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Abstract

Two graphs G and H on n vertices are ε-far from being isomorphic if at least ε
(
n
2

)
edges

must be added or removed from E(G) in order to make G and H isomorphic. In this paper we
deal with the question of how many queries are required to distinguish between the case that
two graphs are isomorphic, and the case that they are ε-far from being isomorphic. A query is
defined as probing the adjacency matrix of any one of the two graphs, i.e. asking if a pair of
vertices forms an edge of the graph or not.

We investigate both one-sided error and two-sided error testers under two possible settings:
The first setting is where both graphs need to be queried; and the second setting is where one
of the graphs is fully known to the algorithm in advance.

We prove that the query complexity of the best one-sided error testing algorithm is Θ̃(n3/2)

if both graphs need to be queried, and that it is Θ̃(n) if one of the graphs is known in advance
(where the Θ̃ notation hides polylogarithmic factors in the upper bounds). For the two-sided
error testers we prove that the query complexity of the best tester is Θ̃(

√
n) when one of the

graphs is known in advance, and we show that the query complexity lies between Ω(n) and
Õ(n5/4) if both G and H need to be queried. All of our algorithms are additionally non-
adaptive, while all of our lower bounds apply for adaptive testers as well as non-adaptive ones.
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1 Introduction

Combinatorial property testing deals with the following task: For a fixed ε > 0 and a fixed prop-
erty P , distinguish using as few queries as possible (and with probability at least 2

3
) between the

case that an input of length m satisfies P , and the case that the input is ε-far (with respect to an
appropriate metric) from satisfying P . The first time a question formulated in terms of property
testing was considered is in the work of Blum, Luby and Rubinfeld [8]. The general notion of
property testing was first formally defined by Rubinfeld and Sudan [17], mainly for the context of
the algebraic properties (such as linearity) of functions over finite fields and vector spaces. The first
investigation in the combinatorial context is that of Goldreich, Goldwasser and Ron [13], where
testing of combinatorial graph properties is first formalized. The “dense” graph testing model that
was defined in [13] is also the one that will serve us here. In recent years the field of property
testing has enjoyed rapid growth, as witnessed in the surveys [16] and [9].

Formally, our inputs are two functions g : {1, 2, . . . ,
(
n
2

)
} → {0, 1} and h : {1, 2, . . . ,

(
n
2

)
} →

{0, 1}, which represent the edge sets of two corresponding graphs G and H over the vertex set
V = {1, . . . , n}. The distance of a graph from a property P is measured by the minimum number
of bits that have to be modified in the input in order to make it satisfy P , divided by the input
length m, which in our case is taken to be

(
n
2

)
. For the question of testing graphs with a constant

number of queries there are many recent advances, such as [4], [11], [3] and [2]. For the properties
that we consider here the number of required queries is of the form nα for some α > 0, and our
interest will be to find bounds as tight as possible on α. We consider the following questions:

1. Given two input graphs G and H , how many queries to G and H are required to test that the
two graphs are isomorphic? This property was already used in [1] for proving lower bounds
on property testing, and a lower bound of the form nα was known for quite a while (see e.g.
[9]).

2. Given a graph Gk, which is known in advance (and for which any amount of preprocessing
is allowed), and an input graph Gu, how many queries to Gu are required to test that Gu is
isomorphic to Gk? Some motivation for this question comes from [10], where upper and
lower bounds that correlate this question with the “inherent complexity” of the provided Gk

are proven. In this paper, our interest is in finding the bounds for the “worst possible” Gk.

For the case where the testers must have one-sided error, our results show tight (up to log-
arithmic factors) upper and lower bounds, of Θ̃(n3/2) for the setting where both graphs need to
be queried, and Θ̃(n) for the setting where one graph is given in advance. The upper bounds are
achieved by trivial algorithms of edge sampling and exhaustive search. As we are interested in the
number of queries we make no attempt to optimize the running time. The main work here lies in
proving a matching lower bound for the first setting where both graphs need to be queried, as the
lower bound for the second setting is nearly trivial.
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Unusually for graph properties that involve no explicit counting in their definition, we can do
significantly better if we allow our algorithms to have two-sided error. When one graph is given in
advance, we show Θ̃(n1/2) upper and lower bounds. The upper bound algorithm uses a technique
that allows us to greatly reduce the number of candidate bijections that need to be checked, while
assuring that for isomorphic graphs one of them will still be close to an isomorphism. For this to
work we need to combine it with a distribution testing algorithm from [7], whose lower bound is
in some sense the true cause of the matching lower bound here.

For two-sided error testers where the two graphs need to be queried, a gap in the bounds
remains. We present here a lower bound proof of Ω(n) on the query complexity – it is in fact
the lower bound proof already known from the literature, only here we analyze it to its fullest
potential. The upper bound of Õ(n5/4) uses the ideas of the algorithm above for the setting where
one of the graphs is known, with an additional mechanism to compensate for having to query from
both graphs to find matching vertices.

To our knowledge, the best known algorithm for deciding this promise problem in the clas-
sical sense (i.e., given two graphs distinguish whether they are isomorphic or ε-far from being
isomorphic) requires quasi-polynomial running time [6]. Both our two-sided error testers have the
additional property of a quasi-polynomial running time (similarly to the algorithm in [6]) even with
the restriction on the number of queries.

The following is the summary of our results for the query complexity in various settings. We
made no effort to optimize the logarithmic factors in the upper bounds, as well as the exact depen-
dance on ε (which is at most polynomial).

Upper bound Lower bound

One sided error, one graph known Õ(n) Ω(n)

One sided error, both graphs unknown Õ(n3/2) Ω(n3/2)

Two sided error, one graph known Õ(n1/2) Ω(n1/2)

Two sided error, both graphs unknown Õ(n5/4) Ω(n)

The rest of the paper is organized as follows. We provide some preliminaries and definitions in
Section 2. Upper and lower bounds for the one-sided algorithms are proven in Section 3, and the
upper and lower bounds for the two-sided algorithms are proven in Section 4. The final Section 5
contains some discussion and concluding comments.

2 Notations and preliminaries

All graphs considered here are undirected and with neither loops nor parallel edges. We also
assume (even where not explicitly stated) that the number of vertices of the input graph is large
enough, as a function of the other parameters. We denote by [n] the set {1, 2, . . . , n}. For a vertex
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v, N(v) denotes the set of v’s neighbors. For a pair of vertices u, v we denote by N(u)4N(v) the
symmetric difference between N(u) and N(v). Given a permutation σ : [n] → [n], and a subset
U of [n], we denote by σ(U) the set {σ(i) : i ∈ U}. Given a subset U of the vertices of a graph
G, we denote by G(U) the induced subgraph of G on U . We denote by G(n, p) the random graph
where each pair of vertices forms an edge with probability p, independently of each other.

Definition 1. Given two labeled graphs G and H on the same vertex set V , the distance between
G and H is the size of the symmetric difference between the edge sets of G and H , divided by

(|V |
2

)
.

Given a graph G and a graph H on the same vertex set V , we say that H and G are ε-far, if
the distance between G and any permutation of H is at least ε.

Given a graph G and a graph property (a set of graphs that is closed under graph isomor-
phisms) P , we say that G is ε-far from satisfying the property P , if G is ε-far from any graph H on
the same vertex set which satisfies P .

Using this definition of the distance, we give a formal definition of a graph testing algorithm.

Definition 2. An ε-testing algorithm with q queries for a property P is a probabilistic algorithm,
that for any input graphGmakes up to q queries (a query consisting of finding whether two vertices
u, v of G form an edge of G or not), and satisfies the following.

• If G satisfies P then the algorithm accepts G with probability at least 2
3
.

• If G is ε-far from P , then the algorithm rejects G with probability at least 2
3
.

A property testing algorithm has one-sided error probability if it accepts inputs that satisfy the
property with probability 1. We also call such testers one-sided error testers.

A property testing algorithm is non-adaptive if the outcomes of its queries do not affect the
choice of the following queries, but only the decision of whether to reject or accept the input in the
end.

The following is just an extension of the above definition to properties of pairs of graphs. In
our case, we will be interested in the property of two graphs being isomorphic.

Definition 3. An ε-testing algorithm with q queries for a property P of pairs of graphs is a proba-
bilistic algorithm, that for any input pair G,H makes up to q queries in G and H (a query consist-
ing of finding whether two vertices u, v of G (H) form an edge of G (H) or not), and satisfies the
following.

• If the pair G,H satisfies P then the algorithm accepts with probability at least 2
3
.

• If the pair G,H is ε-far from P , then the algorithm rejects with probability at least 2
3
.

To simplify the arguments when discussing the properties of the query sets, we define knowl-
edge charts.
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Definition 4. Given a query set Q to the adjacency matrix A of the graph G = (V,E) on n

vertices, we define the knowledge chart IG,Q of G as the subgraph of G known after making the
set Q of queries to A. We partition the pairs of vertices of IG,Q into three classes: Q1, Q0 and Q∗.
The pairs in Q1 are the ones known to be edges of G, the pairs in Q0 are those that are known not
to be edges of G, and all unknown (unqueried) pairs are in Q∗. In other words, Q1 = E(G) ∩Q,
Q0 = Q \ E(G), and Q∗ = [V (G)]2 \ Q. For a fixed q, 0 ≤ q ≤ n, and G, we define IG,q as the
set of knowledge charts {IG,Q : |Q| = q}. For example, note that |IG,0| = |IG,(n2)| = 1.

We will ask the question of whether two query sets are consistent, i.e. they do not provide an ev-
idence for the two graphs being non-isomorphic. We say that the knowledge charts are knowledge-
packable if the query sets that they represent are consistent. Formally,

Definition 5. A knowledge-packing of two knowledge charts IG1,Q1 , IG2,Q2 , where G1 and G2 are
graphs with n vertices, is a bijection π of the vertices of G1 into the vertices of G2 such that for all
v, u ∈ V (G1), if {v, u} ∈ E(G1)∩Q1 then {π(v), π(u)} /∈ Q2\E(G2), and if {v, u} ∈ Q1\E(G1)

then {π(v), π(u)} /∈ E(G2) ∩Q2.

In particular, if G1 is isomorphic to G2, then for all 0 ≤ q1, q2 ≤
(
n
2

)
, every member of IG1,q1 is

knowledge-packable with every member of IG2,q2 . In other words, if G1 is isomorphic to G2, then
there is a knowledge-packing of IG1,Q1 and IG2,Q2 for any possible query sets Q1 and Q2.

Lemma 2.1. Any one-sided error isomorphism tester, after completing its queries Q1, Q2, must
always accept G1 and G2 if the corresponding knowledge charts IG1,Q1 , IG2,Q2 on which the de-
cision is based are knowledge-packable. In particular, if for some G1, G2 and 0 ≤ q ≤

(
n
2

)
, any

IG1,Q1 ∈ IG1,q and IG2,Q2 ∈ IG2,q are knowledge-packable, then every one-sided error isomor-
phism tester which is allowed to ask at most q queries must always accept G1 and G2.

Proof. This is true, since if the knowledge charts IG1,Q1 and IG2,Q2 are packable, it means that there
is an extension G′

1 of G1’s restriction to Q1 to a graph that is isomorphic to G2. In other words,
given G

′
1 and G2 as inputs, there is a positive probability that the isomorphism tester obtained

IG′
1,Q1

= IG1,Q1 and IG2,Q2 after completing its queries, and hence, a one-sided error tester must
always accept in this case.

Proving lower bounds for the two-sided error testers involves Yao’s method [18], which for our
context informally says that if there is a small enough statistical distance between the distributions
of q query results, from two distributions over inputs that satisfy the property and inputs that are
far from satisfying the property, then there is no tester for that property which makes at most q
queries. We start with definitions that are adapted to property testing lower bounds.

Definition 6 (restriction, variation distance). For a distribution D over inputs, where each input is
a function f : D → {0, 1}, and for a subsetQ of the domain D, we define the restriction D|Q of D
to Q to be the distribution over functions of the type g : Q → {0, 1}, that results from choosing a
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random function f : D → {0, 1} according to the distribution D, and then setting g to be f |Q, the
restriction of f to Q.

Given two distributions D1 and D2 of binary functions fromQ, we define the variation distance
between D1 and D2 as follows: d(D1, D2) = 1

2

∑
g:Q→{0,1} |PrD1 [g] − PrD2 [g]|, where PrD[g]

denotes the probability that a random function chosen according to D is identical to g.

The next lemma follows from [18] (see e.g. [9]):

Lemma 2.2 (see [9]). Suppose that there exists a distribution DP on inputs over D that satisfy a
given property P , and a distribution DN on inputs that are ε-far from satisfying the property, and
suppose further that for any Q ⊂ D of size q, the variation distance between DP |Q and DN |Q is
less than 1

3
. Then it is not possible for a non-adaptive algorithm making q (or less) queries to ε-test

for P .

An additional lemma for adaptive testers is proven implicitly in [12], and a detailed proof
appears in [9]. Here we strengthen it somewhat, but still exactly the same proof works in our case
too.

Lemma 2.3 ([12], see [9]). Suppose that there exists a distribution DP on inputs over D that
satisfy a given property P , and a distribution DN on inputs that are ε-far from satisfying the
property. Suppose further that for any Q ⊂ D of size q, and any g : Q → {0, 1}, we have
PrDP |Q [g] < 3

2
PrDN |Q [g]. Then it is not possible for any algorithm making q (or less) queries to

ε-test for P . The conclusion also holds if instead of the above, for any Q ⊂ D of size q and any
g : Q → {0, 1}, we have PrDN |Q [g] < 3

2
PrDP |Q [g].

Often, given two isomorphic graphsG,H on n vertices, we want to estimate how many vertices
from both graphs need to be randomly chosen in order to get an intersection set of size k with high
probability.

Lemma 2.4. Given two graphs G,H on n vertices, a bijection σ of their vertices, and two uni-
formly random subsets CG ⊂ V (G), CH ⊂ V (H), the following holds: for any 0 < α < 1 and
any positive integers c, k, if |CG| = knα logc n and |CH | = n1−α logc n, then with probability
1− o(2− logc n) the size of CG ∩ σ(CH) is greater than k.

Proof sketch. By the linearity of expectation, the expected size of the intersection set is |CG||CH |
n

=

k log2c n. Using large deviation inequalities, CG ∩σ(CH) > k with probability 1− o(2− logc n).

3 One-sided Testers

By Lemma 2.1, one-sided testers for isomorphism look at some query setQ of the input, and accept
if and only if the restriction of the input toQ is extensible to some input satisfying the property. The
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main idea is to prove that if the input is far from satisfying the property, then with high probability
its restriction Q will provide the evidence for it. To prove lower bounds for one-sided testers, it is
sufficient to find an input that is ε-far from satisfying the property, but for which the restriction of
the input to any possible set Q is extensible to some alternative input that satisfies the property. In
this section we prove the following:

Theorem 3.1. The query complexity of the best one-sided isomorphism tester is Θ̃(n3/2) (up to
coefficients depending only on the distance parameter ε) if both graphs are unknown, and it is
Θ̃(n) if one of the graphs is known in advance.

We first prove Theorem 3.1 for the case where both graphs are unknown, and then move to the
proof of the simpler second case where one of the graphs is known in advance.

3.1 One-sided testing of two unknown graphs

The upper bound

Algorithm 1.

1. For both graphs G1, G2 construct the query sets Q1, Q2 respectively by choosing every pos-

sible query with probability
√

lnn
εn

, independently of other queries.

2. If |Q1| or |Q2| is larger than 1000n3/2
√

lnn
ε

, accept without making the queries. Otherwise
make the chosen queries.

3. If there is a knowledge-packing of IG1,Q1 and IG2,Q2 , accept. Otherwise reject.

Clearly, the query complexity of Algorithm 1 is O(n3/2
√

log n) for every fixed ε.

Lemma 3.2. Algorithm 1 accepts with probability 1 if G1 and G2 are isomorphic, and if G1 and
G2 are ε-far from being isomorphic, Algorithm 1 rejects with probability 1− o(1).

Proof. Assume first that G1 and G2 are isomorphic, and let π be an isomorphism between them.
Obviously π is also a knowledge-packing for any pair of knowledge charts of G1 and G2. Hence,
if the algorithm did not accept in the second stage, then it will accept in the third stage.

Now we turn to the case where G1 and G2 are ε-far from being isomorphic. Due to large
deviation inequalities, the probability that Algorithm 1 terminates in Step 2 is o(1), and therefore
we can assume in the proof that it reaches Step 3 without harming the correctness. Since G1 and
G2 are ε-far from being isomorphic, every possible bijection π of their vertices has a set Eπ of at
least εn2 pairs of G1’s vertices such that for every {u, v} ∈ Eπ, either {u, v} is an edge in G1 or
{π(u), π(v)} is an edge in G2 but not both. Now we fix π and let {u, v} ∈ Eπ be one such pair.
The probability that {u, v} was not queried in G1 or {π(u), π(v)} was not queried in G2 is 1− lnn

εn
.

Since the queries where chosen independently, the probability that for all {u, v} ∈ Eπ either {u, v}
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was not queried in G1 or {π(u), π(v)} was not queried in G2 is at most (1 − lnn
εn

)εn
2 . Using the

union bound, we bound the probability of not revealing at least one such pair in both graphs for all
possible bijections by n!(1− lnn

εn
)εn

2 . This bound satisfies

n!(1− lnn

εn
)εn

2 ≤ n!(e−
lnn
εn )εn

2

= n!
1

nn
= o(1)

thus the algorithm rejects graphs that are ε-far from being isomorphic with probability 1−o(1).

The lower bound

Here we construct a pair G,H of 1/100-far graphs on n vertices, such that every knowledge chart
from IG,n3/2/200 can be packed with every knowledge chart from IH,n3/2/200, and hence by Lemma
2.1, any one-sided algorithm which is allowed to use at most n3/2/200 queries must always accept
G and H . Note that this holds for non-adaptive as well as adaptive algorithms, since we actually
prove that there is no certificate of size n3/2/200 for the non-isomorphism of these graphs.

Lemma 3.3. For every large enough n, there are two graphs G and H on n vertices, such that:

1. G is 1/100-far from being isomorphic to H

2. Every knowledge chart from IG,n3/2/200 can be knowledge-packed with any knowledge chart
from IH,n3/2/200

Proof. We set both G and H to be the union of a complete bipartite graph with a set of isolated
vertices. Formally, G has three vertex sets L,Rf , Re, where |L| = n/2, |Rf | = 26n/100 and
|Re| = 24n/100, and it has the following edges: {{u, v} : u ∈ L ∧ v ∈ Rf}. H has the same
structure, but with |Rf | = 24n/100 and |Re| = 26n/100, as illustrated in Figure 1. Clearly, just by
the difference in the edge count, G is 1/100-far from being isomorphic to H , so G and H satisfy
the first part of Lemma 3.3.

Figure 1: The graphs G and H (with the difference between them exaggerated)

L L

Re

Rf

Re

Rf
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To prove that the second condition of Lemma 3.3 holds, we will show that for all possible
query sets QG, QH of size n3/2/200 there exist sets YG ∈ Rf (G) and YH ∈ Re(H) that satisfy the
following.

• |YG| = |YH | = n/50

• the knowledge charts IG,QG and IH,QH restricted to L(G)∪YG and L(H)∪YH can be packed
in a way that pairs vertices from L(G) with vertices from L(H)

In Figure 2 we illustrate these restricted knowledge charts, where plain lines are known (queried)
edges, and the dashed lines are known (queried) “non-edges”. The existence of such YG and YH
implies the desired knowledge-packing, since we can complete the partial packing from the sec-
ond item by arbitrarily pairing vertices from Rf (G) \ YG with vertices from Rf (H), and pairing
vertices from Re(G) with vertices from Re(H) \ YH .

Figure 2: Finding YG and YH

L L

Re

Rf

Re

Rf

YG YH

Proving the existence of YG and YH

For every vertex v ∈ V (G), we define its query degree as

dQ(v) = |{{v, u} : u ∈ V (G) ∧ {v, u} ∈ QG}|

We also denote by NQ(v) the set {u : {v, u} ∈ E(G) ∩ QG} and we denote by NQ(v) the set
{u : {v, u} ∈ QG \ E(G)}. In other words, NQ(v) is the set of known neighbors of v and NQ(v)

is the set of known non-neighbors of v, and dQ(v) = |NQ(v)|+ |NQ(v)|. We define dQ(v), NQ(v)

and NQ(v) for H’s vertices similarly.
Since |QG|, |QH | ≤ n3/2/200, there must be two sets of vertices DG ∈ Rf (G) and DH ∈

Re(H), both of size n/10, such that ∀v∈DG : dQ(v) ≤ n1/2/2 and ∀v∈DH : dQ(v) ≤ n1/2/2.
Now we prove the existence of YG and YH (as defined above) using a simple probabilistic

argument. First we set an arbitrary pairing BD = {{v1
G, u

1
H}, {v2

G, u
2
H}, . . . , {v

n/10
G , u

n/10
H }} of

DG’s and DH’s elements. Then we choose a bijection BL : L(G) → L(H) uniformly at random,
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and show that with some positive probability, there are at least n/50 consistent (packable) pairs in
BD. Formally, we define

Y = {{vG, uH} ∈ BD : BL(NQ(vG)) ∩NQ(uH) = ∅}

as the set of consistent pairs, and show that Pr[|Y | ≥ n/50] > 0.
For a specific pair {v ∈ DG, u ∈ DH}, we have

PrBL [BL(NQ(v)) ∩NQ(u) = ∅] ≥
n1/2/2−1∏

i=0

(1− n1/2/2

n/2− i
)

≥ (1− 2n1/2

n
)n

1/2/2 ≥ (e+ 0.001)−1 ≥ 1/3

and by the linearity of expectation, E[|Y |] ≥ |DG|/3 > n/50. Therefore, there is at least one
bijection BL for which the size of Y is no less than its expectation. We can now set

YG = {u : ∃v ∈ V (H) such that {u, v} ∈ Y }

and
YH = {v : ∃u ∈ V (G) such that {u, v} ∈ Y }

concluding the proof.

3.2 One-sided testing where one of the graphs is known in advance

The algorithm for testing isomorphism between an unknown graph and a graph that is known in
advance is similar to Algorithm 1 above. In this case the algorithm makes a quasi-linear number
of queries, to accept with probability 1 if the graphs are isomorphic and reject with probability
1− o(1) if they are ε-far from being isomorphic. We also prove an almost matching nearly trivial
lower bound for this problem.

The upper bound

Denote by Gk and Gu the known and the unknown graphs respectively.

Algorithm 2.

1. Construct a query set Q by choosing every possible query from Gu with probability lnn
εn

,
independently at random.

2. If |Q| is larger than 10n lnn
ε

, accept without making the queries. Otherwise make the chosen
queries.

3. If there is a knowledge-packing of IGu,Q and IGk,[V (Gk)]2 , accept. Otherwise reject.
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Clearly the query complexity of Algorithm 2 is O(n log n), and it rejects in Step 2 with proba-
bility o(1).

Lemma 3.4. Algorithm 2 always accepts isomorphic graphs, and it rejects ε-far graphs with prob-
ability 1− o(1).

Proof. The proof is almost identical to that of Lemma 3.2. It is clear that isomorphic graphs are
always accepted by Algorithm 2. Now we assume that the graphs Gk and Gu are ε-far and that
the algorithm reached Step 3 (as it stops at Step 2 with probability o(1)) . Given a bijection π, the
probability that no violating pair {u, v} ∈ Eπ was queried is at most (1− lnn

εn
)εn

2 ≤ e−n lnn = n−n.
Applying the union bound over all n! possible bijections, the acceptance probability is bounded by
n!/nn = o(1)

The lower bound

As before, to give a lower bound on one-sided error algorithms it is sufficient to show that for some
Gk and Gu that are far, no “proof” of their non-isomorphism can be provided with Ω(n) queries.
First we formulate the second part of Lemma 2.1 for the special case where one of the graphs is
known in advance.

Lemma 3.5. If for some Gk, Gu, where Gk is known in advance, and some fixed 0 ≤ q ≤
(
n
2

)
,

IGk,[v(Gk)]2 is knowledge-packable with every IGu,Q ∈ IGu,q, then every one-sided error isomor-
phism tester which is allowed to ask at most q queries must always accept Gk and Gu.

We setGk to be a disjoint union ofKn/2 and n/2 isolated vertices, and setGu to be a completely
edgeless graph.

Observation 3.6. Gk and Gu are 1/4-far, and every IGu,Q ∈ IGu,n4 is knowledge-packable with
IGk,[V (Gk)]2 .

Proof. Clearly, just by the difference in the edge count, Gk is 1/4 far from being isomorphic to
Gu. But since n/4 queries cannot involve more than n/2 vertices from Gu (all isolated), and Gk

has n/2 isolated vertices, the knowledge charts are packable.

Together with Lemma 3.5, we get the desired lower bound. This concludes the proof of the last
part of Theorem 3.1.

4 Two-sided testers

In the context of graph properties, two-sided error testers are usually not known to achieve sig-
nificantly lower query complexity than the one-sided error testers, apart from the properties that

11



explicitly involve counting, such as Max-Cut and Max-Clique [13]. However, in our case two-
sided error isomorphism testers have substantially lower query complexity than their one-sided
error counterparts.

4.1 Two-sided testing where one of the graphs is known in advance

Theorem 4.1. The query complexity of two-sided error isomorphism testers is Θ̃(
√
n) if one of the

graphs is known in advance, and the other needs to be queried.

We prove the lower bound first. This way it will be easier to understand why certain stages of
the upper bound testing algorithm are necessary.

The lower bound

Lemma 4.2. Any isomorphism tester that makes at most
√
n

4
queries to Gu cannot distinguish

between the case that Gk and Gu are isomorphic and the case that they are 1/32-far from being
isomorphic, where Gk is known in advance.

We begin with a few definitions.

Definition 7. Given a graph G and a set W of n
2

vertices of G, we define the clone G(W ) of G in
the following way:

• the vertex set of G(W ) is defined as: V (G(W )) = W ∪ {w′ : w ∈ W}

• the edge set of G(W ) is defined as: E(G(W )) ={
{v, u} : {v, u} ∈ E(G)

}
∪
{
{v′, u} : {v, u} ∈ E(G)

}
∪
{
{v′, u′} : {v, u} ∈ E(G)

}
In other words, G(W ) is the product of the subgraph of G induced on W with the graph K2.

For the two copies v, v′ ∈ V (G(W )) of v ∈ W , we say that v is the source of both v and v′.

Lemma 4.3. Let G ∼ G(n, 1/2) be a random graph. With probability 1 − o(1) the graph G is
such that for every subset W ⊂ V (G) of size n/2, the clone G(W ) of G is 1/32-far from being
isomorphic to G.

Proof. Let G be a random graph according to G(n, 1/2), and let W ⊂ V (G) be an arbitrary subset
of G’s vertices of size n/2. First we show that for an arbitrary bijection σ : V (G(W ))→ V (G) the
graphs G(W ) and G are 1/32-close under σ with probability at most 2−Ω(n2), and then we apply the
union bound on all bijections and every possible subset W .

We split the bijection σ : V (G(W )) → V (G) into two injections σ1 : W → V (G) and σ2 :

V (G(W )) \W → V (G) \ σ1(W ). Note that either |W \ σ1(W )| ≥ n/4 or |W \ σ2(W )| ≥ n/4.
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Assume without loss of generality that the first case holds, and let U denote the set W \ σ1(W ).
Since every edge in G is chosen at random with probability 1/2, the probability that for some pair
u, v ∈ U either {u, v} is an edge in G and {σ(u), σ(v)} is not an edge in G or {u, v} is not an edge
in G and {σ(u), σ(v)} is an edge in G is exactly 1/2. Therefore, using large deviation inequalities,
the probability that in the set U there are less than

(
n
2

)
/32 such pairs is at most 2−Ω(n2) (as these

events are all independent). There are at most n! possible bijections, and
(
n
n/2

)
possible choices

for W , so using the union bound, the probability that for some W the graph G ∼ G(n, 1/2) is not
1/32-far from being isomorphic to G(W ) is at most 2−Ω(n2)

(
n
n/2

)
n! = o(1).

Given a graph G satisfying the assertion of Lemma 4.3, we set Gk = G and define two distri-
butions over graphs, from which we choose the unknown graph Gu:

• DP : A permutation of Gk, chosen uniformly at random.

• DN : A permutation of G(W )
k , where both W and the permutation are chosen uniformly at

random.

According to Lemma 4.3 and Lemma 2.3, it is sufficient to show that the distributions DP and
DN restricted to a set of

√
n/4 queries are close. In particular, we intend to show that for any

Q ⊂ D = V 2 of size
√
n/4, and any Q : Q → {0, 1}, we have PrDP |Q [Q] < 3

2
PrDN |Q [Q]. This

will imply a lower bound for adaptive (as well as non-adaptive) testing algorithms.

Observation 4.4. For a set U of G(W )’s vertices, define the event EU as the event that there is no
pair of copies w,w′ of any one of G’s vertices in U . For a given set of pairs Q, let UQ be the set
of all vertices that are incident with a pair in Q. Then the distribution DN |Q conditioned on the
event EUQ (defined above) and the unconditioned distribution DP |Q are identical.

Proof. In DN , if no two copies of any vertex were involved in the queries, then the source vertices
of the queries to Gu are in fact a uniformly random sequence (with no repetition) of the vertices
of Gk, and this (together with Gk) completely determines the distribution of the answers to the
queries. This is the same as the unconditioned distribution induced by DP .

Intuitively, the next lemma states that picking two copies of the same vertex in a randomly
permuted G(W ) requires many samples, as per the well known birthday problem.

Lemma 4.5. For a fixed set Q of at most
√
n/4 queries and the corresponding set U of vertices,

the probability that the event EU did not happen is at most 1/4.

Proof. The bound on |Q| implies that |U | ≤
√
n/2. Now we examine the vertices in U as if we

add them one by one. The probability that a vertex v that is added to U is a copy (with respect
to the original graph G) of some vertex u that was already inserted to U (or vice versa) is at most√
n

2n
. Hence, the probability that eventually (after

√
n/2 insertions) we have two copies of the same

vertex in U is at most
√
n

2n
·
√
n/2 = 1/4.
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¿From Observation 4.4, the distribution DN |Q conditioned on the event EU and the uncondi-
tioned distribution DP |Q are identical. By Lemma 4.5 it follows that Pr[EU ] > 2/3. Therefore,
for any g : Q → {0, 1} we have

PrDP |Q [g] <
3

2
PrDN |Q [g]

hence the distributions DP and DN satisfy the conditions of Lemma 2.3. The following corollary
completes the proof of Lemma 4.2.

Corollary 4.6. It is not possible for any algorithm (adaptive or not) making
√
n/4 (or less) queries

to test for isomorphism between a known graph and a graph that needs to be queried.

The upper bound

We start with a few definitions. Given a graphG and a subset C of V (G), we define the C-labeling
of G’s vertices as follows: every vertex v ∈ V (G) gets a label according to the set of its neighbors
in C. Note that there are 2|C| possible labels for a set C, but even if 2|C| > n still at most n of
the labels occur, since there are only n vertices in the graph. On the other hand, it is possible that
several vertices will have the same label according to C. Such a labeling implies the following
distribution over the vertices of G.

Definition 8. Given a graphG and a C-labeling of its vertices (according to some C ⊂ V (G)), we
denote by DC the distribution over the actual labels of the C-labeling (at most n labels), in which
the probability of a certain label γ is calculated from the number of vertices from V (G) having the
label γ under the C-labeling, divided by n.

Given a graph G on n vertices and a graph C on k < n vertices, we say that a one to one
function η : V (C) → V (G) is an embedding of C in G . We also call η(V (C)) the placement of
C in G. With a slight abuse of notation, from now on by a placement η(V (C)) we mean also the
correspondence given by η, and not just the set.

Given graphs G,H on n vertices, a subset CG of V (G) and a placement CH of CG in H under
an embedding η, we define the distance between the CG-labeling of G and the CH-labeling of H
as

1

2

∑
γ∈2CG

∣∣ |{u ∈ V (G) : N(u) ∩ CG = γ}| − |{v ∈ V (H) : N(v) ∩ η(CG) = γ}|
∣∣

this distance measure is equal to the usual variation distance between DCG and DCH multiplied by
n. We are now ready to prove the upper bound.

Lemma 4.7. Given an input graphGu and a known graphGk (both of order n), there is a property
tester Aku that accepts with probability at least 2/3 if Gu is isomorphic to Gk, and rejects with
probability at least 2/3 if Gu is ε-far from Gk. Furthermore, Aku makes Õ(

√
n) queries to Gu.

14



We first outline the algorithm: The test is performed in two main phases. In Phase 1 we
randomly choose a small subset Cu of Gu’s vertices, and try all possible placements of Cu in
the known graph Gk. The placements that imply a large distance between the labeling of Gu

and Gk are discarded. After filtering the good placements of Cu in Gk, we move to Phase 2. In
Phase 2 every one of the good placements is tested separately, by defining a random bijection
π : V (Gu)→ V (Gk) and testing whether π is close to being an isomorphism. Finally, if one of the
placements passed both Phase 1 and Phase 2, the graphs are accepted. Otherwise they are rejected.

Phase 1

In the first phase we choose at random a core set Cu of log2 n vertices from Gu (the unknown
graph). For every embedding η ofCu inGk and the corresponding placementCk ∈ Gk, we examine
the distributionsDCu andDCk as in Definition 8. Since the graphGk is known in advance, we know
exactly which are the actual labels according to Ck (in total no more than n labels), so from now
on we will consider the restriction of both distributions to these actual labels only. Next we test for
every embedding of Cu whether DCu is statistically close to DCk . Note that the distribution DCk

is explicitly given, and the distribution DCu can be sampled by choosing a vertex v from V (Gu)

uniformly at random, and making all queries {v} × Cu. If the label of some v ∈ V (Gu) does not
exist in the Ck-labeling of Gk, we immediately reject this placement and move to the next one.
Now we use the following lemma from [7], which states that Õ(

√
n) samples are sufficient for

testing if the sampled distribution is close to the explicitly given distribution.

Lemma 4.8. There is an algorithm that given two distributions DK ,DU over n elements and a
distance parameter ε, where DK is given explicitly and DU is given as a black box that allows
sampling according to the distribution, satisfies the following: If the distributions DK and DU are
identical, then the algorithm accepts with probability at least 1 − 2− log7 n; and if the variation
distance between DK and DU is larger than ε/10, then the algorithm accepts with probability at
most 2− log7 n. For a fixed ε, the algorithm uses Õ(

√
n) many samples.

Actually, this is an amplified version of the lemma from [7], which can be achieved by inde-
pendently repeating the algorithm provided there polylog(n) many times and taking the majority
vote. This amplification allows us to reuse the same Õ(

√
n) samples for all possible placements of

the core set. As a conclusion of Phase 1, the algorithm rejects the placements of Cu that imply a
large variation distance between the above distributions, and passes all other placements of Cu to
Phase 2. Naturally, if Phase 1 rejects all placements of Ck due to distribution test failures or due to
the existence of labels in Gu that do not exist in Gk, then Gu is rejected without moving to Phase
2 at all. First we observe the following.

Observation 4.9. With probability 1− o(1), all of the placements that passed Phase 1 imply ε/10-
close distributions, and all placements that imply identical distributions passed Phase 1. In other
words, the distribution test did not err on any of the placements.
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Proof. There are at most 2log3 n possible placements of Cu. Using the union bound with Lemma
4.8, we conclude that Phase 1 will not err with probability 1− o(1).

Phase 2

Following Observation 4.9, we need to design a test such that given a placement Ck of Cu in Gk

that implies close distributions, the test satisfies the following conditions:

1. If the graphs are isomorphic and the embedding of Cu is expandable to some isomorphism,
then the test accepts with probability at least 3/4

2. If the graphs Gu and Gk are ε-far, then the test accepts with probability at most o(2− log3 n).

If our test in Phase 2 satisfies these conditions, then we get the desired isomorphism tester.
From now on, when we refer to some placement of Cu we assume that it has passed Phase 1 and
hence implies close distributions.

In Phase 2 we choose a set Wu of log4 n vertices from V (Gu), and retrieve their labels ac-
cording to Cu by making the queries Wu × Cu. Additionally, we split Wu into 1

2
log4 n pairs

{{u1, v1}, . . . , {u 1
2

log4 n, v 1
2

log4 n}} randomly, and make all 1
2

log4 n queries according to these
pairs. This is done once, and the same set Wu is used for all the placements of Cu that are tested
in Phase 2. Then, for every placement Ck of Cu, we would like to define a random bijection
πCu,Ck : V (Gu) → V (Gk) as follows. For every label γ, the bijection πCu,Ck pairs the vertices
of Gu having label γ with the vertices of Gk having label γ uniformly at random. There might be
labels for which one of the graphs has more vertices than the other. We call these remaining ver-
tices leftovers. Note that the amount of leftovers from each graph is equal to the distance between
the Ck-labeling and the Cu-labeling. Finally, after πCu,Ck pairs all matching vertices, the leftover
vertices are paired arbitrarily. In practice, since we do not know the labels of Gu’s vertices, we
instead define a partial bijection π̃Cu,Ck(Wu) → V (Gk) as follows. Every vertex v ∈ Wu that has
the label γv is paired uniformly at random with one of the vertices of Gk which has the same label
γv and was not paired yet. If this is impossible, we reject the current placement of Cu and move to
the next one.

Denote by δCu,Ck the fraction of the queried pairs from Wu for which exactly one of {ui, vi}
and {π̃Cu,Ck(ui), π̃Cu,Ck(vi)} is an edge. If δCu,Ck ≤ ε/2, then Gu is accepted. Otherwise we move
to the next placement of Cu. If none of the placements was accepted, Gu is rejected.

Correctness

A crucial observation in our proof is that with high probability, any two vertices that have many
distinct neighbors in the whole graph will also have distinct neighbors within a “large enough”
random core set.
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Formally, given a graph G and a subset C of its vertices, we say that C is β-separating if for
every pair of vertices u, v ∈ V (G) such that duv , 1

n
|{N(u)4N(v)}| ≥ β the vertices u and v

have different labels under the C-labeling of G.

Claim 4.10. Let β > 0 be fixed, let G be a graph of order n and let C ⊂ V (G) be uniformly
chosen random subset of size log2 n. Then C is β-separating with probability 1− o(1).

Proof. Fix a pair u, v ∈ V (G). If u, v are such that duv > β, then the probability that they share
exactly the same neighbors in C is bounded by (1 − β)log2 n ≤ e−β log2 n = n−β logn. Using the
union bound, with probability 1−o(1) every pair u, v of vertices with duv > β will not have exactly
the same neighbors in C, i.e. the vertices will have different labels under the C-labeling.

Lemma 4.11 (completeness). Conditioned over the event that Cu is ε/8-separating, if the graphs
Gu and Gk are isomorphic and the placement Ck of Cu is expandable to some isomorphism, then
Pr[δCu,Ck ≤ ε/2] = 1− o(1), and hence Ck is accepted in Phase 2 with probability 1− o(1).

Proof. Let φ : V (Gu) → V (Gk) be an isomorphism to which the placement of Cu is expand-
able. By definition, for every pair v1, v2 of Gu’s vertices, {v1, v2} is an edge in Gu if and only
if {φ(v1), φ(v2)} is an edge in Gk. In addition, for every vertex v ∈ V (Gu), the vertices v and
φ(v) have exactly the same labels. Let σ be the permutation, such that πCu,Ck is the composition
of σ and the isomorphism φ. In the rest of this proof, by distance we mean the absolute distance
between two labeled graphs (which is between 0 and

(
n
2

)
).

First we show that the distance from σ(Gu) toGk is almost the same as the distance from φ(Gu)

to Gk (which is zero since φ is an isomorphism), and then we apply large deviation inequalities to
conclude that Pr[δCu,Ck ≤ ε/2] = 1− o(1).

To prove that the distance from σ(Gu) to Gk is close to zero we show a transformation of φ
into πCu,Ck by performing “swaps” between vertices that have the same label. Namely, we define
a sequence of permutations φi, starting from φ0 = φ, and ending with φt = πCu,Ck . In each step, if
there is some vertex v0 such that φi(v0) = u1 while πCu,Ck(v0) = u0, then we find a vertex v1 such
that φi(v1) = u0, and set φi+1(v0) = u0 and φi+1(v1) = u1. The rest of the vertices are mapped by
φi+1 as they were mapped by φi.

Since in each step we only swap between vertices with the same label, and since the core set
Cu is ε/8-separating, every such swap can increase the distance by at most εn/8, so eventually the
distance between σ(Gu) andGk is at most εn2/8. Therefore, by large deviation inequalities, δCu,Ck
as defined in Phase 2 is at most ε/2 with probability 1− o(1), and so the placement Ck is accepted.

We now turn to the case where Gu and Gk are ε-far. Note that until now we did not used the
fact that Cu and Ck imply close distributions. To understand why this closeness is important, recall
the pairs of graphs from the lower bound proof. If we give up the distribution test in Phase 1, then
these graphs will be accepted with high probability, since the algorithm cannot reveal two copies
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of the same vertex when sampling o(
√
n) vertices (recall that |Wu| = O(log4 n)). Intuitively, the

problem is that in these pairs of graphs, the partial random bijection π̃Cu,Ck will not simulate a
restriction of the random bijection πCu,Ck to a set of log4 n vertices. In the lower bound example,
π̃Cu,Ck will have no leftovers with high probability, even though πCu,Ck will always have Ω(n)

leftovers. The reason is that in the cloned graph Gu, for each of about half of the labels from
Ck there are two times more vertices, while for the second half there are no vertices at all. The
distribution test in Phase 1 actually checks whether the clustering of the vertices according to the
labels is into subsets of almost equal sizes in both Gu and Gk. If it is so, then the partial random
bijection π̃Cu,Ck is indeed similar to the restriction of a bijection πCu,Ck to a set of log4 n vertices.

Lemma 4.12 (soundness). If the graphs Gu and Gk are ε-far, and the placement Ck implies ε/10-
close distributions, then Pr[δCu,Ck ≤ ε/2] ≤ o(2− log3 n), and hence Ck is accepted in Phase 2 with
probability at most o(2− log3 n).

Proof. Assume that for a fixed Ck the random bijection πCu,Ck is ε-far from isomorphism. We then
need to show that δCu,Ck as defined in Phase 2 is larger than ε/2 with probability 1− o(2− log3 n).

Since the variation distance between the distributionsDCu andDCk is at most ε/10, the amount
of leftovers (which is exactly the distance between the Cu-labeling of Gu and the Ck-labeling of
Gk) is at most εn/10. Therefore, even if we first remove those εn/10 (or less) leftovers, the fraction
of pairs u, v for which exactly one of {u, v} and {π̃Cu,Ck(u), π̃Cu,Ck(v)} is an edge is not smaller
by more than 4ε/10 from that of πCu,Ck .

Let π̃Cu,Ck be the random partial bijection as defined above. The distribution test of Phase 1
guaranties that π̃Cu,Ck is a random restriction of a function that is ε/10-close to some bijection
πCu,Ck . Since Gu is ε-far from Gk, the bijection πCu,Ck must be ε-far from being an isomorphism,
and hence π̃Cu,Ck must exhibit a 6ε/10-fraction of mismatching edges. Note that the acceptance
probability of Ck given π̃Cu,Ck is equal to the probability that δCu,Ck as defined in Phase 2 is at most
ε/2. Large deviation inequalities show that this probability is at most 2−Ω(log4 n) = o(2− log3 n).

As a conclusion, ifGk andGu are isomorphic, then the probability thatCu is not ε/8-separating
is at most o(1), and for a correct (under some isomorphism) embedding ofCu inGk, the probability
that the distribution test will fail is also o(1), so in summary algorithmAku accepts with probability
greater than 2/3. In the case that Gk and Gu are ε-far from being isomorphic, with probability
1− o(1) all placements that are passed to Phase 2 imply close label distributions. Then each such
placement is rejected in Phase 2 with probability 1 − o(2− log3 n), and by the union bound over all
possible placements the graphs are accepted with probability less than 1/3. Algorithm Aku makes
Õ(
√
n) queries in Phase 1 and Õ(n1/4) queries in Phase 2. This completes the proof of Lemma 4.7

and so of Theorem 4.1.
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4.2 Two-sided testing of two unknown graphs

Theorem 4.13. The query complexity of two-sided error isomorphism testers is between Ω(n) and
Õ(n5/4) if both graphs need to be queried.

The upper bound

Lemma 4.14. Given two unknown graphs G and H on n vertices, there is a property tester Auu
that accepts with probability at least 2/3 if G is isomorphic to H , and rejects with probability at
least 2/3 if G is ε-far from H . Furthermore, Auu makes Õ(n5/4) queries to G and H .

We use here ideas similar to those used in the upper bound proof of Lemma 4.7, but with
several modifications. The main difference between this case and the case where one of the graphs
is known in advance is that here we cannot write all label distributions with all possible core
sets in either one of the unknown graphs (because doing that would require Ω(n2) queries). We
overcome this difficulty by sampling from both graphs in a way that with high probability will
make it possible to essentially simulate the test for isomorphism where one of the graphs is known
in advance.

Phase 1

First we randomly pick a set UG of n1/4 log3(n) vertices from G, and a set UH of n3/4 log3(n)

vertices from H . Then we make all n5/4 log3(n) possible queries in UG × V (G). Note that if G
and H have an isomorphism σ, then according to Lemma 2.4 with probability 1− o(1) the size of
UG ∩ σ(UH) will exceed log2(n).

For all subsetsCG of UG of size log2 nwe try every possible placementCH ⊂ UH ofCG. There
are at most 2log3 n subsets CG, and at most 2log3 n possible ways to embed each CG in UH . Since
we made all n5/4 log3(n) possible queries in UG × V (G), for every CG ⊂ UG the corresponding
distribution DCG is entirely known.

So now for every possible placement of CG in UH we test if the variation distance between the
distributions DCG and DCH is at most ε/10. Since we know the entire distributions DCG , we only
need to sample the distribution DCH , therefore we can still use the amplified distribution test of
Lemma 4.8. The test there requires Õ(

√
n) samples, so similarly to the proof of Lemma 4.7 we

take a random set S of Õ(
√
n) vertices from H and make all n5/4polylog(n) queries in S × UH .

We reject the pairs of a set CG and a placement CH that were rejected by the distribution test
for DCG and DCH , and pass all other pairs to Phase 2. If Phase 1 rejects all possible pairs, then the
graphs G and H are rejected without moving to Phase 2. The following observation is similar to
the one we used in the case where one of the graphs is known in advance.
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Observation 4.15. With probability 1 − o(1), all of the placements that passed Phase 1 imply
ε/10-close distributions, and all placements that imply identical distributions passed Phase 1. In
other words, the distribution test did not err on any of the placements.

Phase 2

As in Lemma 4.7, we need to design a test which given a placement CH of CG in H that implies
close distributions, satisfies the following conditions:

1. If the graphs are isomorphic and the embedding of CH is expandable to some isomorphism,
then the test accepts with probability at least 3/4

2. If the graphs G and H are ε-far, then the test accepts with probability at most o(2−2 log3 n).

In Phase 2 we choose at random a set WG of n1/2 log13 n vertices from V (G), and a set WH

of n1/2 log6 n vertices from V (H). We retrieve the labels in WH according to any CH by making
the queries WH × UH . Additionally, we make all queries inside WH and all queries inside WG.
This is done once, and the same sets WG,WH are used for all of the pairs CG, CH that are tested in
Phase 2. According to Lemma 2.4, if the graphs are isomorphic under some isomorphism σ, then
|WH ∩ σ(WG)| > log7 n with probability 1− o(1).

Then, similarly to what is done in Lemma 4.7, for every pair CG, CH , we would like to define a
random bijection πCG,CH : V (G)→ V (H) as follows. For every label γ, πCG,CH pairs the vertices
of G having label γ with the vertices of H having label γ uniformly at random. After πCG,CH pairs
all matching vertices, the leftover vertices are paired arbitrarily. Then again, since we do not know
the labels of H’s vertices, we define a partial bijection π̃CG,CH (WH) → V (G) instead, in which
every vertex v ∈ WH that has the label γv is paired uniformly at random with one of the vertices of
G which has the same label γv and was not paired yet. If this is impossible, we reject the current
pair CG, CH and move to the next one.

Denote by IH the set π̃CG,CH (WH) ∩WG, and denote by SH the set π̃−1
CG,CH

(IH) . According
to Lemma 2.4, |IH | > log7 n with probability 1 − o(2− log6 n), that is, with probability 1 − o(1)

we have |IH | > log7 n for every pair CG, CH (if this is not the case, we terminate the algorithm
and answer arbitrarily). Next we take 1

2
log7 n pairs {{u1, v1}, . . . , {u 1

2
log7 n, v 1

2
log7 n}} randomly

from SH , and denote by δCG,CH the fraction of SH’s pairs for which exactly one of {ui, vi} and
{π̃CG,CH (ui), π̃CG,CH (vi)} is an edge. If δCG,CH ≤ ε/2, then the graphs are accepted. Otherwise
we move to the next pair CG, CH . If none of the pairs accepted, then the graphs are rejected.

As noted above, if G and H are isomorphic, then according to Lemma 2.4 with probability
1− o(1) the size of UG ∩ σ(UH) is at least log2(n). Therefore with probability 1− o(1) for some
pair CH , CG the placement CH of CG is expandable to an isomorphism. We now need to show that
in this case the pair CH , CG is accepted with sufficient probability.
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Lemma 4.16 (completeness). If the graphs G and H are isomorphic and σ is an isomorphism
between them, then with probability at least 3/4 there exists CG ⊂ UG with a placement CH ⊂ UH
which is expandable to σ, and for which δCG,CH ≤ ε/2.

Proof sketch. First we look at the set ∆ = UG ∩ σ−1(UH). By Lemma 2.4 the size of ∆ is at least
log2 n with probability 1 − o(1). Conditioned on this event, we pick CG ⊆ ∆ ⊆ UG uniformly
from all subsets of ∆ with size log2 n, and set CH = σ(CG) to be its placement in UH . We now
prove that conditioned on the event that ∆ is large enough, CG and CH will be as required with
probability 1− o(1).

Our main observation is that if we condition only on the event that ∆ is large enough, then
CG is distributed uniformly among all subsets with this size of V (G), so we proceed similarly to
the case where one of the graphs is known in advance. We observe that if two vertices have many
distinct neighbors, then with high probability they will not share exactly the same neighbors within
a random core set of size log2 n (see Lemma 4.10), so CG has a separating property. When this
happens, it is possible to switch between the vertices with identical labels and still retain a small
enough bound on δCG,CH .

Lemma 4.17 (soundness). If the graphs G and H are ε-far, and the pair CG, CH implies close
distributions, then Pr[δCG,CH ≤ ε/2] ≤ o(2− log6 n), and hence the pair CG, CH is accepted in
Phase 2 with probability at most o(2− log6 n).

Proof sketch. As before, assume that for a fixed pair CG, CH the random bijection πCG,CH is ε-far
from isomorphism. We then need to show that δCG,CH as defined in Phase 2 is at most ε/2 with
probability only o(2− log6 n).

Since the variation distance between the distributionsDCG andDCH is at most ε/10, the amount
of leftovers (which is exactly the distance between the CG-labeling and the CH-labeling) is at most
εn/10. After removing those εn/10 (or less) leftovers, the fraction of pairs u, v for which exactly
one of {u, v} and {π̃CG,CH (u), π̃CG,CH (v)} is an edge is still not smaller than that of πCG,CH by
more than 4ε/10. Now the distribution test of Phase 1 guaranties that π̃CG,CH is ε/10-close to the
restriction of some random bijection πCG,CH . Since the graph G is ε-far from being isomorphic
to the graph H , the bijection πCG,CH must be ε-far from an isomorphism, and hence π̃CG,CH must
exhibit a 6ε/10-fraction of incompatible edges, and the acceptance probability of the pair CG, CH
given π̃CG,CH is equal to the probability that δCG,CH as defined in Phase 2 is at most ε/2. Applying
large deviation inequalities shows that this probability is at most 2−Ω(log7 n) = o(2− log6 n).

The isomorphism testing algorithm Auu makes Õ(n5/4) queries in total, completing the proof
of Theorem 4.13.

The lower bound

A lower bound of Ω(n) queries is implicitly stated in [9] following [1]. Here we provide the
detailed proof for completeness.
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Lemma 4.18. Any adaptive (as well as non-adaptive) testing algorithm that makes at most n
4

queries cannot distinguish between the case that the unknown input graphs G and H are isomor-
phic, and the case that they are 1

8
-far from being isomorphic.

Proof. We construct two distributions over pairs of graphs. The distribution DP is constructed by
letting the pair of graphs consist of a random graph G ∼ G(n, 1/2) and a graph H that is a random
permutation of G. The distribution DN is constructed by letting the pair of graphs consist of two
independently chosen random graphs G,H ∼ G(n, 1/2).

Clearly DP satisfies the property with probability 1. By large deviation inequalities, it is also
clear that in an input chosen according to DN , the graphs G and H are 1

8
-far with probability

1 − 2Ω(n2). The next step is to replace DN with D′N , in which the graphs are 1
8
-far from being

isomorphic with probability 1. We just set D′N to be the distribution that results from conditioning
DN on the event that G is indeed 1

8
-far from H .

We now consider any fixed set Q = {p1, . . . , pn
4
} of vertex pairs, some from the first graph,

and others from the second graph. For an input chosen according to the distributionDN , the values
of these pairs (the answers for corresponding queries) are n

4
uniformly and independently chosen

random bits. We now analyze the distribution DP . Let e1, . . . , ek and f1, . . . , fl be all vertex pairs
of the first and the second graph respectively, that appear in Q. Clearly k, l ≤ |Q| = n

4
. Let

σ : {1, . . . , n} → {1, . . . , n} be the permutation according to which the second graph is chosen
in DP . Let E denote the event that σ(ei) 6= fj for every 1 ≤ i ≤ k and 1 ≤ j ≤ l, where for
e = {u, v} we denote by σ(e) the pair {σ(u), σ(v)}. Clearly, if E occurs then {p1, . . . , pn

4
} will

be a set of n
4

uniformly and independently chosen random bits.

Claim 4.19. The event E as defined above occurs with probability at least 3/4.

Proof. For a single pair ei and a random permutation σ, the probability that ei = σ(fj) for some
1 ≤ j ≤ l is bounded by n

2(n2)
. Hence by the union bound, Pr[E] ≥ 1− kn

2(n2)
> 3/4.

Since E occurs with probability at least 3/4, and since the event upon which we conditioned
DN to get D′N occurs with probability 1 − 2−Ω(n2) = 1 − o(2−|Q|), we get that for any g : Q →
{0, 1}, we have PrD′

N |Q [g] < 3
2
PrDP |Q [g] and therefore the distributions DP and D′N satisfy the

conditions of of Lemma 2.3.

5 Concluding Remarks

While our two-sided error algorithms run in time quasi-polynomial in n (like the general approxi-
mation algorithm of [6]), the one-sided algorithms presented here require an exponential running
time. It would be interesting to reduce the running time of the one-sided algorithms to be quasi-
polynomial while still keeping them one-sided.
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Another issue goes back to [1]. There, the graph isomorphism question was used to prove
that certain first order graph properties are impossible to test with a constant number of queries.
However, in view of the situation with graph isomorphism, the question now is whether every first
order graph property is testable with O(n2−α) many queries for some α > 0 that depends on the
property to be tested.

Finally, it would be interesting to close the remaining gap between Ω(n) and Õ(n5/4) in the
setting of two graphs that need to be queried, and a two-sided error algorithm. It appears (with the
aid of martingale analysis on the same distributionsDP ,DN as above) that at least for non-adaptive
algorithms the lower bound can be increased a little to a bound of the form Ω(n logα n), but we are
currently unable to give tighter bounds on the power of n.
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