
Testing Juntas

Eldar Fischer∗ Guy Kindler† Dana Ron‡ Shmuel Safra§

Alex Samorodnitsky¶

May 5, 2016

Abstract

We show that a boolean valued function over n variables, where each variable
ranges in an arbitrary probability space, can be tested for the property of depending
on only J of them using a number of queries that depends only polynomially on J
and the approximation parameter ε. We present several tests that require a number of
queries that is polynomial in J and linear in ε−1. We show a non-adaptive test that
has one-sided error, an adaptive version of it that requires fewer queries, and a non-
adaptive two-sided version of the test that requires the least number of queries among
the presented algorithms. We also show a two-sided non-adaptive test that applies to
functions over n boolean variables, and has a more compact analysis.

We then provide a lower bound of Ω̃(
√
J) on the number of queries required for the

non-adaptive testing of the above property; a lower bound of Ω(log(J+1)) for adaptive
algorithms naturally follows from this. In establishing this lower bound we also prove
a result about random walks on the group Zq2 that may be interesting in its own right.
We show that for some t(q) = Õ

(
q2
)
, the distributions of the random walk at times t

and t+ 2 are close to each other, independently of the step distribution of the walk.
We also discuss related questions. In particular, when given in advance a known

J-junta function h, we show how to test a function f for the property of being identical
to h up to a permutation of the variables, in a number of queries that is polynomial in
J and ε−1.

∗Faculty of Computer Science, The Technion, Haifa, Israel. Research supported by a Technion VPR fund
– Dent Charitable Trust – non-military research fund, and by a joint Haifa University – Technion research
fund.
†School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel.
‡Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv, Israel; research supported by the

Israel Science Foundation (grant number 32/00-1).
§School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel. Research supported by an Israeli

Science Foundation grant and a United States – Israel Binational Science Foundation grant.
¶School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.

1 Introduction

Combinatorial property testing deals with the following task: For a fixed property P and
any given input f, one has to distinguish with high probability between the case where f
satisfies P and the case where f is ‘far’ from satisfying it, accessing the least possible number
of bits from the input.

A property P is said to be ε-testable using q queries, or simply (ε, q)-testable, if there
exists a probabilistic algorithm that makes at most q queries on any given input f (it is
assumed that the input is accessed using an oracle), such that

• if f satisfies P , then the algorithm accepts it with probability at least 2/3, and

• if f is ε-far from P , that is, if it must be changed in more than an ε-fraction of the
places in order to make it satisfy P , then the algorithm rejects it with probability at
least 2/3.

A testing algorithm is said to be 1-sided if it accepts with probability 1 (rather than 2/3)
any input that satisfies P . A testing algorithm that determines all its queries in advance,
and uses the answers only in deciding whether to accept the input (and not in planning some
of the queries) is called a non-adaptive test.

The general notion of property testing was first formulated by Rubinfeld and Sudan
[RS96], who were motivated mainly by its connection to the study of program checking. The
study of this notion for combinatorial objects, and mainly for graphs, was introduced by
Goldreich, Goldwasser and Ron [GGR98].

Property testing has recently become a very active research area, see for example the
surveys [Ron01] and [Fis01]. In addition to its theoretical appeal, it emerges in the con-
text of PAC learning [GGR98], program checking [RS96], probabilistically checkable proofs
[ALM+98, AS98, RS97], approximation algorithms [GGR98] and more. Properties of boolean
functions were given particular consideration from the point of view of property testing, and
especially properties related to monotonicity [GGL+00, DGL+99, FLN+02]. Perhaps the
work most closely related to ours is [PRS01]. That paper presents testing algorithms that
perform O(1/ε) queries for the following properties of boolean functions: Being a singleton
function (a function of a single variable), being a J-monomial (a conjunction of at most J
literals), and being a monotone DNF function with a bounded number of terms.

1.1 Boolean functions and juntas

In this paper we consider properties of boolean functions over n variables, namely functions
over n variables that admit only two values. It will be convenient for us to assume that the
values of boolean functions range in {−1, 1}.

While some of our results consider functions over boolean variables, other results apply
to functions over variables that range in general domains. When the type of the boolean

2

function f being discussed is known, we denote the range of the i’th variable of f by Ωi (in
the case of boolean variables, Ωi = {0, 1}). Denoting

P([n])
def
=

n∏
i=1

Ωi ,

we have that all the boolean functions that we consider here can be written in the form
f : P([n])→ {−1, 1}, and that any assignment x for such a function is a vector (x1, . . . , xn),
where xi ∈ Ωi for every i. In the following we will also consider a probability measure µi
associated with every Ωi, and the corresponding product measure associated with P([n]).

Juntas. The main property of boolean functions we focus on is that of depending on only
J (or less) of the variables.

Definition 1 (juntas, dominating sets). A boolean function f : P([n])→ {−1, 1} is called a
J-junta if there exists a set J ⊆ [n] of size at most J , such that f(x) = f(y) for every two
assignments x, y ∈ P([n]) that agree on J , namely that satisfy xi = yi for all i ∈ J . In this
case it is said that f is dominated by J . Somewhat abusing notation, J is also referred to
as the junta that dominates f.

1.2 Preview of results

Knowing that a function depends on only a small number of variables can be especially
useful in the context of learning. For various function classes there exist algorithms that
are attribute efficient (cf. [Lit87, BHL95, BL89, UTW97]). That is, they have polynomial
dependence on the number of relevant variables of the function being learned and only
logarithmic dependence on the total number of variables. One should also mention here the
work of [MOS02] concerning computationally efficient learning of such functions when the
algorithm is restricted to uniform samples.

As part of this effort, [GTT99] presented an algorithm that, for any input function f over
boolean variables, uses O(J(log(J + 1)/ε+ log n)) queries to completely determine a J-junta
that dominates a function f ′ which is ε-close to f, if such a J-junta exists. In particular,
their algorithm can be used to test for the property of being a J-junta. We show here the
existence of a test for being a J-junta, for functions over arbitrary product spaces, whose
number of queries does not depend on n at all.

Theorem 1 (the main result). For every fixed J the property of being a J-junta is
(ε, poly(J)/ε))-testable for any given ε.

1.2.1 Almost juntas

Let us review the definition of testable properties, with respect to the property of being a
J-junta. To prove that this property is ε-testable, a test is to be shown, that distinguishes
between J-juntas, and functions that must be changed in more than an ε-fraction of the

3

places in order for them to become J-juntas. This is made more formal and somewhat more
general using the following definition of a function that is ε-close to being a junta. Instead
of just counting the number of values of f that need to be changed in order to make it a
J-junta, giving the same weight to the value at every assignment, we allow weighing the
assignments using a product probability measure.

Definition 2 ((ε, J)-juntas). Let f : P([n]) → {−1, 1} be a boolean function, and assume
that the range Ωi of every variable of f is equipped with a probability measure µi. This
determines a probability measure µ[n] =

∏n
i=1 µi over P([n]).

f is said to be an (ε, J)-junta if there exists a boolean J-junta g : P([n])→ {−1, 1} such
that for a random assignment x ∈ P([n]) (chosen according to µ[n]),

Pr[f(x) = g(x)] ≥ 1− ε .

In terms of the above definition, an (ε, q)-test for the property of being a J-junta is given
a product measure µ[n] on a domain P([n]) =

∏n
i=1 Ωi (specifically, we assume that the

testing algorithm can for each i, select a random element in Ωi according to the distribution
µi), and an oracle access to an input function f : P([n])→ {−1, 1}. It then uses q queries to
distinguish between the case where the input function is a J-junta, and the case where it is
not an (ε, J)-junta. We require that the number of queries made to f is entirely independent
of µ[n].

Note that the above definition includes the standard case where f is defined over boolean
variables – one should just take Ωi = {0, 1} for every i, and µi to be the uniform measure
over Ωi. By supplying a biased measure µi for every i, a J-junta test can, however, use the
same number of queries to distinguish between the case where a given f is a J-junta, and
the case where it must be changed on a set of µ[n]-measure more than ε in order to become a
J-junta. Applying our results for other probability measures µi, one can test functions over
variables that range over non-boolean domains, even infinite ones.

1.2.2 Junta tests

In order to establish Theorem 1 we describe several testing algorithms. The first algorithm is
non-adaptive, requires O(J4 ln(J + 1)/ε) queries, and in addition is 1-sided. We also provide
an adaptive variant of this algorithm that requires only O(J3 ln2(J + 1)/ε) queries. Another
algorithm presented here is a non-adaptive variant of the first algorithm that has a 2-sided
error, but requires only O(J2 ln2(J + 1)/ε) queries. In the case of functions over boolean
variables, and where the product measure µ[n] is uniform, we present a non-adaptive testing
algorithm with a compact, algebraically oriented analysis, that makes O(J4 ln(J + 1)/ε)
queries and has a 2-sided error.

1.2.3 Lower bound

On the other hand, at least with regards to non-adaptive algorithms, we show that the
query complexity has to be a power of J (the tilde notation in the following is used to hide

4

polylogarithmic factors), even if the test is restricted to functions over boolean variables with
respect to the uniform measure.

Theorem 2. For every α > 0, a non-adaptive
(

1
2
− α, q

)
-test for the property of being a

J-junta requires at least q ≥ Ω̃
(√

J
)

queries, even if restricted to functions over boolean

variables equipped with the uniform measure over their domain.

Recently, Chockler and Gutfreund [CG02] have proven a better Ω(J) lower bound, which
holds for adaptive testing algorithms as well. However, the proof given here may have
significance beyond the lower bound itself, since during its course we prove a result about
random walks on the group Zq

2 that may be of independent interest. In addition, the proof
here also provides a lower bound for permutation testing (see below) for an explicit interesting
function.

1.2.4 Random walks

Given any (finite) group G and a distribution P on G, a random walk on G with step
distribution P starts with the identity element, and at each step t, denoting its current
position by Xt, picks a random element ξt of G according to P and goes to Xt+1 = ξtXt.
This definition of a random walk generalizes the more familiar notion of a random walk on
a Cayley graph of a group, which is obtained by setting P to be a uniform distribution on
the elements of a generating set for G.

A fundamental result of Markov [Mar06] from 1906 (see also [AD86]) states that this
random walk converges to the uniform distribution on G, unless P is concentrated on a
coset. A more recent question of interest is to estimate the rate of convergence of the
random walk to its limit distribution. It is easy to see that this rate depends on the step
distribution P , and therefore all the results in this direction concentrate on particular families
of distributions for which good bounds can be obtained.

Here we ask a different question: Given a distance parameter δ > 0, when do the distri-
butions of Xt and Xt+c (for an appropriate constant c) become δ-close to each other with
respect to the variation distance? Here we give a bound for the group Zq

2 (and c = 2), that
does not depend on the step distribution P .

We remark that for any δ < 2, such a bound has a chance to hold only if the order
of any element ξ of G divides c. Otherwise taking P to be concentrated in ξ will give a
counterexample. In this sense, the following theorem is optimal, since it turns out that for
Zq

2 we can choose c = 2. It is tempting to conjecture that for any finite group we may choose
c to be the least common multiple of the orders of the elements (it seems possible that the
argument we give for the proof of the theorem might be extended for a general finite Abelian
group; the case of non-Abelian groups seems to be more challenging).

Theorem 3. Let P be a distribution on Zq
2 , and let X be the random walk on Zq

2 with step
distribution P . Let Pt be the distribution of X at step t. There is an absolute constant C,

such that for every δ > 0, if t ≥ C · log 1
δ

δ
· q2 log2(q+ 1) then |Pt−Pt+2| ≤ δ, where |Pt−Pt+2|

denotes the variation distance between the two distributions.

5

1.2.5 Testing for being a permutation of a given function

Finally, we consider the question of testing that a function f is identical to a fixed function
h up to a permutation of its variables. We only consider functions over boolean variables
here, whose domains are equipped with the uniform measure. Similar questions were given
consideration already in [PRS01]. Here we construct a test for any function h which is a
J-junta that is given in advance.

Some notation about restrictions and permutations of vectors is needed for the ex-
act formulation of this result: Suppose that J = {j1, . . . , jJ} is some subset of [n],
whose elements are given in ascending order, j1 < · · · < jJ . For every permutation
σ : [J] → [J] and every vector x = (x1, . . . , xn) ∈ {0, 1}n, we denote by x|σ(J) the vec-
tor x = (xjσ(1) , . . . , xjσ(J)) ∈ {0, 1}J .

Theorem 4. Let g : {0, 1}J → {−1, 1} be a function. The property, that f(x) = g(x|σ(J))
for some J ⊂ [n] of size J and some permutation σ : [J] → [J], is (ε, poly(1/ε, J))-testable
for every ε.

1.3 Organization of the paper

We start with Section 2, where we give some preliminaries and notation required for the
subsequent sections, and introduce the notion of the variation of a function f on a set I of
coordinates.

Section 3 presents our first junta test, called the size test. It randomly partitions the
coordinates of the input function f, and applies a simple test to each subset in the partition,
to discover whether f depends on any of its coordinates. The size test is non-adaptive, and
has a 1-sided error. In Section 4, we present two variants of the size test, which achieve
better query complexity. One of these variants has a 1-sided error but is adaptive, and the
other is non-adaptive but has a 2-sided error. In Section 5 we present another junta test,
that is restricted to functions defined over the discrete cube with the uniform distribution.
This test is 2-sided, and its query complexity does not match that of the first 2-sided test.
However, its algebraic approach yields a nice and compact analysis.

We then provide the lower bound for non-adaptive junta testing in Section 6, deriving it
from the result concerning random walks in Zq

2 that is also proven there. In Section 7 we
show how to test a function f for the property of being identical to a permutation of a given
function h. We end the presentation with Section 8, which contains a discussion of some
possible directions for future research, and some open problems.

2 Preliminaries

First, let us define some notation that will simplify the following exposition.

Partial assignments. Suppose that f : P([n]) → {−1, 1} is a boolean function, where
P([n]) =

∏n
i=1 Ωi, and each set Ωi is equipped with a probability measure µi. Each element

6

x ∈ P([n]) is thus an assignment to the variables of f, where the i’th coordinate of x
determines the value of the i’th variable. To specify assignments for only some of the
variables of f, we define for each set I ⊆ [n] of coordinates,

P(I)
def
=
∏
i∈I

Ωi

and equip it with the probability measure µI
def
=
∏

i∈I µi. An element w ∈ P(I) is thus a
partial assignment for the variables of f. Whenever an element w ∈ P(I) is chosen randomly,
it is chosen with respect to µI unless stated otherwise.

Assignment manipulation. If w ∈ P(I) and z ∈ P(H) are two partial assignments,
and I and H are disjoint, let wtz ∈ P(I ∪H) denote the partial assignment whose i’th
coordinate is wi if i ∈ I, and zi if i ∈ H. For a set I ⊆ [n] of coordinates and an assignment
x ∈ P([n]), it is possible to obtain a partial assignment by restricting x to the coordinates
of I, obtaining x|I ∈ P(I). For simplicity we somewhat abuse notation, writing x∩I instead
of x|I . Similarly, we let x \ I ∈ P([n] \ I) denote the partial assignment obtained from x by
taking the coordinates from [n] \ I.

2.1 Probability, some notation and lemmas

We use E and V to denote expectation and variance respectively. Specifically, suppose that
g is a function of the form g : P([n])→ R. For a fixed partial assignment w ∈ P([n] \ I), we
denote by

Ez∈P(I)[g(wtz)]

the expectation of the value of g(wtz), where z is randomly drawn according to µI . When-
ever the context is clear we may also use the shorthand Ez[g(wtz)]. Similarly, we denote
the variance of f(wtz) where w is fixed and z is distributed according to µI , by

Vz∈P(I)[g(wtz)] = Ez
[
(g(wtz))2

]
− (Ez[g(wtz)])2

= Ez
[(

g(wtz)− Ez
[
g(wtz)

])2]
.

The following lemma immediately follows from the law of conditional variance (the lemma
is also not hard to prove directly).

Lemma 2.1 (conditional variance). For every g : P([n]) → R, two disjoint sets I1 ⊂ [n]
and I2 ⊂ [n], and w ∈ P([n] \ (I1 ∪ I2)),

Vz1∈P(I1),z2∈P(I2)[g(wtz1tz2)] = Ez1
[
Vz2 [g(wtz1tz2)]

]
+ Vz1

[
Ez2 [g(wtz1tz2)]

]
.

Another lemma that will be important to our arguments is the following inequality rela-
tion between expectation and variance.

7

Lemma 2.2. For every g : P([n]) → R, two disjoint sets I1 ⊂ [n] and I2 ⊂ [n], and
w ∈ P([n] \ (I1 ∪ I2)),

Vz1

[
Ez2 [g(wtz1tz2)]

]
≤ Ez2

[
Vz1 [g(wtz1tz2)]

]
.

Proof. The proof follows directly from the definitions, together with one application of the

Cauchy-Schwarz inequality, which implies that
(
Ez[h(wtz)]

)2 ≤ Ez
[(
h(wtz)

)2
]

for every

w ∈ P([n] \ I) and h : P([n])→ R.

Vz1

[
Ez2 [g(wtz1tz2)]

]
= Ez1

[(
Ez2 [g(wtz1tz2)]− Ez1,z2 [g(wtz1tz2)]

)2]
= Ez1

[(
Ez2
[
g(wtz1tz2)− Ez1 [g(wtz1tz2)]

])2]
≤ Ez1,z2

[(
g(wtz1tz2)− Ez1 [g(wtz1tz2)]

)2]
= Ez2

[
Vz1 [g(wtz1tz2)]

]
.

2.2 Variation

We now turn to define a measure called variation, of the dependency of a function f on a
given subset of its coordinates (variables). Although we are mostly interested in boolean
functions, we define the variation for all real valued functions.

Definition 3 (variation). Let f : P([n]) → R be a real valued function, and fix a subset
I ⊆ [n] of coordinates. The variation of f on I is defined to be the expectation of the
variance of the restrictions of the form f(wt ·), where w ∈ P([n] \ I). That is, we define

Vrf(I)
def
= Ew∈P([n]\I)

[
Vz∈P(I)[f(wtz)]

]
In the case of boolean valued functions, we have an alternative definition for the variation.
The variation of f on a set I is proportional to the probability that f yields different values,
when evaluated on two random assignments which differ only on coordinates from I.

Proposition 2.3. Let f : P([n]) → {−1, 1} be a boolean function, and fix a set I ⊆ [n] of
coordinates. Let w ∈ P([n] \ I) and let z1, z2 ∈ P(I) be chosen independently at random.
Then

Vrf(I)
def
= 2Pr[f(wtz1) 6= f(wtz2)]

Proof. It is easy to observe that for two identically distributed independent random variables
X, Y , taking values in {−1, 1}, it holds that V(X) = 2Pr[X 6= Y], and hence

Vrf(I) = Ew
[
Vz1 [f(wtz1)]

]
= Ew

[
2Prz1,z2 [f(wtz1) 6= f(wtz2)]

]
= 2Pr[f(wtz1) 6= f(wtz2)]

8

The next proposition shows that the variation is monotone and sub-additive. We also note
that for functions defined over the discrete cube with the uniform measure, the monotonicity
and sub-additivity of the variation follow directly from the Fourier-analytic formula for the
variation in Proposition 2.6 below.

Proposition 2.4 (monotonicity and sub-additivity). Let f : P([n]) → R, and let A and B
be subsets of [n]. Then

Vrf(B) ≤ Vrf(A ∪B) ≤ Vrf(A) + Vrf(B).

Proof. Both cases are consequences of Lemma 2.1. We begin by proving the monotonic-
ity of the variation. To make the formal argument, we let w be a random element in
P([n] \ (A ∪B)), let z1 and z2 be independent random elements in P(A) and P(B \ A)
respectively, and let y = z1tz2 be the resulting random element in P(A ∪B). Then

Vrf(A ∪B) = Ew
[
Vy[f(wty)]

]
= Ew

[
Ez1
[
Vz2 [f(wtz1tz2)]

]
+ Vz1

[
Ez2 [f(wtz1tz2)]

]]
≥ Ew

[
Ez1
[
Vz2 [f(wtz1tz2)]

]]
= Ew,z1

[
Vz2 [f(wtz1tz2)]

]
= Vrf(B)

and we have the monotonicity property.

Having proven the monotonicity, we may assume in proving the sub-additivity property
that the sets A and B are disjoint. Using the notation above, we now prove the sub-additivity
with the aid of Lemma 2.2.

Vrf(A ∪B) = Ew
[
Vy[f(wty)]

]
= Ew

[
Ez1
[
Vz2 [f(wtz1tz2)]

]
+ Vz1

[
Ez2 [f(wtz1tz2)]

]]
≤ Ew

[
Ez1
[
Vz2 [f(wtz1tz2)]

]
+ Ez2

[
Vz1 [f(wtz1tz2)]

]]
= Ew,z2

[
Vz1 [f(wtz1tz2)]

]
+ Ew,z1

[
Vz2 [f(wtz1tz2)]

]
= Vrf(A) + Vrf(B)

as required.

We close this section with a lemma that generalizes the sub-additivity of the variation,
and plays a crucial role in the proof of Theorem 1.

Lemma 2.5 (diminishing marginal variation). Let f : P([n])→ R be a real valued function,
and let A,B,C be disjoint subsets of [n]. Then

Vrf(A ∪B)− Vrf(B) ≥ Vrf(A ∪B ∪ C)− Vrf(B ∪ C).

Proof. In the following we let w be a random member of P([n] \ (A ∪B ∪ C)), and x, y, z
be random members of P(A),P(B),P(C) respectively, all independent. We first note from
the definitions and a direct use of Lemma 2.1 that

Vrf(A ∪B)− Vrf(B) = Ew,z
[
Vx,y[f(wtxtytz)]

]
− Ew,x,z

[
Vy[f(wtxtytz)]

]
= Ew,z

[
Vx

[
Ey[f(wtxtytz)]

]]
,

9

and similarly

Vrf(A ∪B ∪ C)− Vrf(B ∪ C) = Ew
[
Vx

[
Ey,z[f(wtxtytz)]

]]
.

A direct application of Lemma 2.2, over g(wtxtz) = Ey[f(wtxtytz)], shows that

Ew
[
Vx

[
Ey,z[f(wtxtytz)]

]]
≤ Ew,z

[
Vx

[
Ey[f(wtxtytz)]

]]
,

concluding the proof.

2.3 Norms, distances, and inner products

Although our main concern here is the set of boolean functions over P([n]), it is useful to
consider such functions as elements in the space of real-valued functions f : P([n])→ R. For
such a function f, and any parameter 1 ≤ q <∞, the normalized `q-norm of f is defined by

‖f‖q
def
=
(
Ex∈P([n]) [|f(x)|q]

)1/q

(x is randomly chosen in P([n]) according to µ[n]). An inner product between two functions
f, g : P([n])→ R, is defined by

〈f, g〉 def
= Ex∈P([n])[f(x)g(x)]

This inner product is related to the `2 norm, satisfying 〈f, f〉 = ‖f‖2
2 for every real-valued

function f.
We also define another norm, that is used in Section 6 to measure the distance between

two probability measures P,Q : {0, 1}n → R over the discrete cube. The variation distance

between two such measures is defined by |P −Q| def
= 1

2

∑
x∈{0,1}n |P (x) − Q(x)| (this is not

related to the notion of variation discussed above).

2.4 Harmonic analysis

Let us now focus on functions defined over the discrete cube {0, 1}n, equipped with the
uniform measure. Real-valued functions defined over this domain can be expressed by their
Fourier expansion as follows.

Definition 4 (characters and weights). Let S ⊆ [n]. The character χ
S

is the function over

{0, 1}n defined by χ
S
(x)

def
= (−1)|x∩S| (in other words, χ

S
(x) = −1 if the number of 1’s in

〈xi|i ∈ S〉 is odd, and χ
S
(x) = 1 if it is even).

Given a function f : {0, 1}n → R, its expansion as a linear combination of characters

f(x) =
∑
S⊆[n]

f̂(S)χ
S
(x)

is called the Fourier expansion of f (such an expansion always exists and is unique, since the
set of characters forms a linear basis for the set of real functions over {0, 1}n).

10

Properties of Characters. The set of all characters forms an orthonormal basis for the
space of real-valued functions over {0, 1}n, with respect to the inner product defined above.
In addition, every character χ

S
satisfies χ

S
(x ⊕ y) = χ

S
(x)χ

S
(y) for every x, y ∈ {0, 1}n,

where ‘x⊕ y’ denotes the coordinate-wise addition of x and y in Zn
2 .

Variation and Fourier expansion. The variation of a function f, defined over the discrete
cube, can be written in terms of its Fourier expansion as follows.

Proposition 2.6. Let f : {0, 1}n → {−1, 1} be a Boolean function, where {0, 1}n is equipped
with the uniform measure, and let I ⊆ [n] be a set of coordinates. Then

Vrf(I) =
∑
S∩I 6=∅

f̂2(S)

The proof of Proposition 2.6 is straightforward, and we omit it. Note, however, that this
directly implies Proposition 2.4 and Lemma 2.5 for functions over the discrete cube (with
the uniform measure).

Convolution. The convolution of two functions (or distributions) f, g : {0, 1}n → R is

denoted by f ∗ g, and is defined by (f ∗ g)(y)
def
=
∑

x∈{0,1}n
(
f(x) · g(x⊕ y)

)
. We will need the

following important property of convolution:

(̂f ∗ g)(S) = 2n · f̂(S) · ĝ(S).

3 The size test

The size test, described here, is a one-sided non-adaptive (ε,Θ(J4 ln(J + 1)/ε))-test for the
property of being a J-junta. The independence test, presented next, is its main component.
Given a set I of coordinates, the independence test is used to determine whether a given
boolean function f is independent of the coordinates in I. It is a simple two-query test as
follows.

The independence test. Choose a random w ∈ P([n] \ I), and choose z1, z2 ∈ P(I)
randomly and independently. Verify that f(wtz1) = f(wtz2).

Properties of the independence test. It is obvious that the independence test always
accepts if f is independent of the coordinates in I, and by Proposition 2.3 its rejection
probability equals 1

2
Vrf(I).

If f is a J-junta, then it clearly has the following property: for every partition I1, . . . , Ir of
the set of coordinates, all but at most J of them have zero variation. Hence the independence
test when applied to f must accept all but at most J of the subsets. This consideration
motivates the following size test.

11

The size test. The test has two parameters, r and h, that are to be chosen later. The
test first chooses a random partition I1, . . . , Ir of the set [n] of coordinates, by choosing for
every i ∈ [n] independently and uniformly the set Ij to which it belongs. It then identifies
on which of the Ij’s f has a non-negligible variation, using 2rh queries, by going over every
j from 1 to r and applying h iterations of the independence test to Ij. If f is found to be
dependent on more than J subsets, the test rejects, and otherwise it accepts.

Properties of the test. The size test obviously accepts every J-junta, thus having perfect
completeness. We show in the next subsection that, for a proper setting of the parameters
r and h, the size test rejects f with probability at least 1/2 if it is not an (ε, J)-junta (since
the test is 1-sided this can easily be amplified to 2/3). Before we prove this, let us set the
parameters r and h.

The parameters of the test. We set r
def
= 16J2 and h

def
= 4er(ln(J + 1) + 2)/ε =

Θ(J2 ln(J + 1)/ε). Hence overall the test makes 2rh = Θ(J4 ln(J + 1)/ε) queries to f,
as required.

3.1 Soundness of the size test

Assuming that f passes the test with probability 1/2, we prove that f must be an (ε, J)-junta
in two steps. We first take J to be the set of coordinates on which f has variation larger
than some threshold t, and prove that |J | ≤ J . We then show that the total variation of f
on coordinates outside J is bounded by 2ε. This implies, by a simple argument, that f is
ε-close to a junta dominated by J .

Let t
def
= 2(ln(J+1)+2)

h
= ε

2er
, and let J denote the set of all coordinates i for which Vrf({i}) > t.

We also denote J̄ def
= [n] \ J .

Proposition 3.1. If the size test succeeds on f with probability 1/2, then |J | ≤ J .

Proof. The key observation here is that if a set I of coordinates contains a member of J ,
then the variation of f on that set is at least t (by Proposition 2.4), and therefore each
iteration of the independence test on I detects this dependence with probability at least t/2.

Suppose, for the sake of contradiction, that |J | > J . Since r = 16J2, it is easy to
verify that with probability at least 3/4 the number of subsets in the partition I1, . . . , Ir
that contain an element from J is at least J +1. When this occurs, the probability that any
of the first J + 1 subsets which intersect J will not be identified by the size test is bounded
by (J + 1)(1 − t/2)h ≤ (J + 1)e− ln(J+1)−2 < 1/4, since h = 2(2 + ln(J + 1))/t. Overall we
have that with probability at least 1/2 the size test rejects.

Having shown that |J | ≤ J , the proof of soundness will be completed by showing that f
is ε-close to a junta dominated by J . We actually show that Vrf(J̄) < 2ε. This is sufficient
to complete the proof, according to the following proposition.

12

Proposition 3.2. Let J be a set of coordinates satisfying Vrf(J̄) < 2ε. Then there exists a
boolean function h, that depends only on coordinates from J , and agrees with f on a set of
assignments of measure at least (1− ε).

Proof. We define the function h : P([n])→ {−1, 1} by

h(x)
def
= sign

(
Ez∈P(J̄)

[
f
(

(x ∩ J)tz
)])

where we arbitrarily set sign(0)
def
= 1.

It is easy to observe that h only depends on coordinates from J . To show that f and h
are equal for most assignments, we take x to be a random element in P([n]), y to be random
in P(J), z to be random in P(J̄), and we assume that they are all independent. Then

2Prx[f(x) = h(x)]− 1 = Ex[f(x)h(x)] = Ey
[
Ez[f(ytz)h(ytz)]

]
= Ey

[
Ez[f(ytz)] · sign

(
Ez[f(ytz)]

)]
= Ey

[∣∣∣Ez[f(ytz)]
∣∣∣] ≥ Ey

[(
Ez[f(ytz)]

)2
]

= Ey
[
1− Vz[f(ytz)]

]
= 1− Vrf(J̄) > 1− 2ε

This immediately implies
Prx[f(x) = h(x)] ≥ 1− ε,

which completes the proof.

3.1.1 Bounding Vrf(J̄)

It is left to show that Vrf(J̄) < 2ε. Assume otherwise, and let us prove that the test rejects
with probability at least 1/2.

Idea of the proof. The sum
∑r

j=1 Vrf(Ij \ J) is never less than Vrf(J̄), as follows from

the sub-additivity of the variation (see Proposition 2.4). Since we assume that Vrf(J̄) ≥ 2ε,
we have

r∑
j=1

E[Vrf(Ij \ J)] = E

[
r∑
j=1

Vrf(Ij \ J)

]
≥ 2ε

where the expectation is taken over the random choice of the partition. Using the fact that
the (unconditioned on other sets) distribution of any set in the partition is equal to that of
any other, it follows that for any fixed j,

E[Vrf(Ij \ J)] ≥ 2ε/r

Since Ij is a random set of coordinates, we can obtain a concentration property for its
variation, using the fact that every coordinate can contribute at most t to the variation of

13

Ij \ J . In fact, we show that Vrf(Ij \ J) (and therefore Vrf(Ij)) is with high probability
at least a sizable portion of the bound for its expectation. This implies that with high
probability, there are many sets Ij in the partition whose variation is relatively high. Since
such sets are detected with high probability by the independence test, the size test rejects f
with high probability.

Definition 5. A set Ij in the partition is said to be detectable if Vrf(Ij) ≥ ε
er

.

Lemma 3.3. Fix j, 1 ≤ j ≤ r. The probability that Ij is detectable, over the choice of the
partition I1, . . . , Ir, is at least 3/4.

Before we prove Lemma 3.3, we show how it completes the proof of the soundness of the
size test. Let q denote the probability that the number of detectable subsets in the partition
is smaller than r/4. Since the number of detectable subsets is bounded by r, Lemma 3.3
implies that

1

4
rq + r(1− q) ≥ E[number of detectable Ij’s] ≥ 3

4
r

from which we have q ≤ 1/3. Hence with probability at least 2/3, there are at least r/4 =
4J2 > J + 1 subsets in the partition, whose variation is larger than ε/er = 2t. The size test
fails in this case with probability at least 15/16, as follows from an argument similar to that
in the proof of Proposition 3.1. Therefore, the size test rejects f with an overall probability
at least 1/2, as required.

It is only left to prove Lemma 3.3. The proof requires extending our tools concerning the
variation of a function, and occupies the remainder of this section.

Proof of Lemma 3.3: As mentioned above, the expectation of the variation of f on Ij \ J
is at least 2ε/r. Lemma 3.3 will follow by showing that with probability at least 3/4,
Vrf(Ij \ J) ≥ ε/er.

Ij is a random subset, obtained by going over the coordinates i ∈ [n] and taking each
of them into Ij independently with probability 1/r. We can thus view the random variable
Vrf(Ij \ J) as the sum of the gradual donation of every coordinate,

Vrf(Ij \ J) =
n∑
i=1

(
Vrf
(
[i] ∩ (Ij \ J)

)
− Vrf

(
[i− 1] ∩ (Ij \ J)

))
In order to use standard deviation bounds for Vrf(Ij \ J), we would like the summands

on the right-hand side to be independent and bounded by a small number. Note that the
i’th summand is zero if i ∈ J , and if i 6∈ J then it is bounded by t, as follows from the
sub-additivity of the variation (and of course, all the summands are non-negative). The
summands are thus indeed bounded by a small number, but they are not independent. This
is tackled by introducing a technical tool that we call the unique-variation. While related
to the variation, the unique-variation of Ij can be written as the sum of independent non-
negative bounded random variables.

14

Definition 6 (unique-variation). Define the unique-variation (with respect to J) of every
coordinate i ∈ [n] by

Urf(i)
def
= Vrf([i] \ J)− Vrf([i− 1] \ J),

where [0] denotes the empty set. Now for every set I ⊆ P([n]) define its unique-variation by

Urf(I)
def
=
∑
i∈I

Urf(i)

The following lemma shows that the unique-variation of a subset I bounds the variation of
I from below.

Lemma 3.4. For every set I ⊆ [n] of coordinates, Urf(I) ≤ Vrf(I \ J).

Proof. In fact we show that the unique-variation of I ⊆ [n] is bounded from above by
Vrf(I \ J). For every i ∈ [n] and I ⊆ [n], it follows from Lemma 2.5 that

Vrf([i] \ J)− Vrf([i− 1] \ J) ≤ Vrf(([i] ∩ I) \ J)− Vrf(([i− 1] ∩ I) \ J),

by substituting A = {i} \ (I ∪ J), B = ([i − 1] ∩ I) \ J and C = [i − 1] \ (I ∪ J) in its
formulation. From this it follows that

Urf(I) =
∑
i∈I

Urf(i) =
∑
i∈I

(
Vrf([i] \ J)− Vrf([i− 1] \ J)

)
≤
∑
i∈I

(
Vrf(([i] ∩ I) \ J)− Vrf(([i− 1] ∩ I) \ J)

)
=

n∑
i=1

(
Vrf(([i] ∩ I) \ J)− Vrf(([i− 1] ∩ I) \ J)

)
= Vrf(I \ J),

concluding the proof.

By the above lemma, it remains to show that Pr[Urf(Ij) ≤ ε/er] < 1/4 in order to com-
plete the proof of Lemma 3.3.

Note that the unique-variation of the coordinates in J is zero, and that Urf(i) ≤ Vrf(i) ≤ t
for coordinates i outside J , as follows from the sub-additivity property of the variation. The
unique-variation of Ij is therefore a sum of independent non-negative random variables, each
of which is bounded by t, and its expectation is given by

E[Urf(Ij)] =
1

r

∑
i∈[n]

Urf(i) = Vrf(J̄)/r ≥ 2ε/r

We can therefore apply standard deviation bounds to it, such as the following Chernoff-
like bound, proven in Appendix A.

15

Proposition 3.5. Let X =
∑l

i=1 Xi be a sum of non-negative independent random variables
Xi, and denote the expectation of X by α. If every Xi is bounded above by t, then

Pr[X < ηα] < exp
(α
et

(ηe− 1)
)

for every η > 0.

Since E[Urf(Ij)] ≥ 2ε/r, Proposition 3.5 yields

Pr[Urf(Ij) < ε/er] < exp
(
− ε

ert

)
= e−2 < 1/4 ,

thus completing the proof of Lemma 3.3.

4 Improving the query complexity

In this section we present two tests for the property of being a J-junta, that obtain an
improved query complexity relative to that of the size test presented in Section 3. The first
test uses a simple adaptive search method in order to reduce the query complexity. The
second test checks possibly overlapping groupings of the coordinates for independence; it is
two-sided, namely it may also reject a J-junta with some small but positive probability.

4.1 Improving the query complexity using adaptivity

The size test applies several iterations of the independence test to every subset in the par-
tition, in order to detect whether it has a non-negligible variation. Here we show how,
using an adaptive search, it is possible to detect all the subsets in the partition that have
non-negligible variation using fewer queries, reducing a factor of J in the query complexity.

Theorem 5. Set r = 16J2 (as in the size test). Then there exists an adaptive one-sided
J-junta test, that uses

32erJ(1 + log2 r) ln(32J(1 + log2 r))

ε
= Θ

(
J3 ln2(J + 1)/ε

)
queries.

Proof. The idea of the adaptive test is to speed up the finding of the subsets of the partition
with non-negligible variation as follows: Instead of applying the independence test to each
subset individually, we apply it to blocks, each of which is a union of several such subsets.
If f is not found to depend on a block, then all of its elements are declared to be ‘variation
free’ at once. When f is found to depend on a block, the algorithm divides the block into
two equally sized sub-blocks, for which the process is repeated.

Definition 7 (blocks). Fix a partition I1, . . . , Ir of the coordinates. A set B of coordinates
is called a block, if it is the union of a positive number of subsets in the partition. The size
of the block is the number of subsets in the partition that take part in this union.

16

The adaptive test. The adaptive test begins by randomly partitioning the coordinates
into subsets I1, . . . , Ir. The test maintains, throughout its operation, a set S = {B1, . . . , Bl}
of at most J disjoint blocks with respect to this partition. The blocks in S supposedly
contain all the sets Ij in the partition that have non-negligible variation. Initially S is set
to have only one block which contains all coordinates, namely S = {[n]}. At each step, the
test performs the following.

• If all the blocks in S are of size one, accept (in this case at most J elements of the
partition supposedly have non-negligible variation).

• Otherwise, choose a block B ∈ S whose size is maximal. Remove B from S, and
partition it arbitrarily into two sub-blocks B = B′ ∪B′′, whose sizes differ by at most
1 (remember that the size of a block is the number of sets Ij that are contained in it).

• Apply 4er ln(32J(1+log2 r))
ε

iterations of the independence test to B′. If f is found to depend
on B′, then insert B′ into S, and otherwise discard it. Apply the same treatment to
B′′.

• If the size of S is now greater than J , reject (f depends on each of the subsets in S, so
it cannot be a J-junta in this case). Otherwise continue to the next step.

The adaptive test obviously accepts with probability 1 if f is a J-junta. To bound the
number of rounds, we note that if after round T the maximum size of the blocks is m, then
clearly after round T +J the maximum size of the blocks is no more than dm

2
e. This implies

that the algorithm terminates after at most 2J(1 + log2 r) steps, and that each step uses
16er ln(32J(1+log2 r))

ε
queries. The total number of queries made is therefore as required.

To prove Theorem 5, it is left to show that if f passes the test with probability at least
1/2, then it is an (ε, J)-junta.

Proposition 4.1 (soundness). If f passes the adaptive-test with probability 1/2, then it is
an (ε, J)-junta.

Proof. Let t = ε
2er

and let J be defined as the set of coordinates i for which Vrf({i}) > t
(as in Subsection 3.1). It suffices to prove that |J | ≤ J and that Vrf(J̄) ≤ 2ε. Assume on
the contrary that this is not the case, and let us prove that the adaptive-test rejects with
probability at least 1/2.

According to the proof of Proposition 3.1, if |J | > J then with probability at least
3/4 there are at least J + 1 subsets in the partition I1, . . . , Ir whose variation is at least t.
Moreover, it is shown in Subsection 3.1 that if Vrf(J̄) > 2ε, then with probability at least
2/3 there are at least J + 1 subsets in the partition, whose variation is at least ε/er = 2t.
In both cases, with probability at least 2/3 there are at least J + 1 subsets in the partition
whose variation is at least t.

To complete the proof we show that if there are at least J + 1 subsets with variation
at least t in the partition I1, . . . , Ir chosen by the adaptive test, then the probability that
it accepts is at most 1/8. This holds since in order to accept, the test must at some point

17

discard a block whose variation is at least t. The probability of discarding each such block
is at most

(1− t

2
)
4er ln(32J(1+log2 r))

ε ≤ e− ln(32J(1+log2 r)) =
1

32J(1 + log2 r)

The test encounters two blocks at each step, so summing over all steps bounds the probability
that such a block is discarded throughout the test by 1/8.

This concludes the proof of Theorem 5.

4.2 Improving the query complexity using two-sidedness

In this subsection we present a test with a significantly reduced query complexity. It makes
Θ(J2 ln2(J+1)/ε) queries, reducing a J2 factor in the query complexity of the size test. The
test is two-sided, namely we allow it to reject a J-junta with probability at most 1/3, on the
condition that it rejects any input that is not an (ε, J)-junta with probability at least 2/3.

Theorem 6. Let ε > 0 be any positive number, and fix r
def
= 16J2, s

def
= 20J(3 + ln r),

and h
def
= 6er(3+2 ln s)

εJ
. Then there exists a non-adaptive J-junta test, which makes 2sh =

Θ(J2 ln2(J + 1)/ε) queries, and satisfies the following.

• Every J-junta is accepted with probability at least 2/3.

• Any input which is not an (ε, J)-junta is rejected with probability at least 2/3.

Proof. As in the size test, the two-sided test randomly partitions the coordinates into r
subsets. In order to reduce the number of queries, the two-sided test finds subsets in the
partition that have non-negligible variation by applying the independence test to blocks of
such subsets (see Definition 7), like the adaptive test presented above, only here these blocks
are chosen differently and may overlap.

The two-sided test. First, the test randomly partitions the coordinates into r subsets
I1, . . . , Ir. Then it picks s random subsets Λ1, . . . ,Λs ⊆ [r] of size J independently, each by
uniformly choosing without repetitions J members of [r]. Each set Λl determines a block

Bl
def
=
⋃
j∈Λl

Ij, to which the test applies h iterations of the independence test.

Acceptance conditions. The test declares a block Bl to be variation-free if none of the
independence test iterations applied to Bl finds f to depend on it. If Bl is declared variation-
free, then all the subsets Ij contained in it are declared to be variation-free on its behalf.
The test accepts f if both of the following conditions hold.

• At least half of the blocks B1, . . . , Bs are declared variation free.

• Except for at most J subsets, every subset in the partition I1, . . . , Ir is declared
variation-free on behalf of some block.

18

Properties of the test. It is obvious that the test performs 2sh queries, as required. It
is left to show that a J-junta is accepted by the test with probability at least 2/3, and that
an input which is not an (ε, J)-junta is rejected with probability at least 2/3. This is proven
in the next two lemmas.

Lemma 4.2 (completeness). If f is a J-junta, then it passes the two-sided test with proba-
bility at least 2/3.

Proof. Fix any partition I1, . . . , Ir. If f is a J-junta, then it is independent of all subsets in
the partition, except for at most J of them. Hence for any fixed l, the probability over the
selection of the blocks that f is independent of Bl is at least(

r − J
J

)
/

(
r

J

)
>

(
r − 2J

r − J

)J
=

(
1− J

r − J

)J
> 1− J2

r − J
≥ 14

15

The probability that f depends on more than half of the blocks is therefore smaller than
2
15
< 1

6
, using the Markov inequality. Hence with probability at least 1 − 1

6
, at least half of

the blocks are declared variation-free, and the first acceptance condition holds.
Now fix j such that f does not depend on Ij, and let us bound the probability that

it is not declared variation-free. Conditioned on the event that f does not depend on Bl,
the probability that in addition Bl contains Ij is at least J/r = 1/16J . Hence Ij is de-
clared variation-free on behalf of Bl with probability at least 1/20J , for every fixed l. The
probability that Ij is not declared variation-free is therefore bounded by(

1− 1

20J

)s
=

(
1− 1

20J

)20J(3+ln r)

<
1

6r

It follows that with probability at least 1− 1
6
, all the subsets in the partition on which f

does not depend are declared variation-free (and in this case the second acceptance condition
is fulfilled). Overall we have that with probability at least 2/3, both conditions for acceptance
are satisfied.

Lemma 4.3 (soundness). If f passes the two-sided test with probability higher than 1/3, then
it is an (ε, J)-junta.

Proof. Let t = εJ
3er

and let J denote the set of all coordinates i for which Vrf({i}) > t. As
shown in Section 3, it suffices to prove that |J | ≤ J and that Vrf(J̄) < 2ε. Assume on
the contrary that this is not the case, and let us prove that the two-sided test rejects with
probability at least 2/3.

First case, |J | > J. As in the proof of proposition 3.1, if |J | > J then with probability
at least 3/4 there are at least J + 1 subsets in the partition I1, . . . , Ir with variation at least
t. To conclude this case, we show that the probability of each such subset being declared
variation-free is bounded by 1

12(J+1)
.

19

Let Ij be a subset whose variation is at least t, and let Bl be a block that contains it. By
the monotonicity of the variation we have Vrf(Bl) > t, so each iteration of the independence
test on Bl detects a dependency of f on Bl with probability at least t/2. The probability of
Bl being declared variation-free is therefore bounded by

(1− t/2)h = (1− t/2)2·(3+2 ln s)/t <
1

12s(J + 1)

Since Ij is contained in at most s blocks, the probability of it being declared variation-free
is bounded by 1/12(J + 1), as required.

Second case, Vrf(J̄) ≥ 2ε. Let us fix one index l, and show that Bl has high variation
with very high probability. This will imply that with high-probability, the number of blocks
not declared variation-free is larger than s/2, and the test rejects.

It follows from the procedure of choosing the partition and the blocks, that Bl is in fact a
random set of coordinates, independently containing each coordinate i ∈ [n] with probability
J/r (to see this, note that its choice is equivalent to first choosing Λl and only then choosing
the partition I1, . . . , Ir). We now consider the unique-variation as in Definition 6, only with
respect to the set J as defined here. Then the expectation of Urf(Bl) is given by

E[Urf(Bl)] =
J

r

∑
i∈[n]

Urf(i) =
J

r
Vrf(J̄) ≥ 2εJ/r

Moreover, the unique-variation of Bl is a sum of non-negative independent random variables,
each bounded by t. It thus follows from Lemma 3.4 and Proposition 3.5 that

Pr

[
Vrf(Bl) <

εJ

er

]
≤ Pr

[
Urf(Bl) <

εJ

er

]
< exp

(
− εJ
ert

)
= e−3 < 1/12

We say that a block Bl is detectable if its variation is at least εJ/er. The expected
number of non-detectable blocks is therefore smaller than s/12. It follows from the Markov
inequality that with probability at least 1− 1

6
, there are less that s/2 non-detectable blocks,

and therefore there are more than s/2 detectable blocks. The probability of a detectable
block being declared variation-free is bounded by(

1− εJ

2er

)h
< exp (−(9 + 6 ln s)) <

1

6s
,

and therefore with probability at least 1 − 1
6
, none of the detectable blocks are declared

variation-free. Overall we have that with probability at least 2/3, the number of detectable
blocks is more than s/2, and none of them is declared variation-free, and therefore the test
rejects.

This concludes the proof of Theorem 6.

20

5 The compact test

In this section we describe and analyze a two-sided (ε, O (J4 ln(J + 1)/ε))-test for the prop-
erty of being a J-junta. This test is restricted to boolean functions defined over the discrete
cube (namely P([n]) = {0, 1}n) with the uniform measure. The algebraic approach of this
test, combined with the fact that we do not insist on a 1-sided error, allows for a more
compact analysis.

An overview of the testing algorithm. Let f : {0, 1}n → {−1, 1} be a J-junta. Let

V
def
= V (f) be the set of all elements v ∈ {0, 1}n that are 0 on all the variables that f depends

on. Then V is clearly a subspace of {0, 1}n (when viewed as a vector-space over the field
{0, 1}) of co-dimension at most J , and, moreover, it is an ideal under the bitwise AND
operation, namely x ∈ V implies that x ∧ y ∈ V for every y. The crucial property of V
is that any x ∈ V is an invariant shift for f: for any z ∈ {0, 1}n we have f(x⊕z) = f(z).
Given f, our test looks for evidence to the existence a large ideal of invariant shifts for f.
Specifically, we sample points in {0, 1}n and check whether they lie in such an ideal V . Since
|V | could be exponentially small in relation to |{0, 1}n|, we sample according to a biased
product distribution over {0, 1}n:

Definition 8. Let µ
1/J

denote the product measure on {0, 1}n, assigning to each bit 1 with

probability 1
J+1

, and 0 with probability 1− 1
J+1

.

It is easy to see that for any choice of a J-junta f we have µ
1/J

(V) = (1− 1
J+1

)J ≥ e−1.
Given a point x chosen according to µ

1/J
, we randomly choose a logarithmic number of

points y ∈ {0, 1}n according to the uniform distribution. For each of these choices we test
that x∧ y is an invariant shift for f by choosing uniformly at random a quadratic number of
points z ∈ {0, 1}n, and checking whether f(z) = f(z⊕(x ∧ y)).

Our testing algorithm will estimate the probability that a point x selected according to
µ

1/J
behaves like an invariant shift, and accept f only if this estimate is sufficiently large.

Alternative Algorithm for Testing J-juntas

Let C be a sufficiently large constant. Set m = C · J2, t1 = C log(J + 1), and t2 = C · J2

ε
.

We perform the following.

Choose m points x according to µ
1/J

. For every selected x, choose t1 points y
uniformly from {0, 1}n. For each choice of x and y choose t2 points z uniformly
from {0, 1}n. All the choices are independent.

For every selected point x check whether f(z) = f(z⊕(x ∧ y)) for every z and
y that were selected for x. If this equality holds for every z and y then we say
that x passed the check .

If the fraction of points x that passed the check is at least (1− 1
J+1

)J − 1
20(J+1)

then return “ACCEPT”. Otherwise return “REJECT”.

21

One observes that the query complexity of the algorithm is O(m ·t1 ·t2) = O (J4 ln(J + 1)/ε),
as required.

We next show that the test accepts every J-junta with probability at least 2/3.

Definition 9. For v ∈ {0, 1}n let s(v)
def
= Prz[f(z) = f(z⊕v)].

For x ∈ {0, 1}n, let p(x) denote the probability that x passes the check, that is f(z) =
f(z⊕(x ∧ y)) for every z and y selected by the algorithm.

Let p(f)
def
= Ex∼µ

1/J
[p(x)] be the probability that a point x selected according to µ

1/J
passes

the check.

Lemma 5.1 (completeness). If f is a J-junta then the test returns “ACCEPT” with proba-
bility at least 2/3.

Proof. Note that p(x) = 1 for every x ∈ V (f), and that µ
1/J

(V (f)) ≥
(
1− 1

J+1

)J
. Therefore

p(f) ≥
(
1− 1

J+1

)J
. By Chernoff’s inequality, for a sufficiently large constant C, if we take

m = CJ2 points x, then with high probability, the fraction of points that pass the check is at

least
(
1− 1

J+1

)J − 1
20(J+1)

, causing the test to return “ACCEPT” with high probability.

5.1 Soundness of the compact test

From this point on we focus on showing that if f is accepted with probability greater than
1/3, then it is ε-close to being a J-junta. Suppose that indeed the test returns “ACCEPT”
with probability greater than 1/3. Then by Chernoff’s inequality, (assuming the constant C

in the expression for m = C ·J2 is sufficiently large), necessarily, p(f) ≥
(
1− 1

J+1

)J− 1
10(J+1)

.
The next definition will be useful in our analysis.

Definition 10. For two points v, x ∈ {0, 1}n, we denote v ≤ x if vi ≤ xi for every i ∈ [n].
A point x ∈ {0, 1}n is said to be good, if for a uniformly distributed v ≤ x,

Prv≤x

[
s(v) ≥ 1− ε

80(J + 1)2

]
>

1

2

Let G ⊆ {0, 1}n denote the set of all good x’s.

Note that choosing v ≤ x uniformly is the same as choosing y ∈ {0, 1}n uniformly and
then setting v = x ∧ y. It is not hard to choose the constant C (defined in the testing

algorithm) so that if x is not good, then p(x) ≤
(

1
2

+ (1− ε
80(J+1)2

)t2
)t1
≤
(

3
4

)t1 ≤ 1
10(J+1)

.

Let 1{G} denote the characteristic function of the set G. Then we have

µ
1/J

(G) = Ex∼µ
1/J

[1{G}(x)] ≥ Ex∼µ
1/J

[1{G}(x) · p(x)]

≥ p(f)− 1

10(J + 1)
≥
(

1− 1

J + 1

)J
− 1

5(J + 1)

We now state our main claim, which, together with Proposition 3.2, completes the proof.

22

Claim 5.2. If µ
1/J

(G) ≥
(
1− 1

J+1

)J − 1
5(J+1)

, then there exists a set J , |J | ≤ J , such that

Vrf(J̄) ≤ ε
2
.

The proof of Claim 5.2 requires the following lemmas.

Lemma 5.3. For every v ∈ {0, 1}n,
∑

R : χ
R

(v)=−1

f̂2(R) = 1− s(v).

Proof. Let g(x)
def
= f(x⊕ v). Then ĝ(R) = f̂(R) · χ

R
(v) for every R ⊆ [n]. Consequently,

2s(v)− 1 = 〈f, g〉 =
∑
R⊆[n]

f̂(R)ĝ(R) =
∑

R : χ
R

(v)=1

f̂2(R)−
∑

R : χ
R

(v)=−1

f̂2(R).

On the other hand,
∑

f̂2(R) = 1, so the above yields 1− s(v) =
∑

R : χ
R

(v)=−1

f̂2(R).

Lemma 5.4. If x is good, then s(v) ≥ 1− ε
40(J+1)2

for every v ≤ x.

Proof. Since by the definition of a good point x (Definition 10) more than half of the points
v ≤ x satisfy s(v) ≥ 1− ε

80(J+1)2
, every v ≤ x can be written as v = v1⊕v2 where v1 and v2

are two such points. Therefore

s(v) = Prz[f(z) = f(z⊕v)] ≥ Prz [(f(z) = f(z⊕v1)) ∧ (f(z⊕v1) = f(z⊕v1⊕v2))]

≥ s(v1) + s(v2)− 1 ≥ 1− ε

40(J + 1)2
.

Lemma 5.5. Suppose x is good, and let Ax ⊆ [n] be the set of coordinates i for which xi = 1.
Then ∑

R∩Ax 6=∅

f̂2(R) ≤ ε

20(J + 1)2

Proof. By combining Lemmas 5.4 and 5.3 we get that for all possible w ≤ x it holds that∑
R : χ

R
(w)=−1

f̂2(R) = 1− s(w) ≤ ε

40(J + 1)2

Averaging this inequality over all w ≤ x, and observing that for R ∩Ax 6= ∅, exactly half of
the possible w satisfy χ

R
(w) = −1, we obtain

∑
R∩Ax 6=∅

f̂2(R) = 2 · Ew≤x

 ∑
R : χ

R
(w)=−1

f̂2(R)

 ≤ ε

20(J + 1)2
.

23

Proof of Claim 5.2: Averaging the inequality of Lemma 5.5 over all x in G, according to µ
1/J

we obtain ∑
R

f̂2(R) ·
µ

1/J
({x ∈ G : R ∩ Ax 6= ∅})

µ
1/J

(G)
≤ ε

20(J + 1)2
. (1)

Now consider single coordinates i that satisfy

µ
1/J

({x ∈ G : xi = 1})
µ

1/J
(G)

≤ 1

10(J + 1)2
. (2)

We claim that there are at most J such coordinates. Indeed, if it were otherwise, let B

be a set of J + 1 such singletons, and for each i ∈ B let Gi
def
= {x ∈ G : xi = 1}. Then

G \ ∪i∈BGi ⊆ {x : xi = 0: ∀i ∈ B}, and therefore,(
1− 1

J + 1

)J+1

= µ
1/J

({x : ∀i ∈ B xi = 0})

≥ µ
1/J

(G \ ∪i∈BGi) ≥ µ
1/J

(G) ·
(

1− 1

10(J + 1)

)
≥

((
1− 1

J + 1

)J
− 1

5(J + 1)

)
·
(

1− 1

10(J + 1)

)
>

(
1− 1

J + 1

)J+1

and we reach a contradiction.
Let J be the family of coordinates that satisfy (2). We have shown |J | ≤ J . Now, for

any R 6⊆ J ,
µ

1/J
({x ∈ G : R ∩ Ax 6= ∅})

µ
1/J

(G)
≥ 1

10(J + 1)2

and therefore, by (1) ∑
R∩J̄ 6=∅

f̂2(R) ≤ 10(J + 1)2 · ε

20(J + 1)2
=
ε

2
,

completing the proof of the main claim.

6 Lower bounds and a random walk on Zq
2

To prove the lower bound we use Yao’s principle, which states that to show a lower bound
on the complexity of a randomized test, it is enough to present an input distribution for
which any deterministic test with that complexity is likely to fail.

We define distributions DP , DN on positive (J-junta) and negative (1
2
-far from any J-

junta) input functions, respectively. Our input distribution first choosesDP orDN with equal
probability and then draws an input according to the chosen distribution. We show that there
exists a constant C such that every deterministic non-adaptive test with q ≤ C

√
J/ log(J)

24

queries has an error probability larger than 1/3 (with respect to the induced probability
on inputs). For this purpose we show that for any set of q ≤ C

√
J/ log(J) vertices of the

hypercube, the distributions DP and DN induced on {−1, 1}q by restricting the functions to
these q vertices have a variation distance less than 1

3
.

The distributions DP and DN are simply uniform distributions over characters χ
S

of size
J and J + 2 respectively. We will, however, work instead with two auxiliary distributions,
D̃P and D̃N , which are close to DP and DN , and which are easier to analyze. To choose a
function from D̃P , we first choose a random set S ⊆ [n], |S| ≤ J , in the following manner:
We pick uniformly and independently J random elements in [n] (with repetitions), and take
S to be the set of elements that were selected an odd number of times. We then take the
character χ

S
to be our function. The distribution D̃N is defined in the same manner, only

we start by picking J + 2 elements in [n].
Note that if |S| > J , then the character χ

S
is 1

2
-far from any J-junta, and that both∣∣∣DP − D̃P

∣∣∣ and
∣∣∣DN − D̃N

∣∣∣ are bounded by O
(
J2

n

)
. Since Theorem 2 is stated for tests

whose number of queries does not depend on n, we may and will assume in the following
that n is large enough, i.e. that J = o(

√
n).

Now, consider the distributions induced by D̃P and D̃N on {−1, 1}q. Let r1, . . . , rq be
the queries, and let M be a q×n boolean matrix, with rows r1, . . . , rq. To choose an element
x of {−1, 1}q according to the first distribution, we choose at random, allowing repetitions,
J columns of M and sum them up modulo 2. This gives us an element y of {0, 1}q. We take
x = (−1)y, where the power operation is performed coordinate-wise. The same holds for the
second distribution, the only difference being that we choose J + 2 columns.

For x ∈ Zq
2 , let P (x) be the probability of choosing x when we pick a column of M at

random. Consider a random walk on Zq
2
∼= {−1, 1}q, starting at 0, in which at every step we

choose an element of the cube according to P and add it to the current location. Let Pt be
the distribution induced by this walk after t steps. Note that PJ and PJ+2 are precisely the
distributions induced by D̃P and D̃N . Note also that Pt is the distribution of Y ⊕Y ⊕ . . .⊕Y ,
where we sum t independent copies of a Zq

2 -valued random variable Y , taking every value x
with probability P (x).

We want to show that for t sufficiently large compared to q, the distributions Pt, Pt+2 are
close in the variation distance. This is Theorem 3, presented in the introduction. Theorem 2
(see the introduction) now follows as an immediate corollary.

Theorem 3 is proven below. We first give a very brief overview of the proof. Every
element x of Zq

2 defines a partition of the space into a subspace V0 = {y : 〈y, x〉 = 0} and
its complement V1. We say that x is a degenerate direction if the probability of either of
these sets according to P is at most Õ (q−1). The proof is inductive on the dimension q. We
distinguish between two cases: if there are no degenerate directions, then the random walk is
exponentially close to being stationary after Õ (q2) steps, and the claim holds. If, on the other
hand, there is a degenerate direction x, then the walk ‘splits’ into two ‘independent’ walks,
one on V0 and one on V1, each of which is isomorphic to Zq−1

2 , and we can use induction.

25

6.1 Proof of Theorem 3

Let us consider the distribution Pt of the walk at time t. Recall that the distribution
of the sum of two independent random variables is the convolution of their distributions,
(P ∗ Q)(x) =

∑
y P (y)Q(x ⊕ y). This implies that Pt is the t-wise convolution of P , which

we will denote by P ∗t.
Now, for any r ≤ t we have

|Pt − Pt+2| =
∣∣P ∗t − P ∗(t+2)

∣∣ =
∣∣P ∗(t−r) ∗ (P ∗r − P ∗(r+2)

)∣∣ =
∣∣P ∗(t−r) ∗ (Pr − Pr+2)

∣∣.
The following fact is well-known and easy: for any two functions f, g on Zq

2 it holds that
‖f ∗ g‖1 ≤ 2q‖f‖1‖g‖1. Taking into account that P ∗(t−r) is a distribution we deduce

|Pt − Pt+2| =
∣∣P ∗(t−r) ∗ (Pr − Pr+2)

∣∣ = 2q−1 · ‖P ∗(t−r) ∗ (Pr − Pr+2) ‖1

≤ 2q−1 · ‖Pr − Pr+2‖1 = |Pr − Pr+2|.
Therefore, the distance |Pt − Pt+2| is monotone non-increasing in t, and we are interested in

the first time t = t(q) for which Pt and Pt+2 are δ-close. We show that t(q) ≤ O
(

log 1
δ

δ
· b(q)

)
,

where we set b(q)
def
= q2 log2(q + 1).

In order to complete the proof of Theorem 3, we let S be the sum of the convergent series∑∞
k=1

k
b(k)

, and show that there exists an absolute constant C, such that for any t ≥ C
log 1

δ

δ
·b(q)

and any distribution P on Zq
2 we have |Pt − Pt+2| ≤ δ

S
·
∑q

k=1
k
b(k)

.
The proof is by induction on q. We will assume, where needed, that C is sufficiently

large. We set t = C
log 1

δ

δ
· b(q), assuming without loss of generality that this is an integer.

The case q = 1 is easy. It is possible to show that for a distribution P on Z2 with
P (0) = p and P (1) = 1 − p, we have |Pt − Pt+2| = 1

2
·
∣∣(2p− 1)t − (2p− 1)t+2

∣∣. A simple

analysis shows that if t ≥ C
log 1

δ

δ
, then the last expression is at most δ

S
.

Assume now that the claim holds for q − 1. We proceed with simple Fourier analysis,
and show that our claim is true if all the non-zero Fourier coefficients of P are relatively
small (a nice way to see this, though the actual proof is even simpler, is that this condition
on the Fourier coefficients implies that Pt converges rapidly to the uniform distribution U ,
and |Pt − Pt+2| ≤ |Pt − U |+ |U − Pt+2|). We have

|Pt − Pt+2|2 = 22q−2 · ‖Pt − Pt+2‖2
1 ≤ 22q−2 · ‖Pt − Pt+2‖2

2

= 22q−2 ·
∑
R

(
P̂t(R)− P̂t+2(R)

)2

=
1

4
·
∑
R

(
at(R)− at+2(R)

)2
, (3)

where a(R)
def
= 2qP̂ (R).

Clearly, a(∅) =
∑

x P (x) = 1. Now consider the case in which, for all R 6= ∅ we have
|a(R)| ≤ 1− δq√

Cb(q)
. In this case, the right hand side of (3) is at most

∑
R 6=∅

a2t(R) ≤ 2q ·
(

1− δq√
Cb(q)

)2C
log 1

δ
δ
·b(q)

≤ 2q · exp
{
−2
√
C · log

1

δ
· q
}
.

26

This is smaller than δ
S
≤ δ

S
·
∑q

k=1
k
b(k)

.
It remains to deal with the case where P has large Fourier coefficients. Let R be such

that |a(R)| ≥ 1− δq√
Cb(q)

.

We now give a formal definition of a degenerate direction. We define x of Zq
2 to be

degenerate if either P {V0} or P {V1} is at most δq

2
√
Cb(q)

. Here V0 = {y : 〈y, x〉 = 0}, and V1

is the complement of V0.
We claim that R is degenerate. Indeed a(R) = P {V0} − P {V1}. Therefore, if a(R) ≥ 0

then P {V1} ≤ δq

2
√
Cb(q)

. Otherwise, P {V0} ≤ δq

2
√
Cb(q)

.

We make two assumptions for the sake of clarity: we assume that R = e1
def
= (10 · · · 0),

and that a(R) ≥ 0. We omit the (straightforward) proof that both assumptions do not lead
to loss of generality (for the second assumption it is indeed important that we compare Pt
to Pt+2, and not to Pt+1).

Observe that the cube {0, 1}q is now partitioned into two subcubes V0 = {x : x1 = 0},
and V1 = {x : x1 = 1}, both of which are isomorphic to Zq−1

2 . Because of the degeneracy
of e1, the walk will find it hard to leave the subcube it is in, and we will ‘split’ it into two
walks, on V0 and on V1, and use the induction hypothesis for these walks.

For i = 0, 1 and for r = t, t + 2 we set P i
r

def
= (Pr|Vi). All four distributions so obtained

can be viewed as distributions on Zq−1
2 .

We write Pt as a convex combination Pt = Pt(V0) · P 0
t + Pt(V1) · P 1

t , and do the same for
Pt+2. Note that

∣∣Pt(V0)− Pt+2(V0)
∣∣ ≤ δq√

Cb(q)
. We will show, using the induction hypothesis,

that for i = 0, 1 we have

∣∣P i
t − P i

t+2

∣∣ ≤ δ

S
·

(
q−1∑
k=1

k

b(k)
+

q

2b(q)

)
.

This will conclude the proof, since

|Pt − Pt+2| ≤ 2
∣∣Pt(V0)− Pt+2(V0)

∣∣+
∣∣Pt(V0) ·

(
P 0
t − P 0

t+2

)
+ Pt(V1) ·

(
P 1
t − P 1

t+2

)∣∣
≤ δ

S
·

(
q−1∑
k=1

k

b(k)
+

q

2b(q)

)
+

2δq√
Cb(q)

≤ δ

S
·

q∑
k=1

k

b(k)
.

Let P 0 = (P |V0) and P 1 = (P |V1). Let Nr be a random variable counting the number of
times the walk makes a step in direction x with x1 = 1 during the first r steps.

Let i = 0; the other case is treated similarly. The central (though simple) point of the
argument is that for any r and for any even ` we have

(P 0
r |Nr = `) = (P 1)∗` ∗ (P 0)∗(t−`).

This is true because the distribution on the left hand side is the distribution on Zq−1
2 given

that the walk makes ` ‘odd’ steps, x with x1 = 1, and r − ` ‘even’ steps, x with x1 = 0.
Since the addition in Zq

2 is commutative, we might as well assume that all the odd steps
were made first, giving the right hand side.

27

Therefore, P 0
r can be written as a convex combination

P 0
r =

∑
`≤r,` even

Pr(Nr = `) · (P 1)∗` ∗ (P 0)∗(t−`).

Using this, we can bound
∣∣P 0

t − P 0
t+2

∣∣:
∣∣P 0

t − P 0
t+2

∣∣ ≤ Pr(Nt 6= Nt+2) + Pr

(
Nt ≥

√
C · log

1

δ
· q
)

+

+
∑

`≤
√
C·log 1

δ
·q,` even

Pr(Nt = `) ·
∣∣(P 1)∗` ∗

(
(P 0)∗(t−`) − (P 0)∗(t+2−`))∣∣. (4)

The first summand in (4) is equal to the probability that an odd step was made in one of
the times t+ 1, t+ 2, and this is at most δq√

Cb(q)
.

As to the second summand, observe that Nt is a binomial random variable with param-

eters t = C
log 1

δ

δ
· b(q) and p ≤ δq

2
√
Cb(q)

. The probability of the second summand is that of

Nt ≥
√
C · log 1

δ
· q, and this, using Chernoff bounds, is at most exp

{
−2
√
C · log 1

δ
· q/27

}
.

Thus, the sum of the two first summands is bounded from above by δ
S
· q

2b(q)
. It remains to

deal with the third summand. For ` ≤
√
C ·log 1

δ
·q we have t−` ≥ C

log 1
δ

δ
·b(q)−

√
C ·log 1

δ
·q ≥

C
log 1

δ

δ
· b(q − 1), and therefore we may use the induction hypothesis to conclude

∣∣(P 1)∗` ∗
(
(P 0)∗(t−`) − (P 0)∗(t+2−`))∣∣ ≤ ∣∣(P 0)∗(t−`) − (P 0)∗(t+2−`)∣∣ ≤ δ

S
·
q−1∑
k=1

k

b(k)
.

Consequently, the third summand in (4) is bounded from above by δ
S

∑q−1
k=1

k
b(k)

, and

∣∣P 0
t − P 0

t+2

∣∣ ≤ δ

S
·

(
q−1∑
k=1

k

b(k)
+

q

2b(q)

)
,

concluding the proof of Theorem 3.

7 Testing that f is a permutation of a given h

Given a boolean function h : {0, 1}n → {−1, 1}, we say that a function f is a permutation
of h if there exists a permutation σ : [n] → [n], such that for every x = x1x2 . . . xn ∈
{0, 1}n we have f(x) = h(σ(x)), where we define (with a slight abuse of notation) σ(x) =
xσ(1)xσ(2) . . . xσ(n). We present an algorithm that, given a function h that is a J-junta, can
ε-test an input function f for the property of being a permutation of h using a number of
queries that depends only on ε and J . We first show a test with a linear dependence in ε−1

but with an exponential dependence in J , and then show how to change it to a test with a

28

polynomial dependence on both ε−1 and J . On the other hand, a closer look at the proof of
Theorem 2 shows that it in fact proves something more than a lower bound on testing for
being a J-junta: It also provides a lower bound, which depends on J , on testing that f is a
permutation of h(x) = χ

[J]
= x1⊕ . . .⊕xJ . This means that in the formulation of Theorem 4,

the dependence of the number of queries on the junta size J is not a technical coincidence,
as a test whose number of queries depends only on ε and not on some parameter of h cannot
exist.

The tests constructed in the following are 2-sided. This is not a coincidence, since the
following proposition shows that in some cases one needs a number of queries that is loga-
rithmic in n to provide a non-adaptive 1-sided test for being a permutation of a given h; a
lower bound of Ω(log(log n)) queries on any (possibly adaptive) 1-sided test for the property
follows from this in the usual manner. On the other hand, it is interesting to note that the
results of [GTT99] can be easily used to construct a 1-sided adaptive test for the property
of being a permutation of a given J-junta h, making a number of queries that is logarithmic
in n (and depends on the junta size as well).

Proposition 7.1. Any non-adaptive testing algorithm that makes less than log(n/2) queries
on f(x), and accepts any permutation of h(x) = x1 ∧ x2 with probability 1, will necessarily
accept some permutation of h′(x) = x1 with probability at least 1

2
.

Proof. Suppose that we are given a sequence of l = log(n/2) queries q(1), · · · , q(l), where

q(i) consists of querying the value of f at the point (x
(i)
1 , . . . , x

(i)
n). We define an equivalence

relation over {1, . . . , n} by stating that i ∼ i′ if for every 1 ≤ j ≤ l we have x
(j)
i = x

(j)
i′ . We

say that i is isolated if its equivalence class is {i}.
We observe that, by the choice of l, for every set of l queries there exists a set of at least

n
2

coordinates that are not isolated. Thus, for every non-adaptive testing algorithm there
exists a coordinate i, such that with probability at least 1

2
it is not isolated with respect

to the query sequence chosen by the algorithm (recall that a non-adaptive algorithm has to
choose its query sequence in advance).

Now, for every query sequence q(1), . . . , q(l) for which i is not isolated, and which is taken
with positive probability by the algorithm, let i′ be such that i ∼ i′. Since the algorithm
has to accept f(x) = xi ∧ xi′ with probability 1, the algorithm must in particular accept this
function when the sequence q(1), . . . , q(l) is chosen. But this means that the algorithm must
also accept the function f ′(x) = xi when this query sequence is chosen, because these two
functions are identical when restricted to the query sequence. Summing up over all query
sequences for which i is not isolated, we conclude that the algorithm must accept f ′(x) = xi
with probability at least 1

2
, completing the proof.

We now turn to the proof of Theorem 4. The constructed tests are adaptive, but they
can be made non-adaptive with a penalty of an additional poly(J) factor. In addition, the
second test can be made to work also for the case where the domain of f is Ωn, for some
finite Ω equipped with a (possibly biased) measure µ, only in this case the number of queries
has to depend on |Ω| as well. These extensions are outlined at the end of the section. On

29

a related issue, Appendix B contains an application of Theorem 1 to the question discussed
in [PRS01] about testing that a function is a J-monomial.

7.1 A test with an exponential dependency on J

Before we continue, let us clarify first a notational convention used in the following. We
would like to test f for the property of being a permutation of h, where h is a function with
n variables that in fact depends only on a set J containing J (or fewer) variables. We now
define g as the function on J variables defining the values of h, that is, the function for which
h(x) = g(x|J) for every x ∈ {0, 1}n.

We assume without loss of generality that g depends on all its variables. In this case,
it is not hard to see that the variation of g on every coordinate is at least 21−J . We begin
by performing the J-junta test given by Theorem 1 on f, with min {1

4
ε, 2−J} as the approx-

imation parameter and 7
8

as the detection probability (we go from 2
3

to 7
8

using the usual
amplification techniques). If the test rejects then we reject the input. We note that if the
test accepts with high enough probability, then with high probability (conditioned on the
event that the junta test accepted) we have sets Ij1 , . . . , Ijl of coordinates such that each
of them contains exactly one member of a junta J of a function f ′ that is close to f (with
l ≤ J), where J is the same set as the one defined in the proof of Theorem 1. If l < J we
reject the input, since g and hence h depend on exactly J coordinates, so from now on let
us assume that l = J , and for convenience denote Vk = Ijk for 1 ≤ k ≤ J .

For clarity, we first show how to test for the above property in the special case that g is
symmetric with regards to permutations of its variables, and then show how to generalize
this for every g. The idea is that if J was known, then testing could be done by checking f(x)
at a randomly chosen x ∈ {0, 1}n for equality with g(x|J), and repeating this for sufficiently
many times so that any f(x) that is ε-far from g(x|J) will be rejected with probability at
least 7

8
. However, since we do not know J , but only have sets V1, . . . , VJ such that each

of them is known to contain exactly one member of J , we perform the following procedure
instead of a direct comparison.

The comparison procedure. Suppose that we are given a value x ∈ {0, 1}n for which
we would like to compare f, the sets of coordinates V1, . . . , Vm (in the above context we
have m = J), a function g : {0, 1}m → {−1, 1} which we would like to compare with
f, and a parameter s. We denote by Z(x) the set of the zero coordinates of x, namely
Z(x) = {i|xi = 0}, and construct y ∈ {0, 1}m as follows.

For every 1 ≤ k ≤ m, we perform s iterations of the independence test for Vk ∩ Z(x),
and do the same for Vk\Z(x). The idea is that if f is in fact a junta function dominated by
J , and each Vk contains exactly one coordinate of J , then with sufficiently high probability
we will know whether the single coordinate in J ∩ Vk has received a value of 0 or 1.

For every k, if only Vk∩Z(x) was found to have variation, we set yk = 0. If only Vk\Z(x)
was found to have variation, we set yk = 1. In the two other cases (where for the same k
either both sets or none of these sets was found to have variation), we immediately reject the

30

input f and terminate the entire algorithm. Having thus built y ∈ {0, 1}m, we now compare
f(x) and g(y) and output the result.

A test for a symmetric g. We now show how to test that f is a permutation of h, where
h is a junta function defined by a symmetric function g. After performing the junta test
and constructing V1, . . . , VJ as above, we perform h = 12ε−1 iterations of the comparison
procedure. In every iteration we pick a uniformly random x ∈ {0, 1}n, and use the parameter
s = 3 · 2J(log h+ log(2J) + 3).

We reject the input if any of the iterations of the comparison procedure has found a
mismatch between f and g, or if any iteration of the comparison procedure has already
rejected the input during the calculation of y from x, and otherwise we accept the input.
Assuming that the junta test has succeeded in finding V1, . . . , VJ such that each of them
contains exactly one member of the set J that includes all coordinates whose variation is at
least 2−J , it is not hard to see that with probability at least 7

8
every comparison was in fact

between f(x) and g(x|J) (although we still do not know the identity of the members of J) for
the chosen x. Thus if f is ε-far from being a permutation of h then it was rejected in this stage
with probability at least 3

4
, and on the other hand if f was in fact a permutation of h then

it was accepted in this stage with probability at least 7
8
. To bound the success probability

of the entire test we also have to subtract an additional 1
8

for the possibility of failing to
correctly construct V1, . . . , VJ . The probability of a correct answer can be amplified to 2

3
in

the usual manner, by making several iterations of the above test and taking the majority
vote.

The general case. For a general (possibly asymmetric) g we need to consider all possible
permutations of g for comparison with f. For every such permutation we perform h =
12J log(J + 1)ε−1 iterations of the comparison procedure, this time using the parameter
s = 3 · 2J(log(J !) + log h+ log(2J) + 3).

We use the same set of queries for every of the J ! (or less) possible permutations of g,
noting that the way the comparison procedure chooses its queries for the construction of
y from x is independent of the values of g. With probability at least 1 − J !(1/8J !) = 7

8

all instances of the comparison procedure will construct y correctly from x. Given this,
with probability at least 1− J !(1/8J !) = 7

8
we will detect the ε-farness of the input for any

permutation of g for which it exists.
Our final testing algorithm accepts the input if there was any permutation of g for which

a difference was not detected, unless at any time the comparison procedure itself rejected the
input due to a failure in constructing y from x. Summing up, an input which is ε-far from
being any permutation of h will be rejected with probability at least 5

8
, and an input which

is a permutation of h will be accepted with probability at least 6
8

(it could only be rejected if
the J-junta test did not detect all the junta coordinates, or if in any of the constructions of
y by the comparison procedure above, the dependence of f on Z(x) ∩ Vk or on Vk\Z(x) for
the appropriate x was not detected correctly). It is not hard to amplify the first probability
from 5

8
to 2

3
.

31

7.2 Reducing the dependency on J

We construct here a test for f being a permutation of g using a polynomial number of queries.
The running time itself is still exponential in J , however.

First, we perform the J-junta test with the approximation parameter ε
6J

and detection
probability 15

16
. We denote Ij1 , . . . , Ijl as before. However, after the size test we now use

O(J2 log(J)/ε2) iterations of the independence test to distinguish between Vrf(Ijk) ≥ ε
3J

and
Vrf(Ijk) ≤ ε

6J
with probability 15

16J
for every k, and discard from Ij1 , . . . , Ijl also the sets

whose variation is low.
Let us denote the remaining sets by V1, . . . , Vm. Here we allow also for the possibility

that m < J , as it could be the case that some sets containing junta coordinates (but with a
small dependence of g on them) were not detected by the size test, or were discarded in the
dependence rechecking phase. However, if m is smaller than the number of coordinates in g
whose variation is at least ε

3J
, or larger than the number of coordinates in g whose variation

is more than ε
6J

, then we reject the input, because such an outcome is inconsistent with the
premise that f is indeed a permutation of h.

To test the input f against the function g, we consider every permutation of any function
g̃ that can be constructed from g in the following manner: Let S be any subset of size m of
the coordinates of g that contains all coordinates that have variation at least ε

3J
, and contains

no coordinate that has variation at most ε
6J

(with respect to g). We let g̃ : P(S)→ {−1, 1}
be the following majority function.

g̃(y) =

{
1 Ez∈P([J]\S)[g(ytz)] ≥ 0

−1 otherwise

We note that if we add J − m dummy variables to g̃ then we get a function that is no
more than 1

3
ε-far from g, because Vrg(J \ S) ≤ 1

3
ε on account of Proposition 2.4 and the

information about the variation of these coordinates.
The total number of permutations of the functions that can be constructed from g as

above is not more than (J+1)!. For every such function, noting that in particular each of its
coordinates has variation at least ε

6J
with respect to the underlying g, we use h = 32J2ε−2(4+

J log(J+1)) iterations of the comparison procedure, with the parameter s = 36ε−1J log(h(J+
2)!). Assuming that there was no failure in the junta test or in the independence tests used
to choose V1, . . . , Vm, every Vk contains exactly one coordinate whose variation with respect
to f is at least ε

6J
. This implies (by the bound on the variation of the coordinates) that

the construction of y from x will be correct in all iterations with probability at least 7
8
. As

before, we use the same set of queries for every function that was derived from g.
Given that all comparisons were made correctly, for every function that was compared

with f we can with probability at least 1− 1/8(J + 1)! distinguish between the case that the
probability that f(x) = g̃(y) is at least 1 − 1

3
ε, and the case that it is at most 1 − 2

3
ε (this

is done using a standard large deviation inequality, see for example [AS00, Appendix A]). If
the input was not rejected on account of any instance of the comparison procedure failing to
produce y from x, we accept the input if for at least one permutation of one of the possible

32

g̃, the probability that f(x) = g̃(y) is more than 1 − 2
3
ε. Note that we may still accept the

input if some of the comparison procedure instances detected a mismatch between f(x) and
g̃(y), as long as there was never a failure in the construction of y itself. The correctness
probabilities of this algorithm can be amplified to 2

3
as usual.

Variations on the permutation test. The following explains how to make the test non-
adaptive. We note that the only place where information from previous queries is used in
determining new queries is where the information concerning the identity of V1, . . . , Vm is
used for testing the independence of Vk ∩Z(x) and Vk\Z(x) for every 1 ≤ k ≤ m. If instead
we make queries for testing the independence of Ij ∩ Z(x) and Ij\Z(x) for every 1 ≤ j ≤ r
(whenever we use the comparison procedure), then we can place all those queries in advance,
and later discard the ones corresponding to any Ij which is not one of V1, . . . , Vm. Similarly,
when choosing which of the Ijk to discard for determining V1, . . . , Vm (right after the junta
test), we can place in advance queries for every Ij and later discard the irrelevant ones. The
above makes for a polynomial penalty in the total number of queries of the test.

As for making the test work also for non-boolean domains, this is done by changing the
comparison test to check the independence of Vk ∩ Z(ρ, x) for every ρ ∈ Ω, where we define
Z(ρ, x) = {i|xi = ρ} (and where every x is now randomly chosen from Ωn using µn). The
change in the number of queries is a factor of Õ(|Ω|).

8 Open problems and remarks

Relaxing the soundness requirement. Other than making the test two-sided, it is
also possible to obtain quadratic dependency on J by somewhat relaxing the soundness
requirement. This is obtained if we only require that the test accepts every J-junta, and
rejects inputs which are, say, not even (ε, 2J)-juntas.

To achieve the quadratic dependency on J , note that in the original size test we have
chosen the number of elements in the partition to be quadratic in J , so that any J + 1
influential coordinates would go into distinct subsets in the partition with high probability.
If we allow juntas of size up to 2J to be accepted, it is enough to take a partition of size
only linear in J . This reduces the number of queries by a factor of J . But since the subsets
in the partition are now larger, we can take the ‘junta threshold’ t to be linear in 1/J , and
reduce by a factor of J the number of independence test applied to each subset.

A lower bound conjecture. We believe that J2/ε is a lower bound for the query com-
plexity of both the one-sided and the two-sided non-adaptive tests. In light of the two-sided
test presented in Section 4, if proven this would be a tight lower bound, up to logarithmic
factors, for the two-sided test. As far as we know, it is possible that J2/ε is a lower bound
even for the relaxed test proposed in the previous remark.

Reading juntas consistently. There are also interesting questions related to hardness of
approximations. In particular, it would be interesting to see what is the best error probability

33

(with regards to ε) that can be achieved from tests that query f in a constant number of points
that is independent of ε. It would also be interesting to construct list decoders (also known as
consistent readers) for juntas, in the spirit of the consistent readers for low degree polynomials
used for constructing Probabilistically Checkable Proofs ([ALM+98, AS98, RS97], see also
[DFK+99]). List decoders for long codes with a possible bias, which can be viewed as
functions dominated by a junta of one variable, were constructed and applied with good
results in [DS02].

Characterizing testable properties. Another open problem goes back to the primal
question of characterizing the testable properties. This question is known to be extremely
hard even to formulate well, but partial results in the sense of proving the testability of large
classes of properties go back to [GGR98]. Now that Fourier transforms are also known to
play a part in property testing, the question arises as to whether harmonic analysis can be
used in identifying large classes of testable properties of functions.

Random walk convergence. There is also an open problem arising from the proof of
the lower bound: For what groups G (other than Zq

2) can one prove a convergence result
similar to Theorem 3? In addition, it would be interesting to improve the lower bound on
the convergence rate (remove a factor of q from the bound on t), or to give an example for
which the current lower bound is tight.

Testing permutations for non-juntas. Finally, with regards to testing that f is a per-
mutation of a given function h, we can pose the following question: Is there a full charac-
terization of the functions h for which this is easy to test? A simple example of a non-junta
function h for which there exists an easy test is the majority function of n boolean variables.
On the other hand, it is tempting to conjecture that if n is large enough with respect to
J , and h is a J-junta function that is η-far from all (J − 1)-juntas for some fixed η, then
the number of queries that the test requires has to depend on J . The proof of Theorem 2
already implies such a bound for some functions h, namely, those that are characters of size
J .

A Proof of Proposition 3.5

For 0 ≤ x ≤ t, e−x/t ≤ 1− x
et

. This holds since e−x/t is convex as a function of x, and since
the inequality holds at the ends of the segment [0, t]. It follows that for all i,

E
[
e−Xi/t

]
≤ E

[
1− Xi

et

]
= 1− E[Xi]

et

Since the expectation is multiplicative for independent variables, we have

E
[
e−X/t

]
=

l∏
i=1

E
[
e−Xi/t

]
≤

l∏
i=1

(
1− E[Xi]

et

)

34

We use the convexity of the above expression, together with the fact that
∑

i E[Xi] = α, and
obtain

E
[
e−X/t

]
≤
(

1− α

elt

)l
≤ e−α/et

The Markov inequality now yields

Pr[X ≤ ηα] = Pr
[
e−X/t ≥ e−ηα/t

]
≤ e−α/et

e−ηα/t
= e

α
et

(ηe−1)

B A new test for being a J-monomial

As a corollary of our testing algorithms for juntas, we present an algorithm that tests whether
the function is a J-monomial, namely an AND of J boolean variables and/or negations of
variables. This algorithm asks O(ε−1polylog(1/ε)) queries. This is slightly worse than the
algorithm in [PRS01], which is linear in 1

ε
. However, the resulting new algorithm is simpler.

Let J , ε, and an input function f be given. First, as observed in [PRS01], if ε ≥ 2−J+2

then the test just needs to approximate Pr[f = 1] up to an additive factor of ε
4

(because for
these parameters every J-monomial is 1

2
ε-close to the zero function), with sufficiently high

probability. By the multiplicative Chernoff bound, this costs a number of queries which is
linear in 1

ε
.

Assuming that ε < 2−J+2, we first test whether f is a J-junta, or is ε/8-far from any
J-junta. We use sufficiently many queries so that the test succeeds with probability at least
5
6
. If the function passes the junta test, we approximate α = Pr[f = 1], asking O

(
2J
)

queries,
so that Pr

[∣∣α̂− α∣∣ ≥ 2−J−2
]
≤ 1

6
, where α̂ is the approximation. We return “ACCEPT” if

1
2
· 2−J < α̂ < 3

2
· 2−J , and “REJECT” otherwise. It is easy to see that this is a J-monomial

test with success probability at least 2
3
.

At this stage, it is also possible to check for the number of coordinates that appear with a
negation sign in the monomial. This is done by approximating the probability that f(x) = 0
where each coordinate of x is independently chosen to be 0 with probability 1

3
, and 1 with

probability 2
3
. This stage of the test is not linear in ε−1, but polynomial in it (assuming that

ε < 2−J+2, as otherwise this question has little meaning due to the observations above).

Acknowledgments

We wish to thank Michal Parnas for the discussions concerning some of the questions that
led to the writing of this paper, and wish to thank Avi Wigderson for his comments. We
also wish to thank two anonymous referees for their invaluable comments, which led among
other things to a noticeable simplification of the proof of Theorem 1.

35

References

[AD86] D. Aldous and P. Diaconis. Shuffling cards and stopping times. American Math-
ematical Monthly, 93(5):333–348, 1986.

[AS00] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience
(John Wiley & Sons), New York, 1992 (1st ed), 2000 (2nd ed).

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. Journal
of the ACM, 45(3):501–555, May 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new char-
acterization of NP. Journal of the ACM, 45(1):70–122, January 1998.

[BHL95] Avrim Blum, Lisa Hellerstein, and Nick Littlestone. Learning in the presence of
finitely or infinitely many irrelevant attributes. Journal of Computer and System
Sciences, 50(1):32–40, February 1995.

[BL89] M. Ben-Or and N. Linial. Collective coin flipping. ADVCR: Advances in Com-
puting Research, 5, 1989.

[CG02] H. Chockler and D. Gutfreund. Property testing: Worst case vs. average case.
manuscript, 2002.

[DFK+99] I. Dinur, E. Fischer, G. Kindler, R. Raz, and S. Safra. PCP characterizations of
NP: Towards a polynomially-small error-probability. In Proc. 31th ACM Symp.
on Theory of Computing, 1999.

[DS02] I. Dinur and S. Safra, On the importance of being biased, In Proc. 34th ACM
Symp. on Theory of Computing, 2002.

[DGL+99] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron,
and Alex Samorodnitsky. Improved testing algorithms for monotonicity. 3rd In-
ternational Workshop on Randomization and Approximation Techniques in Com-
puter Science (RANDOM), August 1999.

[Fis01] E. Fischer. The art of uninformed decisions: A primer to property testing. The
Bulletin of the European Association for Theoretical Computer Science, 75:97–
126, 2001.

[FLN+02] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and
A. Samorodnitsky. Monotonicity testing over general poset domains. In Proc.
34th ACM Symp. on Theory of Computing, pages 474–483, 2002.

[GGR98] S. Goldwasser O. Goldreich and D. Ron. Property testing and its connections to
learning and approximation. Journal of the ACM, 45(4):653–750, 1998.

36

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorod-
nitsky. Testing monotonicity. Combinatorica, 20(3):301–337, 2000.

[GTT99] David Guijarro, Jun Tarui and Tatsuie Tsukiji. Finding relevant variables in
PAC model with membership queries. In Proc. Algorithmic Learning Theory,
10th International Conference, ALT ’99, Tokyo, Japan, December 1999, volume
1720 of Lecture Notes in Artificial Intelligence, pages 313–322. Springer, 1999.

[Lit87] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Machine Learning, 2:285, 1987.

[Mar06] A. A. Markov. Extension of the law of large numbers to dependent events. Bull.
Soc. Phys. Math., 15(2):135–156, 1906.

[MOS02] E. Mossel, R. O’Donnell, and R. A. Servedio. Learning juntas. Proceedings of
the 35th Annual symposium on the theory of computing (STOC), pages 206–212,
2003.

[PRS01] M. Parnas, D. Ron, and A. Samorodnitsky. Testing Basic Boolean Formulae.
SIAM Journal on Discrete Math, 16(1):20–46, 2002.

[Ron01] D. Ron. Property testing (a tutorial), In Handbook on Randomization, Vol. II,
pages 597–649, 2001.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials
with applications to program testing. SIAM Journal on Computing, 25(2):252–
271, 1996.

[RS97] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a
sub-constant error-probability PCP characterization of NP. In Proc. 29th ACM
Symp. on Theory of Computing, pages 475–484, 1997.

[UTW97] R. Uehara, K. Tsuchida, and I. Wegener. Optimal attribute-efficient learning of
disjunction, parity and threshold functions. In Shai Ben-David, editor, Proceed-
ings of the 3rd European Conference on Computational Learning Theory, Berlin,
March 17–19 1997, volume 1208 of LNAI, pages 171–184. Springer.

37

