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Abstract

Let C be a class of relational structures. We denote by fC(n) the number of structures in C over the

labeled set {0, . . . , n − 1}. For any C definable in monadic second order logic with unary and binary

relation symbols only, E. Specker and C. Blatter showed that for every m ∈ N, the function fC satisfies a

linear recurrence relation modulo m, and hence it is ultimately periodic modulo m. The case of ternary

relation symbols, and more generally of arity k symbols for k ≥ 3, was left open.

In this paper we show that for every m there is a class of structures Cm, which is definable even in

first order logic with one quaternary (arity four) relation symbol, such that fCm is not ultimately periodic

modulo m. This shows that the Specker-Blatter Theorem does not hold for quaternary relations, leaving

only the ternary case open.

1 Introduction

The Specker-Blatter Theorem

Counting all objects of a specified kind belongs to the oldest activities in mathematics. In particular,

counting the number of graphs of every order n that satisfy a given property is still a classic undertaking in

combinatorial theory, as witnessed in [10] and [18].

A remarkable theorem due to E. Specker and C. Blatter, first announced in 1981, cf. [2, 3, 4, 17], states

that many of the above counting functions behave in orderly ways despite their apparent complexity. It is

unfortunate that this theorem has received less than the attention it deserves for both the beauty of the

result and the ingenuity in its proof.

Let us consider k relation symbols R1, . . . , Rk, and let C be a class of labeled relational structures

over R1, . . . , Rk. For every every n we denote by fC(n) the number of such structures over the universe
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{0, . . . , n− 1}. For example, a class C of structures over one binary relation E is a class of directed labeled

graphs (possibly with loops but with no completely parallel edges), and in this case fC(n) counts the number

of such graphs with the vertex set {0, . . . , n− 1}.

Theorem 1 (The Specker-Blatter Theorem) For a class C definable in monadic second order logic with

unary and binary relation symbols only, the function fC satisfies a linear recurrence relation

fC(n) ≡
d∑
j=1

a
(m)
j fC(n− j) (mod m)

for every m ∈ N. In particular, all functions f
(m)
C : N → Zm defined by f

(m)
C (n) = fC(n) (mod m) are

ultimately periodic.

The case of ternary relation symbols, and more generally of arity k ≥ 3 relation symbols, was left open

in [4, 17]. The question as to whether Theorem 1 holds for these appears in the list of open problems in

finite model theory, [13, Problem 3.5].

In this paper we show that Theorem 1 does not hold for quaternary relations, leaving only the ternary

case unresolved.

Theorem 2 For every prime p there is a class of structures Cp which is definable in first order logic by a

formula φImp
, with one binary relation symbol E and one quaternary relation symbol R, such that fCp is not

ultimately periodic modulo p.

It is indeed sufficient to formulate and prove Theorem 2 for every prime number p, since for an m which

is not prime the theorem easily extends by applying it to a p which is a prime divisor of m. In the end of the

paper we also specify how to construct a property as above that involves only a single quaternary relation

symbol.

In a future article [8] we shall further explore the boundaries of the Specker-Blatter Theorem. For

example, it is shown there that for unary relations the recurrence relation holds also over Z, even if we

consider linearly ordered labeled structures (while the Specker-Blatter Theorem does not hold over linearly

ordered structures for binary relations); other instances for which the Specker-Blatter theorem holds are also

described there.

Definability and logic

The following is a brief review; for the reader who is unfamiliar with definability in logic we recommend [6].

Let R̄ = {R1, . . . , Rk} be a set of relation symbols, where each Ri is associated with the arity ρi. A

(relational) R̄-structure is a tuple A = 〈A,RA
1 , . . . , R

A
k 〉 where RA

i ⊆ Aρi for every 1 ≤ i ≤ k; in the above

notation we also say that A is the universe of A. Let C be a class of relational R̄-structures. We denote by

fC(n) the number of structures in C over the labeled set [n] = {0, . . . , n− 1}, that is,

fC(n) = |{
(
RA

1 ⊆ [n]ρ1 , . . . , RA
k ⊆ [n]ρk

)
: 〈[n], RA

1 , . . . , R
A
k 〉 ∈ C}|.
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First Order Logic (FOL) over R̄ has the atomic formulas of the type “Ri(x1, . . . , xρi)” and “x1 = x2”,

where x1, x2, . . . are any individual variables. The set FOL(R̄) denotes all formulas, composed using atomic

formulas, boolean connectives, and quantifiers of the type “∃x” and “∀x”, which have no free (non-quantified)

variables. For example, the formula stating that a relation E is the edge set of a simple undirected graph is

such a formula: ∀x(¬E(x, x)) ∧ ∀x∀y(E(x, y)→ E(y, x)). The satisfaction relation between an R̄-structure

A and a first order formula φ is defined as usual (e.g. A |= R1(x1, . . . , xρ1) if (x1, . . . , xρ1) ∈ RA
1 , and so on).

With a slight abuse of notation we shall sometimes use “Ri” to denote also “RA
i ” when the meaning of the

expression is clear from its context.

Monadic Second Order Logic (MSOL) formulas are obtained by allowing additionally for variables

S1, S2, . . . which hold sets (unary predicates), atomic formulas of the type “x1 ∈ S2”, and quantifiers over

the set variables; as before MSOL(R̄) denotes all such formulas that have no free variables (of either kind).

For example, there exists an MSOL formula stating that a simple graph given by a relation E is 2-colorable:

∃S(∀x∀y(((x ∈ S ∧ y ∈ S) ∨ (x 6∈ S ∧ y 6∈ S))→ (¬E(x, y))))

A class C of R̄-structures is called FOL-definable if there exists φ ∈ FOL(R̄) such that for every A we

have A ∈ C if and only if A |= φ. The notion of a class being MSOL-definable is similarly defined.

The following are some more examples concerning an R̄ which consists of a single binary relation symbol

R. The nondefinability statements appearing below can be proven using Ehrenfeucht-Fräıssé Games, see [6].

1. The class ORD of all linear orders. It is FOL(R)-definable, and satisfies fORD(n) = n!.

2. For the class CONN of simple undirected connected graphs, [10, page 7] gives

fCONN(n) = 2(n
2) − 1

n

n−1∑
k=1

k

(
n

k

)
2(n−k

2 )fCONN(k).

The class CONN is not FOL(R)-definable, but it is MSOL(R)-definable using a universal quantifier

over set variables.

3. Let m ∈ N and let EQCm denote the class of simple undirected graphs which consist of m disjoint

cliques of equal size. For example, for m = 2 we have fEQC2
(2n) = 1

2

(
2n
2

)
and fEQC2

(2n+ 1) = 0. The

class EQCm is not MSOL(R)-definable, but it will play a crucial role in the following.

To appreciate the Specker-Blatter Theorem (Theorem 1), one should look at the counting function fRr
(n)

of the class of simple r-regular graphs Rr, which is clearly definable (for every fixed r) in first order logic.

Counting the number of labeled regular graphs is treated completely in [10, Chapter 7], where an explicit

formula is given, essentially due to J.H. Redfield [16] and rediscovered by R.C. Read [14, 15]. However, the

formula is complicated and does not readily yield the modular recurrence relations. For cubic graphs, the

function is explicitly given in [10, page 175] as fR3
(2n+ 1) = 0 and

fR3
(2n) =

(2n)!

6n

∑
j,k

(−1)j(6k − 2j)!6j

(3k − j)!(2k − j)!(n− k)!
48k

∑
i

(−1)ij!

(j − 2i)!i!
.
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In [9, Section 9], I. Gessel provides techniques of studying congruences for fRr (n), but their application is

still quite difficult. A simpler asymptotic formula was found by B. Bollobas [5]; it has proven to be useful in

studying regular random graphs, but by its approximative nature it provides no information with respect to

congruences.

Outline of the paper

The proof of Theorem 2 is based on the classes EQCp (where p is prime) given above. In Section 2 we show

that bp(n) = fEQCp
(n) is not ultimately periodic modulo p. In Section 3 we construct classes of structures Dp

such that fDp
(n) ≡ bp(n) (mod p). These structures however use infinitely many binary relation symbols

(actually the number of relations can be made finite but it still depends on n). These structures use an

inductive definition of a binary property, with the induction step by itself being in essence FOL-definable.

In Section 4 we finally construct classes Cp that have a one to one and onto correspondence with the classes

Dp, and which are FOL-definable. This is done by ‘unfolding’ the inductive definition, using the relations

of each stage as ‘markers’ for the relations of the next stage. This process results in quaternary relations.

Similar techniques of unfolding inductions are frequently used in descriptive complexity theory, see e.g. [6].

Acknowledgments

I am indebted to J.A. Makowsky, for introducing me to the Specker-Blatter Theorem and its related open

questions, and for his various suggestions. I also wish to thank two anonymous referees for their suggestions,

and for introducing me to the theory of combinatorial species.

2 Counting modulo p

In the following, we let p be a prime number, and state some lemmas and definitions; in particular, we

provide a graph property for which the number of models is not periodic modulo p, but which is not first

order. Based on it we will construct a first order property in the following sections.

To help us count modulo p, we make extensive use of the following simple lemma. Similar methods have

been extensively used before, at least as early as in the 1872 combinatorial proof of Fermat’s congruence

theorem by J. Petersen, given in the introduction of [9].

Some notation first: Every permutation σ : [n]→ [n] can also act on the family of R̄-structures over [n]

(for a given fixed R̄) in the obvious way, by sending A = 〈[n], RA
1 , . . . , R

A
k 〉 to σ(A) = 〈[n], σ(RA

1 ), . . . , σ(RA
k )〉,

where we define σ(RA
i ) = {(σ(a1), . . . , σ(aρi)|(a1, . . . , aρi) ∈ RA

i }. Families of R̄-structures definable e.g. by

a set of first order or second order logic axioms are clearly closed under the action of σ, and, moreover, σ

induces a permutation on such families; in fact, the abstraction of a similar observation is the starting point

of the theory of combinatorial species (see [1]).
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Lemma 3 Suppose that F is a family of structures over [n] = {0, . . . , n − 1} which is closed under the

action of every permutation of [n] (e.g. a family defined by a first order expression over some language). Let

σ : [n]→ [n] be a permutation such that σ 6= Id but σp = Id.

Let F ′ ⊂ F be a family of structures such that σ also preserves membership in F ′, and which contains

all structures that are invariant with respect to σ (that is, F ′ contains every A ∈ F for which σ(A) = A).

Then |F ′| ≡ |F| (mod p).

Proof: By the above definitions and discussion, σ induces a permutation over F , which preserves F ′.
Decomposing this permutation of F to disjoint orbits, it is not hard to see that every member of F which is

not invariant under σ is in an orbit of size p (using the information that p is prime); in particular F −F ′ is

a disjoint union of such orbits, and so its size is divisible by p. 2

We denote by bp(n) the number of graphs with [n] as a set of vertices which are disjoint unions of

exactly p same-size cliques, that is, bp(n) = fEQCp
(n). We now investigate the congruences of bp(n) modulo

p. Congruence classes of binomial coefficients and related functions have received a lot of attention in the

literature, starting with Lucas’s famous result [12] (see also [7]). We start with the following lemma.

Lemma 4 For every k > 1, bp(pk) ≡ bp(k) (mod p).

Proof: We define σ : [pk] → [pk] by σ(pi + j) = σ(pi + j + 1) for 0 ≤ i < k and 0 ≤ j < p − 1, and

σ(pi+ p− 1) = σ(pi) for 0 ≤ i < k (so σ is composed of k disjoint orbits of size p).

We now use Lemma 3. We first note that all graphs for which any clique contains more than one member,

but not all members, of {pi, . . . , pi + p − 1} for some i, are not invariant with respect to σ. We also note

that all graphs for which some clique contains all members of {pi, . . . , pi+ p− 1}, but only one member of

{pj, . . . , pj + p− 1} for some other j, are not invariant with respect to σ.

We let F ′ be the family of all other graphs which are disjoint union of p same-size cliques. It is not hard

to see that F ′ contains two types of graphs – those for which every {pi, . . . , pi + p− 1} is contained in one

of the cliques, whose number is bp(k), and those for which every {pi, . . . , pi + p − 1} contains exactly one

member from every clique, whose number (p!)k−1 is divisible by p if k > 1. 2

Consequence 5 For every n which is not a power of p, we have bp(n) ≡ 0 (mod p), and for every n which

is a power of p we have bp(n) ≡ 1 (mod p). In particular, bp(n) is not ultimately periodic modulo p.

Proof: By induction on n, where the basis is n = p (for which bp(n) = 1) and every n which is not divisible

by p (for which bp(n) = 0); the induction step follows from Lemma 4. 2
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3 Comparing sizes in a modulo-preserving manner

The first intuition with regards to ensuring (with a first order property) that the sizes of p sets A0, . . . , Ap−1

are all equal, is to add a binary relation and state that it is a perfect matching between each pair of these

sets. However, the number of ways to construct such matchings for equal size sets is divisible by |A0|!, and

so it is zero modulo p for any large enough n. We thus have to formulate a different notion. We start with

one that does not ensure that the sets are equal, and later show how to iterate it in a manner that indeed

provides a good substitute for the notion of a perfect matching.

Definition 6 A preserving p-matching between A0, . . . , Ap−1 is a set of 1
p

∑p−1
i=0 |Ai| vertex disjoint p-cliques

on
⋃p−1
i=0 Ai, such that every clique is either fully contained in one of A0, . . . , Ap−1, or contains exactly one

vertex from each Ai.

Note that for p = 2, every perfect matching on A0∪A1 (not necessarily between A0 and A1) is a preserving

2-matching. The enumeration of preserving p-matchings modulo p is given by the following.

Lemma 7 If |A0| ≡ . . . ≡ |Ap−1| (mod p) then the number of preserving p-matchings is 1 modulo p.

Otherwise, there are no preserving p-matchings at all.

Proof: The proof of the second part (where the |Ai| are not all equivalent modulo p) is simple. The proof

of the first part is by induction on
∑p−1
i=0 |Ai|.

The base case is where all |Ai| are equal to some k < p. It is clear that in this case a preserving

matching consists of k cliques such that each of them contains exactly one vertex from each Ai. Denoting

Ai = {vi,0, . . . , vi,k−1}, define σ by σ(vi,j) = vi+1,j for every 0 ≤ j ≤ k − 1 and 0 ≤ i < p − 1, and

σ(vp−1,j) = v0,j for every 0 ≤ j ≤ k − 1. Since k < p, for every clique with vertices {v0,j0 , . . . , vp−1,jp−1
}

there exist i 6= i′ such that ji = ji′ ; from this it is not hard to show that the matching is not invariant

with respect to σ unless for every such clique, ji = ji′′ for every i′′. Thus there exists only one preserving

p-matching which is invariant with respect to σ, and using Lemma 3 the base case is proven.

For the induction step, let i0 be such that |Ai0 | ≥ p, and let v0, . . . , vp−1 be p vertices in Ai0 . In this case

we define σ by σ(vj) = vj+1 for 0 ≤ j < p − 1, σ(vp−1) = v0, and σ(u) = u for every u 6∈ {v0, . . . , vp − 1}.
It is clear that the only invariant preserving p-matchings are those for which {v0, . . . , vp−1} is one of the

p-cliques, and using Lemma 3 the induction step follows. 2

To fully equate the sizes of the sets A0, . . . , Ap−1, we use the following notion of a matching between the

sets.

Definition 8 Given disjoint sets A0, . . . , Ap−1, an iterative p-matching between these sets is a sequence of

graphs {Mi}i≥0 =M0,M1, . . . where each has its own vertex set, satisfying the following.

• If Ai = ∅ for every i then M0 = ∅.
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• Otherwise, M0 is a preserving p-matching between A0, . . . , Ap−1.

• Defining by A′i the set of p-cliques of M0 inside Ai for every i, M1,M2, . . . is an iterative p-matching

between A′0, . . . , A
′
p−1.

The above sequences may look infinite, but it is easy to see that if A0, . . . , Ap−1 are all finite, then the

number of non-empty elements in an iterative p-matching is also finite, and moreover, the total number

of possible iterative p-matchings over A0, . . . , Ap−1 is finite. We shall also use the following alternative

definition of iterative matchings.

Definition 9 Given disjoint sets A0, . . . , Ap−1, a graphic iterative p-matching between these sets is a se-

quence of graphs {Mi}i≥0 = M0,M1, . . . which all have
⋃p−1
i=0 Ai as a vertex set, satisfying the following.

• Every Mi consists of isolated vertices and vertex disjoint copies of the complete p-partite graph with p

color classes of size pi.

• Each of the p-partite graphs in Mi is either fully contained in one of A0, . . . , Ap−1, or is such that each

of its color classes is fully contained in a different Ai; in particular, M0 is a preserving p-matching

between A0, . . . , Ap−1.

• For i > 0, each color class of a p-partite graph in Mi consists of all vertices of one of the p-partite

graphs in Mi−1 which are fully contained in one of A0, . . . , Ap−1; moreover, for each of the p-partite

graphs of Mi−1 with the above property there exists a complete p-partite graph in Mi containing its

vertices in this manner.

It is not very hard to see that the correspondence defined below is in fact a one to one and onto cor-

respondence between all possible iterative matchings and all possible graphic iterative matchings between

A0, . . . , Ap−1.

Definition 10 Given a graphic iterative matching {Mi}i≥0 we construct the corresponding iterative match-

ing {Mi}i≥0 as follows.

• M0 is M0.

• For every i we let A′i be the set of p-cliques of M0 that are fully contained in Ai. We then construct

M ′1,M
′
2, . . . by defining M ′j to have an edge between u ∈

⋃p−1
i=0 A

′
i and v ∈

⋃p−1
i=0 A

′
i if and only if M ′j has

an edge between the corresponding cliques. It is not hard to see that M ′1,M
′
2, . . . is a graphic iterative

p-matching between A′0, . . . , A
′
p−1; we then define M1,M2, . . . as the iterative matching corresponding

to M1,M2, . . . inductively.

Given an iterative matching {Mi}i≥0, we construct the corresponding graphic iterative matching {Mi}i≥0
as follows.
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• M0 is M0.

• We now construct by induction a graphic iterative matching {Ni}i≥1 corresponding to {Mi}i≥1. We

note that {Mi}i≥1 is an iterative matching over A′0, . . . , A
′
p−1, which are sets of p-cliques over members

of A0, . . . , Ap−1, and thus the graphs {Ni}i≥1 are over the vertex set A′0, . . . , A
′
p−1. For every i ≥ 1 we

construct Mi from Ni as follows: Every vertex of Ni corresponds to a clique of M0 which is contained in

some Aj. We replace each such vertex by the p vertices of the corresponding clique in M0, and replace

each edge uv of Ni by all possible edges between the vertices that correspond to u and the vertices that

correspond to v. We do not put in Mi any additional edges (there may be additional isolated vertices,

those of the cliques in M0 that are not fully contained in some Aj).

It is not hard to see that the second correspondence is the inverse of the first.

Henceforth, we use the term “iterative matchings” for both points of views. We now show how iterative

matchings are useful for equating sets in the modulo p setting.

Lemma 11 If |Ai| are all equal, then the number of iterative p-matchings between A0, . . . , Ap−1 is 1 modulo

p. Otherwise, there are no such matchings.

Proof: The proof is by induction on
∑p−1
i=1 |Ai|. The case where this sum is zero is clear (in this case Ai = ∅

for every i and indeed there exists exactly one possible iterative p-matching), as well as all cases where the

|Ai| are not all equivalent modulo p (in which there is no possibility for constructing even the first preserving

p-matching M0).

In any other case the number of ways to construct M0 is 1 modulo p by Lemma 7. For each such

construction, if we construct the appropriate A′0, . . . , A
′
p−1 as per the definition above, it is easy to see that∑p−1

i=1 |A′i| <
∑p−1
i=1 |Ai|, as well as that |A′i| are all equal if and only if |Ai| are all equal. The latter occurs

because when we denote by r the number of cliques in M0 not fully contained in any of the Ai, we get

|A′i| =
|Ai|−r
p for every i.

If |Ai| are all equal, then by the induction hypothesis for every choice of M0 the number of choices for

M1,M2, . . . is 1 modulo p, and thus their sum over all choices of M0 is 1 modulo p. If |Ai| are not all

equal, then by the induction hypothesis there exists no good choice of M1,M2, . . . for any choice of M0,

completing the proof. 2

We conclude our investigation of iterative matchings with a simple lemma which is not directly related

to counting, but is used in the following.

Lemma 12 For every iterative matching between A0, . . . , Ap−1 (by Lemma 11 we need only consider sets

with equal sizes), every vertex in
⋃p−1
i=0 Ai is eventually matched (a vertex in Aj is considered eventually

matched if it has a neighbor outside of Ai in some Mk, when we consider the graphic version {Mi}i≥0 of the

iterative matching).

8



Proof: In this case it is better to look at {Mi}i≥0 which corresponds to {Mi}i≥0, and note that a vertex

v ∈ Ai is eventually matched if and only if it is either contained in a clique of M0 which is not internal to

Ai, or contained in a clique of M0 which is internal to Ai but which is eventually matched by M1,M2, . . .;

the proof is then completed by an easy induction on |A0|. 2

Iterative matchings and species

Iterative matchings admit a natural description in the framework of the theory of species, initiated by Joyal

[11] and detailed in [1]. For the interested reader that is familiar with this theory, we outline how iterative

matchings can be described using the theory of species in this small digression from the main topic of the

paper. The notation used in the following is taken from [1].

We let X0, . . . , Xp−1 denote variables (or singleton species) for p sorts of points. Let E be the species of

(one-sorted) sets, and Ep be the species of sets of cardinality p. Thus, for example, E(Ep(X)) is equivalent

to the species of (labeled) graphs which are disjoint union of cliques with p vertices, and E(X · Y ) is the

two-sorted species of bijections between two base sets.

The p-sorted species PM(X0, . . . , Xp−1) = E(X0 · . . . ·Xp−1) ·E(Ep(X0) + . . .+Ep(Xp−1)) corresponds

to that of the preserving p-matchings between p sets, and the recursive definition of iterative matchings

translates to the combinatorial functional equation

IM(X0, . . . , Xp−1) = E(X0 · . . . ·Xp−1) · IM(Ep(X0), . . . , Ep(Xp−1)).

Unfolding the above recursive equation provides us with

IM(X0, . . . , Xp−1) =
∏
k≥0

E(E(k)
p (X0) · . . . · E(k)

p (Xp−1)),

where we define by induction E
(0)
p (X) = X and E

(k+1)
p (X) = Ep(E

(k)
p (X)). It is not hard to show that this

alternate formula for the species corresponds to the graphic definition of iterative matchings (where the term

E(E
(k)
p (X0) · . . . ·E(k)

p (Xp−1)) corresponds to the restriction of the matching to the vertices of the connected

components of Mk which are not contained in any Ai).

The results of this section concerning the number of iterative matchings modulo p can also be proven

using the tools of the theory of species: The above combinatorial equations lead to a recursive formula for the

number of iterative matchings between p sets, which in turn can be shown to have the required properties.

4 Constructing the first order property

We now construct a first order property that in essence counts bp(n) times the number of possible iterative

matchings between the p sets of size k
p ; by Lemma 11 this is equivalent modulo p to bp(n).
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We look at structures 〈[n], E,R〉 where E is a binary relation and R is a quaternary (arity four) relation.

The property will state that E is a union of p vertex-disjoint cliques and that R is a representation (we will

prove that it is unique) of an iterative p-matching between the cliques in E. Instead of defining the property

all at once we define it as the conjunction of several properties defined below. All the properties are first

order, and whenever proving this part is clear we shall omit all further mention thereof. In the presentation

we shall also define and use some relations that can be expressed using first order expressions over E and R.

Definition 13 Property Clp(E) states that E is a non-directed simple graph which is the disjoint union of

exactly p cliques.

In the sequel we denote by A0, . . . , Ap−1 the p cliques. We note however that the labeling of these cliques

is arbitrary, and make sure that all the logical constructions below are invariant with respect to permuting

the labels A0, . . . , Ap−1; in particular the definition of a preserving p-matching is such a construction (see

below).

Definition 14 Property Edgp(R) states that if (e1, e2, o1, o2) is in R then e1 6= e2, and also (e2, e1, o1, o2)

and (e1, e2, o2, o1) and (e2, e1, o2, o1) are in R. We say in this case that the edge (e1, e2) has (o1, o2) as an

origin. We say that (e1, e2) has an origin if there exist (o1, o2) for which (e1, e2, o1, o2) ∈ R. Note that there

is the possibility that o1 = o2.

In the sequel we shall usually refer by the term ‘edge’ to an (e1, e2) that has an origin according to R,

and only refer indirectly (e.g. by the definition of A0, . . . , Ap−1) to the graph E.

Definition 15 If (e1, e2) which has an origin satisfies (e1, e2) 6∈ E (that is, it is an edge between Ai and Aj

for some i 6= j) then we say that (e1, e2) is a bridge. Otherwise we say that (e1, e2) is internal to the clique

that contains e1 and e2 (which is one of A0, . . . , Ap−1).

We shall use the definition of bridge and internal edges to define the property of R representing an

iterative p-matching {Mi}i≥0, while distinguishing which edge belongs to which Mi will result from the

above definition of an origin. First we deal with M0.

Definition 16 Property Basep(E,R) states the following.

• If (e1, e2) has (o, o) as an origin, then for every (o1, o2) it has (o1, o2) as an origin if and only if

o1 = o2.

• For every o, the set of edges having (o, o) as an origin is a preserving p-matching between A0, . . . , Ap−1.

It is not hard to see that the statement that a graph G is a preserving p-matching (in the second item of

the above definition G is the set of edges having (o, o) as an origin) is first order definable for any fixed p. It

is the conjunction of the statement that G is a disjoint union of cliques of size p covering the set of vertices,
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“for every u0 there exist u1, . . . , up−1 such that {u0, . . . , up−1} is a clique of G, and furthermore there exist

no two vertices of distance exactly 2 from each other”, with the statement that every p-clique in G either

contains no bridge edges or contains only bridge edges.

The reason for requiring that an edge has either no origin of the type (o, o) or has all such possible pairs

as origins is to ensure that there is only one way to represent M0 using R.

We shall now require a representation of Mi given a the representation of Mi−1. To express the relation

between Mi and Mi−1 in first order logic, we use the following.

Lemma 17 Suppose that E and A0, . . . , Ap−1 are as above, and that S is a binary relation that is known to

be a graph all of whose connected components are of diameter 1 or 2. Then, the following statement about a

graph G is first order definable:

• Denoting by C1, . . . , Cl the connected components of S which are not isolated vertices and are fully

contained in any one of A0, . . . , Ap−1, G consists of isolated vertices and vertex disjoint copies of

complete p-partite graphs, each of which has p members of {C1, . . . , Cl} as its color classes.

• Each of the complete p-partite graphs is either fully contained in one of A0, . . . , Ap−1, or is such that

each of its color classes is fully contained in a different Ai.

• Each of C1, . . . , Cl intersects (and thus forms a color class of) one of the complete p-partite graphs of

G.

Proof: Since all the components of S have diameter at most 2, the statement that u and v belong to the

same component of S is first order definable (“u = u, or uv is an edge of S, or there exists w such that uwv

is a path in S”). Thus it is also not very hard to formulate in first order logic the statement that a vertex u

is in some Cj (which is equivalent to stating that u is not isolated in S and all vertices of distance 2 or less

from u are in the same Ai as u), and the statement that u and v are both in Cj for some 1 ≤ j ≤ l.
The following is a first order formulation of the statement that G consists of isolated vertices and complete

p-partite graphs: “For every vertex u0, either u0 is isolated in G, or there exist u1, . . . , up−1 such that

{u0, . . . , up−1} is a clique, there exist no vertex of distance exactly 2 (according to G) from {u0, . . . , up−1},
every vertex of distance 1 from {u0, . . . , up−1} has exactly p − 1 neighbors in this set, and every two such

vertices are adjacent in G if and only if they do not have the same p− 1 neighbors in {u0, . . . , up−1}”.

To comply with the first and the third items above, we use the conjunction of the above statement about

G with the statement that any two vertices are in the same Cj if and only if they have distance exactly 2 in

G (note that u belongs to some Cj if and only if there exists some v so that u and v belong to the same Cj).

To further comply with the second item above, we use the conjunction of this with the statement that

if uv and vw are edges in G, then either both are fully contained in some Ai or none of them is (using also

the information that each of C1, . . . , Cl is fully contained in some Ai). 2
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We now turn back to defining the property that ensures a representation of Mi given that of Mi−1. The

following definition makes use of the notion of connected components, which is not first order definable.

However, we shall prove later that for any (o1, o2) the set of edges having it as an origin forms a disjoint

union of isolated vertices and complete p-partite graphs, so in particular all the connected components have

diameter at most 2, and thus we can use Lemma 17 for the definition instead. We shall also prove that each

such component is either internal to one of A0, . . . , Ap−1, or brings together a component of Mi from every

Ai. This will be proven by induction; the basis o1 = o2 is relatively easy using the property Basep(E,R).

Definition 18 Property Nextp(E,R) states the following.

• If (e1, e2) has (o1, o2) with o1 6= o2 as an origin, then for every (o′1, o
′
2) it has (o′1, o

′
2) as an origin if and

only if (o1, o2) and (o′1, o
′
2) have the same origin (i.e. if there exists (r1, r2) such that (o1, o2, r1, r2) ∈ R

and (o′1, o
′
2, r1, r2) ∈ R).

• For every o1 6= o2 for which (o1, o2) has an origin, we look at the set of connected components of the set

of edges having the same origin as (o1, o2), apart from those which are isolated vertices and those that

are not internal to one of A0, . . . , Ap−1; denote them by C1, . . . , Cl. We also denote by G the graph

resulting from the set of edges having (o1, o2) as an origin.

– G consists of isolated vertices and vertex disjoint copies of complete p-partite graphs, each of which

has p members of C1, . . . , Cl as its color classes.

– Each of the complete p-partite graphs in G is either fully contained in one of A0, . . . , Ap−1, or is

such that each of its color classes is fully contained in a different Ai.

– Each of C1, . . . , Cl intersects one of the complete p-partite graphs of G.

To finalize the definition of our first order property, we make sure that vertex pairs incident with bridge

edges are ‘out of the game’, to avoid multiplicities in counting that may result from assigning them arbitrary

origins. Also in the next definition, the part about being in the same connected component of a graph can

be replaced with a first order expression that works for the case where all the connected components are of

diameter at most 2.

Definition 19 Property Clearp(E,R) states that for every (o1, o2), no edges that are incident with a bridge

edge having (o1, o2) as an origin may have any origin, except possibly the edges which are internal to the

connected components of the graph of edges having (o1, o2) as an origin.

We now state and prove the concrete form of Theorem 2.

Theorem 20 Let Imp(E,R) = Clp(E) ∧ Edgp(R) ∧ Basep(E,R) ∧ Nextp(E,R) ∧ Clearp(E,R). Denote by

fImp
(n) the number of structures 〈[n], E,R〉 satisfying Imp. Then fImp

(n) ≡ bp(n) (mod p), and so it is

not ultimately periodic modulo p.
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To prove it we consider an E which satisfies Clp(E), and define a way to encode an iterative matching

between the cliques A0, . . . , Ap−1 of E, as a relation R for which Imp is satisfied. Then we prove that such

encodings are the only instances which satisfy Imp for any given E.

Definition 21 Suppose that {Mi}i≥0 is an iterative matching (we use the graphic definition) between the

cliques of E. We define an R which is the encoding of {Mi}i≥0 as follows.

• Every edge of M0 is according to R an edge that has every (o, o) and no other pair as an origin.

• For i > 0, we let every edge of Mi have every edge of Mi−1 and no other pair as an origin.

• No other combinations of edges with origins exist apart from those constructed above.

The above definition produces from an iterative matching a structure that satisfies Imp.

Claim 22 An encoding of an iterative matching satisfies Imp. Moreover, for any two distinct iterative

matchings, the corresponding encodings are also distinct.

Proof: It is clear from the definition above that every encoding of an iterative matching satisfies Clp(E)

and Edgp(R). Also, Basep(E,R) is satisfied since all the edges of the preserving matching M0 now have

every possible (o, o) as an origin, and no other edge has any origin of the type (o, o).

The first item of Nextp(E,R) is satisfied because in an iterative matching the edges of Mi and Mj are

disjoint for every i 6= j. Every edge that has an origin of the type (o1, o2) for o1 6= o2 belongs to some Mi,

and so the set of its origins is exactly the edges of Mi−1; those origins share in turn the same nonempty set

of their own origins (which is the edge set of Mi−2 if i > 1, or {(o, o)|o ∈ [n]} if i = 1), which is disjoint to

the set of origins of any edge not in Mi−1.

The second item of Nextp(E,R) (with all its sub-items) now clearly follows from the connection (as per

the definition of a graphic iterative matching) between Mi, the set of edges with (o1, o2) as an origin, and

Mi−1, the set of edges having the same origin as that of (o1, o2).

Finally, Clearp(E,R) is satisfied: If a bridge edge has (o1, o2) as an origin then it belongs to Mi for some

i ≥ 0, so by the definition of a graphic iterative matching none of its vertices are contained in an edge of

Mj for any j > i. There may be edges containing any of these vertices in Mj for some j ≤ i, but in this

case they are internal to the corresponding connected component of Mj (and are in fact internal to one of

its color classes). 2

Suppose now that we are given a structure 〈[n], E,R〉 that satisfies Imp. To prove that it is an encoding

of some iterative matching we first define inductively the graphs {Mi}i≥0 and then prove that they form the

matching which 〈[n], E,R〉 encodes.

Definition 23 Given a structure 〈[n], E,R〉 satisfying Imp we define a sequence {Mi}i≥0 = M0,M1, . . . of

graphs on [n] inductively as follows.
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• M0 consists of all the edges having any (o, o) as an origin.

• Mi for i > 0 consists of all the edges having any edge from Mi−1 as an origin.

We now show that the above sequence {Mi}i≥0 is indeed an iterative matching, and that 〈[n], E,R〉 is

its encoding.

Lemma 24 The following holds for the above defined graphs.

• Every edge in M0 has every (o, o) and no other pair as an origin, and every edge in Mi has every edge

in Mi−1 and no other pair as an origin.

• There is no edge in Mi ∩Mj for any i 6= j.

• M0 is a preserving matching between the p cliques of E.

• {Mi}i≥0 is an iterative matching between the p cliques of E (in particular, the connected components

of each Mi are isolated vertices and complete p-partite graphs).

• There are no other edges with origins (according to R) apart from those in
⋃
i≥0Mi.

Proof: The first two items follow by induction from 〈[n], E,R〉 satisfying the first item of Basep and the

first item of Nextp: It is clear from Basep that the conditions concerning M0 hold, as well as that M0 ∩Mj

is empty for every j > 0. Given the induction hypothesis about the origins of M0, . . . ,Mi−1 and their

edge-disjointness from any Mj , it follows from the first item of Nextp that every edge of Mi has exactly the

edges of Mi−1 as its origins. The disjointness of Mi and Mj for j > i now follows from the disjointness of

Mi−1 and Mj−1, and the disjointness of Mi and Mj for j < i follows directly from the induction hypothesis.

The third item above follows from the second item of Basep. The fourth item follows by induction from

the above together with the second item in Nextp (with all its sub-items), as it fully describes the connection

between Mi and Mi−1 (for i > 0) in a graphic iterative matching {Mi}i≥0.

Finally, the fifth item follows from 〈[n], E,R〉 satisfying Clearp: Lemma 12 ensures that every vertex v is

contained in a bridge edge in some Mj . It is not hard to see from the definition of an iterative matching that⋃
i≥0Mi is a disjoint union of cliques (of possibly varying sizes). Now if a pair of vertices (u, v) is not an

edge in
⋃
i≥0Mi, then it is clearly not internal to the connected component of the Mj that contains a bridge

edge containing v, so Clearp (where we let (o1, o2) be any origin of this bridge edge) ensures that (u, v) has

no origin. 2

Lemma 24 directly provides the final component required for the proof of Theorem 20.

Consequence 25 For every 〈[n], E,R〉 satisfying Imp, the relation R is an encoding of an iterative matching

between the p cliques of E. 2
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Proof of Theorem 20: Claim 22 and Consequence 25 imply that the number of structures 〈[n], E,R〉
equals bp(n) times the number of possible iterative matchings between p sets of size n

p , and by Lemma 11

the latter number is 1 modulo p. 2

Finally, we note that it is possible to formulate a property similar to Imp that uses only a single quaternary

relation R, by using “R(u, u, v, v)” to represent “E(u, v)” and changing the formulation of the property

accordingly.
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Mathématiques, Fonds Nationale de la recherche Scientifique, Bruxelles, pages 41–44, 1981.

[3] C. Blatter and E. Specker. Modular periodicity of combinatorial sequences. Abstracts of the AMS,

4:313, 1983.

[4] C. Blatter and E. Specker. Recurrence relations for the number of labeled structures on a finite set. In

E. Börger, G. Hasenjaeger, and D. Rödding, editors, In Logic and Machines: Decision Problems and

Complexity, volume 171 of Lecture Notes in Computer Science, pages 43–61. Springer, 1984.

[5] B. Bollobas. A probabilistic proof of an asymptotic formula of the number of regular labelled graphs.

Europ. J. Combinatorics, 1:311–316, 1980.

[6] H.D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Mathematical Logic. Springer,

1995.

[7] N.J. Fine. Binomial coefficients modulo a prime. American Mathematical Monthly, 10:589–592, 1947.

[8] E. Fischer and J.A. Makowsky. The Specker-Blatter theorem revisited. in preparation.

[9] I. Gessel. Combinatorial proofs of congruences. In D.M. Jackson and S.A. Vanstone, editors, Enumer-

ation and design, pages 157–197. Academic Press, 1984.

[10] F. Harary and E. Palmer. Graphical Enumeration. Academic Press, 1973.
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[18] R.P. Stanley, Enumerative combinatorics. Cambridge University Press, 1997 (Vol. 1, first appeared in

1986) and 1999 (Vol. 2).

16


