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Abstract

We study algorithms for ]SAT and its generalized version ]GENSAT, the problem

of computing the number of satisfying assignments of a set of propositional clauses

�. For this purpose we consider the clauses given by their incidence graph, a signed

bipartite graph SI(�), and its derived graphs I(�) and P (�).

It is well known, that, given a graph of tree-width k, a k-tree decomposition can

be found in polynomial time. Very recently S. Oum and P. Seymour have shown

that, given a graph of clique-width k, a (2

3k+2

�1)-parse tree witnessing clique-width

can be found in polynomial time.

In this paper we present an algorithm for ]GENSAT for formulas of bounded

tree-width k which runs in time 4

k

(n + n

2

� log

2

(n)), where n is the size of the

input. The main ingredient of the algorithm is a splitting formula for the number

of satisfying assignments for a set of clauses � where the incidence graph I(�) is a

union of two graphs G

1

and G

2

with a shared induced subgraph H of size at most

k. We also present analogue improvements for algorithms for formulas of bounded

clique-width which are given together with their derivation.

This improves considerably results for ]SAT, and hence also for SAT, previously

obtained by Courcelle, Makowsky and Rotics, [CMR01].
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1 Introduction and statement of result

1.1 The problem

We study algorithms for ]SAT, and ]GENSAT, the problem of computing the

number of satisfying assignments of a set of (generalized) propositional clauses

�. It was shown by L. Valiant [Val79] that ]SAT is ]P-complete. ]GENSAT

is the counting problem associated with the generalized satis�ability problem

introduced by T.J. Schaefer [Sch78], who proved also a dichotomy theorem,

classifying the problems into polynomially solvable cases and NP-complete

cases, and nothing in between. Instances � of GENSAT(S) consist of gener-

alized clauses r

i

(�v) : i 2 N, where �v is a vector of �(i) propositional variables.

�(i) is called the size or arity of r

i

. The truth of r

i

is given by the truth ta-

bles in S = fR

i

: i 2 Ng over the variables of r

i

. In [Sch78] S is assumed

to be �nite. A dichotomy theorem for ]GENSAT was proven by N. Creignou

and M. Hermann in [CH96], where only polynomial time computable and ]P-

complete cases occur. For a uni�ed treatment of these results, cf. the book

by N. Creignou, S. Khanna and M. Sudhan [CKS01]. For each version of

GENSAT, the instances � can be expanded into a set of clauses �

exp

of SAT,

such that each satisfying assignment z makes � true for GENSAT i� z makes

�

exp

true for SAT. Note however that in general �

exp

could be exponentially

bigger than �. We shall introduce the formal framework and examples for

GENSAT and ]GENSAT in Section 2.

We associate with � three graphs. The graph SI(�) is a signed bipartite graph

with the variables and clauses of � as vertices, indicating whether variables

occur positively or negatively in a clause. The graphs P (�) (the primal graph

of �) and I(�) (the incidence graph of �) are unsigned graphs. P (�) has only

the variables as its vertices, and edges indicate that two variables occur in

a common clause. I(�) is obtained from SI(�) by omitting the signs on the

2



edges.

In the �rst part of the paper (Sections 2-5) we shall study the complexity of

]GENSAT under the assumption

4

that the tree-width tw(P (�)) of P (�) or

the tree-width tw(I(�)) of I(�) is bounded by a �xed number k 2 N. The

exact de�nitions of these graphs and of tree-width are given in Section 3, where

we also discuss examples of formulas of bounded and unbounded tree-width.

Let us note here already the observation of G. Gottlob and R. Pichler, [GP01]:

Proposition 1.1. For every generalized clause set � we have

tw(I(�)) � tw(P (�)) + 1

It was pointed out in Courcelle, Makowsky and Rotics [CMR01] that graph

counting problems where the objects to be counted are de�nable in Monadic

Second Order Logic, MSOL

5

, are solvable in polynomial time when restricted

to graphs of tree-width at most k, for some �xed k 2 N. In [CMR01] no

estimate of the constants involved is given, but using [Mak04] one can get

estimates which depend on the quanti�er rank q of the de�ning formula and

an upper bound of exp

q

(c � k) � n

3

with c small. Here exp

1

(k) is the function

2

k

and exp

m+1

(k) = 2

exp

m

(k)

.

The method developed in [CMR01] has various applications in the theory of

graph polynomials, cf. [Mak01,MM03a,Mak05,Mak04].

To apply the methods of [CMR01] to ]SAT, one notes that SAT is indeed

de�nable in MSOL over SI(�). A satisfying assignment can be identi�ed with

a subset of vertices V

0

(the variables which are assigned the value true), which

has the property that every clause contains a literal v 2 V

0

or it contains a

literal :v with v 2 V � V

0

. This is easily expressible as a formula �

sat

(V

0

) of

MSOL of quanti�er depth 2. Clearly � is satis�able i�

SI(�) j= 9V

0

�

sat

(V

0

):

Furthermore, the function

csat(�) =j fV

0

� V : SI(�); V

0

j= �

sat

(V

0

)g j

4

In [CKS01, Chapter 8], other input-restricted satisfaction problems are consid-

ered, such as PLANAR�SAT, where I(�) is assumed to be planar, or DENSE�SAT,

where the number c of clauses over n variables is 
(n

m

), where m = max

i

f�(i)g.

These restrictions leave the SAT NP-complete, but make PLANAR�MAX�SAT

and DENSE �MAX � SAT approximable with polynomial time approxiamation

schemes (PTAS).

5

This holds also if we replace MSOL by CMSOL, where we also allow all the

modular counting quanti�ers C

m;p

x�(x) which state that the number of elements

satisfying �(x) equals m modulo p.
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counts the number of satisfying assignments.

So it follows from [CMR01,Mak04] for ]SAT that

Theorem 1.2. csat can be computed, and hence also SAT can be solved,

in time O(n

3

) for sets of clauses � with tw(I(�)) � k, where the constants

depend on k only, but are at least doubly exponential in k.

Also in [CMR01,Mak04] it is shown that a similar theorem holds for csat with

formulas where SI(�) is of bounded clique-width, provided the input is given

together with a parse tree of the clique-width. In the second part of the paper

(Section 6) we discuss this extension in greater detail.

The rather bad estimate of the size of the constants in the algorithms presented

in [CMR01,Mak04] is due to the general character of the method. The proof

of Theorem 1.2 uses the Feferman-Vaught Theorem for MSOL, and works for

arbitrary counting functions given by MSOL-formulas �(V

0

) as above. The

general running time will be a q-fold iterated exponential of k, where q is the

quanti�er depth of �. M. Grohe and M. Frick, [FG04], have shown that, unless

P = NP, this is unavoidable for the general method.

1.2 Main results for bounded tree-width

Rather than using the general method of [CMR01,Mak04], we present here a

method specially tailored for ]SAT, which reduces the size of the constants to

be simply exponential in the tree-width tw(I(�)) of the incidence graph of �.

We state our results in a model of computation where arithmetic operations

of integers have unit cost. Addition cost of n-bit numbers in bits is O(n),

and of multiplication roughly O(n log

2

(n)), so the results have to be modi�ed

correspondingly, if the complexity is to be measured in bits. For details and

optimal bounds cf. the classical monograph [AHU74].

Our results are stated for given tree-decompositions of the incidence and pri-

mal graphs (I(�) and P (�)) of �. There are algorithms that �nd a tree decom-

position of bounded width, given a graph of treewidth at most some constant

k, and run in O(n

2

) time with constants simply exponential in k, cf. [Ami02].

Proofs of our results are given in Sections 4 and 5.

Theorem 1.3. Given a k-tree decomposition of I(�), csat(�) can be com-

puted, and hence also SAT can be solved, if restricted to � with I(�) of tree-

width at most k, using 4

k

�n arithmetic operations (or in time 4

k

(n+n

2

�log

2

(n))

if bit cost is applied).

When considering ]GENSAT, Theorem 1.3 can be applied to �

exp

, provided

that both the size of �

exp

and the tree-width tw(I(�

exp

)) are polynomially

bounded in the size of �, respectively the tree-width of I(�). For example
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this is the case, if the size of each clause is bounded by log

2

(n), where n

is the size of �. However there are instances � of size n of GENSAT with

tw(I(�)) = 1 and tw(I(�

exp

)) = n. In contrast we have:

Proposition 1.4. For every instance � for GENSAT(S)

(i) tw(P (�

exp

)) = tw(P (�)).

(ii) If the arities �(i) of the clauses in S are bounded by m, tw(I(�

exp

)) �

tw(I(�)) �m.

Using Proposition 1.4 gives immediately our main result for ]GENSAT:

Theorem 1.5. Given a k

1

-tree decomposition of P (�), a k

2

-tree decomposi-

tion of I(�), let m = max

i

f�(i)g (if it exists), and k

3

= max

i

f�(i); k

2

g. Then

]GENSAT(S) can be computed

(i) with 4

k

1

� n

2

arithmetic operations, provided the size of each clause is

bounded by log

2

(n);

(ii) with 4

k

1

+m

� n arithmetic operations, provided the size of each clause is

bounded by m 2 N;

(iii) with 4

k

3

�m

� n arithmetic operations, provided the size of each clause is

bounded by m 2 N.

This includes the classical cases ]NOT-ALL-EQUAL 3SAT and

]ONE-IN-THREE 3SAT of [GJ79, Problem list A9].

We could also apply Theorem 1.2 to ]GENSAT, but not all versions of

GENSAT are MSOL-de�nable, for example, HALFSAT, where we require

that in each clause at least half of the literals are true. Let HALFSAT

f(n)

be like HALFSAT but with the size of the clauses bounded by f(n), a func-

tion of the input size. If f is the constant function b 2 N, we write also

HALFSAT

b

. HALFSAT

b

is MSOL-de�nable by a formula �

b

, but the quanti-

�er rank q = qr(�

b

) � b + 2. Theorem 1.5 includes also cases not covered by

Theorem 1.2:

Corollary 1.6. For every f(n) the problem ]HALFSAT

f(n)

restricted to in-

stances � with tw(P (�)) � k can be computed with 4

k

� 2

2�f(n)

� n arithmetic

operations.

Finally, using the self-reducibility of SAT, cf. [Pap94, Example 10.3, p. 228],

we get also a generating algorithm with polynomial delay in the sense of

[JYP88]. These are algorithms which enumerate all instances of a problem

where the time elapsing between two such instances is polynomial in the size

of the problem. Clearly, this allows an exponential number of instances to be

produced.

In our situation we have:

Corollary 1.7. Under the assumptions of Theorem 1.5, GENSAT, restricted

to instances � with tw(P (�)) � k, has a generating algorithm with polynomial
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delay.

1.3 Main results for bounded clique-width

The notion of clique-width was introduced in [CER93] and studied more sys-

tematically in [CE95,Cou92,EvO97,CO00]. In the last ten years, the study

of graphs of bounded clique-width became very popular, cf. the work of A.

Brandstaedt, B. Courcelle, V.V. Lozin, P. Seymour, J. Spinrad, and their many

collaborators.

Clique-width is a more general notion than tree-width and measures some-

how how a graph can be built from smaller graphs by remembering only that

certain nodes are coloured and the number of colours is �xed. The main dif-

ference is the important rôle of the complete bipartite subgraphs. If large

bipartite subgraphs are excluded, then bounded clique-width yields bounded

tree-width, cf. [Cou03]. Courcelle and Olariu in [CO00] showed that clique-

width of graphs of tree-width k, is at most 2

k+1

+ 1. Therefore, any class

of graphs of bounded tree-width, is automatically of bounded clique-width.

Moreover, B. Courcelle, J. Engelfriet and G. Rozenberg in [CER93] provided

a complicated proof that any given context-free graph grammar based on

vertex-replacement (Con
uent NCE, or context-free VR grammar) generates

graphs of bounded clique-width. Although an upper bound for the clique-

width could be derived from their proof, it is not straightforward. In general,

�nding an explicit bound for the clique-width is a more complicated task than

�nding a bound for the tree-width. For explicit computations of clique-width,

cf. [GR00], [GM03]. In contrast to tree-width, there is also a natural notion of

clique-width for directed graphs or signed graphs, which is di�erent from the

undirected (unsigned) case. Recall that we denote by SI(�) the signed version

of the incidence graph of � where edges are labeled depending whether the

variable occurs positively or negatively in a clause.

To get an analogue of Theorem 1.5 one needs a parse tree of the graph with

respect to its clique-width. We denote by der

SI

(�) or der

I

(�) such a parse

tree for the signed, respectively unsigned case. Details are given in Section 6.

By a recent result of S. Oum and P. Seymour, [OS04], described in more detail

in Section 6, Theorem 6.2, this can be achieved in the following way, which

su�ces for our purposes. There is a function f , such that, for given k, there

is a polynomial time algorithm that, with input a graph G, either concludes

that its clique-width is larger than k, or outputs an f(k)-parse tree for G. By

a straight inspection of their proof a similar theorem can be proven also for

the clique-width of signed graphs where f(k) is replaced by a function g(k) of

the same order of growth.
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Using the parse tree obtained from the signed version of this theorem, we can

now apply our result.

Theorem 1.8. Given a set of clauses � and a signed parse tree der

SI

(�) for

clique-width of up to k, it is possible to calculate csat(�), with a number of

algebraic operations that is linear in the size of the parse tree der

SI

(�), and

simply exponential in k.

This theorem can also be extended to solve ]GENSAT , but we leave this to

the reader. We also believe that a corresponding theorem for unsigned clique-

width is true, but we did not work out the details for this paper.

1.4 Signi�cance and applicability of the results

As pointed out by R. Downey and M. Fellows in [DF99] there is a long way

to go from establishing that a problem is �xed parameter tractable, FPT, to

feasible algorithms. In [CMR01], it was �rst established that MSOL-de�nable

counting problems are FPT, with constants being multiply exponential with

tree-width k as the parameter k. We make the following signi�cant improve-

ments:

� In the case of SAT and ]SAT with tree-width k as parameter we bring the

constants down to being simply exponential in k.

� In the case of SAT and ]SAT with clique-width k as parameter we also bring

the constants down to being simply exponential in g(k). We shall discuss in

section 6, how this can be further improved to be simply exponential in k.

� We show many versions of GENSAT and ]GENSAT to be FPT with the

same parameter k and the constants simply exponential in k, even when

they are not MSOL-de�nable.

In industrial applications of hardware and software veri�cation, the problem

is often presented in two steps. First a labeled graph G is built for which

a property � has to be veri�ed. The labeled graph was generated by some

graph grammar which takes into account that only a �xed number of labels are

used and re
ects the modularity of the hardware design or the well-structured

character of the software, cf. [Tho98]. As a result of this, cf. [GM03], the

graphs are a priori of bounded tree-width or clique-width, depending on the

particlar grammar only. The tree-decompositions, respectively the parse tree of

the clique-width, can be explicitely computed from the parse tree in the graph

grammar. In real-life applications of hardware ver�cation, related methods

using tree-width have been successfully implemented, cf. [BKDSZ,WCZK],

and the references therein.

In a second step the veri�cation of � on G is translated uniformly

into an instance of SAT. If the latter translation can be expressed as
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an MSOL-transduction, it was shown by Courcelle and Engelfriet, cf.

[CE95,Cou92,EvO97], that the resulting instance � of SAT has an incidence

graph, the clique-width of which depends only on the tree-width or clique-

width of G and �. For a detailed exposition, cf. [CM02]. It remains to be

explored in detail, in which concrete situations this can be used.

In applications in Arti�cial Intelligence very large sets of clauses (rules and

facts) have to be tested for satis�ability. But the clauses are often naturally

partioned into sets coming from di�erent domains of discourse, where the

shared variables are few. E. Amir has explored this in great detail, [Ami01].

In the course of his work he has shown that partitioning sets of clauses in this

way is related to the tree-width of the clause graph P (�). Low tree-width gives

good partitions, and partitions with cyclefree overlapping of the variables give

also tree-decompositions of low tree-width. To quote from [Ami01, Section 5.2,

page 90]:

We believe that in domains that deal with engineered physical systems, many

of the domain axiomatizations have these structural properties. Indeed, de-

sign of engineering artifacts encourages modularization with minimal inter-

connectivity, see [Ami00,Len95,CSJ

+

98]. More generally, we believe axiom-

atizers of large corpora of real-world knowledge tend to try to provide struc-

tured representations following some of these principles. Recent experiments

with the HPKB knowledge base of SRI and a part of the Cyc knowledge base

support this belief. Those experiments are reported in [Ami01, Section 5.8].

So tree-width and clique-width turn out to be natural concepts in industrial

applications of SAT, both in veri�cation of software and hardware, and in

automated reasoning.

1.5 Methods

The main ingredient of the algorithm is a Feferman-Vaught-type theorem, cf.

[Mak04], in form of a splitting formula for the number of satisfying assignments

for a set of non-generalized clauses � where the incidence graph I(�) is a union

of two graphs G

1

and G

2

with a shared induced subgraph H of size at most

k. This is given as Theorem 4.7 in Section 4. Such splitting formulas are well

known for graph polynomials for k = 0; 1. In the case of H consisting of the

empty set or only one vertex, many graph polynomials are multiplicative, e.g.,

the Tutte polynomial, the matching polynomials and others, cf. [Bol99,Mak04].

In the case of H consisting of two vertices, such a splitting formula was proven

by J. Oxley and D. Welsh [OW92] for the Tutte polynomial. For H of arbitrary

�xed size k, splitting formulas were established by S. Negami [Neg87], A.

Andrzejak [And97], S. Noble [Nob98] and L. Traldi [Tra] for various versions
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of the Tutte polynomial. In [Mak04] a general existence theorem for such

splitting formulas is given. Theorem 1.3 is the result of searching for a splitting

formula for the function csat.

1.6 Related work

The study of ]SAT on formulas with I(�) of bounded tree-width and clique-

width was initiated in [CMR01]. SAT on various presentations of the clauses as

graphs and restricted to inputs of tree-width at most k was previously studied,

among others, by R. Dechter and J. Pearl [DP89] and T. Feder and M. Vardi

[FV99]. More recent work was presented by G. Gottlob and R. Pichler [GP01],

E. Amir and S. McIlraith [AM05,AM01], M. Alekhnovich and A. Razborov

[AR02], and S. Szeider [Sze03].

Most of the previous results are stated for P (�) having bounded tree-width.

In the case of [AR02] branch-width of the clause hypergraph is studied. Here

the vertices are the variables, and the hyperedges are the clauses as sets of

variables (disregarding negations). Our results are in general much stronger,

as we only require that the tree-width of I(�) or the clique-width of SI(�) is

bounded.

1.7 Outline of the paper

In Section 2 we de�ne the general framework of the satis�ability problems

which we consider. In Section 3 we give the necessary background concern-

ing tree-width and clause graphs P (�) and I(�). In Section 4 we derive the

splitting formula which allows us to count satisfying assignments for H-sums

of instances of SAT. This is one of the main new algorithmic ingredients of

the paper. In Section 5 we prove the main theorems for the case of bounded

tree-width. In Section 6 we give the necessary background concerning clique-

width and extend the results to the case of bounded clique-width In Section

7, �nally, we draw some conclusions and discuss further research.

2 Generalized satis�ability

We follow closely [Sch78,CH96].

Let S = fR

i

: i 2 Ng be an in�nite set of logical relations of rank �(i). A

logical relation R

i

of rank �(i) is a subset of f0; 1g

�(i)

. An S-formula � is a

9



set of (generalized) clauses of the form r

i

(�v) where �v = v

j

1

; : : : ; v

j

�(i)

are any

propositional variables.

The size of an S-formula � is the sum of the sizes of its generalized clauses,

irrespective of the choice of S. We denote the set of propositional variables by

Var and the set of variables occurring in � by Var(�).

The S-satis�ability decision problem GENSAT(S) is the problem of deciding

whether for a given S-formula � there is an assignment z : Var! f0; 1g such

that for each clause r

i

(�v) in �, z(�v) 2 R

i

, i.e., all clauses are simultaneously

satis�able using the semantics given by the S. The S-satis�ability counting

problem ]GENSAT(S) counts the number of satisfying assignments for �. If S

is not explicitely mentioned we speak of an instance of GENSAT or ]GENSAT

rather than of GENSAT(S) respectively ]GENSAT(S).

The classical satis�ability problem SAT usually is formulated with literals

rather than variables only. When formulating SAT as an instance of GENSAT

this amounts to having di�erent r

i

's for each distribution of the negation

symbols among the literals. If the size of the clauses is bounded by a �xed

number then S can be assumed �nite.

All instances of GENSAT(S) are in NP and all instances of ]GENSAT(S) are

in ]P.

T.J. Schaefer and N. Creignou and M. Hermann, cf. [Sch78,CH96], give a com-

plete classi�cation for which the corresponding instances given by S are NP-

hard, respectively ]P-hard. They prove a Dichotomy Theorem which states

that all the other cases are solvable in polynomial time.

For our purpose it su�ces to note that if GENSAT(S) is NP-complete, then

]GENSAT(S) is ]P-complete. In other words, there is an abundance of ]P-

complete instances of GENSAT.

3 Tree-width of clause graphs and H-sums

We assume the reader is familiar with some basic graph theory and the notion

of a graph minor. A graph H is a minor of a graph G ifH can be obtained from

G by deleting or contracting edges and deleting vertices. General background

on minors and tree-width may be found in [Die96].
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Fig. 1. Example of a 3-tree decomposition of a graph

3.1 Tree-width of graphs

De�nition 3.1. A k-tree decomposition of G is given as follows:

(i) We have a (not necessarily rooted) tree T = hT; fi, where T is a set and

f is a function mapping nodes onto their father.

(ii) The vertex set V (G) of the graph is the union of sets A

t

, with t 2 T and

jA

t

j � k + 1.

(iii) For every edge e = (x; y) 2 E(G) there is a t 2 T such that x; y 2 A

t

.

(iv) For each x 2 V the set T (x) = ft 2 T : x 2 A

t

g is a connected subgraph

of T .

If the tree T is a path (no branching) we speak of a k-path decomposition.

Remark 3.2. Under conditions (i)-(iii), (iv) is equivalent to: For every con-

nected subgraph H of G, the set ft 2 T : V (H)\A

t

6= ;g is a connected subtree

of T .

De�nition 3.3.

(i) G is of tree-width (resp. path-width) at most k, if there exists a k-tree

decomposition (resp. k-path decomposition) of G. In the literature such
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graphs are sometimes also called partial k-trees.

(ii) The tree-width (or path-width) of a signed (edge coloured) graph is, by

de�nition, the same as its tree width without the colouring.

Given a graph G, �nding its tree-width is NP-complete, cf. [ACP87], but for

�xed k, checking whether G has tree width at most k (and if so, �nding a

witnessing tree decomposition), can be done in polynomial time, cf. [Bod97].

For the most advanced approximation algorithms to compute the tree-width,

cf. [Ami02].

Example 3.4.

(i) The tree-width of a tree is 1.

(ii) The tree-width of C

n

, the cycle with n vertices, is 2.

(iii) The tree-width of K

n

, the complete graph on n vertices, is n � 1, and of

K

n;n

, the complete bipartite graph on twice n vertices, is n.

(iv) The tree-width of the two dimensional square grid Grid

n;n

on n

2

vertices

is n.

3.2 Tree-width of clause graphs

The incidence graph I(�) of an S-formula � with variable set V ar(�) is the

bipartite simple graph I(�) = (�; V ar(�); E

I

) where for each generalized

clause C = r

i

(�v) 2 � we have that (v;C) 2 E

I

i� v 2 C.

The primal graph P (�) of an S-formula � is the simple graph P (�) =

(V ar(�); E

P

) where for each v

1

; v

2

2 V ar(�) the pair (v

1

; v

2

) 2 E

P

i� there

is a clause C 2 � where both v

1

and v

2

occur.

Recall that Proposition 1.1 in the introduction stated that for every general-

ized clause set � we have tw(I(�)) � tw(P (�)) + 1.

A natural example of formulas of bounded tree-width can be obtained as

follows. Let V = fv

0

; v

1

; : : : ; v

m

g be a set of propositional variables and � =

fC

0

; C

1

; : : : ; C

n

g a set of clauses over V .

Proposition 3.5. Assume that there is d 2 N such that, if v

i

or :v

i

occurs

in C

j

, then j i� j j� d. Then I(�) has path-width at most d.

This example is related to the cut-width of the hypergraph representing the

clauses and has been used successfully in very large real-life applications, cf.

[WCZK].
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3.3 Tree-width of Horn, pigeon-hole and Tseitin formulas

To illustrate the concept of the tree-width of formulas, we look at three clas-

sical examples: Horn formulas, Tseitin formulas and pigeon-hole formulas.

Horn clauses are clauses with at most one literal non-negated. Checking sat-

is�ablity of Horn formulas can be done in linear time, [IM87].

Proposition 3.6. The tree-width of Horn-formulas is unbounded.

Proof. Take the grid Grid

2n;2n

. It is bipartite, with equal number of variables

and clauses. Each clause contains at most four variables. For each clause we

choose r

i

to be a disjunction where exactly one variable occurs positively.

This gives us � with Grid

2n;2n

as its underlying graph. Hence its tree-width

is 2n.

G. Tseitin showed that the di�culty of proving inconsistency of the Tseitin-

formulas �(H) using regular resolution only depends on the properties of the

underlying graph H viewed as an expander graph, cf. [Tse68,Gal77]. The reg-

ularity assumption for resolution was later removed by A.Haken. Haken also

showed that the formulas PHP

n+1

n

have long proofs of inconsistency using reso-

lution, cf. [Hak85,CS88]. This is no accident, as it is shown by M. Alekhnovich

and A. Razborov, that for sets of inconsitent clauses � with tw(I(�)) bounded

by k, there are resolution proofs of polynomial length, [AR02]. A. Atserias and

V. Dalmau, [AD03], give further interpretations of this phenomenon.

We now compute the tree-width of I(�) for these examples of sets of (non

generalized) clauses which are natural or occur in the literature. When no

proofs are given, it is straightforward to verify the statements. The tree-width

of P (�) can be easily estimated using Proposition 1.1.

Tseitin-formulas are formulas obtained as follows: Let H = (V;E) be a graph.

Let � : V ! f0; 1g be a marking of the vertices, with

P

v2V

�(v) = 1 (mod 2).

We de�ne �(H;�) in the following way: The variables of the formula are

represented by the edges in E, whereas the formula is the conjunction of all

the clauses F

v

; v 2 V , where

F

v

=

8

<

:

e

1

(v)� : : :� e

d

(v) if �(v) = 1

:(e

1

(v)� : : :� e

d

(v)) if �(v) = 0

and e

1

(v); : : : ; e

d

(v) are the edges incident with v. It is straightforward to

bring this into clausal form, which we denote by T (H;�).

Proposition 3.7. The tree-width of the Tseitin formulas T (H;�) is at least

as big as the tree-width of H.

13



Proof. One can show that H is a minor of I(T (H;�)).

The pigeon-hole formulas PHP

n+1

n

are de�ned as follows. We have variables

p

i;j

, a

i

, b

i;j;k

for i = 1; : : : ; n + 1 and k; j = 1; : : : ; n. p

i;j

stands for \pigeon i

sits in hole j". a

i

stands for \pigeon i sits in one of the holes". b

i;j;k

stands for

\pigeon i and j sit both in hole k".

PHP

n+1

n

=

n+1

^

i=1

n

_

j=1

p

i;j

!

n

_

k=1

n+1

_

i;j=1;i 6=j

(p

i;k

^ p

j;k

)

We use the additional variables to write it in readable clausal form. We write

a

i

for

W

n

j=1

p

i;j

, and b

i;j;k

for (p

i;k

^ p

j;k

). This gives:

n+1

_

i=1

a

i

_

n

_

k=1

n+1

_

i;j=1;i 6=j

b

i;j;k

We also add the clauses

A

i

= a

i

$

n

^

j=1

:p

i;j

; and B

i;j;k

= b

i;j;k

$ (p

i;k

^ p

j;k

)

Proposition 3.8. The tree-width of the pigeon-hole formulas PHP

n+1

n

is at

least n.

Proof. The grids Grid

n;n

are minors of G

PHP

n+1

n

.

3.4 H-sums of graphs

Given a k-tree decomposition of a graph G with tree T and sets of vertices

A

t

; t 2 T , we denote by H

t

the induced subgraph of G with vertex set A

t

.

Given the k-tree decomposition and all the induced subgraphs H

t

, we can

reconstruct the original graph G using successive (almost disjoint) unions. To

make this precise we de�ne the H-sum of two graphs.

Given two graphs G

1

; G

2

with distinguished induced subgraphs H

1

;H

2

which

are isomorphic to H with isomorphisms h

1

; h

2

, the H-sum of G

1

and G

2

is

an almost disjoint union of the two graphs where the intersection contains

exactly H as induced subgraph (using the isomorphisms h

1

and h

2

to �x it)

6

.

In other words:

De�nition 3.9.

6

Strictly speaking we should write G

1

�

H;h

1

;h

2

G

2

, but we shall drop the isomor-

phisms when there is no risk of confusion.

14



(i) For i = 1; 2 let G

i

= hV (G

i

); E(G

i

)i and V (G

1

) \ V (G

2

) = V (H) and

E(H) = E(G

1

)\V (H)

2

= E(G

2

)\V (H)

2

. Then G = G

1

�

H

G

2

is given

by V (G) = V (G

1

) [ V (G

2

) and E(G) = E(G

1

) [ E(G

2

).

(ii) H-sums of edge and vertex coloured graphs are de�ned similarly.

In the reconstruction process of G from T and the H

t

's we have to perform a

sequence of H-sums where H is always an induced subgraph of the H

t

's.

4 A splitting formula for H-sums of clause graphs

In this section all clauses are non-generalized. Let � be a set of clauses over

a variable set V , and let W � V and z :W ! f0; 1g be a partial assignment.

We denote by �

(z)

the set of clauses obtained from � by performing the

substitution

s(v) =

8

<

:

true if z(v) = 1

false if z(v) = 0

Similarly, we denote by csat

z

(�) the number of assignments z

0

with z

0

j

W

= z

which make � true.

As any k-tree decomposition of I(�) gives also a k-tree decomposition of

I(�

(z)

), clearly we have

Lemma 4.1.

(i) csat(�

(z)

) = csat

z

(�).

(ii) tw(�

(z)

) � tw(�).

2

The following is a straightforward consequence of our notation.

Lemma 4.2. With the notation from above we have

csat(�) =

X

z:W!f0;1g

csat(�

(z)

) =

X

z:W!f0;1g

csat

z

(�)

2

We now derive our splitting formula for the function csat for H-sums.

4.1 H-sums of incidence graphs I(�)

From now on, let � be a set of clauses, such that the corresponding incidence

graph G = I(�) is the H-sum G

1

�

H

G

2

. We denote by �

i

the set of clauses
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Fig. 2. H-sum of G

1

and G

2

where H contains both clauses and variables

with I(�

i

) = G

i

, cf. Figure 2.

We distinguish two extreme cases.

4.1.1 H contains only variables

If H contains only variables W � V , we can divide the clauses of � into four

sets:

(i) �

V�W

i

; i = 1; 2 which do not contain variables from W and such that the

clauses are vertices in G

i

, and

(ii) �

W

i

; i = 1; 2 which do contain variables fromW and such that the clauses

are vertices in G

i

.

Clearly, �

V�W

i

[ �

W

i

= �

i

.

Using Lemma 4.2 we get immediately:

Lemma 4.3. With the notation from above we have

csat(�

1

�

W

�

2

) = csat(�) =

X

z:W!f0;1g

csat

z

(�

(z)

) =

X

z:W!f0;1g

csat

z

(�

(z)

1

) � csat

z

(�

(z)

2

)

2

4.1.2 H contains only clauses

Let � = fD

1

; : : : ;D

m

g be the clauses inH. We write each of those as D

1

i

_D

2

i

with D

j

i

containing only variables from G

j

. Again, for i = 1; 2, let �

i

be the

set of clauses with I(�

i

) = G

i

.
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Lemma 4.4. Let m = 1. Then

csat(�) =

csat(�

1

� fD

1

1

g) � csat(�

2

) + csat(�

1

) � csat(�

2

� fD

2

1

g)

�csat(�

1

) � csat(�

2

)

Proof. Straightforward from the inclusion and exclusion principle.

The case m � 2 is based on the inclusion/exclusion principle. We need some

notation. Let [m] = f1; : : : ;mg. For X � [m] and i = 1; 2 denote by S

i

(X) =

fD

i

j

: j 2 Xg.

Lemma 4.5. The tree-width of �

i

� S

i

(X) is not bigger than the tree-width

of �

i

.

2

One now proves by induction, using Lemma 4.4 as the basis:

Lemma 4.6. With the notation from above and

B

i

(X

i

) = csat((�

i

� S

i

(X

i

)))

we have

csat(�) = csat(�

1

�

�

�

2

) =

m

X

k=1

(�1)

k

X

jX

1

\X

2

j=k

B

1

(X

1

) �B

2

(X

2

)

2

4.1.3 The mixed case

For the mixed case we assume that H is a signed bipartite graph with W as

its variable nodes and � as its clause nodes.

Theorem 4.7. With the notation from above, let � = �

1

�

W;�

�

2

and

B

i

(X

i

)

(z)

= csat((�

i

� S

i

(X

i

))

(z)

):

Then

csat(�) = csat(�

1

�

W;�

�

2

) =

X

z:W!f0;1g

m

X

k=1

(�1)

k

X

jX

1

\X

2

j=k

B

1

(X

1

)

(z)

�B

2

(X

2

)

(z)
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Hence, computing � needs at most 2

jW j

� 4

m

� 4

tw(I(�))

additions and an equal

number of multiplications.

Proof. Apply the inclusion/exclusion principle to B

i

(X

i

)

(z)

.

5 Proofs of Theorems 1.3 and 1.5

5.1 Proof of Theorem 1.3

Theorem 1.3: Given a k-tree decomposition of I(�), csat(�) can be com-

puted, and hence also SAT can be solved, if restricted to � with I(�)

of tree-width at most k, using 4

k

� n arithmetic operations (or in time

4

k

(n+ n

2

� log

2

(n)) if bit cost is applied).

Proof. We use a dynamic programming approach. We start from the leaves.

Let n be the number of nodes of G

�

. Using the k-tree decomposition of G

�

and the induced subgraphs G

t

we know how to reconstruct G

�

, starting with

small graphs (of size at most k+1) and then using H-sums where H is of size

at most k. In each step where an H-sum is performed we use Theorem 4.7.

For this we have to compute 2

jW j

�4

j�j

� 4

k

many times products of csat((�

i

�

S

i

(X

i

))

(z)

), where (�

i

�S

i

(X

i

))

(z)

has again tree-width at most k. This uses at

most 4

k

�n additions and multiplications overZ. As the number of assignments

is bound by 2

n

the bit size of the numbers involved is at most n. Multiplication

of n-bit numbers uses no more than n � log

2

(n) bit-operations. Hence we get an

algorithm which runs in time 4

k

(n+ n

2

� log

2

(n)) on a Turing machine

7

.

5.2 Proof of Proposition 1.4

Proposition 1.4: For every instance � for GENSAT(S)

(i) tw(P (�

exp

)) = tw(P (�)).

(ii) If the arities �(i) of the clauses in S are bounded by m, tw(I(�

exp

)) �

tw(I(�)) �m.

Proof. For an S-formula � we de�ne a set of non generalized clauses �

exp

as follows: Let R

i

2 S and r

i

(�v) be a corresponding generalized clause. De-

note by �r

i

(�v) the formula in conjuctive normal form representing R

i

with the

appropriate variables. Then

�

exp

= f�r

i

(�v) : r

i

(�v) 2 �g:

7

A closer computation actually gives 3

k+1

(n+ n

2

� log

2

(n))
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To prove (i), we observe that P (�

exp

) is the same graph P (�).

To prove (ii), we show how given a k-tree for I(�) we can construct an mk-

tree for I(�

exp

). We go over the k-tree of I(�), and in the �rst stage in every

set A

t

of the tree we replace every clause vertex with all its incident variable

vertices.

At this stage, the new tree clearly has a bound of mk on its set sizes, and still

satis�es the connectivity condition for every variable vertex (the tree does not

contain any clause vertex at this stage) It is also easy to see that for every

every clause of �, and hence of �

exp

, there is a set A

t

of the tree containing all

of its incident variables (just take any set that in the original tree contained

the appropriate clause vertex).

We �nish the construction by adding a new leaf for every clause of �

exp

with

a set that contains the appropriate clause vertex and all incident variable

vertices, connecting this leaf to the appropriate A

t

that contains all variable

vertices.

5.3 Proof of Theorem 1.5

Theorem 1.5: Given a k

1

-tree decomposition of P (�), a k

2

-tree decompo-

sition of I(�), let m = max

i

f�(i)g (if it exists), and k

3

= max

i

f�(i); k

2

g.

Then ]GENSAT(S) can be computed

(i) with 4

k

1

� n

2

arithmetic operations, provided the size of each clause is

bounded by log

2

(n);

(ii) with 4

k

1

+m

� n arithmetic operations, provided the size of each clause is

bounded by m 2 N;

(iii) with 4

k

3

�m

� n arithmetic operations, provided the size of each clause is

bounded by m 2 N.

Proof. Instead of solving ]GENSAT(S) with input � we reduce it to comput-

ing csat(�

exp

). According to Proposition 1.4 the reduction does not increase

the tree-width of the primal graph. It also increases the tree-width of the

incidence graph by at most m, provided that every �(i) is bounded by m.

Hence we only have to make sure that the size of �

exp

is bounded. But in �

exp

each clause C of � with �(i) many variables is replaced by at most 2

�(i)

many

clauses of size at most �(i).

The remaining computations for the estimates in (i)-(iv) are left to the reader.
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6 The case of bounded clique-width

6.1 Background on clique-width

The notion of clique-width was introduced in [CER93] and studied more sys-

tematically in [CM93,CE95,Cou92,EvO97,CO00,GR00]. In the last ten years,

the study of graphs of bounded clique-width became very popular, cf. the work

of A. Brandstaedt, B. Courcelle, V.V. Lozin, P. Seymour, J. Spinrad, and their

many collaborators. Courcelle and Olariu in [CO00] showed that clique-width

of graphs of tree-width k, is at most 2

k+1

+ 1. Therefore, any class of graphs

of bounded tree-width is automatically of bounded clique-width. Moreover, B.

Courcelle, J. Engelfriet and G. Rozenberg in [CER93] provided a complicated

proof that any given context-free graph grammar based on vertex-replacement

(Con
uent NCE, or context-free VR grammar) generates graphs of bounded

clique-width. Although an upper bound for the clique-width could be derived

from their proof, it is not straightforward. In general, �nding an explicit bound

for the clique-width is a more complicated task than �nding a bound for the

tree-width. For explicit computations of clique-width, cf. [GR00], [GM03].

Courcelle and Olariu in [CO00] study two versions of clique-width, for undi-

rected and for directed graphs. We give here a version for directed or signed

graphs where additionally the bipartite character of the graphs is taken into

account. We identify a SAT formula � with the bipartite graph SI(�) that

has edges `signed' with `+' and `�' according to which variables appear in a

clause and whether they are negated. If we drop the signing of the edges, we

just get I(�).

De�nition 6.1. The set of SAT formulas of clique width up to k is de�ned

as the set of formulas that can be obtained by the following operations over

such graphs whose vertices are coloured by f1; : : : ; kg, starting with singletons

(formulas consisting of a single \clause" or \variable" vertex with some colour

from f1; : : : ; kg and no edges).

(i) Disjoint union.

(ii) Recolouring: For a vertex-coloured edge-signed bipartite graph I, we de�ne

�

i;j

(I) to be the graph that results by recolouring with j all vertices that

were previously coloured with i.

(iii) Positive edge creation: For a vertex-coloured edge-signed bipartite graph

I, we de�ne �

+

i;j

(I) to be the graph that results from connecting all clause-

vertices coloured with i to all variable-vertices coloured with j, with edges

signed by `+'. We do not add edges between variable-vertices coloured i

and clause-vertices coloured j, or any other vertices.

(iv) Negative edge creation: Similarly to the above, we de�ne �

�

i;j

(I) to be the

graph resulting from connecting all clause-vertices coloured with i to all
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variable-vertices coloured with j, with edges signed by `�'.

(v) In the case of unsigned edges, and without distinguishing clause-vertices

and variable-vertices, there is just one operation �

i;j

for each i 6= j. This

corresponds to the original de�nition in [CO00].

(vi) The clique-width of a (signed, bipartite) graph is the minimum k such

that it has clique-width at most k. We denote by scw(SI(�)) the signed

bipartite clique-width of SI(�) and by cw(I(�)) the unsigned clique-width

of I(�).

A parse tree der

SI

for the signed clique-width of a formula � is just the rooted

tree whose leaves hold singleton graphs, whose internal vertices are coloured

with the operations of the de�nitions above (so a vertex corresponding to a

disjoint union has two children, and vertices corresponding to other operations

have one child), and whose root holds the graph SI(�) (with any vertex

colouring). A parse tree der

I

for the clique-width of a formula � is de�ned

similarly for the case of the unsigned graph I(�).

Every graph G of size n has clique-width cw(G) at most n. The simplest

class of graphs of unbounded tree-width but of clique-width at most 2 are

the cliques. To see this assume we have two colours red (1) and blue (2). We

start with a red singleton and a blue singleton and connect using �

1;2

, then we

recolour all points red, add a new blue singlton and connect again using �

1;2

,

and so forth.

Given a graph G and k 2 N, determining whether G has clique-width k is in

NP. A polynomial time algorithm was presented for k � 3 in [CHL

+

00]. It

remains open whether for some �xed k � 4 the problem is NP-complete. The

recogniztion problem for the analogue of clique-width for relational structures,

cf. [BC0x], has not been studied so far even for k = 2. However, once a

parse tree is known the number of satisfying assignments can be e�ciently

calculated.

However, for our purposes, a recent result of S. Oum and P. Seymour, [OS04],

su�ces to apply Theorem 1.8. They have shown that testing a graph for clique-

width k is �xed parameter tractable, and an approximate parse tree can be

be produced in polynomial time in n.

Theorem 6.2 (S. Oum and P. Seymour). There is a function f , such

that, for given k, there is a polynomial time algorithm that, with input a graph

G, either concludes that its clique-width is > k or outputs a f(k)-parse tree

for G. Its running time is O(n

9

log n) and f(k) = 2

3k+2

� 1.

By straight inspection of their proof a similar theorem can be proven also for

the clique-width of signed graphs.

Theorem 6.3. There is a function g, such that, for a given k, there is a

polynomial time algorithm that, with input a signed graph G, either concludes
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that its signed clique-width is larger that k or outputs a g(k)-parse tree for G.

Its running time is O(n

9

log n) and g(k) = 3

3k+O(1)

= 2

O(k)

.

Using the parse tree obtained from Theorem 6.3, we can produce g(k)-parse

trees for signed graphs with clique-width k, which makes our results applicable.

In [MM03b] the following is shown for undirected clique-width, but the same

proof gives it also for directed clique-width. To estimate the clique width this

is often useful.

Proposition 6.4. Clique-width is preserved for induced subgraphs. More pre-

cisely, if G is a a (undirected, signed, directed) graph, and H is an induced

(undirected, signed, directed) subgraph of G, then we have

cw(H) � cw(G);

respectively

scw(H) � scw(G):

6.2 Clique-width of clause graphs

We noted already that for the unsigned clique-width it is shown in [CO00]

that clique-width of graphs of tree-width k, is at most 2

k+1

+ 1. Hence we

have

Proposition 6.5. Let � be a set of clauses. Then we have

(i) cw(P (�)) � 2

tw(P (�))+1

+ 1 and

(ii) cw(I(�)) � 2

tw(I(�))+1

+ 1.

However, a bound on the clique-width of P (�) gives no computational advan-

tage.

Proposition 6.6. Let SAT(cw2) be SAT restricted to sets of clauses � with

cw(P (�)) = 2.

(i) SAT(cw2) is NP-complete.

(ii) ]SAT (cw2) is ]P-complete.

This follows immediately from:

Lemma 6.7. For every set of clauses � in n variables v

1

; : : : ; v

n

we de�ne a

set of clauses �

0

in n+ 1 variables v

0

; v

1

; : : : ; v

n

by

�

0

= � [ fv

0

g [ fv

i

_ v

j

_ v

0

: i; j � 1; i 6= jg:

For an assignement z for the variables v

1

; : : : ; v

n

we de�ne the assignment z

0

for v

0

; v

1

; : : : ; v

n

by setting z(v

0

) = 1. Then we have
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(i) z makes � true i� z

0

makes �

0

true.

(ii) P (�

0

) is a clique, hence cw(P (�

0

)) = 2.

Next we compare the clique-width of the signed and the unsigned cases:

Proposition 6.8.

cw(I(�)) � 2 � scw(SI(�))

Sketch of proof. We take a parse tree der

SI

for SI(�). By doubling the number

of colours (separating clause-vertices from variable-vertices we get for each

colour i two colours i

c

and i

v

) we can disregard the bipartite character of the

graphs. For this we replace each operation �

i;j

by �

i

c

;j

v

. The resulting parse

tree is a parse tree for I(�), where all the operation �

i;j

have di�erent indices

i; j.

Let G be any graph (not necessarily a clause graph of �). The incidence graph

I(G) = (V [ E;F ) of a graph (V;E) is the bipartite graph with V and E as

vertex sets, and (v; e) 2 F i� v is a vertex of e. Clique-width and tree-width

behave quite di�erenty, when passing from G to I(G).

Proposition 6.9.

(Folklore) For every graph, tw(G) = tw(I(G)).

([MR99]) cw(K

n

) = 2, but cw(I(K

n

)) goes to in�nity with n.

A converse inequalty to the one in Proposition 6.8 does not hold.

Proposition 6.10. For every m there is a set of clauses �

m

such that

(i) I(�

m

) = K

m;n

, the complete bipartite graph on m and n elements with

n =

�

m

2

�

. Hence cw(I(�

m

)) = 2;

(ii) The clique width scw(SI(�

m

)) is a function of m which tends to in�nity

with m.

Sketch of proof. Let the variables be v

1

; : : : ; v

m

. For each i 6= j � m let C

i;j

be the clause containing all the variables, but where exactly v

i

and v

j

occur

negatively. �

m

is the set of such clauses. Clearly, I(�

m

) = K

m;n

, the complete

bipartite graph on m and n elements with n =

�

m

2

�

. So (i) is established. To

see (ii), assume der

SI

(m) is a parse tree for (�

m

). We omit each �

+

in der

SI

to obtain a parse tree der

I

(m). But der

I

(m) is a parse tree for I(K

m

), which

is unbounded by Proposition 6.9. Note that here we use Proposition 6.4.

6.3 Clique-width of pigeon-hole and Tseitin formulas

We return to the examples of subsection 3.3. First we quote from [GR00]
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Proposition 6.11. The clique-width of the grid graphs Grid

n;n

is at least n.

From this, together with Proposition 6.4, the following is not di�cult to show.

Proposition 6.12. The undirected, and hence the directed clique-width of the

pigeon-hole formulas and the Tseitin formulas is unbounded.

6.4 Main result for bounded clique-width

We restate from the introduction

Theorem 1.8: Given a set of clauses � and a signed parse tree der

SI

(�) for

clique-width of up to k, it is possible to calculate csat(�), with a number

of algebraic operations that is linear in the size of the parse tree der

SI

(�),

and exponential in k.

Remark 6.13.

(i) The corresponding theorem for unsigned clique-width seems to be true as

well, but the proof may be more involved and we did not check it in detail.

(ii) Although bounded tree-width of a class of graphs implies bounded clique-

width of the same class, cf. Proposition 6.5, the clique-width grows expo-

nentially. Therefore, Theorem 1.8 does not imply Theorem 1.3, even if

the unsigned version of Theorem 1.8 is true.

The proof is given in Subsection 6.5. We leave it to the reader to formulate

and prove the corresponding theorem for GENSAT.

Before we continue, we de�ne some possible transformations of formulas cor-

responding to vertex-coloured edge-signed bipartite graphs.

De�nition 6.14. Given subsets A;B;C of f1; : : : ; kg (not necessarily dis-

joint), and a formula � whose signed graph SI(�) is vertex-coloured with

f1; : : : ; kg, we de�ne �

(A;B;C)

as the formula resulting from � by the following

operations:

(i) Every clause in � whose vertex is coloured with a member of A is re-

moved (but we do nothing with variables whose vertices are coloured with

members of A).

(ii) For i 2 f1; : : : ; kg, denote by X

i

the set of variables whose vertices are

coloured with i. For every i 2 B we add a clause consisting of the dis-

junction of all the variables in X

i

.

(iii) For every i 2 C we add a clause consisting of the disjunction of all the

negations of the variables in X

i

.

Note that in particular � = �

(;;;;;)

.
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6.5 Reduction lemmas

We assume w.l.o.g. that in the parse tree der

SI

(�) of �, all unions are made

between graphs that use disjoint subsets of the colour set in their vertex colour-

ing. The reason for this is that given a parse tree that does not satisfy this

condition and uses k vertex colours in all, one can easily construct a parse tree

with 2k vertex colours for which this additional condition holds.

To prove Theorem 1.8, we calculate for every node v of the parse tree der

SI

(�)

not only the value csat(�

v

) for the formula �

v

constructed by the operation of

that node, but we also calculate csat(�

(A;B;C)

v

) for everyA;B;C � f1; : : : ; kg,

which are used in the reductions through which we obtain the �nal csat(�).

We use the following reduction lemmas.

Lemma 6.15. If the operation in node v is a disjoint union of its children u

and w, then

csat(�

(A;B;C)

v

) = csat(�

(A;B;C)

u

) � csat(�

(A;B;C)

w

)

for every A;B;C.

Proof. We assumed above that in all disjoint unions, the colour sets used by

the two children are also disjoint, and under this assumption it is not hard to

see that the above holds.

Lemma 6.16. If the operation in v is �

i;j

(�

w

) where w is the child of v, for

every A;B;C it is possible to calculate csat(�

(A;B;C)

v

) from the values stored

for w using a constant number of operations.

Proof. If i 2 B or i 2 C then csat(�

(A;B;C)

v

) = 0, because �

v

contains no

variables coloured with i and hence �

(A;B;C)

v

contains an empty (unsatis�able)

clause. From now on we assume that B and C do not contain i. If j 2 A we set

A

0

= A[fig, and otherwise we set A

0

= Anfig. We now distinguish four cases:

Case 1: B and C do not contain j.

In this case clearly

csat(�

(A;B;C)

v

) = csat(�

(A

0

;B;C)

w

):

Case 2: B contains j but C does not.

In this case we use the inclusion-exclusion principle.

We set B

1

= B [ fig n fjg, B

2

= B, and B

3

= B [ fig, and obtain

csat(�

(A;B;C)

v

) = csat(�

(A

0

;B

1

;C)

w

) + csat(�

(A

0

;B

2

;C)

w

)� csat(�

(A

0

;B

3

;C)

w

):
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Case 3: C contains j but B does not.

This is analogous to the previous case. In this case we set C

1

= C [ fig n fjg,

C

2

= C, and C

3

= C [ fig, and obtain

csat(�

(A;B;C)

v

) = csat(�

(A

0

;B;C

1

)

w

) + csat(�

(A

0

;B;C

2

)

w

)� csat(�

(A

0

;B;C

3

)

w

):

Case 4: Both B and C contain j.

We de�ne B

1

; B

2

; B

3

; C

1

; C

2

; C

3

as above and use again the inclusion-exclusion

principle, but this time the resulting formula is somewhat more complex:

csat(�

(A;B;C)

v

) =

csat(�

(A

0

;B

1

;C

1

)

w

) + csat(�

(A

0

;B

1

;C

2

)

w

)

+csat(�

(A

0

;B

2

;C

1

)

w

) + csat(�

(A

0

;B

2

;C

2

)

w

)

�csat(�

(A

0

;B

3

;C

1

)

w

)� csat(�

(A

0

;B

3

;C

2

)

w

)

�csat(�

(A

0

;B

1

;C

3

)

w

)� csat(�

(A

0

;B

2

;C

3

)

w

)

+csat(�

(A

0

;B

3

;C

3

)

w

):

Lemma 6.17. If the operation in v is �

+

i;j

(�

w

) where w is the child of v, for

every A;B;C it is possible to calculate csat(�

(A;B;C)

v

) from the values stored

for w using a constant number of operations.

Proof. If i 2 A then clearly

csat(�

(A;B;C)

v

) = csat(�

(A;B;C)

w

);

and if j 2 B then clearly

csat(�

(A;B;C)

v

) = csat(�

(A[fig;B;C)

w

):

Otherwise we note that a satisfying assignment for �

(A;B;C)

v

is an assignment

that satis�es �

(A;B;C)

w

or �

(A[fig;B[fjg;C)

w

, and we use the inclusion-exclusion

principle to obtain

csat(�

(A;B;C)

v

) = csat(�

(A;B;C)

w

) + csat(�

(A[fig;B[fjg;C)

w

)� csat(�

(A;B[fjg;C)

w

):

Lemma 6.18. If the operation in v is �

�

i;j

(�

w

) where w is the child of v, for

every A;B;C it is possible to calculate csat(�

(A;B;C)

v

) from the values stored

for w using a constant number of operations.

Proof. Virtually identical to that of the previous lemma.
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Proof of Theorem 1.8. We start with the leaves and go upward, at every node

v calculating csat(�

(A;B;C)

v

) for all possible A;B;C. For every node the total

number of calculated values is exponential in k, and the number of operations

to calculate each of them is constant, and so the number of operations required

to reach the root is linear in the size of the tree and exponential in k.

7 Conclusions and further research

We have presented evidence from the literature that sets of clauses � with

clause graphs of bounded tree-width or clique-width can be derived from real-

world applications. Small tree-width and small clique-width are structural

properties of the various clause graphs. Engineering artifacts come with built

in modularization with minimal or well structured interconnectivity which

imply these structural properties, cf. [Ami01].

We have shown how to solve SAT, GENSAT, ]SAT and ]GENSAT e�ciently

on sets of clauses with incidence graphs of tree-width at most k. Our new

algorithm has feasible constants, when k is not too large. It also allows us to

solve SAT e�ciently, but it remains to be checked whether it is more e�cient

than the resolution method, applied to formulas of bounded tree-width as

presented in [AR02].

We have also shown how to use parse trees of signed clique-width e�ciently to

solve SAT and ]SAT. This widens the applicability of our results considerably,

especially, since S. Oum and P. Seymour have shown that �nding a suitable

parse tree for (signed) graphs is �xed parameter tractable (in FPT).

Our methods apply also to any other problem which is reducible to SAT by

polynomial time Turing reductions where the tree-width or clique-width is

bounded. We have shown how to use this for various versions of GENSAT.

It would be interesting to see, for which versions of GENSAT there are splitting

formulas similar to the one given in Theorem 4.7. Such splitting formulas are

bound to give better constants than the ones one gets by using reductions.

The results of [CMR01,Mak04] give general splitting theorems and polynomial

time algorithms for many other counting problems. It remains a challenge

to �nd direct proofs for simpler splitting formulas, say, for counting perfect

matchings, hamiltonian cycles or various colourings.
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