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Abstract

Tolerant testing is an emerging topic in the field of property testing, which was defined in

[15] and has recently become a very active topic of research. In the general setting, there exist

properties that are testable but are not tolerantly testable [12]. On the other hand, we show

here that in the setting of the dense graph model, all testable properties are not only tolerantly

testable (which was already implicitly proven in [2] and [14]), but also admit a constant query

size algorithm that estimates the distance from the property up to any fixed additive constant.

In the course of the proof we develop a framework for extending Szemerédi’s Regularity

Lemma, both as a prerequisite for formulating what kind of information about the input graph

will provide us with the correct estimation, and as the means for efficiently gathering this

information. In particular, we construct a probabilistic algorithm that finds the parameters of

a regular partition of an input graph using a constant number of queries, and an algorithm to

find a regular partition of a graph using a TC0 circuit. This, in some ways, strengthens the

results of [1].

1 Introduction

Combinatorial property testing deals with the following task: For a fixed ε > 0 and a fixed property

P, distinguish using as few queries as possible (and with probability at least 2
3) between the case

that an input of size m satisfies P, and the case that the input is ε-far from satisfying P. In our

context the inputs are boolean, and the distance from P is measured by the minimum number of

bits that have to be modified in the input in order to make it satisfy P, divided by the input size m.

For the purpose here we are mainly interested in tests that have a number of queries that depends

only on the approximation parameter ε and is independent of the input size. Properties that admit

such algorithms are called testable.
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The first time a question formulated in terms of property testing was considered is by Blum,

Luby and Rubinfeld [7], and the general notion of property testing was first formally defined by

Rubinfeld and Sudan [17]. The first investigation in the combinatorial context is that of Goldreich,

Goldwasser and Ron [13], where the testing of combinatorial graph properties (in the “dense” graph

model) is first formalized; their framework will also be the one used here. In recent years the field

of property testing has enjoyed rapid growth, as witnessed in the surveys [16] and [10].

One of the main goals in the study of graph property testing is the finding of structural charac-

terization results, or failing that, results that identify large classes of properties that are testable.

An example of such a large class is the class of partition properties that was identified in [13].

Other classes were identified as testable using the Regularity Lemma of Szemerédi, in [2] and [9].

The Regularity Lemma is a very useful tool that guarantees the existence of a sort of a “short

summary” for graphs with any number of vertices. The price is that the involved constants will

not have a practical bound, but for theoretical results this lemma is the most powerful tool up to

date for understanding the essence of graph property testing.

The question of providing a complete structural characterization result for the testable graph

properties was one of the central themes in the research on testing graph properties. A partial

result that in some sense characterizes graph properties that consist of only one graph according

to their testability is found in [11], also making use of the Regularity Lemma. Concerning 1-sided

graph property testing, where the algorithm is also required to be independent of the number of

vertices of the graph, a recent work of Alon and Shapira [5] approaches what is in essence a full

characterization. Very recently a complete characterization of the properties that are testable by

2-sided error tests was provided in [3]. In a different angle of the characterization problem, the

canonical testers of [14] can be considered as a first hint that testable graph properties are more

than just testable. Here we investigate this further, showing that the class of all testable graph

properties (with 1-sided or 2-sided algorithms) is in fact identical to a class of properties that admit

algorithms with much stringer requirements than those of property testers.

An investigation that goes beyond the original definition of testable properties was initiated

by Parnas, Ron and Rubinfeld [15], concerning tolerant testers. These are property testers that

reject all instances that are far enough from the property P, and accept every instance that is close

enough to P (and not just instances that are in P). Recently, Fischer and Fortnow [12] showed

that not all testable properties are also tolerantly testable. Here we prove a positive general result

on testable graph properties that involves a much tighter concept. We say that a property is (ε, δ)-

estimable if there exists a probabilistic algorithm making a constant number of queries on any input

(independently of the input size), that distinguishes with probability 2
3 between the case that the

input is (ε− δ)-close to some input that satisfies the property, and the case that it is ε-far from any

input satisfying the property. We call a property estimable if it is (ε, δ)-estimable for every fixed

ε > 0 and δ > 0. Thus, if a property is estimable, then there exists an O(1)-query algorithm that

can estimate the relative distance of an input from the property within any fixed additive constant.
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Obviously estimability (and also tolerant testing, where we only demand an (ε, δ)-estimation for

some δ > 0 that may depend on ε), is a generalization of the standard testing and the two notions

coincide when we take δ = ε.

Our main result is a proof that all testable graph properties are also estimable. Equivalently,

we obtain that for every testable property P and every ε > 0, the property of being ε-close to P is

in itself testable. For non-graph properties this is not always true, as shown in [12].

While the famed Regularity Lemma of Szemerédi is not very applicable in practice, it is quite

important theoretically, and not only for property testing. Alon, Duke, Lefmann, Rödl and Yuster

[1] have shown that a regular partition can be found in asymptotically the same time complexity as

that of matrix multiplication. For many applications of the Regularity Lemma, one does not need

to know the regular partition itself, but only its signature (the pairwise edge densities between its

sets). A lemma towards our main result asserts the existence of a randomized algorithm that uses

only O(1) queries to the input and approximates the signature of an ε-regular partition of a graph

to within an additive error of ε, for any fixed constant ε > 0.

As it turns out, this proof also implies a new algorithm that allows the finding of a regular

partition using a very low complexity class algorithm (namely TC0, as opposed to NC1 which was

previously known from [1]).

The rest of the paper is organized as follows. Section 2 contains the most basic definitions and

the formal statement of the main result. Section 3 contains definitions and lemmas concerning Sze-

merédi’s Regularity Lemma, the essence of property testing algorithms in the dense graph model,

and the connection between them. Section 4 contains a framework for extending Szemerédi’s Reg-

ularity Lemma, leading to the proof of the main result. This proof is based on two main lemmas:

One lemma states that knowing the parameters of a certain partition of the graph (which is guar-

anteed to exist by the extension of Szemerédi’s lemma) is enough for knowing how far is the input

graph from a graph which a property testing algorithm would accept, and the other lemma states

that an approximation of the parameters of such a partition can indeed be calculated with high

probability from a small sample of the graph. These two main lemmas are then proven in Section

5 (approximating a partition) and Section 6 (estimating the distance from the property). The

final Section 7 contains some concluding comments, including a description of the low complexity

algorithm for finding an ε-regular partition of a graph.

2 The main result

In the following we formally state our main result. We start with the most basic definition of

property testing of graphs (in the “dense model” context).

Definition 1. We say that two graphs G and G′ with the same vertex set of size n are ε-close,

if the number of vertex pairs that form an edge for one of G and G′ but not the other does not

exceed ε
(
n
2

)
. For a property P of graphs, we say that G is ε-close to P if there exists a graph G′
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that satisfies P and is ε-close to G. If there exists no such G′ then we say that G is ε-far from P.

For properties of combinatorial objects other than graphs, we replace “
(
n
2

)
” in the definition above

with the size of the corresponding input.

We call a property ε-testable if there exists a probabilistic algorithm making a constant number

of queries on any input (independently of the input size, which is given to the algorithm in advance),

that distinguishes with probability 2
3 between the case that the input satisfies the property, and the

case that the input is ε-far from any input that satisfies the property. We call a property testable

if it is ε-testable for every fixed constant ε > 0.

Parnas, Ron and Rubinfeld [15] have started investigating properties (of various combinatorial

objects and not just graphs) for which there exists a probabilistic algorithm, that apart from being

an ε-test is also guaranteed to accept (with probability at least 2
3) any input that is sufficiently

close to satisfying the property. In the following we concern ourselves with the strictest possible

definition of such properties, in that we want to also accept any input whose distance from the

property is only somewhat smaller than the guaranteed rejection distance.

Definition 2. We call a property (ε, δ)-estimable if there exists a probabilistic algorithm making a

constant number of queries on any input (independently of the input size), that distinguishes with

probability 2
3 between the case that the input is (ε−δ)-close to some input that satisfies the property,

and the case that it is ε-far from any input satisfying the property. We call a property estimable if

it is (ε, δ)-estimable for every fixed ε > 0 and δ > 0.

We prove that for graph properties (in the dense model), estimation algorithms exist for any

property for which there exists a test in the usual sense.

Theorem 2.1. Every testable property of graphs is also estimable.

As a corollary from the proofs, we also find an algorithm for constructing an ε-regular partition

(or a strengthening thereof) of an input graph G using a low complexity (TC0) algorithm. As the

required definitions for stating this result and its motivations are only presented in Section 3 and

Section 4, it is discussed in full in Section 7.

3 The building blocks

In this section we prepare some tools that are needed for the following discussion. We define and

explain the role of regular partitions, and show their relevance to predicting the behavior of a given

testing algorithm when applied to the input graph.

Starting with this section and throughout the paper, we use the convention that a function

defined by the statement of a lemma is indexed with the lemma’s number. We make no attempt

anywhere to minimize the constants involved, and ignore floor and ceiling signs when these make

no essential difference for the argument.
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For some of the proofs we use the following standard Chernoff-type large deviation inequality

(see e.g. [6, Appendix A]).

Lemma 3.1. Suppose that X1, . . . , Xm are m independent Boolean random variables, satisfying

Pr(Xi = 1) = pi. Let E =
∑m

i=1 pi. Then, Pr(|
∑m

i=1Xi − E| ≥ δm) ≤ 2e−2δ
2m.

In the following we often use one distribution to approximate another. For this the following is

handy.

Definition 3. Given two distributions µ and ν over a finite family H of combinatorial structures,

their variation distance is defined as |µ− ν| = 1
2

∑
H∈H |Prµ(H)− Prν(H)|.

We note that the variation distance is just a normalized distance in `1. In particular 0 ≤ |µ−ν| ≤
1 for any ν, µ. The importance of this measure is that if |µ − ν| is small then ν approximates µ

well, as asserted by the following well-known lemma for which we provide a proof for completeness.

Lemma 3.2. If two distributions µ, ν over a finite family H of combinatorial structures satisfy

|µ− ν| ≤ δ, then for any set A ⊆ H we have |Prµ(A)− Prν(A)| ≤ δ.

Proof. Set B = H \A. Because these are probability spaces we have Prµ(B)− Prν(B) = Prν(A)−
Prµ(A). Therefore,

|Prµ(A)− Prν(A)| =
1

2
|Prµ(A)− Prν(A)|+ 1

2
|Prµ(B)− Prν(B)|

≤ 1

2

∑
H∈A
|Prµ(H)− Prν(H)|+ 1

2

∑
H∈B
|Prµ(H)− Prν(H)| = |µ− ν|

The following is also a well-known probabilistic lemma that we will use.

Lemma 3.3. Let µ be a product distribution over {0, 1}k, where for (α1, . . . , αk) ∈ {0, 1}k we have

Prµ((α1, . . . , αk)) =
∏k
i=1(pi)

αi(1 − pi)
1−αi for a fixed sequence p1, . . . , pk. Similarly let ν be a

product distribution over {0, 1}k, with q1, . . . , qk replacing p1, . . . , pk in the definition above. Then,

|µ− ν| ≤
∑k

i=1 |pi − qi|.

Proof. The proof is by induction on k. For k = 1 this is immediate from the definition, and for

k > 1 we use the definition of the variation distance to reduce it to the expression for k − 1, using

extensively the simple inequality |ab− cd| ≤ |a− c|b+ c|b− d| for a, b, c, d ≥ 0.
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|µ− ν| =
1

2

( ∑
α1,...,αk−1

∣∣∣pk k−1∏
i=1

(pi)
αi(1− pi)1−αi − qk

k−1∏
i=1

(qi)
αi(1− qi)1−αi

∣∣∣
+

∑
α1,...,αk−1

∣∣∣(1− pk) k−1∏
i=1

(pi)
αi(1− pi)1−αi − (1− qk)

k−1∏
i=1

(qi)
αi(1− qi)1−αi

∣∣∣)

≤ 1

2

∑
α1,...,αk−1

(
|pk − qk|

k−1∏
i=1

(pi)
αi(1− pi)1−αi

+ qk

∣∣∣ k−1∏
i=1

(pi)
αi(1− pi)1−αi −

k−1∏
i=1

(qi)
αi(1− qi)1−αi

∣∣∣
+ |(1− pk)− (1− qk)|

k−1∏
i=1

(pi)
αi(1− pi)1−αi

+ (1− qk)
∣∣∣ k−1∏
i=1

(pi)
αi(1− pi)1−αi −

k−1∏
i=1

(qi)
αi(1− qi)1−αi

∣∣∣)

= |pk − qk|+
1

2

∑
α1,...,αk−1

∣∣∣ k−1∏
i=1

(pi)
αi(1− pi)1−αi −

k−1∏
i=1

(qi)
αi(1− qi)1−αi

∣∣∣ ≤ k∑
i=1

|pi − qi|

An immediate corollary of Lemma 3.3 is the following (by taking k =
(
q
2

)
).

Lemma 3.4. Suppose that µ and ν are two probability distributions over graphs with the set of

vertices {v1, . . . , vq}, where each pair vivj is independently chosen to be an edge with probability

µi,j and νi,j respectively. If |µi,j − νi,j | ≤ ε/
(
q
2

)
for every 1 ≤ i < j ≤ q, then the variation distance

between µ and ν is bounded by ε.

A crucial notion to the following arguments (as is the case with many other graph property-

testing results) is Szemerédi’s notion of regularity.

Definition 4. For two nonempty disjoint vertex sets U and V of a graph G, we define the density

d(U, V ) of the pair to be the number of edges of G between U and V , divided by |U ||V |.
We say that the pair U, V is ε-regular, if for any two subsets U ′ of U and V ′ of V , satisfying

|U ′| ≥ ε|U | and |V ′| ≥ ε|V |, the edge densities satisfy |d(U ′, V ′)− d(U, V )| < ε.

Although Definition 4 bounds the deviation in densities for any two subsets U ′, V ′ that are at

least as large as their respective thresholds, it is easy to see that it is enough to require the above

only for every two subsets U ′, V ′ of size exactly |U ′| = dε|U |e and |V ′| = dε|V |e.
Regular pairs behave much like random graphs, as seen in the following well-known lemma.
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Lemma 3.5 (see e.g. [11, Lemma 4.2] for a proof). For every k and ε there exists γ = γ3.5(k, ε), so

that if U1, . . . , Uk are disjoint sets of vertices of G such that every two sets form a γ-regular pair,

then the following two distributions for picking a graph H with vertices v1, . . . , vk have variation

distance at most ε between them.

• For every 1 ≤ i < j ≤ k, independently take vivj to be an edge of H with probability d(Vi, Vj).

• Pick uniformly and independently a vertex ui ∈ Ui for every i, and let vivj be an edge of H

if and only if uiuj is an edge of G.

What we need is a “cover” of an entire graph with regular pairs. This idea is formalized in the

following.

Definition 5. Given a graph G, an equipartition A = {V1, . . . , Vk} of G is a partition of its vertex

set for which the sizes of any two sets differ by at most 1. An equipartition B = {W1, . . . ,Wl} is

said to be a refinement of A if all of the sets Wi are each fully contained in some set of A.

An equipartition B as above is called ε-regular if at least (1 − ε)
(
l
2

)
of the pairs Wi,Wj are

ε-regular.

Regular partitions are found using the famed Regularity Lemma of Szemerédi [18] (see [8,

Chapter 7] for a good exposition of the proof).

Lemma 3.6 (Szemerédi’s Regularity Lemma [18]). For every k and ε there exists T = T3.6(k, ε),

such that for every equipartition A of a graph G with n ≥ N3.6(k, ε) vertices into k sets, there exists

a refinement B of A into t ≤ T sets which is ε-regular.

We now turn to the behavior of property testers when applied to an input graph G. The most

important feature of G would be the count of its small induced subgraphs of any kind, as exemplified

in the following.

Definition 6. The q-statistic of a graph G is the following probability space over (labeled) graphs

with q vertices: Given a labeled graph H with the vertex set {v1, . . . , vq}, the probability for H is

exactly the probability that the edge relation of G, when restricted to a uniformly random sequence

of q vertices (without repetitions) w1, . . . , wk, is identical to that of H where each wi plays the role

of vi. Namely, the q-statistic is just the probability distribution over all (labeled) graphs with q

vertices that results from picking at random q distinct vertices of G and considering the induced

subgraph.

Given a family H of graphs with q vertices, we denote the probability for obtaining a member of

H when drawing a graph according to the q-statistic of G by PrG(H).

Note that in the definition above one could work with isomorphic copies of H rather than

labeled graphs. This however, brings in the extra complication of having to take into account the

automorphism group size of H. When dealing with labeled graphs the analysis is simpler.
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The importance of knowing the q-statistic of a graph G is in its close connection with the

distance of G from a given testable property, proven in [14].

Lemma 3.7 (Canonical Testers [14]). If there is an ε-test for a graph property P that makes

a constant number of queries, then there exists such a test that makes its queries by choosing

uniformly q distinct vertices of G (for an appropriate constant q) and querying the induced subgraph.

In particular, there exists an appropriate family H of labeled graphs such that any graph G that

satisfies P satisfies also PrG(H) ≥ 2
3 , and any graph G that is ε-far from satisfying P satisfies

PrG(H) ≤ 1
3 .

The above motivates us to try deducing the q-statistic of the graph from the densities of one of

its regular partitions, as per the following definition.

Definition 7. For an equipartition A = {V1, . . . , Vt} of G, a (γ, ε)-signature of A is a sequence

S = (ηi,j)1≤i<j≤t, such that |d(Vi, Vj) − ηi,j | ≤ γ for every i < j but at most ε
(
t
2

)
of the pairs. A

(γ, γ)-signature is simply referred to as a γ-signature. We use just the term signature for S as

above when we do not commit to any specific error parameters.

Given a signature S = (ηi,j)1≤i<j≤t as above, the perceived q-statistic of G according to S is the

following probability distribution over labeled graphs with q vertices: To choose H with the vertex

set v1, . . . , vq, we first choose a uniformly random sequences without repetitions of indices i1, . . . , iq

from 1, . . . , t. We then independently take every vkvl for k < l to be an edge of H with probability

ηik,il if ik < il, and with probability ηil,ik if ik > il.

Given a family H of graphs with q vertices, we denote the probability for obtaining a member of

H according to the perceived q-statistic by PrS(H).

The following lemma shows that for a regular partition, the perceived statistic is indeed close

to the statistic of the graph.

Lemma 3.8. For every q and ε there exist γ = γ3.8(q, ε) and r = r3.8(q, ε), so that for every

γ-regular partition A of G into t ≥ r sets, where G has n ≥ N3.8(q, ε, t) vertices, and every γ-

signature S of A, the variation distance between the perceived q-statistic according to S and the

(actual) q-statistic of G is at most ε.

Proof. Recall Definition 3 for the variation distance between two distributions over a combinatorial

structure. Here the structure is the set of labeled graphs on q vertices. The perceived statistic

distribution is as defined above, and the actual statistic is as defined by the process of picking a

random q-size labeled subgraph of G in Definition 6.

Set r = 7
(
q
2

)
/ε and γ = min{ε/7

(
q
2

)
, γ3.5(q, ε/7)}. Let v1, . . . , vq be a uniformly random set of q

distinct vertices, and let ij for every 1 ≤ j ≤ q denote the index for which vi ∈ Vij . With probability

at least 1−4ε/7, i1, . . . , iq are distinct, and moreover all the pairs Vij , Vik are γ-regular, and satisfy

|ηij ,ik − d(Vij , Vik)| ≤ ε/7
(
q
2

)
. Also, note that

∑t
i=1 |(|Vi|/n)− 1/t| ≤ ε/7 for an appropriate choice

of N3.8(q, ε, t).
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Finally, for a specific fixed sequence i1, . . . , iq for which the above event holds, Lemma 3.5

guarantees that the conditional distribution of the induced graph on v1, . . . , vq is not more than

ε/7-far (in the variation distance) from the distribution on a random graph over v1, . . . , vq for which

every edge vivj is independently selected with probability d(Vij , Vik). Noting that |d(Vij , Vik) −
ηmin{ij ,ik},max{ij ,ik}| ≤ ε/7

(
q
2

)
and using Lemma 3.4, it follows that the variation distance between

the q-statistic of G and the perceived one is (after summing all the above error terms) at most

ε.

By now we note that knowing an accurate enough signature of a regular partition enables us to

estimate the q-statistics of a graph, which in turn enables us to predict the behavior of a property

tester (by Lemma 3.7), and thus distinguish between graphs that satisfy the property and graphs

which are ε-far from satisfying it.

However, for estimability we would like to know more than that. It is not enough to know

whether the input graph G has a regular partition that indicates its acceptance by the property

tester; we also need to know how far is our input graph G from a graph G′ that has such a partition.

The problem is that the regular partition that indicates the acceptance of G′ may be different from

the regular partition found for G. Our technique is to find in G a partition that, in addition to

being regular, will be able to “withstand” a repartitioning according to such a G′. This issue, and

the issue of efficiently finding a signature for such a partition, are addressed in the next section.

4 Robust and final partitions and proving Theorem 2.1

To prove the main result, we must first define a framework that allows us to extend the notion of

regular partitions. To this end let us first delve a little into the details of the proof of the original

regularity lemma. We start with the basic function defined in [18] to track graph partitions with

respect to their possible regularity.

Definition 8. For an equipartition A of a graph G into t sets, its index ind(A) is defined as

t−2
∑

1≤i<j≤t d
2(Vi, Vj). For a function f : N → N and a constant γ, we say that A as above is

(f, γ)-robust if there exists no refinement B of A with up to f(t) sets for which ind(B) ≥ ind(A)+γ.

The main lemma used in [18] for proving Szemerédi’s lemma can be paraphrased as the following

(note that in the proof of Lemma 3.6 as presented in [8, Chapter 7], instead of ind(A) a similar

function that is denoted there by “q” is used, and the equipartitions are allowed to have a small

number of “exceptional vertices” not in any set).

Lemma 4.1 ([18], see also [8, Lemma 7.2.4]). For every ε there exist γ = γ4.1(ε) and f = f
(ε)
4.1 :

N→ N, such that every (f, γ)-robust partition is also ε-regular.

In the original formulation of [18], it is proven that a non-ε-regular partition into t sets has

a refinement into max{exp(t), exp(1/ε)} many sets whose index is larger by at least some poly(ε)
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(without explicitly stating Lemma 4.1). With either formulation, the move from Lemma 4.1 to

Lemma 3.6 is made through the following simple observation.

Observation 4.2. For every k, γ and f : N → N there exists T = T4.2(k, γ, f), such that every

equipartition A of a graph G with n ≥ N4.2(k, γ, f) vertices into at most k sets, has a refinement

B into at most T sets that is (f, γ)-robust.

Proof. We start by setting B = A, but if it is not (f, γ)-robust then we replace it with the refinement

showing this, repeating the procedure as many times as necessary. Since the index of a partition is

always between 0 and 1, this process will terminate after at most 1/γ iterations.

In the following we will also consider robust partitions for choices of f that grow faster than

what is required for ε-regularity. This means that in some sense we will use a strengthening of the

original regularity lemma.

The following definition is clearly a strengthening of the definition of robustness.

Definition 9. For a function f : N→ N and a constant γ, we say that A as above is (f, γ)-final if

there exists no partition B (even one that is not a refinement of A) with at least t and up to f(t)

sets for which ind(B) ≥ ind(A) + γ.

The following is an analogue of Observation 4.2 to final partitions. The price is that now we

can no longer demand that the final partition will be a refinement of a given equipartition.

Observation 4.3. For every k, γ and f : N→ N there exists T = T4.3(k, γ, f), such that for every

graph G with n ≥ N4.3(k, γ, f) vertices there exists an equipartition A into at least k and at most

T sets that is (f, γ)-final.

In fact we do not need the stronger but less flexible condition of finality for our combinatorial

statements, but we use it because the parameters of a final partition are easier to detect than those

of a robust one. A testing algorithm can actually compute a signature of a final partition like the

one that Observation 4.3 guarantees for a graph G, as the following lemma shows.

Lemma 4.4. For every k, γ and f : N → N there exists q = q4.4(k, γ, f), such that there exists

an algorithm that makes up to q queries to a graph G with n ≥ N4.3(k,
1
2γ, f) vertices, computing

with probability at least 2
3 a γ-signature for an (f, γ)-final partition of G into at least k and at most

T4.3(k,
1
2γ, f) sets.

This lemma is proven in Section 5, and brings us half-way towards our estimability result.

At this point, if from a signature of a regular partition of G we could estimate how far is G from

having a regular partition with a different given signature, then we could use it to estimate how

far is G from having a statistic that will cause a canonical tester to accept it with high probability.

This we cannot do directly, but we can instead estimate such a difference if we are provided with
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a signature of a partition that is somewhat more than regular, that is, robust with respect to an

appropriate function. We explain in Section 6 why a regular partition is not enough while a robust

one is. We now present the formal statement of the appropriate result and show how it implies

Theorem 2.1.

Lemma 4.5. For every q and δ there exist γ = γ4.5(q, δ), s = s4.5(q, δ) and f = f
(q,δ)
4.5 : N → N

with the following property. For every family H of graphs with q (labeled) vertices there exists a

deterministic algorithm, that receives as an input only a γ-signature S for an (f, γ)-robust partition

A with t ≥ s sets of a graph G with n ≥ N4.5(q, δ, t) vertices, and distinguishes (using no information

on G apart from S and t) given any ε between the case that G is (ε− δ)-close to some graph G′ for

which PrG′(H) ≥ 2
3 , and the case that G is ε-far from every graph G′ for which PrG′(H) > 1

3 .

This lemma is proven in Section 6. Lemma 4.4 and Lemma 4.5 together imply the main result.

Proof of Theorem 2.1. Suppose that P is a testable graph property, and let ε and δ be constants

for which we want to (ε, δ)-estimate P. As P is in particular 1
2δ-testable, Lemma 3.7 asserts that

there exists a constant q and a family H of graphs on q vertices, such that for every graph G that

is in P, PrG(H) ≥ 2/3, and for any graph G that is 1
2δ-far from P, PrG(H) ≤ 1/3.

Set γ = γ4.5(q,
1
2δ), f = f

(q,δ/2)
4.5 , and k = s4.5(q,

1
2δ), and apply the algorithm provided by

Lemma 4.4, with the parameters k, γ and f , on the input graph G. This algorithm makes up to

q4.4(k, γ, f) queries to the graph G, and with probability at least 2
3 returns a γ-signature S of an

equipartition of G into at least s4.5(q, δ) sets and at most T4.3(k,
1
2γ, f) sets that is (f, γ)-final.

We now apply the algorithm that is provided by Lemma 4.5, with parameters q, 1
2δ and ε− 1

2δ,

to the signature S (remember that this is a deterministic algorithm making no additional queries).

Due to the choice of parameters, it is guaranteed by Lemma 4.5 that we can distinguish between

the case that there is a graph G′ that is (ε− δ)-close to G and for which PrG′(H) ≥ 2
3 , and the case

that G is (ε− 1
2δ)-far from every graph G′ for which PrG′(H) > 1

3 . In the first case G is accepted,

and in the second case it is rejected.

For the above to work we require that n ≥ max{N4.3(k,
1
2γ, f), N4.5(q,

1
2δ, T4.3(k,

1
2γ, f))}. For

a smaller n we can just read the entire input and compute its distance from the property to be

estimated. We now claim that the above algorithm is indeed an (ε, δ)-estimation algorithm for P
for every large enough n.

If G is (ε− δ)-close to P, then by the premises above, it is also (ε− δ)-close to a graph G′ for

which PrG′(H) ≥ 2
3 , and so the first case above will hold as long as S is in fact a γ-signature of an

(f, γ)-robust partition of G, which happens with probability at least 2
3 . Thus G is accepted with

probability at least 2
3 .

On the other hand, if G is ε-far from P, then by the triangle inequality it is (ε − 1
2δ)-far from

any graph G′ for which PrG′(H) > 1
3 (because such a G′ would be 1

2δ-close to satisfying P, as q

was chosen to suffice for testing P with distance parameter 1
2δ). Thus, if S is indeed a γ-signature
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of an (f, γ)-robust partition, then the algorithm rejects G, and this again happens with probability

at least 2
3 .

With both cases covered, the proof is concluded.

5 Proof of Lemma 4.4

Our strategy as outlined here is rather simple. Let k, γ and f be as in the formulation of the

lemma, and set T = T4.3(k, γ/2, f). For every s ∈ {k, . . . , f(T )} we quantize all possible signatures

of equipartitions into s parts, choosing such a finite family of signatures so that every possible

signature of an s-partition is close enough to one of the chosen signatures. For every such chosen

signature we test whether there exists a partition into s sets with densities that are as determined

by the signature, allowing for a small slack. This is done using the test of Goldreich, Goldwasser

and Ron for generalized graph partitions [13]. For every positive answer (namely, that such a

partition exists) we record the signature and estimate the index of the partition. Having all this

information, we set for every s the quantity M(s) that is the largest index of any of the partitions

into s sets that we (approximately) know about. We then set s∗ to be such that for every s for

which s∗ ≤ s ≤ f(s∗), the records indicate that M(s) ≤ M(s∗) + 3
4γ. Finally, we output the

signature that achieves M(s∗), and claim that it is a signature of an (f, γ)-final equipartition.

To see that such an s∗ indeed exists, consider the (f, 12γ)-final equipartition A that is guaranteed

by Observation 4.3, for k, γ and f . A is a partition into b ≤ T sets with some signature S. Thus,

while passing through all possible signatures of equipartitions into b sets in the process above, the

closest signature to S must have been considered and the corresponding index, which is a good

approximation of ind(A), was computed. Now, as A is (f, 12γ)-final, it follows by the definitions

that s∗ = b is a valid answer to the output above, assuming that all the index estimations are good

enough. Let us now proceed with the formal details.

Set ε = γ/(24 ·f2(T )). We assume that ε−1 is an integer without loss of generality, as otherwise

we can decrease it a little more (by a factor of less than 2) without changing the essence of the

arguments. For every k ≤ s ≤ f(T ) set S(s, ε) = {0, ε, 2ε, . . . , 1}(
s
2). Every S ∈ S(s, ε) is clearly

associated with a signature of a possible equipartition of G into s sets.

As we only have signatures to work with, we have to use them to estimate the index of a

partition.

Definition 10. In an analogue manner to the definition of the index of a partition, we define the

index of a signature S = (ηi,j)1≤i<j≤t to be ind(S) = t−2
∑

1≤i<j≤t(ηi,j)
2

Following is an obvious observation (by a simple calculation) that relates the index of any

ε-signature of a partition to the index of the partition.

Observation 5.1. Let A be an equipartition into s sets and assume that S = (ηi,j)1≤i<j≤s is an

ε-signature of A. Then |ind(A)− ind(S)| ≤ 3ε.

12



Let G be a graph with n vertices and let s be fixed. Let 0 ≤ αi,j < βi,j ≤ 1, 1 ≤ i < j ≤ s

be two sequences of numbers. The following is a special case of a theorem proved by Goldreich,

Goldwasser and Ron [13] (in [13], there are lower and upper bounds on the sizes of the vertex sets

too, but having them here does not make an essential difference).

Lemma 5.2 (GGR-test of graph partitions [13]). For a fixed s, let P be the property of a graph G

with n vertices having an equipartition V1, . . . , Vs of its vertex set, such that αi,j ≤ d(Vi, Vj) ≤ βi,j

for every 1 ≤ i < j ≤ s (for fixed, given αi,j < βi,j).

Property P is testable, with a number of queries that is polynomial in ε (for every fixed s) and

is independent of n.

We use the following guarantee on the approximation of a signature given by a GGR-test.

Lemma 5.3. Let s ≥ 2/ε be fixed, let S = (ηi,j)1≤i<j≤s be a signature, and let α = (αi,j)1≤i<j≤s

and β = (βi,j)1≤i<j≤s be defined by αi,j = ηi,j − ε and βi,j = ηi,j + ε for 1 ≤ i < j ≤ s. Then

applying the GGR-test on a graph G with s, α, β and distance parameter ε results in the following.

• If the test accepts with probability more than 1
3 , then there exists an equipartition A of G into

s sets for which S is an s2ε-signature.

• If there is an equipartition A of G into s sets for which S is an (ε, 0)-signature, then the test

accepts with probability at least 2
3 .

Proof. The first thing to note is that the GGR-property to be tested is exactly the property that

S is an (ε, 0)-signature for some partition of G. This immediately yields the second item in the

assertion of the lemma.

For the first item, assume that the test accepts with probability more than 1
3 when applied

with s, α and β. Then there must be a graph G′ that is ε-close to G and that has an equipartition

A for which S is an (ε, 0)-signature. Thus A, considered as an equipartition of G, must have

|dG(Vi, Vj) − dG′(Vi, Vj)| ≤ 1
2s

2ε for every 1 ≤ i < j ≤ s (as otherwise G′ will be more than ε-far

from G), and so S is an s2ε-signature for G′.

We are now ready to conclude this section.

Proof of Lemma 4.4. Suppose that the parameters f , γ and k are given, and set T = T4.3(k,
1
2γ, f).

For s ∈ {k, . . . , f(T )}, let ε and S(s, ε) be as defined above, and let m =
∑f(T )

s=k ε
−(s2) be the total

number of members in the union of all S(s, ε) for k ≤ s ≤ f(T ).

We use the following procedure for every s ∈ {k, . . . , f(T )}.

• Initialize M(s) = 0. This variable will contain the supposed maximum index of any equipar-

tition into s sets.
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• for every S = (ηi,j)1≤i<j≤t ∈ S(s, ε), define α and β by αi,j = ηi,j − ε and βi,j = ηi,j + ε for

1 ≤ i < j ≤ s (just as in Lemma 5.3).

Apply the GGR-test on G with parameters α, β and distance parameter ε for 100 logm times.

If the majority of the runs accept then we say that S was accepted. In this case we take

max{M(s), ind(S)} to be the new value of M(s), and record the signature S if it is the one

for which this maximum is obtained. If the test rejects on the majority of the runs then we

do nothing, and say that S was rejected.

Note that in the second step above we need to go over all signatures S ∈ S(s, ε). It is not hard

to generate and go over them in a lexicographic order.

Let s∗ be the smallest number in {k, . . . , T} such that M(s∗) + 3
4γ ≥ M(s′) for every s′ ∈

{s∗+ 1, . . . , f(s∗)}. If there exists such an s∗, output the signature S∗ that achieves the maximum

for s∗. Otherwise, the algorithm fails.

It is clear that the algorithm above uses a constant number of queries (on account of using

a constant number of GGR-tests). We now need to show that with probability at least 2
3 , the

algorithm indeed produces a γ-signature of an (f, γ)-final partition of G into at least k and at most

T sets. We conclude the proof using the following claims.

Claim 5.4. With probability at least 2
3 the following holds. For every s ∈ {k, . . . , f(T )} and

every S ∈ S(s, ε) which the algorithm accepted, there is an equipartition AS into s sets, with

|ind(AS)− ind(S)| ≤ 3s2ε and with S as its s2ε-signature; and for every such s and S which were

rejected by the algorithm, there exists no equipartition AS for which S is an (ε, 0)-signature.

Proof. We prove for each of the two parts of the claim that it occurs with probability at least 5
6 ,

and so it follows that the entire claim holds with probability at least 2
3 . We start with the second

part.

Let s and S be such that S is an (ε, 0)-signature for some A. Then by Lemma 5.3 it will be

accepted by any one run of the GGR-test (with the corresponding parameters) with probability at

least 2/3. Thus, it will be rejected by the test only if it is rejected by the majority of the 100 logm

runs, which by Lemma 3.1 will occur with probability at most 1/(6m). Hence, with probability at

least 5/6 the test will accept all such S as above. This proves that the second part of the claim

occurs with probability at least 5/6.

For the first part of the claim, let us assume now that S is not an s2ε-signature for any possible

equipartition of G into s sets. By Lemma 5.3 this means that every run of the GGR-test will reject

S with probability at least 2/3. Hence, by Lemma 3.1, the probability that S is accepted by the

majority of the runs is no more than 1/6m. This implies that with probability at least 5/6, every

signature S that was accepted by our algorithm is an s2ε-signature of some equipartition AS of G

into s sets, and then by Observation 5.1 this means that S and AS satisfy |ind(AS)−ind(S)| ≤ 3s2ε.

We have proven that each of the parts occurs with probability at least 5/6, and so the claim

that both of them hold with probability at least 2/3 follows.
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Claim 5.5. If the event of Claim 5.4 occurred, then the algorithm succeeds in the following sense:

The algorithm does not fail in its last step, and the signature it outputs is an s2ε-signature of some

(f, γ)-final partition.

Proof. We assume that the event of Claim 5.4 indeed occurred, and first show that the algorithm

does not fail in the last step.

Set s1 to be the smallest s for which G has an (f, γ/2)-final partition into s1 sets. The fact

that such an s1 ∈ {k, . . . , T} exists is asserted in Observation 4.3. Let A be the corresponding

(f, γ/2)-final equipartition with the largest index (if there are more than one then let A be the first

one in the lexicographic order of its signature). Then, by the fact that A is (f, γ/2)-final, we have

that ind(A) +γ/2 ≥ ind(S) for any equipartition S into at least s1 and at most f(s1) sets. Also by

our choice of A we have ind(A) ≥ ind(A′) for any equipartition A′ into s1 sets. Let S ∈ S(s1, ε) be

the first in lexicographic order such that S is an (ε, 0)-signature of A. Obviously there exists such

an S by the choice of S(s1, ε).

Thus, assuming that the sampler accepted all signatures which were (ε, 0)-signatures of a corre-

sponding partition, S was in particular accepted. By Observation 5.1, together with the fact that

ind(A) ≥ ind(A′) for any equipartition A′ into s1 sets, it follows that

ind(A)− 3s2ε ≤M(s1) ≤ ind(A) + 3s2ε

Moreover, by combining the inequalities above and Observation 5.1, we get that as long as all

signatures that were not s2ε-signatures of some equipartition were rejected, the following holds.

For any equipartition B into s sets with s1 ≤ s ≤ f(s1), that has a corresponding s2ε-signature

T ∈ S(s, ε) that was accepted by the algorithm, we have ind(T ) ≤ ind(B) + 3s2ε ≤ ind(A) + γ/2 +

3s2ε ≤M(s1) + γ/2 + 6s2ε.

Now this implies that ind(T ) ≤ M(s1) + γ/2 + 6f(s1)
2ε ≤ M(s1) + 3

4γ by our choice of

ε = γ/24f(T )2. Thus s1 is recognized as a candidate for s∗, and hence the sampler will not fail to

output some s∗ and S∗ (we do not claim that the sampler actually outputs s1 as s∗, but only that

the existence of s1 ensures that the algorithm does not fail to output anything in the last step).

It remains to show that if the event of Claim 5.4 occurs and the sampler outputs a signature

S∗ with index s∗, then there exists a corresponding (f, γ)-final equipartition. Indeed, this event

implies that there exists an equipartition A∗ into s∗ sets so that S∗ is its s2ε-signature. This also

means that for all s ∈ {s∗, . . . , f(s∗)} and all signatures S ∈ S(s, ε), no such signature satisfying

ind(S) > M(s∗) + 3
4γ is an (ε, 0)-signature of any equipartition of G (as these signatures were

rejected by the algorithm). Now if A∗ was not (f, γ)-final, then there would be an equipartition B
with s ∈ {s∗, . . . , f(s∗)} sets for which ind(B) ≥ ind(A∗) + γ ≥M(s∗) + γ − 3(s∗)2ε. But if we set

S to be an (ε, 0)-signature of B (by approximating each pair density of B by its closest multiple of

ε). This would imply, by Observation 5.1, that ind(S) ≥M(s∗) + γ− 3(s∗)2ε− 3ε > M(s∗) + 3
4γ, a
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contradiction since such an S (which would have been accepted by the algorithm) means that S∗

would not be a valid output.

To summarize, by Claim 5.4, with probability at least 2
3 the sampler accepts all signatures

under consideration that are (ε, 0)-signatures of some corresponding equipartition, and rejects all

signatures that are not s2ε-signatures of any equipartition. Then, by Claim 5.5, whenever this

event occurs the algorithm will output without fail a γ-signature for some (f, γ)-final equipartition.

Together this means that with probability at least 2
3 the algorithm will supply the desired output,

concluding the proof of Lemma 4.4.

6 Proof of Lemma 4.5

By Lemma 3.8 (using Lemma 3.7 about canonical testing), if we know a signature of a regular

partition of a graph G, then this is enough to distinguish whether the graph satisfies a given

testable property, or is δ-far from satisfying it. For estimability we would like to go a step further,

and use a signature of G to approximate its distance from any graph G′ that the δ-test may accept.

However, knowing just the signature of a regular partition of G is insufficient, since regular

partitions of two graphs of small relative distance might still be quite different (and have quite

different signatures). Thus, if G does not satisfy a testable property, but is close to satisfying it

as witnessed by a graph G′, then a regular partition of G with a corresponding signature may still

not provide us with information about the regular partition of G′ and thus about the distance of G

from the property. Instead, our strategy will be to ask for a signature of a partition A of G, that

is robust enough to ensure that G′ will have a regular partition that is a refinement of A which

is still regular for G. With this setting, we will also be able to calculate a signature in G for the

new partition of G′, using only the signature of A in G. This will enable us to compare possible

signatures for estimating the distance between G and the hypothetical G′.

We now turn to the formal proof. We need first some definitions about distances of signatures,

and about how signatures behave under refinements of equipartitions.

Definition 11. The distance between the signatures S = (ηi,j)1≤i<j≤t and S ′ = (η′i,j)1≤i<j≤t is

defined as the average density difference
∑

1≤i<j≤t |ηi,j − η′i,j |/
(
t
2

)
.

Given a signature S = (ηi,j)1≤i<j≤t for an equipartition A, and a refinement B = {W1, . . . ,Ws}
of A, the extension of S to B is the sequence S ′ = (η′i,j)1≤i<j≤s defined by setting η′i,j = ηk,l if there

exist k 6= l such that Wi ⊂ Vk and Wj ⊂ Vl, and arbitrarily setting η′i,j = 0 if Wi and Wj are both

subsets of the same Vk.

The following follows directly from the above definition (for any equipartition, disregarding the

regularity conditions).
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Observation 6.1. For every ε and s there exist r = r6.1(ε) and N = N6.1(ε, s) satisfying the

following. Suppose that G and G′ are α-close graphs on the same vertex set of size n ≥ N , and

that S and S ′ are γ and γ′ signatures respectively, of the same equipartition A of the vertex set of

G and G′ into s ≥ r sets. Then the distance between S and S ′ is at most α+ ε+ 2(γ + γ′).

Proof sketch. Setting r = 2/ε, it is clear that for n large enough the 0-signatures (i.e. the sequences

of actual densities) of A over G and G′ differ by no more than α + ε. Also, it is not hard to see

that the 0-signature and any γ-signature of A over G differ by no more than 2γ, and similarly the

0-signature and any γ′-signature of A over G′ differ by no more than 2γ′. We conclude the proof

using the triangle inequality.

Given a signature for a regular partition of G, we can use it to bound the distance of G from

some other graph that shares the same regular partition.

Lemma 6.2. For every ε and t there exists γ = γ6.2(ε) and N = N6.2(t, ε), such that for every

graph G with n ≥ N vertices, if S is a γ-signature of a γ-regular partition A of G with t sets, then

for every signature S ′ that is δ-close to S for some δ, there is a graph G′ (with the same vertex set)

that is (δ+ ε)-close to G, so that A is an ε-regular partition of G′, and S ′ is an ε-signature thereof.

Before we continue, we note that the converse is false, as there could be two graphs that share

exactly the same signature but are quite far. For example, two graphs chosen uniformly at random

from the set of all graphs with a fixed labeled set of n vertices will be with high probability far

from each other, and still share the same signature for the same regular partition, namely the all-12
signature.

Proof of Lemma 6.2. We set γ = 1
4ε. Given G, A = {V1, . . . , Vt}, S = (ηi,j)1≤i<j≤t and S ′ =

(η′i,j)1≤i<j≤t, as above, we create G′ from G in the following manner.

• For every i, the edges within Vi are unchanged.

• For i < j such that η′i,j < d(Vi, Vj), every edge of G between Vi and Vj is removed with prob-

ability 1− η′i,j/d(Vi, Vj), independently of all other probabilistic actions in this construction.

• For i < j such that η′i,j > d(Vi, Vj), every vertex pair of G between Vi and Vj that is not an

edge becomes one with probability 1 − (1 − η′i,j)/(1 − d(Vi, Vj)), independently of all other

probabilistic actions in this construction.

Let G′ be the resulting graph. For every X ⊆ Vi, Y ⊆ Vj let d′(X,Y ) = dG′(X,Y ) be the pairwise

density with regards to G′ (Definition 4). We choose N > 8t4/(γ3). Making extensive use of

Lemma 3.1, we now prove two claims. We first prove that with high probability we will get in G′

the correct densities.

Claim 6.3. For every 1 ≤ i < j ≤ t, |d′(Vi, Vj)− η′i,j | > 2γ with probability at most 1/(2t2).
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Proof. Suppose first that η′i,j < d(Vi, Vj). Then, we have m = d(Vi, Vj) · (n/t)2 edges, where each

edge is now removed with probability p = 1 − η′i,j/d(Vi, Vj) (independently of other edges). Note

that the expected number of removed edges is E = (d(Vi, Vj)− η′i,j) · (n/t)2 and thus the expected

value of d′(Vi, Vj) is exactly η′i,j . Hence for the event above to occur, the deviation of the number

of edges removed from E has to be more than 2γ · (n/t)2. Now, if d(Vi, Vj) > 2γ then m is large

enough (assuming that n is large enough) for Lemma 3.1 to ensure that the probability that the

deviation above is more than γ · (n/t)2 is below the claimed bound and thus imply the statement.

For d(Vi, Vj) < 2γ the number of removed edges is at most d(Vi, Vj) and thus the event above occurs

with probability 1. If η′i,j > d(Vi, Vj) then the argument is analogous so we omit it here.

Note that if |d′(Vi, Vj) − η′i,j | ≤ 2γ for a pair (i, j), then we have |d′(Vi, Vj) − d(Vi, Vj)| ≤
|d′(Vi, Vj) − η′i,j | + |η′i,j − ηi,j | + |ηi,j − d(Vi, Vj)| ≤ 2γ + |η′i,j − ηi,j | + |ηi,j − d(Vi, Vj)|, and by the

assumption on the distance between S and S ′ we also know that
∑

1≤i<j≤t |η′i,j − ηi,j | ≤
(
t
2

)
δ. We

now prove a claim about the regularity of the pairs in G′.

Claim 6.4. For every i < j for which Vi, Vj is a γ-regular pair in G, this will not be an ε-regular

pair in G′ with probability at most 1/(2t2).

Proof. Again we assume that η′i,j < d(Vi, Vj), as the argument for the complement case is analogous.

Then, for Vi, Vj not to be ε-regular with respect to G′ there must be some subsets X ⊆ Vi and

Y ⊆ Vj of size εn/t for which |d′(X,Y ) − d′(Vi, Vj)| > ε. We call such sets a violation at (X,Y ).

However, since A is γ-regular for G, we have that |d(X,Y ) − d(Vi, Vj)| ≤ γ (over G). Thus a

violation at (X,Y ) can occur only when the number of removed edges from e(X,Y ) deviates from

its expectation by more than (ε− γ) · (εn/t)2. Note also that the number of possible edges between

X and Y is m = d(X,Y ) · (εn/t)2.
If d(Vi, Vj) > 2γ = ε/2 then m is large enough (assuming that n is large enough), for Lemma

3.1 to ensure that the probability that the deviation above is more than (ε−γ) · (εn/t)2 is less than

1/(2t)2 · 2−2n/t. Thus, by the union bound, the probability that there exist a pair (X,Y ) for which

a violation occurs is bounded above by (1/(2t)2 · 2−2n/t)2|Vi|+|Vj | ≤ 1/(2t2) as claimed.

If d(Vi, Vj) < 2γ then the number of removed edges is at most 2γ(n/t)2 and thus a violation

at (X,Y ) cannot occur at all (recall that no edges are added by our procedure in the case η′i,j <

d(Vi, Vj).

By the analysis above, the union bound (for every 1 ≤ i < j ≤ t) implies that there is such a

G′ for which the assertions of both claims hold simultaneously for every 1 ≤ i < j ≤ t. Thus by

the statement of Claim 6.4, S ′ is a signature for an ε-regular partition of G′, being an ε-signature

thereof by the statement of Claim 6.3. In addition, Claim 6.3 implies (as noted right after its proof)

that for every pair Vi, Vj , at most a 2γ+ |η′i,j − ηi,j |+ |ηi,j − d(Vi, Vj)| fraction of edges are removed

or added while moving from G to G′.

18



Summing this for all pairs, and recalling that |ηi,j − d(Vi, Vj)| ≤ γ for all but a γ-fraction of the

pairs (due to S being a γ-signature of G) as well as that S and S ′ are are δ-close, we get that the

total distance between G and G′ is bounded by 2γ + δ + (1− γ)γ + γ · 1 ≤ δ + 4γ ≤ δ + ε.

In general, even if G′ and G are close enough graphs (but not too close), a regular partition of

G is not necessarily regular for G′. Instead, we will look at a refinement of the partition of G that

is regular for G′. However, a refinement of a regular partition is not necessarily in itself regular,

or is its signature close to the corresponding extension of the original signature. For this we turn

to robustness, with the aid of a lemma about the index of a refinement. The following lemma was

proven in [2, Lemma 3.7] (using the Cauchy-Schwartz inequality), although in essence it was also

already implicitly proven in [18], in the proof of Lemma 4.1.

Lemma 6.5 ([2, Lemma 3.7]). For every ε and t there exist γ = γ6.5(ε) and N6.5(t, ε) satisfying

the following. Assume that A is an equipartition of a graph G with n ≥ N6.5(t, ε) vertices into s

sets, and that B is a refinement of A into at most t sets. Assume further that S is any γ-signature

of A, and that T is its extension to B. If B satisfies ind(B) ≤ ind(A) + γ, then T is an ε-signature

for B.

The following lemma about the index of a refinement never decreasing too much was also

implicitly proven in the course of several regularity-related proofs. See for example [8, Lemma

7.2.2].

Lemma 6.6. For every ε and t there exists N = N6.6(t, ε), so that for every equipartition A of G

with n ≥ N vertices into s sets, and every refinement B of A into at most t sets, ind(B) ≥ ind(A)−ε.

Proof sketch. If t divides n (and hence so does s), then we would have ind(B) ≥ ind(A) as a direct

consequence of the Cauchy-Schwartz inequality (see e.g. [8, Lemma 7.2.2]): Set A = {Vi|1 ≤ i ≤ s}
and B = {Wi,k|1 ≤ i ≤ s, 1 ≤ k ≤ t/s}, where {Wi,1, . . . ,Wi,t/s} are assumed to be exactly the

members of B that are contained in Vi. It is clear that for all 1 ≤ i < j ≤ s we have that d(Vi, Vj)

is the average of the sequence 〈d(Wi,k,Wj,l)|1 ≤ k, l ≤ t/s〉. Hence, the square of d(Vi, Vj) is at

most the average of the squares of 〈d(Wi,k,Wj,l)|1 ≤ k, l ≤ t/s〉, and from here it is easy to see that

ind(B) ≥ ind(A).

If t does not divide n then we may lose on the difference between ind(A) and ind(B) on account

of rounding errors, but for an appropriate choice of N this loss would be less than ε.

We can now prove the existence of a refinement for A that is also regular with respect to G′,

provided that A is robust enough.

Lemma 6.7. For every ε there exist γ = γ6.7(ε) and f = f
(ε)
6.7 : N → N satisfying the following.

Suppose that A is an (f, γ)-robust partition of a graph G into s sets and that S is a γ-signature

of A, where G has n ≥ N6.7(s, ε) vertices. Then for every G′ that shares the same vertex set as
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G, there exists a refinement B of A into t ≤ T3.6(s, ε) sets which is ε-regular for both G and G′.

Moreover, the corresponding extension of S to B is an ε-signature with respect to G.

Proof. We set γ = min{12γ4.1(ε), γ6.5(ε)}, and for every k ∈ N we set f(k) = f
(ε)
4.1(T3.6(k, ε)). We set

N to be the maximum over the respective functions of all lemmas that are used in the following

(this will be explained later on).

Given a partition A as above, and assuming that N ≥ N3.6(s, ε), Lemma 3.6 asserts that there

is a refinement B of A that partitions V (G′) into at most t ≤ T3.6(s, ε) sets and is ε-regular with

respect to G′.

Lemma 6.6, assuming that N ≥ N6.6(T3.6(s, ε), γ), asserts that ind(B) ≥ ind(A)−γ ≥ ind(A)−
1
2γ4.1(ε) over G (the last inequality is by the choice of γ). This implies that B is (f

(ε)
4.1, γ4.1(ε))-robust

with respect to G, as otherwise, it would mean that there is a refinement C with at most f
(ε)
4.1(t) sets

for which ind(C) > ind(B) + γ4.1(ε), but this would imply that ind(C) > ind(A) + γ4.1(ε)− 1
2γ4.1(ε),

which contradicts the robustness requirement of A. Hence we conclude by Lemma 4.1 (applied to

B) that B is also ε-regular with respect to G. This proves that the refinement B is as needed.

In addition, the original robustness requirement for A ensures that the index of B with respect

to G is no more than ind(A) + γ6.5(ε). Hence, Lemma 6.5 ensures that the extension of S is an

ε-signature for B with respect to G, as required.

In the course of the proof of the above, we also make the following observation.

Observation 6.8. If A is an (f
(ε)
6.7, γ6.7(ε))-robust partition of a graph G into s sets, where G has

n ≥ N6.7(s, ε) vertices, and B is any refinement of A with t ≤ T3.6(s, ε) sets, then the extension of

any γ6.7(ε)-signature of A to B is an ε-signature of B (over G).

We are now ready for the proof of Lemma 4.5. The intuition of the proof is the following:

Assume that S is a γ-signature of an equipartition A that is (f, γ)-robust for G, for a small enough

γ and a fast enough growing f . Our decision whether to accept or reject G is based on checking

whether there is a refinement B of A (with not too many sets) for which the extension T of S is

close enough to a signature T ′ for which the perceived q-statistic satisfies PrT ′(H) ≥ 1
2 . If such a

refinement exists then we accept G, and otherwise we reject G.

Now, if there is an (ε − δ)-close graph G′ for which PrG′(H) ≥ 2
3 then G will be accepted, as

close enough graphs have close signatures (Observation 6.1), and f and γ will be chosen so that B
will be regular enough for both G and G′ (as implied by Lemma 6.7), so that the signature T ′ of

B with respect to G′ (which is close to T ) is such that PrT ′(H) approximates PrG′(H) well enough

so it does not fall below 1/2. On the other hand, if G is accepted on account of some signature

T ′ close to T for which PrT ′(H) ≥ 1
2 , then Lemma 6.2 asserts that there is a close enough G′ to

G, for which the partition B is is regular enough, and for which T ′ is indeed a signature ensuring

that PrG′(H) is close enough to PrT ′(H) so that it is larger than 1
3 . We now choose the actual

parameters and present the formal proof.
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Proof of Lemma 4.5. We set the values γ = γ6.7(γ0), s = max{r3.8(q, 16), r6.1(
1
6δ)}, and f(k) =

f
(γ0)
6.7 (k), where

γ0 = min{1

6
δ, γ3.8(q,

1

6
), γ6.2(min{1

2
δ, γ3.8(q,

1

7
)})}.

We set N to be the maximum over all respective functions of the lemmas and arguments used in

the following (we omit here the exact details of the implicitly assumed lower bounds on n).

Given a γ-signature S for an (f, γ)-robust partition A into t ≥ s sets, we do the following.

We check whether there could be any refinement B of A with at most T3.6(t, γ0) sets, for which

the extension T of S to B is (ε − 1
2δ)-close to any signature T ′ such that the perceived q-statistic

according to T ′ satisfies PrT ′(H) ≥ 1
2 . If there exists such a signature then we accept G, and

otherwise we reject it. Note that the existence of the refinement B depends only on the provided

signature S, so we do not make here any additional queries to the graph G. We now prove the two

directions that tie the existence of such a T ′ with the existence of a corresponding graph G′.

Proof of the first direction. Suppose that G′ is any graph that is (ε− δ)-close to G, and for which

PrG′(H) ≥ 2
3 . We will show that G is accepted by the above procedure. We only use here that

γ0 ≤ min{16δ, γ3.8(q,
1
6)} in the expressions for γ, s and f .

Indeed let A be an (f, γ)-robust partition of G into t ≥ s sets and let S be a γ-signature of

A. By Lemma 6.7, there exists a refinement B of A into at most T3.6(t, γ0) sets, so that B is

γ0-regular for both G and G′. Moreover, denoting by T the corresponding extension of S, we have

that T is a γ0-signature of B with respect to G. By the upper bound on γ0 this implies that B is

γ3.8(q,
1
6)-regular for both G and G′, and that T is a 1

6δ-signature of B with respect to G.

Let T ′ be the 0-signature of B over G′. Lemma 3.8 implies (using B and G′) that the perceived

statistics with respect to T ′ and the actual statistics of G′ are of variation distance at most 1
6 .

Thus, Lemma 3.2 implies that PrT ′(H) ≥ 2
3 −

1
6 = 1

2 . In addition, by Observation 6.1 (since B has

at least r6.1(
1
6δ) sets and assuming that n is large enough), T ′ is (ε− 1

2δ) close to T on account of

G and G′ being (ε− δ)-close graphs. Thus, T and T ′ provide a witness that the procedure above

accepts G.

Proof of the second direction. Let A be an (f, γ)-robust partition of G into t ≥ s sets and let S be

a γ-signature of A. Assume that there is a refinement B of A into at most T3.6(t, γ0) sets, for which

the extension T of S to B is (ε − 1
2δ)-close to a signature T ′ such that the perceived q-statistic

according to T ′ satisfies PrT ′(H) ≥ 1
2 .

We will show that there is a graph G′ that is ε-close to G and for which PrG′(H) > 1
3 . We use

here the fact that γ0 ≤ γ6.2(min{12δ, γ3.8(q,
1
7)}) in the expressions for γ, s and f .

Indeed, Observation 6.8 (regarding B as a possible refinement of A with respect to G) asserts

that T is a γ0-signature of B (with respect to G), which by the upper bound on γ0 means that it

is a γ6.2(min{12δ, γ3.8(q,
1
7)})-signature for B with respect to G.

Now Lemma 6.2 (applied on T as an appropriate signature of B and the relatively close signature

T ′) implies that there is a graph G′ that is (ε− 1
2δ+

1
2δ)-close to G, namely ε-close to G, and for which
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T ′ is a γ3.8(q,
1
7)-signature of B, which in turn is γ3.8(q,

1
7)-regular over G′. By Lemma 3.8 about

the closeness of the q-statistic of G′ to the perceived one, and Lemma 3.2, PrG′(H) ≥ 1
2 −

1
7 >

1
3 as

required.

With both directions proven, the correctness of the above algorithm is now established.

7 Concluding comments

Efficient calculation of regular partitions

The main result of [1] is an algorithm that, for a fixed ε, calculates for an input graph G an ε-regular

partition thereof. The algorithm is proven there to be in NC1, and with deterministic time (in its

non-parallel version) that is the same as that of matrix multiplication. By carefully reviewing the

proof of Lemma 4.4 we can strengthen the first part of their result. First we give a formal definition

for the computational complexity of our algorithms.

Definition 12. A TC0 solution for a problem is an efficient (polynomial time in n) algorithm for

constructing a polynomial size (in n) circuit for every n, that gives a correct answer for every input

instance of this size, where the height of the circuit is independent of n, and the circuit consists

solely of unlimited fan-in AND (∧) gates, OR (∨) gates, threshold gates (a threshold gate, for inputs

y1, . . . , ym and a given in advance parameter t, checks whether
∑m

i=1 yi ≥ t), and negations (¬).

By contrast, an NC1 solution allows circuits with only negations and fanin 2 AND/OR gates, but

whose height can be logarithmic in n.

By our methods we are able to prove the following.

Theorem 7.1. For every k, γ and f : N→ N there exists a TC0 solution, that for an input graph

G with n ≥ N4.3(k,
1
2γ, f) vertices computes an (f, γ)-final partition of G into at least k and at

most T4.3(k,
1
2γ, f) sets.

Proof sketch. First we show how to calculate only a signature for such a partition. We follow the

proof of Lemma 4.4. We recall that whenever the algorithm in the proof needs to accept or reject

a signature S, it makes a constant number of iterations of a GGR-test. Here we will instead reject

or accept S based on an estimation of the acceptance probability of one GGR-test. For this end we

first construct a deterministic circuit for every possible choice of the queries from G that the GGR-

test can make. The queries of a GGR-test are made by first uniformly choosing a constant number

of vertices of G, so there is a polynomial number of such choices, and for each one of them we can

use a constant size circuit to know whether the test would have accepted had it made these queries.

Then we collect all the outputs of all these circuits through one threshold gate, setting the threshold

to be equal to half of the number of the inputs of the gate. Thus we will (deterministically) accept
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S if and only if the corresponding GGR-test would have accepted with probability at least 1
2 , and

we can clearly state and prove for this procedure a (deterministic) replacement for Claim 5.4.

In the original algorithm of Lemma 4.4 there were no other queries made apart from those

coming from the constant number of instances of the GGR-test. Given all the acceptance and

rejection decisions of the signatures above, whose number is independent of n, we can now find s∗

and S∗ as in the algorithm of Lemma 4.4 using an additional constant number of gates. A claim

analogous to Claim 5.5 will also work here to ensure that this output is correct.

To find the actual final partition of G, we turn again to the proof in [13] of Lemma 5.2. In

addition to the test itself, it is proven in [13] that it is possible with high probability to find a

constant query size oracle for placing every vertex of G in its correct set of the partition. In our

case we will go over all possible oracles (again there is a polynomial number of such oracles, as the

randomized oracle was built in [13] using a constant number of queries to the graph), and for every

possibility we use threshold gates to check whether its densities are indeed within the parameters

of the corresponding s∗ and S∗ (noting that there is only a constant number of possibilities for the

values of s∗ and S∗).

Comparing the above theorem to the main result of [1], it is a strengthening both in the types

of partitions it can find (finding ε-regular partitions through Lemma 4.1), and in the complexity

class of the algorithm (TC0 as compared to NC1). On the other hand, if we consider the running

time of the non-parallel version of the algorithm and are concerned only with regular partitions,

then the algorithm of [1] still performs significantly better than the one here.

Robust partitions and variants of regularity

A variant of the regularity lemma that required the existence of both a partition and a regular

refinement thereof in the graph G played a central role in [2], [9] and [5]. That variant can also be

proven using the notion of robust partitions; in fact, the proof in [2] of the corresponding variant

is similar in essence to some of the methods used here for proving Observation 4.2 and Lemma 6.7,

so the framework here can be viewed as a generalization of the previous frameworks.

Reducing the number of queries

One can reduce somewhat the number of queries of our test, if instead of Lemma 6.7 a more

complicated lemma (but with better parameters) about the existence of a partition that is final for

both G and G′ is proven (rather than starting with a partition A that is only final for G). However,

such an approach would make for a more complicated proof, and for a more complicated estimation

algorithm that will have to find the parameters for all possible final partitions.

This improvement in the number of queries still would not have made it practical, since as long

as the Regularity Lemma is used in such a form, the estimation will require a number of queries that

is at least a tower in some function of the number of queries of the original testing algorithm. For
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this reason we aimed here for proof simplicity instead. It would be interesting if this (or any other

graph testing result whose only known proof depends on the Regularity Lemma) can be proven

using alternative methods that would provide a saner dependency of the parameters.
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