′ be such that β satisfies:

β ≤ ε/8 (4)

Conditions (3) and (4) imply that for every s ∈ S, Prob[A∩B(s)] ≥ 1− ε/4. Hence this implies
that there is a choice of r1 for which A is true, and B(s) is true for at least a (1− ε/4)-fraction of
the s ∈ S. Let us fix such r1 and denote this collection of strings for which B(s) holds by S1.

Let ε′ = ε/2, let M ′ be the collection of strings obtained from M by M ′ = {s[r1], . . . , s[r1 + l′−
1] : s ∈ M}. Let S ′ be those strings in M ′ that originated from the corresponding strings in S1.
By the definition of S1 it follows that S ′ ⊆ DOMM ′(1− ε′/b(h, k− 2, ε′)). Hence, by the induction
hypothesis on M ′ and S ′ for k − 2 and ε′, we get that there are indices r2 ≤ · · · ≤ rk−2 for which
conditions (1) and (2) of the Lemma hold. We set R = r1, r2, . . . , rk−2, r1 + l′ − 1, namely, we
append r1 and r1 + l′ − 1 as the initial and ending indices to the sequence obtained by induction
for k− 2. Then, as A holds for r1 then certainly condition (1) of Lemma holds for R and M . Also,
as condition (2) holds for S ′ it follows that for at least a (1− ε/2)-fraction of the strings in S1, the
monochromatic substring s(R) has label identical to dom(1− ε/b). However as S1 is of size at least
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(1 − ε/2) of the size of S it follows that the number of strings in S for which condition (2) of the
lemma holds (for k) is at least (1− ε/2)2 ≥ 1− ε.

Finally, it remains to be checked that there is a constant b = b(h, k, ε) such that if l ≥ b ·mb

then l and l′ satisfy conditions (3) and (4), which is easily verified from their formulation. This
concludes the proof for odd values of k. For even k the proof directly follows form the case of
k + 1.

Proof of Lemma 4.3: This proof is similar to the proof of Lemma 3.11, and uses induction on
d. Similarly to Lemma 3.11, we actually prove the existence of a common partition for a set of
p such matrices A0, . . . , Ap−1, given that l ≥ c(pm)c, so that the partition has the corresponding
pseudomatrix in each matrix, with the additional property that the fraction of blocks with a
dominant label whose intersection with the pseudomatrices has a different label is less than ε
(summing over all p matrices; this is not necessarily true for each matrix separately). The basis
d = 1 follows easily from Lemma 4.5.

Assume that the lemma is proven for d− 1 and that c(h, k, d− 1) is known. Let δ = 1
c ε
c, where

c = c(h, k, d) will be defined later. As in the proof of Lemma 3.11, for every As, for 0 ≤ s < p,
we consider only part of the pm · (ml)d−1 strings of size l that are defined by ‘slicing’ every As,
along the d’th dimension, into m matrices of size l · (ml)d−1 (see again Figure 2). For Lemma 3.11,
this partial set was arbitrary picked by looking at some fixed residues of the coordinates. Here our
goal is to find a (not too large) subset of the strings so that for all but a δ1/2 fraction of them the
following will hold: If a string comes from a block which contains a δ-dominant label, then this
label is also a δ1/2-dominant for the string. To construct such a set of strings of size pm(ml′)d−1,
let Li ∈ [l] be a random set of size l′ for each 1 ≤ i ≤ d. We consider only the lines for which
for every 1 ≤ i ≤ d− 1, its i-th coordinate is in Li. With positive probability the fraction of such
strings which come from blocks which contain a δ-dominant label, but for which the same label is
not δ1/2-dominant, is less than δ1/2. We thus fix L1, . . . , Ld for which this holds.

We now want to apply Lemma 4.5, to get a partition of [l] into k parts so that there is a
monochromatic substring of size k in each of the strings, with exactly one entry in each part.
To apply Lemma 4.5 we need l ≥ b(pm(ml′)d−1)b, where b is the constant from Lemma 4.5.
This partition of [l] defines the partition for the d’th coordinate. We now construct matrices
A′0, . . . , A

′
pm−1, using the labels of the monochromatic substrings found, exactly as in the proof

of Lemma 3.11. The fraction of the strings not conforming to a dominant label of their block is
bounded by bδ1/2. Hence, the fraction of the blocks which correspond to blocks with δ-dominant
labels in the original matrix, but do not have the same labels as δ1/4-dominant ones, is bounded
by bδ1/4.

On this set of pm matrices we invoke the induction hypothesis to find partitions along the other
d− 1 dimensions, {r′d′,i : 1 ≤ d′ ≤ d− 1, 0 ≤ i ≤ mk}, exactly as in the proof of Lemma 3.11. For

this we choose l′ = c(h, k, d− 1)(pm·m)c(h,k,d−1).

Set c1 = 2c(h, k, d−1). We note that up to an bδ1/4 +c
(1/c1)
1 δ1/4c1 fraction of the blocks that had

a δ-dominant label in A0, . . . , Ap will not have the same label for the restriction of the appropriate
pseudomatrix. Thus, there exists a choice of a large enough c(h, k, d) that ensures that this is less
than ε (remember that δ = 1

c ε
c). This together with the previous two restrictions on l′, l and m
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sets an appropriate choice of c = c(h, k, d).

4.2 The test

Proof of Theorem 4.1: Let F be a collection of forbidden Σ-labeled posets (for some fixed finite
alphabet Σ), each of size at most k. In order to construct a 1-sided error ε-test for the property
MF we want to arrive at a situation similar to the 1-sided test for 0/1 properties. Namely, we
want to have two partitions of the matrix into blocks P,Q, where Q is a refinement of P , such
that most blocks of P are δ-homogeneous with respect to the sub-blocks as defined by Q (for some
small constant δ). In this case we will be able to perform the test in a similar way to the 0/1
test. However, in order to arrive at such a situation, we cannot rely anymore on the assertion that
if there are many non-homogeneous blocks then we have a counter example (as in the 0/1 case).
Instead, we construct a sequence of partitions P0, . . . , Pq of M , where each Pi is a refinement of
the previous one. We will prove in what follows that for such a sequence, there are two consecutive
members for which the above holds. The proof is by an iterative argument reminiscent of the proof
of Szemerédi’s Regularity Lemma ([24], see [7, Chapter 7] for a good exposition). However, the
dependency of the number of queries on ε will not be as severe as might be expected from such an
argument; for every fixed property it will be doubly exponential in a polynomial in ε, rather than
a tower.

Formally, we choose m0 = 1, and let mi = c · (mi−1)c+1, where c = c(h, k, d) is the constant
provided by Lemma 4.3 and h is set to 2|Σ|. Let P0 have just one block and let P1, . . . , Pq be a
sequence of partitions, each Pi being a partition of M into (mi)

d blocks which is a refinement of the
previous one. We choose q = |Σ|c(h, k, d)/(1

3ε)
1+c(h,k,d), so in particular mq = exp(exp(poly(1/ε)))

for fixed Σ, d and k.

The algorithm proceeds as follows. First, 6
ε ln((mq)

d · |Σ|) uniformly random queries are made
independently in each block of Pq. If a counter example is found among any of the query points
the algorithm rejects, and otherwise it accepts.

It is clear from the formulation that the algorithm has a 1-sided error. We show in the sequel
that it has bounded error for all inputs.

We define as E the event that no block of Pq (and hence no block of any Pj , j < q) contains
more than a 1

3ε fraction of entries of any label which did not appear in its queries. We note that
with high probability E happens, and now prove, given that E happens, that if there is no counter
example within the set of the queried points, then M is ε-close to having the property. To see this,
we label each block of Pq with the set of all labels known to appear in it as a result of the queries
made. We also label all the blocks of the other partitions (remember that Pq is a refinement of all
of them) with the set of labels found while making queries within them. The next step is to choose
some 0 ≤ p < q, using the following claim.

Claim 4.6 There exists 0 ≤ p < q for which all but at most a 1
3ε fraction of the blocks of Pp are

1
c(h,k,d)(1

3ε)
c(h,k,d)-homogeneous with respect to Pp+1.
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Proof: For every σ ∈ Σ, 0 ≤ l < q, and a set of blocks A of Pl, we denote by χσ,l(A) the fraction
of blocks of Pl in A whose label contains the color σ. Let χl(A) = Σσχσ,l(A) and let ψl = χl(Pl).
By a slight abuse of notation we let χσ,l+1(A) and χl+1(A) denote the respective quantities where
the set of the sub-blocks of A from Pl+1 is used instead of A itself. We claim that for any δ, γ > 0,
if Pl has more than a δ-fraction of blocks which are not γ-homogeneous, then ψl+1 ≤ ψl − δ · γ.

Indeed, we observe that for any p′ ≤ l and any set of blocks A of Pp′ , we have χp′(A) ≥ χl(A).
We also observe that ψl = Prob[A]χl(A) + (1− Prob[A])χl(Pl − A) (where Prob[A] is the relative
size of A to the whole matrix).

Now assume that Pl has more than a δ-fraction of blocks that are not γ-homogeneous, and let
A be the set of all blocks of Pl that are not γ-homogeneous. Then Prob[A] ≥ δ. Also, by the above
observation it is enough to show that Prob[A](χl(A)−χl+1(A)) ≥ δ ·γ. By definition, for any p ≥ l,
χp(A) =

∑
B Prob[B]χp(B), where B ranges over the blocks in A and Prob[B] denotes the relative

size of B. However, for each block B, assuming that its label in Pl is S, |S| = r ≤ h, we have that
χl(B) = r, while as B is not γ-homogeneous we have χl+1(B) ≤ Prob[S] ·r+(1−Prob[S]) ·(r−1) ≤
r − 1 + Prob[S] ≤ r − γ (here Prob[S] is the fraction of blocks of Pl+1 in B that are labeled S).
Hence Prob[A](χl(A)− χl+1(A)) ≥ δ · γ as claimed.

To end the proof of the claim, note that since ψ0 ≤ |Σ|, if the claim does not hold for every p,
it would imply that ψq < 1, which is a contradiction (as every block label must contain at least
one member of Σ). Hence there exists p as in the formulation of the claim.

We now return to the proof of the theorem: Choosing p as in the formulation of the claim,
we proceed as follows. We consider the (mp+1, d)-matrix consisting of the labels of the blocks
of Pp+1, and its partition into (mp)

d blocks corresponding to the blocks of Pp. Over these we
apply Lemma 4.3 to find a (kmp, d)-pseudomatrix so that its intersection with every block from
Pp is a monochromatic (k, d)-pseudomatrix. By Lemma 4.3 for all but at most a 1

3ε fraction of the
homogeneous blocks in Pp, the restrictions of the pseudomatrix found to these blocks will have labels
identical to the blocks. We let W be the label matrix corresponding to the above pseudomatrix.

We now consider the following (n, d)-matrix MW : For every entry of M whose label is in the
set which is the common label of the intersection of the above pseudomatrix with the block from
Pp, this will also be the entry of MW in the respective location. Every other entry shall be replaced
with an arbitrary member of the set labeling the intersection of the pseudomatrix with the entry’s
block.

We note that, as in the 0/1 case, if E happens (as we assumed) then MW differs from M in
less than εnd places, because the differences can only be in entries which did not conform to the
corresponding block label in Pp+1, or entries which were in non-homogeneous blocks of Pp, or entries
which were in homogeneous blocks of Pp whose label was not the common label of the intersection
of the pseudomatrix found by Lemma 4.3 within this block. Since each of these three categories
contains at most 1

3εn
d of the entries, M is ε-close to MW .

We claim now that if the algorithm accepts then MW has the property and hence we are done.
Indeed, assume on the contrary that MW contains a counter example. We claim that in this case
there already exists a counter-example within the locations of the matrix queried by the algorithm
(regardless of E): Given the existence of a counter example F0 in MW , by Lemma 3.15 there exists

20



an embedding of the poset F0 (disregarding the labels for now as they will be dealt with later)
in MW when considered as G(mp · k, d), where each point in this embedding is in a different sub-
block, and with no two points sharing a coordinate. As W is an (mp · k, d)-matrix, we look at this
embedding in W . By our construction, the label of each entry in a Pp block of MW is a member of
the common block label of this block in MW . Hence, in the embedding of F0 in W , each entry is
labeled by a set that contains the label of the original entry of F0. However, as W is a label matrix
of a pseudomatrix of Pp+1 (where each block is considered as a point), an entry of M can be chosen
from each block of Pp+1 whose label is any desired member of the corresponding set-label of the
point in W . In particular, we can choose for any entry the label that leads to an embedding of F0

in M .

5 A ∀∃ property that is not testable

In this section we construct a ∀∃φ(x1, . . . , xk) property that is not ε-testable for some fixed ε. The
construction is similar in spirit to the non-testable graph property constructed in [1]. We first
construct such a property for a model which is stronger than the poset model, and then based on
it derive a poset-only ∀∃ property which is not testable. For the rest of this subsection we consider
only 2-dimensional matrices, and use the notion of rows and columns in the usual matrix sense.

5.1 A non-testable property concerning submatrices

The property that we present here uses the alphabet {0, 1, 2} and is in a slightly more general
model than ∀∃-poset. Let Sn be the symmetric group on n elements, let A be an n × n matrix.
A matrix B is said to be a row/column permutation of A if it can be obtained from A by first
permuting the columns of A by an arbitrary permutation π ∈ Sn and then permuting the rows of
the resulting matrix by an arbitrary permutation ρ ∈ Sn. We say that a {0, 1, 2}-matrix satisfies
the property ‘permutation’ if it is a row/column permutation of a symmetric matrix with all 2’s on
its primary diagonal, and no 2’s anywhere else. It is not hard to see that this is equivalent to the
matrix satisfying the following three conditions:

1. For every matrix entry which is not ‘2’ there is an entry on the same row and an entry on
the same column which are both ‘2’.

2. For every ‘2’ entry there is no other entry on the same row or column which is also ‘2’.

3. The matrix contains none of the following 2× 2 matrices as a submatrix (to ensure that the
original matrix was symmetric).(

2 0
1 2

)
;

(
2 1
0 2

)
;

(
0 2
2 1

)
;

(
1 2
2 0

)

Using the above equivalent formulation, the property ‘permutation’ can be expressed as a ∀∃φ
type property where φ uses, apart from the order relation and the value relations (“the entry at
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location x is 0/1/2”), the two additional relations: “x1, x2 are on the same row” and “x1, x2 are
on the same column” (this model has some interest in its own right, and is discussed further in the
concluding comments as well as in [2]). We claim that property ‘permutation’ is not testable:

Proposition 5.1 Property ‘permutation’ is not 1
20 -testable even by a two sided error adaptive al-

gorithm making o(n1/2) queries.

Proof: Using Yao’s principle [25], we define a probability distribution on inputs and show that
any fixed deterministic algorithm that queries d = o(n1/2) queries has an average error (according
to the distribution on inputs) of more than 1

3 .

Let us first define a distribution P on positive inputs, a distribution N on negative inputs, and
then the distribution D will be to choose with probability 1

2 a member according to P and with
probability 1

2 a member according to N . P is defined by first choosing randomly and uniformly a
symmetric matrix B with 2’s on the primary diagonal and 0’s and 1’s everywhere else. The input
matrix A is constructed from B by permuting its rows according to a permutation which is chosen
uniformly at random.

N is defined by just letting A be a uniformly random 0/1 matrix. The support of N includes
also inputs which are close to satisfying ‘permutation’, but a matrix selected according to N will
almost surely be 1

20 -far from satisfying it as claimed below

Claim 5.2 ProbN [dist(A, ‘permutation′) ≤ 1
20 · n

2] ≤ exp(−n)

Proof: The distribution N is uniform on all 2n
2

possible 0/1 matrices. Let A be a matrix that

belongs to ‘permutation’. Then, there are at most C =
(
n2

εn2

)
· 2εn2

0/1-matrices that are ε-close to
A (that bound is obtained by choosing εn2 places to change, and 0/1 values to change those places
to). The number of matrices in ‘permutation’ is at most 2n(n−1)/2 · (n!)2; this bound is obtained
by choosing a symmetric 0/1 matrix with 2 on its diagonal, and then permuting it by an arbitrary
pair of permutations (in fact one can easily show that this number is exactly 2n(n−1)/2 · n!, and
that the distribution P picks a uniformly random matrix with this property). Hence the number of
0/1 matrices that are ε-close to ‘permutation’ is at most D ≤ C · 2n(n−1)/2 · (n!)2. Fixing ε = 1/20
and using the standard approximation for C, we get that C ≤ 20.35·n2

. Thus D ≤ 2n
2(0.5+0.35+o(1))

implying that the probability above is at most 2−(0.15+o(1))·n2

Now, let A be an adaptive deterministic algorithm for testing the above property, that queries
d = o(n1/2) many queries. Such an algorithm can be represented by a decision tree of height d,
where each node of the tree represent a query and the leaves represent accept or reject decisions.
For such trees, the following was proved implicitly in [15] and other works, and has an explicit
proof in [12].

Lemma 5.3 Suppose that there exists two distributions P and N on inputs, so that for any subset
Y = {y1, . . . , yd} of size d of the domain and any g : Y → {0, 1}, we have PrN |Y (g) ≤ (1 +
o(1))PrP |Y (g). Then it is not possible for a decision tree A to distinguish with a bounded error
probability between an input chosen according to P and an input chosen according to N .
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The formulation in [12] actually has a stronger condition, (1 − o(1))PrP |Y (g) < PrN |Y (g) <
(1 +o(1))PrP |Y (g), but it is not hard to see that the same proof works also for the condition above.

In here we will use P from above, and Ñ , which is the conditioning of N on the event that the
chosen matrix is indeed 1

20 -far from satisfying ‘permutation’. However, since this event in our case
occurs with probability 1−o(2−d), it is clearly sufficient to prove the above condition for N instead
of Ñ .

We need the following easy claim.

Claim 5.4 For a fixed set I ⊂ {1, . . . , n} of size k, let σ be a uniformly chosen random permutation
over {1, . . . , n}. Then, with probability at least 1−

(
k
2

)
· 1
n there are no i, j ∈ I for which σ(i) = j.

For a matrix chosen according to to N , the restriction of the input to any set Y of size d is the
uniform distribution over sequences of d bits, and so for any g : Y → {0, 1} we have PrN |Y (g) = 2−d

(and hence PrÑ |Y (g) ≤ (1 + o(1))2−d). Now we analyze the restriction to Y of a matrix chosen

according to P . Let I be the set of all indexes of the matrix entries found in Y (in the first or
second coordinate of any entry). It is clear that |I| ≤ 2d, and so the event of Claim 5.4 occurs with
probability 1 − o(1). However, conditioned on this event, the restriction of the matrix to Y will
again be a uniformly random distribution over sequences of d bits, as Y will contain no ‘2’ entry and
no two members of Y will be correlated by the matrix symmetry. Thus PrP |Y (g) ≥ (1− o(1))2−d,

and together with the probability bound for Ñ this implies the conditions for Lemma 5.3 that yield
the testing bound.

5.2 Submatrices, tight submatrices and witnesses

In order to construct a non-testable property of 0/1 matrices that is strictly in the ∀∃-poset model
we need some machinery that will be developed here.

Relations like “x and y are not on the same row or column” can be expressed in the poset
model using additional variables and quantifiers. For example, it can be seen that if x ≤ y (in the
product ordering of the 2-dimensional matrix), then they do not share a row or a column if and
only if there exist w and z which are incomparable and moreover satisfy x ≤ w ≤ y and x ≤ z ≤ y.
We call such a pair variables a witness for x and y not sharing a coordinate.

We can extend this further: The locations (xi,j)i,j∈[k] represent a subgrid (and their labels
a submatrix) if and only if they have between them the order relation that a subgrid has, and
furthermore there are no witnesses for any xi,j and xi,j′ not sharing a coordinate, as well as for any
xi,j and xi′,j not sharing a coordinate. Note however that we cannot distinguish this way between
a submatrix and its transpose.

We can also use witnesses to express other notions: If two points x ≤ y are not equal but do
share a coordinate, then x and y reside on consecutive values of the other coordinate if and only if
there exist no z different from x and y for which x ≤ z ≤ y. This allows us to express the following
definition within a first order poset property. (xi,j)i,j∈[k] are said to represent a tight subgrid if there
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exist i0 and j0 so that xi,j = (i0 + i, j0 + j) for every i and j. Similarly we define the notion of a
tight submatrix using their labels. We note now that (xi,j)i,j∈[k] represent a tight subgrid (or its
transpose) if and only if they satisfy the appropriate order relations, and furthermore there exist
no witnesses showing that (xi,j)i,j∈[k] is not a subgrid and no witnesses showing that xi,j and xi,j+1

or xi,j and xi+1,j (for any i and j) do not reside consecutively on the non-shared coordinate.

We are now ready to define the non-testable poset property.

5.3 A non-testable ∀∃-poset property

In our definition we shall use the following matrices, which we call the three guide matrices. The
idea would be to encode the {0, 1, 2} labeling in the property ‘permutation’ defined in Subsection
5.1 by copies of these matrices.

G0 =


0 0 0 0 0
0 0 0 0 0
0 0 1 1 1
0 0 1 1 0
0 0 1 1 1

 G1 =


1 0 0 0 0
0 0 0 0 0
0 0 1 1 1
0 0 1 1 0
0 0 1 1 1

 G2 =


0 0 0 0 0
0 1 0 0 0
0 0 1 1 1
0 0 1 1 0
0 0 1 1 1


The property ‘permutation-p’ that is defined below describes matrices that have the property

‘permutation’, where each label i ∈ {0, 1, 2} is replaced with the guide matrix Gi. Formally, it is
defined as the input matrix satisfying the following conditions (actually each statement should be
replaced by a counterpart which is invariant with respect to taking a transpose of the input matrix,
but this has no essential effect on the following analysis as the guide matrices are not symmetric).

1. For every (xi,j)i∈[5],j∈[10] there either exists a witness showing that they do not form a tight
subgrid, or the labels of the input matrix M in these locations are such that (M(xi,j))i∈[5],j∈[5]

is a guide matrix if and only if (M(xi,j))i∈[5],j∈[10]−[5] is a guide matrix.

2. Similarly to the above, for every (xi,j)i∈[10],j∈[5] that form a tight subgrid, (M(xi,j))i∈[5],j∈[5]

is a guide matrix if and only if (M(xi,j))i∈[10]−[5],j∈[5] is.

3. If (xi,j)i∈[5],j∈[5] form a tight subgrid and their labels form a guide matrix other than G2, then
the input matrix M contains a “1” on the same row as x1,1 and a “1” on the same column
as x1,1 (this can be formulated in terms of the order relations of the locations of the 1’s with
respect to x1,0, x0,1, x2,1 and x1,2).

4. If (xi,j)i∈[5],j∈[10] form a subgrid, and moreover (xi,j)i∈[5],j∈[5] and (xi,j)i∈[5],j∈[10]−[5] are both
tight, then (M(xi,j))i∈[5],j∈[5] and (M(xi,j))i∈[5],j∈[10]−[5] cannot be both G2.

5. Similarly if (xi,j)i∈[10],j∈[5] form a subgrid, and (xi,j)i∈[5],j∈[5] and (xi,j)i∈[10]−[5],j∈[5] are tight,
then (M(xi,j))i∈[5],j∈[5] and (M(xi,j))i∈[10]−[5],j∈[5] cannot be both G2.
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6. If (xi,j)i∈[10],j∈[10] form a subgrid for which (xi,j)i∈[5],j∈[5], (xi,j)i∈[5],j∈[10]−[5], (xi,j)i∈[10]−[5],j∈[5]

and (xi,j)i∈[10]−[5],j∈[10]−[5] are tight, then (M(xi,j))i∈[10],j∈[10] is not any of the following for-
mations. (

G2 G0

G1 G2

)
;

(
G2 G1

G0 G2

)
;

(
G0 G2

G2 G1

)
;

(
G1 G2

G2 G0

)

We first establish the connection between the properties ‘permutation’ and ‘permutation-p’.

Given an n× n matrix A labeled by {0, 1, 2}, we say that a 5n× 5n 0/1 matrix M is the tiling
of A, if for every 0 ≤ i, j ≤ n−1 the tight submatrix (M(5i+ i′, 5j+ j′))0≤i′,j′≤4 is equal to GA(i,j).
In other words, M is formed by replacing each entry of A with the appropriate 5× 5 guide matrix.

Claim 5.5 If M is a tiling of a matrix A which satisfies ‘permutation’, then M satisfies the property
‘permutation-p’.

Proof: It is not hard to see that a tiling of any 0/1/2 matrix does not contain any tight sub-
matrices which are equal to a guide matrix (or its transpose) apart from those of the form
(M(5i+ i′, 5j + j′))0≤i′,j′≤4. Thus, the first two conditions in the definition of ‘permutation-p’
are satisfied in M . The third condition now follows from the first condition in the definition of
‘permutation’ (note that G2 is the only guide matrix with a ‘1’ entry on its second row, as well as
the only one to have a ‘1’ on its second column). The fourth and fifth conditions in ‘permutation-p’
follow from the second condition in ‘permutation’, and the sixth condition in ‘permutation-p’ fol-
lows from the third condition in ‘permutation’. This completes the claim.

Claim 5.6 If M is a 5n × 5n matrix which satisfies ‘permutation-p’ and has any tight submatrix
of the form (M(5i+ i′, 5j+ j′))0≤i′,j′≤4 which is equal to a guide matrix, then M is a tiling of some
n× n matrix A which satisfies ‘permutation’.

Proof: The first two conditions in the definition of ‘permutation-p’ imply that if M satisfies it and
has any tight submatrix of the form (M(5i+ i′, 5j + j′))0≤i′,j′≤4 equal to a guide matrix, then M
is a tiling of some n× n matrix A (these conditions say in essence that a tight submatrix adjacent
to a tight guide submatrix is a guide matrix itself). The last four conditions in ‘permutation-p’
guarantee in turn that A satisfies the three conditions in the definition of ‘permutation’.

Theorem 5.7 Property ‘permutation-p’ is not 1
500 -testable even by a two sided error adaptive al-

gorithm making o(n1/2) queries.

Proof: By Claim 5.5 and Claim 5.6, given an ε-test of a 0/1 labeled 5n × 5n matrix M for
‘permutation-p’, we construct a test of a 0/1/2 labeled n×n matrix A for ‘permutation’ by querying
the location (b i5c, b

i
5c) of A whenever the location (i, j) of M is queried, and assigning to (i, j) the
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entry of GA(b i
5
c,b i

5
c) at (i mod 5, j mod 5). In other words, the test of A is constructed by simulating

the test of M on the tiling of A. The new test clearly makes the same number of queries as the
original one.

We now claim that the new test is a 25ε-test for the property ‘permutation’. In particular,
this means that the existence of this 1

500 -test for ‘permutation-p’ would imply the existence of a
corresponding 1

20 -test for ‘permutation’. This would contradict Proposition 5.1, so the theorem
follows.

Indeed, if A has ‘permutation’ then clearly its tiling M has ‘permutation-p’. On the other hand
let us assume that A is 25ε-far from satisfying ‘permutation’, and ε < 1

25 . Claim 5.6 implies that
any matrix M ′ that satisfies ‘permutation-p’ and is not ε-far from M is a tiling of some matrix A′

that satisfies ‘permutation’. This holds because one has to change M in at least 1
25(5n)2 places

to remove all tight guide submatrices of the form (M(5i+ i′, 5j + j′))0≤i′,j′≤4. Since A′ is at least
25ε-far from A (by the assumption that A is far from any matrix that satisfies ‘permutation’), the
tiling M ′ of A′ is at least ε-far from the tiling M of A.

6 Concluding remarks

We have seen that ∀-poset properties are testable, for 0/1 matrices as well as matrices over any
fixed finite alphabet, while some ∀∃-poset properties are not testable.

It is also interesting to investigate the ‘submatrix’ model, in which properties are defined by a
set of forbidden submatrices, rather than forbidden posets. The situation with this model is not yet
completely understood. [14] and [2] contain a relatively efficient test (with dependence on 1/ε that
is better then a tower) for the permutation invariant case using a ‘conditional’ Regularity Lemma
that is proven there for the purpose. However, we do not know yet how to construct a tester for
the case where permutation invariance is not guaranteed; many other interesting open questions
also exist for the ‘submatrix’ model.

Back to the ∀-poset model: It would be nice to make the tests more efficient, especially in
the case of non-binary alphabets. Another open problem is to better understand the ∃∀-poset
properties. This latter model is related to some colorability problem in the spirit of [11], and
currently the question as to whether properties in this model are testable is open.

Finally, other interesting relations apart from the order relation can be used, giving rise to
different models. For example, for the 2-dimensional case, row(x, y)/ col(x, y) that states that
x and y are on the same row/ column. Others are succR(x1, x2) stating that x2 is on the same
row as x1 and directly at the right of x1, and similarly succC(x1, x2) for columns. The relations
row(x1, x2) ∨ col(x1, x2) and succR(x1, x2) ∨ succC(x1, x2) are both expressible by “∀” formulae
using the basic poset-model relations, so “∀” properties using them are all ∀∃-poset properties
according to the definition of Section 2 (but not necessarily ∀-poset properties). We currently have
no results for these models.

Acknowledgment: We wish to thank the anonymous referee for the many helpful comments.
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