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Abstract

We study the query complexity of testing for properties defined by read once formulas, as instances
of massively parametrized properties, and prove several testability and non-testability results. First
we prove the testability of any property accepted by a Boolean read-once formula involving any
bounded arity gates, with a number of queries exponential in ε, doubly exponential in the arity,
and independent of all other parameters. When the gates are limited to being monotone, we prove
that there is an estimation algorithm, that outputs an approximation of the distance of the input
from satisfying the property. For formulas only involving And/Or gates, we provide a more efficient
test whose query complexity is only quasipolynomial in ε. On the other hand, we show that such
testability results do not hold in general for formulas over non-Boolean alphabets; specifically we
construct a property defined by a read-once arity 2 (non-Boolean) formula over an alphabet of size
4, such that any 1/4-test for it requires a number of queries depending on the formula size. We also
present such a formula over an alphabet of size 5 that additionally satisfies a strong monotonicity
condition.

1 Introduction
Property Testing deals with randomized approximation algorithms that operate under low information
situations. The definition of a property testing algorithm uses the following components: A set of
objects, usually the set of strings Σ∗ over some alphabet Σ; a notion of a single query to the input object
w = (w1, . . . , wn) ∈ Σ∗, which in our case would consist of either retrieving the length |w| or the i’th
letter wi for any i specified by the algorithm; and finally a notion of farness, a normalized distance,
which in our case will be the Hamming distance — farness(w, v) is defined to be ∞ if |w| 6= |v| and
otherwise it is |{i : wi 6= vi}|/|v|.

Given a property P , that is a set of objects P ⊆ Σ∗, an integer q, and a farness parameter ε > 0,
an ε-test for P with query complexity q is an algorithm that is allowed access to an input object only
through queries, and distinguishes between inputs that satisfy P and inputs that are ε-far from satisfying
P (that is, inputs whose farness from any object of P is more than ε), while using at most q queries. By
their nature the only possible testing algorithms are probabilistic, with either 1-sided or 2-sided error
(1-sided error algorithms must accept objects from P with probability 1). Traditionally the query “what
is |w|” is not counted towards the q query limit.

The ultimate goal of Property-Testing research is to classify properties according to their optimal
ε-test query-complexity. In particular, a property whose optimal query complexity depends on ε alone
and not on the length |w| is called testable. In many (but not all) cases a “query-efficient” property test
will also be efficient in other computational resources, such as running time (usually it will be the time
it takes to retrieve a query multiplied by some function of the number of queries) and space complexity
(outside the space used to store the input itself).
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Property-Testing was first addressed by Blum, Luby and Rubinfeld [4], and most of its general
notions were first formulated by Rubinfeld and Sudan [18], where the investigated properties are mostly
of an algebraic nature, such as the property of a Boolean function being linear. The first excursion
to combinatorial properties and the formal definition of testability were by Goldreich, Goldwasser and
Ron [11]. Since then Property-Testing has attracted significant attention leading to many results. For
surveys see [6], [10], [16], [17].

Many times families of properties are investigated rather than individual properties, and one way to
express such families is through the use of parameters. For example, k-colorability (as investigated in [11])
has an integer parameter, and the more general partition properties investigated there have the sequence
of density constraints as parameters. In early investigations the parameters were considered “constant”
with regards to the query complexity bounds, which were allowed to depend on them arbitrarily. However,
later investigations involved properties whose “parameter” has in fact a description size comparable to
the input itself. Probably the earliest example of this is [14], where properties accepted by a general
read-once oblivious branching program are investigated. In such a setting a general dependency of the
query complexity on the parameter is inadmissible, and indeed in [14] the dependency is only on the
maximum width of the branching program, which may be thought of as a complexity parameter of the
stated problem.

A fitting name for such families of properties is massively parametrized properties. A good way to
formalize this setting is to consider an input to be divided to two parts. One part is the parameter, the
branching program in the example above, to which the testing algorithm is allowed full access without
counting queries. The other part is the tested input, to which the algorithm is allowed only a limited
number of queries as above. Also, in the definition of farness only changes to the tested input are allowed,
and not to the parameter. In other words, two “inputs” that differ on the parameter part are considered
to be ∞-far from each other. In this setting also other computational measures commonly come into
play, such as the running time it takes to plan which queries will be made to the tested input.

Recently, a number of results concerning a massively parametrized setting (though at first not under
this name) have appeared. See for example [12, 5, 7, 9] and the survey [15], as well as [2], where such an
ε-test was used as part of a larger mechanism.

A central area of research in Property-Testing in general and Massively-Parametrized Testing in
particular is to associate the query complexity of problems to their other measures of complexity. There
are a number of results in this direction, to name some examples see [1, 14, 8]. In [3] the study of formula
satisfiability was initiated. There it was shown that there exists a property that is defined by a 3-CNF
formula and yet has a query complexity that is linear in the size of the input. This implies that knowing
that a specific property is accepted by a 3-CNF formula does not give any information about its query
complexity. In [13] it was shown that if a property is accepted by a read-twice CNF formula, then the
property is testable. Here we continue this line of research.

In this paper we study the query complexity of properties that are accepted by read once formulas.
These can be described as computational trees, with the tested input values at the leaves and logic
gates at the other nodes, where for an input to be in the property a certain value must result when the
calculation is concluded at the root.

Section 2 contains preliminaries. First we define the properties that we test, and then we introduce
numerous definitions and lemmas about bringing the formulas whose satisfaction is tested into a normal-
ized “basic form”. These are important and in fact implicitly form a preprocessing part of our algorithms.
Once the formula is put in a basic form, testing an assignment to the formula becomes manageable.

In Section 3 we show the testability of properties defined by formulas involving arbitrary Boolean gates
of bounded arity. For such formulas involving only monotone gates, we provide an estimation algorithm
in Section 4, that is an algorithm that not only tests for the property, but with high probability outputs
a real number η such that the true farness of the tested input from the property is between η − ε and
η + ε. In Section 5 we show that when restricted to And/Or gates, we can provide a test whose query
complexity is quasipolynomial in ε. We supply a brief analysis of the running times of the algorithms in
Section 6.

On the other hand, we prove in Section 7 that these results can not be generalized to alphabets that
have at least four different letters. We construct a formula utilizing only one (symmetric and binary) gate
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type over an alphabet of size 4, such that the resulting property requires a number of queries depending
on the formula (and input) size for a 1/4-test. We also prove that for the cost of one additional alphabet
symbol, we can construct a non-testable explicitly monotone property (both the gate used and the
acceptance condition are monotone).

Results such as these might have interesting applications in computational complexity. One inter-
esting implication of the testability results here is that any read-once formula accepting an untestable
Boolean property must use unbounded arity gates other than And/Or. By proving that properties de-
fined by formulas of a simple form admit efficient property testers, one also paves a path for proving
that certain properties cannot be defined by formulas of a simple form — just show that these properties
cannot be efficiently testable. Since property testing lower bounds are in general easier to prove than
computational complexity lower bounds, we hope that this can be a useful approach.
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2 Preliminaries
We use [k] to denote the set {1, . . . , k}. A digraph G is a pair (V,E) such that E ⊆ V × V . For every
v ∈ V we set out-deg(v) = |{u ∈ V | (v, u) ∈ E}|. A path is a tuple (u1, . . . , uk) ∈ |V |k such that
(ui, ui+1) ∈ E for every i ∈ [k−1]. We say that a path (u1, . . . , uk) is simple if u1, . . . , uk are all distinct.
The length of a path (u1, . . . , uk) ∈ |V |k is k − 1. We say that there is a path from u to v if there exists
a path (u1, . . . , uk) in G such that u1 = u, and uk = v. The distance from u ∈ V to v ∈ V , denoted
dist(u, v), is the length of the shortest path from u to v if one exists and infinity otherwise.

We use the standard terminology for outward-directed rooted trees. A rooted directed tree is a tuple
(V,E, r), where (V,E) is a digraph, r ∈ V and for every v ∈ V there is a unique path, simple or otherwise,
from r to v. Let u, v ∈ V . If out-deg(v) = 0 then we call v a leaf. We say that u is an ancestor of v and
v is a descendant of u if there is a path from u to v. We say that u is a child of v and v is a parent of u
if (v, u) ∈ E, and set Children(v) = {w ∈ V | w is a child of v}.

2.1 Formulas, evaluations and testing
With the terminology of rooted trees we now define our properties; first we define what is a formula and
then we define what it means to satisfy one.

Definition 2.1 (Formula) A Formula is a tuple Φ = (V,E, r,X, κ,B,Σ), where (V,E, r) is a rooted
directed tree, Σ is an alphabet, X is a set of variables (later on they will take values in Σ), B ⊆⋃
k<∞{Σk 7→ Σ} a set of functions over Σ, and κ : V → B ∪ X ∪ Σ satisfies the following (we abuse

notation somewhat by writing κv for κ(v)).

• For every leaf v ∈ V we have that κv ∈ X ∪ Σ.

• For every v that is not a leaf κv ∈ B is a function whose arity is |Children(v)|.

In the case where B contains functions that are not symmetric, we additionally assume that for every
v ∈ V there is an ordering of Children(v) = (u1, . . . , uk).

In the special case where Σ is the binary alphabet {0, 1}, we say that Φ is Boolean. Unless stated
otherwise Σ = {0, 1}, in which case we shall omit Σ from the definition of formulas. A formula Φ =
(V,E, r,X, κ,B,Σ) is called read k-times if for every x ∈ X there are at most k vertices v ∈ V , where
κv ≡ x. We call Φ a read-once-formula if it is read 1-times. A formula Φ = (V,E, r,X, κ,B,Σ) is called
k-ary if the arity (number of children) of all its vertices is at most k. If a formula is 2-ary we then call it
binary. A function f : {0, 1}n → {0, 1} is monotone if whenever x ∈ {0, 1}n is such that f(x) = 1, then
for every y ∈ {0, 1}n such that x ≤ y (coordinate-wise) we have f(y) = 1 as well. If all the functions
in B are monotone then we say that Φ is (explicitly) monotone. We denote |Φ| = |X| and call it the
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formula size (this makes sense for read-once formulas). Note that this is different from another notion of
formula size that refers to the number of operators. In our case, the formula size is the size of its input.

Definition 2.2 (Sub-Formula) Let Φ = (V,E, r,X, κ,B) be a formula and u ∈ V . The formula
Φu = (Vu, Eu, u,Xu, κ,B), is such that Vu ⊆ V , with v ∈ Vu if and only if dist(u, v) is finite, and
(v, w) ∈ Eu if and only if v, w ∈ Vu and (v, w) ∈ E. Xu is the set of all κv ∈ X such that v ∈ Vu. If
u 6= r then we call Φu a strict sub-formula. We define |Φu| to be the number of variables in Vu, that is
|Φu| = |Xu|, and the weight of u with respect to its parent v is defined as |Φu|/|Φv|.

Definition 2.3 (assignment to and evaluation of a formula) An assignment σ to a formula Φ =
(V,E, r,X, κ,B,Σ) is a mapping from X to Σ. The evaluation of Φ given σ, denoted (abusing notation
somewhat) by σ(Φ), is defined as σ(r) where σ : V → Σ is recursively defined as follows.

• If κv ∈ Σ then σ(v) = κv.

• If κv ∈ X then σ(v) = σ(κv).

• Otherwise (κv ∈ B) denote the members of the set Children(v) by (u1, . . . , uk) and set σ(v) =
κv(σ(u1), . . . , σ(uk)).

Given an assignment σ : X → Σ and u ∈ V , we let σu denote its restriction to Xu, but whenever
there is no confusion we just use σ also for the restriction (as an assignment to Φu).

For Boolean formulas, we set SAT(Φ = b) to be all the assignments σ to Φ such that σ(Φ) = b.
When b = 1 and we do not consider the case b = 0 in that context, we simply denote these assignments
by SAT(Φ). If σ ∈ SAT(Φ) then we say that σ satisfies Φ. Let σ1, σ2 be assignments to Φ. We
define farnessΦ(σ1, σ2) to be the relative Hamming distance between the two assignments. That is,
farnessΦ(σ1, σ2) = |{x ∈ X | σ1(x) 6= σ2(x)}|/|Φ|. For every assignment σ to Φ and every subset S
of assignments to Φ we define farnessΦ(σ, S) = min{farnessΦ(σ, σ′) | σ′ ∈ S}. If farnessΦ(σ, S) > ε

then σ is ε-far from S and otherwise it is ε-close to S.
We now have the ingredients to define testing of assignments to formulas in a massively parametrized

model. Namely, the formula Φ is the parameter that is known to the algorithm in advance and may not
change, while the assignment σ : X → Σ must be queried using as few queries as possible, and farness is
measured with respect to the fraction of alterations it requires.

Definition 2.4 [(ε, q)-test] An (ε, q)-test for SAT(Φ) is a randomized algorithm A with free access to
Φ, that given oracle access to an assignment σ to Φ operates as follows.

• A makes at most q queries to σ (where on a query x ∈ X it receives σx as the answer).

• If σ ∈ SAT(Φ), then A accepts (returns 1) with probability at least 2/3.

• If σ is ε-far from SAT(Φ), then A rejects (returns 0) with probability at least 2/3. Recall that σ is
ε-far from SAT(Φ) if its relative Hamming distance from every assignment in SAT(Φ) is at least ε.

We say that A is non-adaptive if its choice of queries is independent of their values (and may depend
only on Φ). We say that A has 1-sided error if given oracle access to σ ∈ SAT(Φ), it accepts (returns 1)
with probability 1. We say that A is an (ε, q)-estimator if it returns a value η such that with probability
at least 2/3, σ is both (η + ε)-close and (η − ε)-far from SAT(Φ).

We can now summarize the contributions of the paper in the following theorem:

Theorem 2.5 (Main Theorem) The following statements all hold for all constant k:

• For any read-once formula Φ where B is the set of all functions of arity at most k there exists a
1-sided (ε, q)-test for SAT(Φ) with q = exp(poly(ε−1)) (Theorem 3.1).

• For any read-once formula Φ where B is the set of all monotone functions of arity at most k there
exists an (ε, q)-estimator for SAT(Φ) with q = exp(poly(ε−1)) (Theorem 4.1).
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• For any read-once formula Φ where B is the set of all conjunctions and disjunctions of any arity
there exists an (ε, q)-test for SAT(Φ) with q = εO(log ε) (Corollary 5.9 of Theorem 5.8).

• There exists an infinite family of 4-valued read-once formulas Φ, where B contains one binary
function, and an appropriate b ∈ Σ, such that there is no non-adaptive (ε, q)-test for SAT(Φ = b)
with q = O(depth(Φ)), and no adaptive (ε, q)-test for SAT(Φ) with q = O(log(depth(Φ))); there
also exists such a family of 5-valued read-once formulas whose gates and acceptance condition are
monotone with respect to a fixed order of the alphabet. (Theorem 7.8 and Theorem 7.14 respec-
tively).

Note that for the first two items, the degree of the polynomial is linear in k.

2.2 Basic formula simplification and handling
In the following, unless stated otherwise, our formulas will all be read-once and Boolean. For our
algorithms to work, we will need a somewhat “canonical” form of such formulas. We say that two
formulas Φ and Φ′ are equivalent if σ(Φ) = σ(Φ′) for every assignment σ : X → Σ.

Definition 2.6 A 1-witness for a boolean function f : {0, 1}n → {0, 1} is a subset of coordinates W ⊆ [n]
for which there exists an assignment σ : W → {0, 1} such that for every x ∈ {0, 1}n which agrees with σ
(that is, where for all i ∈W , we have that xi = σ(i)) we have that f(x) = 1.

Note that a function can have several 1-witnesses and that a 1-witness for a monotone function can
always use the assignment σ that maps all coordinates to 1.

Definition 2.7 The mDNF (monotone disjunctive normal form) of a monotone boolean function f :
{0, 1}n → {0, 1} is a set of terms T where each term in T is a 1-witness for f and for every x ∈ {0, 1}n,
f(x) = 1 if and only if there exists a term Tj ∈ T such that for all i ∈ Tj, we have that xi = 1.

Observation 2.8 Any monotone boolean function f : {0, 1}n → {0, 1} has a unique mDNF T .

This is true, since this mDNF is the disjunction of f ’s minimal 1-witnesses.

Definition 2.9 For u ∈ V , v ∈ Children(u) is called (a,b)-forceful if σ(v) = a implies σ(u) = b. v is
forceful if it is (a,b)-forceful for some a, b ∈ {0, 1}.

For example, for ∧ all children are (0, 0)-forceful, and for ∨ all children are (1, 1)-forceful. Forceful
variables are variables that cause an “Or-like” or “And-like” behavior in the gate.

Definition 2.10 A vertex v ∈ V in a formula Φ is called unforceable if no child of v is forceful.

Definition 2.11 A vertex v ∈ V in a formula Φ is called trivial if there exists a constant c ∈ {0, 1}
such that for every assignment σ, σ(v) = c.

Definition 2.12 (k-x-Basic formula) A read-once formula Φ is k-x-basic if it is Boolean and all the
functions in B are either:

• Negations,

• unforceable and of arity at least 2 and at most k,

• an ∧ gate or an ∨ gate of arity at least 2.

Additionally, Φ must satisfy the following:

• Except for the leaves, there are no trivial vertices,

• negations may only have leaves as children,
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• there is no leaf v ∈ V such that κv ∈ {0, 1},

• no ∧ is a child of a ∧ and no ∨ is a child of a ∨,

• every variable may appear at most once in a leaf.

The set of variables that appear negated will be denoted by ¬X.

Definition 2.13 (k-Basic formula) A read-once formula Φ is a k-basic formula if it is k-x-basic, and
furthermore all functions in B are also monotone. If B contains only conjunctions and disjunctions then
we abbreviate and call the formula basic.

Note that a k-Basic formula can obviously only be monotone.

Lemma 2.14 Every read-once formula Φ with gates of arity at most k has an equivalent k-x-basic
formula Φ′, possibly over a different set of functions B.

Proof. Suppose for some u that v ∈ Children(u) is (a,b)-forceful. If b = 1 then κu can be replaced
with an ∨ gate, where one input of the ∨ gate is v if a = 1 or the negation of v if a = 0, and the other
input is the result of u when fixing σ(κv) = 1 − a. If b = 0 then κu can be replaced with an ∧ gate,
where one input of the ∧ gate is v if a = 0 or the negation of v if a = 1, and the other input is the gate
u when fixing σ(κv) = 1 − a. After performing this transformation sufficiently many times we have no
forceable gates left except for ∧ and ∨.

We will now eliminate ¬ gates. Any ¬ gate in the input or output of a gate which is not ∧ or ∨
can be assimilated into the gate. Otherwise, a ¬ on the output of an ∨ gate can be replaced with an ∧
gate with ¬’s on all of its inputs, according to De-Morgan’s laws. Also by De-Morgan’s laws, a ¬ on the
output of an ∧ gate can be replaced with an ∨ gate with ¬’s on all of its inputs.

Finally, any ∨ gates that have ∨ children can be merged with them, and the same goes for ∧ gates.
Now we have achieved an equivalent k-x-basic formula. �

Observation 2.15 Any formula Φ which is comprised of only monotone k-arity gates has an equivalent
k-basic formula Φ′.

This observation follows by inspecting the above proof, and noticing that monotone gates will never
produce negations in the process described.

2.3 Observations about subformulas and farness
Definition 2.16 (heaviest child h(v)) Let Φ = (V,E, r,X, κ,B) be a formula. For every v ∈ V we
define h(v) to be v if Children(v) = ∅, and otherwise to be an arbitrarily selected vertex u ∈ Children(v),
such that |Φu| = max{|Φw| | w ∈ Children(v)}.

Definition 2.17 (vertex depth depthΦ(v)) Let Φ = (V,E, r,X, κ,B) be a formula. For every v ∈ V
we define depthΦ(v) = dist(r, v) and depth(Φ) = max{depthΦ(u) | u ∈ V }.

Our first observation is that in “and” gates and similar situations, farness implies farness in subfor-
mulas, in a Markov’s inequality-like fashion.

Observation 2.18 Let v ∈ V be a vertex with no trivial children, such that either κv ≡ ∨ and its output
b = 0 or κv ≡ ∧ and b = 1, and farness(σ,SAT(Φv = 1 − b)) ≥ ε. For every 1 > α > 0 there exists
S ⊆ Children(v) such that

∑
s∈S |Φs| ≥ εα|Φ| and farness(σ,SAT(Φw = 1 − b)) ≥ ε(1 − α) for every

w ∈ S. Furthermore, there exists a child u ∈ Children(v) such that farness(σ,SAT(Φu = 1− b)) ≥ ε.

Proof. Let T be the maximum subset of Children(v) such that Φw is ε(1−α)-far from being evaluated
to b for every w ∈ T . If

∑
t∈T |Φt| < εα|Φ| then the distance from having Φv evaluate to b is at most

εα + ε(1 − α) < ε, since we only need to change the εα|Φv| leaves that descend from the children in S

and for the rest, we know that each of them is ε(1 − α)-close to satisfaction, and therefore only that
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fraction of inputs in leaves that descend from children outside of S need to be changed. This contradicts
the assumption.

For the second statement, note that if no such child exists then Φv is ε-close to being evaluated to b.
�

Observation 2.19 Let v ∈ V be a vertex with no trivial children, such that either κv ≡ ∨ and b = 1
or κv ≡ ∧ and b = 0, and farness(σ,SAT(Φv = b)) ≥ ε. For every child u ∈ Children(v), |Φu| ≥ |Φ|ε
and farness(σ,SAT(Φu = b)) ≥ ε(1 + ε). Furthermore, ε ≤ 1/2, and for any u ∈ Children(v) \ {h(v)},
farness(σ,SAT(Φu = b)) ≥ 2ε.

Proof. First suppose that the weight of some child u is less than ε. In this case, setting u to b makes
the formula Φv evaluate to b by changing less than an ε fraction of inputs, a contradiction.

Since there are at least two children, every child u is of weight at most 1− ε, and since setting it to
b would make Φv evaluate to b, it is at least ε(1 + ε)-far from being evaluated to b.

For the last part, note that since |Children(v)| > 1, there exists u ∈ Children(v) such that |Φu| ≤
|Φv|/2. Thus every assignment to Φv is 1/2-close to an assignment σ′ by which Φv evaluates to b. Also
note that any u ∈ Children(v)\{h(v)} satisfies |Φu| ≤ |Φv|/2, and therefore if Φu were 2ε-close to being
evaluated to b, Φv would be ε-close to being evaluated to b. �

2.4 Heavy and Light Children in General Gates
We would like to pick the heaviest child of a general gate, same as we did above. The problem is that
since we will use this for unforceable gates, we will simultaneously want the heaviest child or children
not to be “too heavy”. This brings us to the following definition.

Definition 2.20 Given a k-x-basic formula Φ, a parameter ε and a vertex u, we let ` = `(u, ε) be the
smallest integer such that the size of the `’th largest child of u is less than |Φ|(4k/ε)−` if such an integer
exists, and set ` = k + 1 otherwise. The heavy children of u are the `− 1 largest children of u, and the
rest of the children of u are its light children.

Note that if there is a really big child, then σ is close to both SAT(Φv = 1) and SAT(Φv = 0). More
formally:

Lemma 2.21 If an unforceable vertex v with no trivial children has a child u such that |Φv|(1−ε) ≤ |Φu|,
then σ is both ε-close to SAT(Φv = 1) and ε-close to SAT(Φv = 0).

Proof. The child is unforceful, and therefore it is possible to change the remaining children to obtain
any output value. �

Observation 2.22 If for a vertex u with no trivial children, κu 6≡ ∧, κu 6≡ ∨, κu 6∈ X and σ is ε-far
from SAT(Φu = b), then it must have at least two heavy children.

Proof. By the definition of `, if there is just one heavy child, then ` = 2 and the total weight of the
light children is strictly smaller than ε. Therefore by Lemma 2.21 there must be more than one heavy
child, as otherwise the gate is ε-close to both 0 and 1. �

3 Upper Bound for General Bounded Arity Formula
Algorithm 1 tests whether the input is ε-close to having output b with 1-sided error, and also receives
a confidence parameter δ. The explicit confidence parameter makes the inductive arguments easier and
clearer. The algorithm operates by recursively checking the conditions in Observations 2.18 and 2.19.

Theorem 3.1 Algorithm 1(Φ, ε, δ, σ) always accepts any input that satisfies the read-once formula Φ,
and rejects any input far from satisfying Φ with probability at least 1− δ. Its query complexity (treating
k and δ as constant) is always O(exp(poly(ε−1))).
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Proof. Follows from Lemma 3.4, Lemma 3.5 and Lemma 3.3 (in that order) below. �

Algorithm 1 Test satisfiability of read-once formula
Input: read-once k-x-basic formula Φ = (V,E, r,X, κ), parameters ε, δ > 0, b ∈ {0, 1}, oracle to σ.
Output: “true” or “false”.

1: if ε > 1 then return “true”
2: if κr ∈ X then return the truth value of σ(r) = b

3: if κr ∈ ¬X then return the truth value of σ(r) = 1− b
4: if (κr ≡ ∧ and b = 1) or (κr ≡ ∨ and b = 0) then
5: y ←− “true”
6: for i = 1 to l = 32(8k/ε)kε−1 log(δ−1) do
7: u ←− a vertex in Children(r) selected independently at random, where the probability that

w ∈ Children(r) is selected is |Φw|/|Φ|
8: y ←− y ∧Algorithm 1(Φu, (ε(1− (8k/ε)−k/16)), σ, δ/2, b)
9: end for

10: return y

11: end if
12: if (κr ≡ ∧ and b = 0) or (κr ≡ ∨ and b = 1) then
13: if there exists a child of weight less than ε then return “true”
14: y ←− “false”
15: for all u ∈ Children(r) do y ←− y ∨Algorithm 1(Φu, (ε(1 + ε)), σ, εδ/2, b)
16: return y

17: end if
18: if there is a child of weight at least 1− ε then return “true”
19: for all u ∈ Children(r) do
20: y0

u ←− Algorithm 1(Φu, (ε(1 + (4k/ε)−k)), σ, δ/2k, 0)
21: y1

u ←− Algorithm 1(Φu, (ε(1 + (4k/ε)−k)), σ, δ/2k, 1)
22: end for
23: if there exists x ∈ {0, 1}k such that κr on x evaluates to b and for all u ∈ Children(r) we have yxu

u

equal to “true” then
24: return “true”
25: else
26: return “false”
27: end if

Lemma 3.2 The depth of recursion in Algorithm 1 is at most 16(8k/ε)k log(ε−1).

Proof. If ε > 1 then the condition in Line 1 is satisfied and the algorithm returns without any
recursion.

All recursive calls occur in Lines 8, 15, 20 and 21. Since Φ is k-x-basic, any call with a subformula
whose root is labeled by ∧ results in calls to subformulas, each with a root labeled either by ∨ or an
unforceable gate, and with the same b value (this is crucial since the b value for which ∧ recurses with a
smaller ε is the b value for which ∨ recurses with a bigger ε, and vice-versa). Similarly, any call with a
subformula whose root is labeled by ∨ results in calls to subformulas, each with a root labeled either by
∧ or an unforceable gate, and with the same b value.

Therefore, in two consecutive recursive calls, there are three options:

1. The first call is made with farness parameter ε(1 + ε) ≥ ε′ ≥ ε(1 + (4k/ε)−k) and the second with
ε′′ = ε′(1− (8k/ε′)−k/16). In this case in two consecutive calls the farness parameter increases by
at least (1 + (4k/ε)−k)(1− (8k/ε(1 + ε))−k/16) ≥ (1 + (4k/ε)−k/8).

2. The first call is made with farness parameter ε′ = ε(1 − (8k/ε)−k/16) and the second with ε′′ ≥
ε′(1 + (4k/ε′)−k). In this case in two consecutive calls the farness parameter increases by at least
ε(1− (8k/ε)−k/16)(1 + (4k/ε(1− (8k/ε)−k/16))−k) ≥ (1 + (8k/ε)−k/8).
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3. The first call is made with farness parameter ε′ ≥ ε(1 + (4k/ε)−k) and the second with ε′′ ≥
ε′(1 + (4k/ε′)−k). In this case two consecutive in calls the farness parameter increases by at least
(1 + (4k/ε′)−k)2

Therefore, either way, an increase of two in the depth results in an increase of the farness parameter
from ε to at least ε(1 + (8k/ε)−k/8). Thus in recursive calls of depth 16(8k/ε)k log(ε−1) the farness
parameter exceeds 1 and the call returns without making any further calls. �

Lemma 3.3 Algorithm 1 uses at most ε−480(8k/ε)k+4 log log(δ−1) queries.

Proof. If ε > 1 then the condition in Line 1 is satisfied and no queries are made. Therefore assume
ε ≤ 1. Observe that in a specific instantiation at most one query is used, either in Line 2 or Line 3.
Therefore the number of queries is upper bounded by the number of instantiations of Algorithm 1.

In a specific instantiation at most 32(8k/ε)kε−1 log(δ−1) recursive calls are made in total (note that
by Line 13 there are at most 1/ε children in the case of the condition in Line 12, and in the case of
an unforceable gate there are at most 2k recursive calls). Recall that by Lemma 3.2 the depth of the
recursion is at most 16(8k/ε)k log(ε−1).

To conclude, we note that the value of the confidence parameter in all these calls is lower bounded
by δ · (ε/2k)16(8k/ε)k log(ε−1) ≥ δ · ε32(8k/ε)k log(kε−1).

Therefore at most (32(8k/ε)2kε−1 log(δ−1·ε−32(8k/ε)k log(kε−1)))16(8k/ε)k log(ε−1) ≤ ε−480(8k/ε)k+4 log log(δ−1)

queries are used. �

Lemma 3.4 If Φ on σ evaluates to b then Algorithm 1 returns “true” with probability 1.

Proof. If ε > 1 then the condition of Line 1 is satisfied and “true” is returned correctly. We proceed
with induction over the depth of the formula. If depth(Φ) = 0 then κr ∈ X ∪ ¬X. If κr ∈ X then since
Φ evaluates to b, σ(r) = b, and if κr ∈ ¬X then σ(r) = 1− b, and the algorithm returns “true” correctly.

Now assume that depth(Φ) > 0. Obviously, for all u ∈ Children(r), we have that depth(Φ) >
depth(Φu) and therefore from the induction hypothesis any recursive call with parameter b′ ∈ {0, 1} on
a subformula that evaluates to b′ returns “true” with probability 1.

If κr ≡ ∧ and b = 1 or κr ≡ ∨ and b = 0, then it must be the case that for all u ∈ Children(r), Φu
evaluates to b. By the induction hypothesis all recursive calls will return “true” and y will get the value
“true”, which will be returned by the algorithm.

Now assume that κr ≡ ∧ and b = 0 or κr ≡ ∨ and b = 1. Since Φ evaluates to b then it must be the
case that at least for one u ∈ Children(r), Φu evaluates to b. By the induction hypothesis, the recursive
call on that u will return “true”, and y will get the value “true” which will be returned by the algorithm
(unless the algorithm already returned “true” for another reason, e.g. in line 13).

Lastly, assume that r is an unforceable gate. Since Φ evaluates to b, the children of r evaluate to the
assignment σ which evaluates to b. By the induction hypothesis, for every u ∈ Children(r) the recursive
call on Φu with σ(u) will return “true”, and thus the assignment σ will, in particular, fill the condition
in Line 23 and the algorithm will return “true”. �

Lemma 3.5 If σ is ε-far from getting Φ to output b then Algorithm 1 returns “false” with probability at
least 1− δ.

Proof. The proof is by induction over the tree structure, where we partition to cases according to κr
and b. Note that ε ≤ 1.

If κr ∈ X or κr ∈ ¬X then by Lines 2 or 3 the algorithm returns “false” whenever σ does not make
Φ output b.

If κr ≡ ∧ and b = 1 or κr ≡ ∨ and b = 0, since σ is ε-far from getting Φ to output b then
by Observation 2.18 we get that there exists T ⊆ Children(r) for which it holds that

∑
t∈T |Φt| ≥

|Φ|ε((8k/ε)−k/16) and each Φt is ε(1−(8k/ε)−k/16)-far from being evaluated to b. Let S be the set of all
vertices selected in Line 7. The probability of a vertex from T being selected is at least ε((8k/ε)−k/16).
Since this happens at least 32(8k/ε)kε−1 log(δ−1) times independently, with probability at least 1− δ/2
we have that S ∩ T 6= ∅. Letting w ∈ T ∩ S, the recursive call on it with parameter ε(1− (8k/ε)−k/16)
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will return “false” with probability at least 1− δ/2, which will eventually cause the returned value to be
“false” as required. Thus the algorithm succeeds with probability at least 1− δ.

Now assume that κr ≡ ∧ and b = 0 or κr ≡ ∨ and b = 1. Since Φ is ε-far from being evaluated to b,
Observation 2.19 implies that all children are of weight at least ε and are ε(ε+1)-far from b, and therefore
the conditions of Line 13 would not be triggered. Every recursive call on a vertex v ∈ Children(r) is
made with distance parameter ε(1 + ε) and so it returns “true” with probability at most εδ/2. Since
there are at most ε−1 children of r, the probability that none returns “true” is at least 1 − δ/2 and in
that case the algorithm returns “false” successfully.

Now assume that κr is some unforceable gate. By Lemma 2.21, since Φ is ε-far from being satisfied the
condition in Line 18 is not triggered. If the algorithm returned “true” then it must be that the condition
in Line 23 is satisfied. If there exists some heavy child u ∈ Children(r) such that ybu is “true” and y1−b

u

is “false”, then by Lemma 3.4 the formula Φu does evaluate to b and the assignment σ must be such that
σ(u) = b. For the rest of the children of r, assuming the calls succeeded, the subformula rooted in each
v is (ε(1 + (4k/ε)−k))-close to evaluate to σ(v). Since u is heavy, the total weight of Children(r) \ {u}
is at most 1− (4k/ε)−k, and thus by changing at most a (ε(1 + (4k/ε)−k))(1− (4k/ε)−k) ≤ ε fraction of
inputs we can get to an assignment where Φ evaluates to b.

If all heavy children u are such that both ybu and y1−b
u are “true”, then pick some heavy child u

arbitrarily. Since r is unforceable, there is an assignment that evaluates to b no matter what the value
of Φu is. Take such an assignment σ̃ that fits the real value of Φu. Note that for every heavy child v we
have that yxv

v is “true”, and therefore by changing at most an (ε(1 + (4k/ε)−k))-fraction of the variables
in Φv we can get it to evaluate to xv. The weight of u is at least (4k/ε)−`+1 (recall the definition of `
in definition 2.20), thus the total weight of the other heavy children is at most 1 − (4k/ε)−`+1 and the
total weight of the light children is at most ε

4 (4k/ε)−`. So by changing all subformulas to evaluate to the
value implied by σ̃ we change at most an (ε(1 + (4k/ε)−k))(1− (4k/ε)−`+1) + ε

4 (4k/ε)−` ≤ ε fraction of
inputs and get an assignment where Φ evaluates to b. Note that this σ̃ does not necessarily correspond
to the x found in Line 23.

Thus we have found that finding an assignment x in Line 23, assuming the calls are correct, implies
that Φ is ε-close to evaluate to b. The probability that all relevant calls to an assignment return “true”
incorrectly is at most the probability that any of the 2k recursive calls errs, which by the union bound
is at most δ, and the algorithm will return “false” correctly with probability at least 1− δ. �

4 Estimator for monotone formula of bounded arity
Algorithm 2 below operates in a recursive manner, and estimates the distance to satisfying the formula
rooted in r according to estimates for the subformula rooted in every child of r. The algorithm receives
a confidence parameter δ as well as the approximation parameter ε, and should with probability at least
1− δ return a number η such that the input is both (η+ ε)-close and (η− ε)-far from satisfying the given
formula.

The following states that Algorithm 2 indeed gives an estimation of the distance. While estimation
algorithms cannot have 1-sided error, there is an additional feature of this algorithm that makes it also
useful as a 1-sided test (by running it and accepting if it returns η = 0).

Theorem 4.1 With probability at least 1 − δ, the output of Algorithm 2(Φ, ε, δ, σ) is an η such that
the assignment σ is both (η + ε)-close to satisfying Φ and (η − ε)-far from satisfying it. Additionally,
if the assignment σ satisfies Φ then η = 0 with probability 1. Its query complexity (treating k and δ as
constant) is O(exp(poly(ε−1))).

Proof. The bound on the number of queries is a direct result of Lemma 4.3 below. Given that, the
correctness proof is done by induction on the height over the formula. The base case (for any ε and δ)
is the observation that an instantiation of the algorithm that makes no recursive calls (i.e. triggers the
condition in Line 1, 2 or 3) always gives a value that satisfies the assertion.

The induction step uses Lemma 4.4 and Lemma 4.5 below. Given that the algorithm performs
correctly (for any ε and δ) for every formula Φ′ of height smaller than Φ, the assertions of the lemma
corresponding to κr (out of the two) are satisfied, and so the correctness for Φ itself follows. �
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Algorithm 2 Approximate distance to satisfiability of monotone formula
Input: read-once k-basic formula Φ = (V,E, r,X, κ), parameters ε, δ > 0, oracle to σ .
Output: η ∈ [0, 1].

1: if κr ∈ X then return 1− σ(κr)
2: if ε > 1 then return 0
3: if κr ≡ ∨ and there exists u ∈ Children(r) with |Φu| < ε|Φ| then return 0
4: if κr ≡ ∧ then
5: for i = 1 to l = d1000ε−2k−2(8k)2k · log(1/δ)e do
6: u ←− a vertex in Children(r) selected independently at random, where the probability that

w ∈ Children(r) is selected is |Φw|/|Φ|
7: αi ←− Algorithm 2(Φu, ε(1− (8k/ε)−k/8), δε(8k/ε)−k/32, σ)
8: end for
9: return

∑l
i=1 αi/l

10: else
11: for every light child u of r set αu ←− 0
12: for every heavy child u of r perform a recursive call and use return value to set αu ←−

Algorithm 2(Φu, ε(1 + (4k/ε)−k), δ/max{k, 1/ε}, σ)
13: for every term C in the mDNF of κr set αC ←−

∑
u∈C αu ·

|Φu|
|Φ|

14: return min{αC : C ∈ mDNF(κr)}
15: end if

The dependence on δ can be made into a simple logarithm by a standard amplification technique:
Algorithm 2 is run O(1/δ) independent times, each time with a confidence parameter of 2/3, and then
the median of the outputs is taken.

Lemma 4.2 When called with Φ, ε, δ, and oracle access to σ, Algorithm 2 goes at most 3(8k/ε)k log(1/ε) =
poly(ε) recursion levels down.

Proof. Recursion can only happen on Line 7 and Line 12. Moreover, because of the formula being
k-basic, recursion cannot follow through Line 7 two recursion levels in a row. In every two consecutive
recursive calls there are three options:

1. The first call is made with farness parameter ε′ = ε(1 + (4k/ε)−k) and the second with ε′′ =
ε′(1− (8k/ε′)−k/8). In this case the farness parameter increases by a factor of (1 + (4k/ε)−k)(1−
(8k/(ε(1 + (4k/ε)−k)))−k/8) ≥ (1 + 7

8 (4k/ε)−k).

2. The first call is made with farness parameter ε′ = ε(1 − (8k/ε)−k/8) and the second with ε′′ =
ε′(1 + (4k/ε′)−k). In this case the farness parameter increases by a factor of (1− (8k/ε)−k/8)(1 +
(4k/(ε(1− (8k/ε)−k/8)))−k) ≥ (1 + 7

8 (8k/ε)−k)

3. The first call is made with farness parameter ε′ = ε(1 + (4k/ε)−k) and the second with ε′′ =
ε′(1+(4k/ε′)−k). In this case the farness parameter increases by a factor of at least (1+(4k/ε)−k)2.

Therefore, either way, in every two consecutive levels of the recursion ε is increased by a factor of
at least (1 + 7

8 (8k/ε)−k). After 3(8k/ε)k log(1/ε) recursive steps, such an increase has occurred at least
3
2 (8k/ε)k log(1/ε) times, and therefore the farness parameter is at least ε·(1+ 7

8 (8k/ε)−k) 3
2 (8k/ε)k log(1/ε) >

1. In such a case the algorithm immediately returns 0 and the recursion stops. �

Lemma 4.3 When called with Φ, ε, δ, and oracle access to σ, Algorithm 2 uses a total of at most
exp(poly(1/ε)) queries for any constant k.

Proof. Denote by ε′ the smallest value of the farness parameter in any recursive call. Denoting
by δ′ the smallest value of δ in any recursive call, it holds that δ′ ≥ δ(ε′(8k/ε′)−k/32)3(8k/ε)k log(1/ε)

by Lemma 4.2. The number of recursive calls per instantiation of the algorithm is thus at most l′ =
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d1000ε′−2k−2(8k)2k · log(1/δ′)e = poly(1/ε′). Now, by the proof of Lemma 4.2, every two consecutive
recursive calls increase the value of the farness parameter, since it only decreases in line 7, it holds that
ε′ ≥ ε(1− (8k/ε)−k/8)). This means that l′ = poly(1/ε).

Since the algorithm may make at most one query per instantiation, and this only in the case where
a recursive call is not performed, the total number of queries is (bounding the recursion depth through
Lemma 4.2) at most (l′)3(8k/ε)k log(1/ε) = exp(poly(1/ε)). �

Lemma 4.4 If κr 6≡ ∧ and all recursive calls satisfy the assertion of Theorem 4.1, then with probability
at least 1− δ the current instantiation of Algorithm 2 provides a value η such that σ is both (η+ ε)-close
to satisfying Φ and (η − ε)-far from satisfying it. Furthermore, if σ satisfies Φ then with probability 1
the output is η = 0.

Proof. First we note that Step 3, if triggered, gives a correct value for η (as the σ can be made into
a satisfying assignment by changing possibly all variables of the smallest child of r). We also note that
if κr ≡ ∨ and Step 3 was not triggered, then by definition all of r’s children are heavy, and there are no
more than 1/ε of them.

Let us consider the cost of fixing input bits in order to make σ satisfy Φ. Note that any such fix
must make all of the children in some term C in the mDNF evaluate to 1, since these terms are all of the
1-witnesses. Additionally, making all of the children of one term evaluate to 1 is sufficient. Therefore,
the farness of σ from Φ is the minimum over all terms C in κr of the adjusted cost of making all children
of C evaluate to 1, which is

∑
u∈C farness(σ,SAT(Φu)) · |Φu|

|Φ| . Now in this case there are clearly no more
than max{k, ε−1} children, so by the union bound, with probability at least 1−δ, every call done through
Line 7 gave a value ηu so that indeed σ is (ηu + ε(1 + (4k/ε)−k))-close and (ηu − ε(1 + (4k/ε)−k))-far
from Φu.

Now let Di denote Ci minus any light children that it may contain, since the approximation ignores
these. It may be that some Di’s contain all heavy children of Ci, where “heavy children” refers to the
children of r. Since there are no forcing children (and there exist heavy children) it must be the case that
some Di’s do not contain all heavy children, since if a heavy child appears in all Dis, then it appears in
all Cis and therefore by setting it to 0 we force a 0 in the output. The Dis that do not contain all heavy
children will dominate the expression in Line 14. Note that

∑
u∈Di

|Φu| ≤ (1− (4k/ε)k−`)|Φ| for any Di

not containing a heavy child. This implies by bounding (1 + (4k/ε)−k)) · (1− (4k/ε)k−`):

∑
u∈Di

farness(σ,SAT(Φu)) · |Φu|
|Φ| − ε <

∑
u∈Di

ηu|Φu|
|Φ|

<
∑
u∈Di

farness(σ,SAT(Φu)) · |Φu|
|Φ| + ε− 2k(4k/ε)−`

Now the true farness of Ci not containing all heavy children is at least that of Di, and at most that
of Di plus the added farness of making all light children evaluate to 1, which is bounded by k(4k/ε)−`.
This means that for such a Ci we have:

∑
u∈Ci

farness(σ,SAT(Φu)) · |Φu|
|Φ| − ε <

∑
u∈Di

ηu|Φu|
|Φ|

<
∑
u∈Ci

farness(σ,SAT(Φu)) · |Φu|
|Φ| + ε− k(4k/ε)−`

The value returned as η is the minimum over terms Ci in κr of ηu ·
∑

u∈Di
|Φu|

|Φ| . We also know that
this minimum is reached by some Cj which does not contain all heavy children, but it may be that in
fact farness(σ,SAT(Φ)) =

∑
u∈Ci

farness(σ,SAT(Φu)) · |Φu|
|Φ| for some i 6= j (the true farness is the

minimum of the total farness of each clause, but it may be reached by a different clause).
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By our assumptions

farness(σ,SAT(Φ))− ε =
∑
u∈Ci

farness(σ,SAT(Φu)) · |Φu|
|Φ| − ε

≤
∑
u∈Cj

farness(σ,SAT(Φu)) · |Φu|
|Φ| − ε < η

so we have one side of the required bound. For the other side, we split into cases. If Ci also does not
contain all heavy children then we use the way we calculated η as the minimum over the corresponding
sums:

η =
∑
u∈Dj

ηu|Φu|
|Φ| ≤

∑
u∈Di

ηu|Φu|
|Φ| < farness(σ,SAT(Φ)) + ε

In the final case, we note that by the assumptions on the light children we will always have (recalling
that Ci will in particular have all heavy children of Cj):

η =
∑
u∈Dj

ηu|Φu|
|Φ| <

∑
u∈Cj

farness(σ,SAT(Φu)) · |Φu|
|Φ| + ε− k(4k/ε)−`

≤
∑
u∈Ci

farness(σ,SAT(Φu)) · |Φu|
|Φ| + ε

where the rightmost term equals farness(σ,SAT(Φ)) + ε as required.
For the last part of the claim, note that if σ satisfies Φ, then in particular, one of the terms C of

κr must be satisfied. By the induction hypothesis, for all u ∈ C we would have αu = 0 and therefore
αC = 0, and since α is taken as a minimum over all terms we would have α = 0. �

Lemma 4.5 If κr ≡ ∧ and all recursive calls satisfy the assertion of Theorem 4.1, then with probability
at least 1− δ the current instantiation of Algorithm 2 provides a value η such that σ is both (η+ ε)-close
to satisfying Φ and (η − ε)-far from satisfying it. If σ satisfies Φ then with probability 1 the output is
η = 0.

Proof. First note that if we sample a vertex w according to the distribution of Line 5 and then
take the true farness farness(σ,SAT(Φw)), then the expectation (but not the value) of this equals
farness(σ,SAT(Φ)). This is because to make σ evaluate to 1 at the root, we need to make all its
children evaluate to 1, an operation whose adjusted cost is given by the weighted sum of farnesses that
corresponds to the expectation above.

Thus, denoting by Xi the random variable whose value is farness(σ,SAT(Φwi
)) where wi is the

vertex picked in the ith iteration, we have E[Xi] = farness(σ,SAT(Φ)). By a Chernoff type bound,
with probability at least 1− δ/2, the average X of X1, . . . , Xl is no more than εk+1(4k)−k/16 away from
E[Xi] and hence satisfies:

farness(σ,SAT(Φ))− εk+1(4k)−k/16 < X < farness(σ,SAT(Φ)) + εk+1(4k)−k/16

Then note that by the Markov inequality, the assertion of the lemma means that with probability at
least 1− δ/2, all calls done in Line 12 but at most ε(4k/ε)−k/16 of them return a value ηw so that σ is
(ηw + ε(1− (4k/ε)−k/16))-close and (ηw − ε(1− (4k/ε)−k/16))-far from Φw.

When this happens, at least (1 − ε(4k/ε)−k/16) of the answers αi of the calls are up to ε(1 −
(4k/ε)−k/16)) away from each corresponding Xi, and at most ε(4k/ε)−k/16 of the answers αi are up to
1 away from each corresponding Xi. Summing up these deviations, the final answer average η satisfies

X − ε(1− (4k/ε)−k/8)− ε(4k/ε)−k/16 < η < X + ε(1− (4k/ε)−k/8) + ε(4k/ε)−k/16

With probability at least 1− δ both of the above events occur, and summing up the two inequalities
we obtain the required bound

farness(σ,SAT(Φ))− ε ≤ η < farness(σ,SAT(Φ)) + ε

�
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5 Quasi-polynomial Upper Bound for Basic-Formulas
Let Φ = (V,E, r,X, κ,B) be a basic formula and σ be an assignment to Φ.

The main idea of the algorithm is to randomly choose a full root to leaf path, and recurs over all the
children of “∨” vertices on this path that go outside of it, if they are not too many. The main technical
part is in proving that if σ is indeed ε-far from satisfying Φ, then many of these paths have few such
children (few enough to recurs over all of them), where additionally the distance of σ from satisfying the
corresponding sub-formulas is significantly larger. An interesting combinatorial corollary of this is that
formulas, for which there are not a lot of leaves whose corresponding paths have few such children, do
not admit ε-far assignments at all.

5.1 Critical and Important
To understand the intuition behind the following definitions, it is useful to first consider what happens
if we could locate a vertex that is “(ε, σ)-critical” in the sense that is defined next.

Definition 5.1 [ (ε, σ)-important, (ε, σ)-critical ] A vertex v ∈ V is (ε, σ)-important if σ /∈ SAT(Φ),
and for every u that is either v or an ancestor of v, we have that

• farness(σ,SAT(Φu)) ≥ (2ε/3)(1 + 2ε/3)bdepthΦ(u)/3c

• If κu ≡ ∨ and u 6= v then the heaviest child of u, h(u) is either v or an ancestor of v.

An (ε, σ)-critical vertex v is an (ε, σ)-important vertex v for which κv ∈ X.

Note that such a vertex is never too deep, since farness(σ,SAT(Φu)) is always at most 1. Hence
the following observation follows from Definition 5.1.

Observation 5.2 If v is (ε, σ)-important, then depthΦ(v) ≤ 4ε−1 log (2ε−1).

A hypothetical oracle that provides a critical vertex can be used as follows. If v is the vertex returned
by such an oracle, then for every ancestor u of v such that κu = ∨, and every w ∈ Children(u) that
is not an ancestor of v, a number of recursive calls with Φw and distance parameter significantly larger
than ε are used. The following lemma implies that if for each of these vertices one of the recursive calls
returned 0, then we know that σ 6∈ SAT(Φ).

Definition 5.3 (Special relatives) The set of special relatives of v ∈ V is the set T of every u that is
not an ancestor of v or v itself but is a child of an ancestor w of v, where κw ≡ ∨.

Lemma 5.4 If σ 6∈ SAT(Φu) for every u ∈ T ∪ {v}, then σ 6∈ SAT(Φ).

Proof. If depthΦ(v) = 0 then σ 6∈ SAT(Φv) implies σ 6∈ SAT(Φ). Assume by induction that the
lemma holds for any formula Φ′ = (V ′, E′, r′, X ′, κ′), assignment σ′ to Φ′ and vertex u ∈ V ′ such that
0 ≤ depthΦ′(u) < depthΦ(v). Let w be the parent of v. Observe that the special relatives of w are a
subset of the special relatives of v and hence by the induction assumption we only need to prove that
σ 6∈ SAT(Φw) in order to infer that σ 6∈ SAT(Φ).

If κw ≡ ∧, then σ 6∈ SAT(Φv) implies that σ 6∈ SAT(Φw). If κw ≡ ∨, then σ 6∈ SAT(Φv) and
σ 6∈ SAT(Φu) for every u ∈ T implies that σ 6∈ SAT(Φw), since we have that Children(w) \ {v} ⊆ T . �

The following lemma states that if σ is ε-far from SAT(Φ), then (ε, σ)-critical vertices are abundant,
and so we can locate one of them by merely sampling a sufficiently large (linear in 1/ε) number of vertices.

The main part of the proof that this holds is in showing that if σ is only 2ε/3-far from SAT(Φ),
then there exists an (ε, σ)-critical vertex for σ. We first show that this is sufficient to show the claimed
abundance of (ε, σ)-critical vertices, and then state and prove the required lemma.

Lemma 5.5 If σ is ε-far from SAT(Φ), then |{v|v is (ε, σ)-critical}| ≥ ε|Φ|/4.
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Proof. Set Criticalε,σ = {v|v is (ε, σ)-critical} and assume on the contrary that |Criticalε,σ| <
ε|Φ|/4. Set σ′ to be an assignment to X so that for every s ∈ V where κs ∈ X, we have that σ′(κs) = 1
if κs ∈ Criticalε,σ and otherwise σ′(x) = σ(x). Thus Criticalε,σ′ = ∅. By the triangle inequality we
have that

farness(σ,SAT(Φ))− farness(σ′,SAT(Φ)) ≤ farness(σ′, σ).
Finally, by Criticalε,σ′ = ∅, Lemma 5.6, which we prove below, asserts that farness(σ′,SAT(Φ)) <
2ε/3 and we reach a contradiction. �

Lemma 5.6 If there is no (ε, σ)-critical vertex, then σ is 2ε/3-close to SAT(Φ).

Proof. We shall show that if σ is 2ε/3-far from SAT(Φ), then there exists an (ε, σ)-critical vertex.
Assume that σ is 2ε/3-far from SAT(Φ). This implies that r is an (ε, σ)-important vertex. Hence an
(ε, σ)-important vertex exists. Let v be an (ε, σ)-important vertex such that depthΦ(v) is maximal.
Consequently, none of the vertices in Children(v) are (ε, σ)-important. We next prove that v is (ε, σ)-
critical.

Assume on the contrary that v is not (ε, σ)-critical. Consequently κv 6∈ X and hence to get a
contradiction it is sufficient to show that there exists an (ε, σ)-important vertex in Children(v). If
κv ≡ ∨, then by Observation 2.19 we get that

farness(σ,SAT(Φh(v))) ≥ (2ε/3)(1 + 2ε/3)bdepthΦ(h(v))/3c,

and hence h(v) is (ε, σ)-important.
Assume that κv ≡ ∧. Let u be such that farness(σ,SAT(Φu)) ≥ farness(σ,SAT(Φv)). Observa-

tion 2.18 asserts that such a vertex exists. We assume that depthΦ(u) > 2, since otherwise it cannot be
the case that farness(σ,SAT(Φu)) < (2ε/3)(1 + 2ε/3)0. Let w ∈ V be the parent of v. Since w is an
ancestor of v it is (ε, σ)-important, and hence farness(σ,SAT(Φw)) ≥ (2ε/3)(1 + 2ε/3)bdepthΦ(w)/3c.
Since Φ is basic we have that κw ≡ ∨. Thus by Observation 2.19 we get that

farness(σ,SAT(Φv)) ≥ (2ε/3)(1 + 2ε/3)1+bdepthΦ(w)/3c.

Finally since farness(σ,SAT(Φu)) ≥ farness(σ,SAT(Φv)) and additionally we have depthΦ(u) =
depthΦ(w) + 2 we get that

farness(σ,SAT(Φu)) ≥ (2ε/3)(1 + 2ε/3)bdepthΦ(u)/3c.

�

5.2 Algorithm
This algorithm detects far inputs with probability Ω(ε), but this can be amplified to 2/3 using iterated
applications.

Algorithm 3 Test satisfiability of basic read-once formula
Input: read-once basic formula Φ = (V,E, r,X, κ), a parameter ε > 0, oracle to σ .
Output: z ∈ {0, 1}.

1: if ε > 1 then return 1
2: if κr ∈ X then return σ(κr)
3: Pick s uniformly at random from all v such that κv ∈ X
4: A←− all ancestors v of s such that κv ≡ ∨
5: R←−

(⋃
v∈A Children(v)

)
\ {w | w is an ancestor of s}

6: if |R| > 3ε−2 log (2ε−1) then return 1
7: for all u ∈ R do
8: yu ←− 1
9: for i = 1 to d20ε−1 log ε−1e do yu ←− yu ∧Algorithm 3(Φu, σ, 4ε/3)

10: end for
11: return σ(κs) ∨

∨
u∈R yu
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We now proceed to prove the correctness of Algorithm 3. Algorithm 3 is clearly non-adaptive. We
first bound its number of queries and next prove that it always returns “1” for an assignment that satisfies
the formula, and returns “0” with probability linear in ε for an assignment that is ε-far from satisfying
the formula. Using O(1/ε) independent iterations amplifies the later probability to 2/3.

Lemma 5.7 For ε > 0, Algorithm 3 halts after using at most ε−16+16 log ε queries, when called with Φ,
ε and oracle access to σ.

Proof. The proof is formulated as an inductive argument over the value of the (real) farness parameter
ε. However, it is formulated in a way that it can be viewed as an inductive argument over the integer
valued dlog(αε−1)e, for an appropriate global constant α. This is since the value of the distance parameter
increases multiplicatively with every recursive call.

If ε > 1, then the condition in Line 1 is satisfied, and there are no queries or recursive calls. Hence
we assume that ε ≤ 1. Observe that in a specific instantiation at most one query is used, since a query
is only made on Line 2 or on Line 11, and always as part of a “return” command. Hence the number of
queries is upper bounded by the number of calls to Algorithm 3 (initial and recursive). We shall show
that the number of these calls is at most ε−16+16 log ε.

Assume by induction that for some η ≤ 1, for every η ≤ η′ ≤ 1, every formula Φ′ and assignment σ′

to Φ′, on call to Algorithm 3 with Φ′, η′ and an oracle to σ′, at most η′−16+16 log η′ calls to Algorithm 3
are made (including recursive ones).

Assume that ε > 3η/4. If κr ∈ X, then the condition on Line 2 is satisfied and hence there are no
recursive calls. Thus Algorithm 3 is called only once and 1 ≤ ε−16+16 log ε.

Assume that κr 6∈ X. Note that every recursive call is done by Line 9. By Line 7 and Line 9 at most
|R| · d20ε−1 log ε−1e recursive calls are done. The condition on Line 6 ensures that |R| · d20ε−1 log ε−1e ≤
3ε−2 log (2ε−1)·d20ε−1 log ε−1e. According to Line 9 each one of these recursive calls is done with distance
parameter 4ε/3 > η. Thus by the induction assumption the number of calls to Algorithm 3 is at most

3ε−2 log (2ε−1) · d20ε−1 log ε−1e · (4ε/3)−16+16 log (4ε/3)
.

This is less than ε−16+16 log ε. �
The following theorem will be immediate from Lemma 5.7 above when coupled with Lemma 5.10 and

Lemma 5.12 below.

Theorem 5.8 Let ε > 0. When Algorithm 3 is called with Φ, ε and an oracle to σ, it uses at most
ε−16+16 log ε queries; if σ ∈ SAT(Φ) then it always returns 1, and if σ is ε-far from SAT(Φ) then it
returns 0 with probability at least ε/8.

Theorem 5.8 does not imply that Algorithm 3 is an ε-test for SAT(Φ). However it does imply that
in order to get an ε-test for SAT(Φ) it is sufficient to do the following. Call Algorithm 3 repeatedly
d20ε−1 log ε−1e times, return 0 if any of the calls returned 0, and otherwise return 1. This only increases
the query complexity to the value in the following corollary.

Corollary 5.9 There exists an ε-test for Φ, that uses at most ε−20+16 log ε queries.

Lemma 5.10 Let ε > 0 and σ ∈ SAT(Φ). Algorithm 3 returns 1 when called with Φ, ε and an oracle
to σ.

Proof. To prove the lemma we shall show that if Algorithm 3 returns 0, when called with Φ, ε and
oracle access to σ, then σ 6∈ SAT(Φ). We will show this by induction on depth(Φ). If depth(Φ) = 0 then
the condition in Line 1 is satisfied and σ(κr) is returned. Hence σ(κr) = 0 and therefore σ 6∈ SAT(Φ).
Assume that for every ε′ > 0, Φ′ where depth(Φ′) < depth(Φ), and assignment σ′ to Φ′, if Algorithm 3
returns 0, when called with Φ′, ε′ and oracle access to σ′, then σ′ 6∈ SAT(Φ).

Observe that the only other way a 0 can be returned is through Line 11, if it is reached. Let R be the
set of vertices on which there was a recursive call in Line 9 and κs the variable whose value is queried
on Line 11. According to Line 11 a 0 is returned if and only if σ(κs) = 0 and for every u ∈ R there
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was at least one recursive call with Φu and distance parameter 4ε/3 that returned a 0. By the induction
assumption this implies that σ 6∈ SAT(Φu) for every u ∈ R. Note that the set R satisfies the exact same
conditions that the set T of special relatives satisfies in Lemma 5.4. Hence, Lemma 5.4 asserts that
σ 6∈ SAT(Φ). �

We now turn to proving soundness. This depends on first noting that the algorithm will indeed check
the paths leading to critical vertices.

Observation 5.11 If the vertex s picked in Line 3 is (ε, σ)-critical, then it will not trigger the condition
of Line 6.

Proof. Definition 5.1 in particular implies (see observation 2.19) that for every u ∈ A (as per
Line 4) we have |Children(u)| ≤ (3/2ε)(1 + 2ε/3)−bdepthΦ(u)/3c ≤ 3/2ε, as otherwise σ will be too
close to satisfying Φu. Also, from Observation 5.2 we know that depthΦ(s) ≤ 4ε−1 log (2ε−1) and so
|A| ≤ 2ε−1 log (2ε−1) + 1.

The two together give us the bound |R| ≤ (3/2ε − 1)(2ε−1 log (2ε−1) + 1) ≤ 3ε−2 log(2ε−1), and so
the condition in Line 3 is not triggered. �

Lemma 5.12 Let σ be ε-far from SAT(Φ). If Algorithm 3 is called with ε, Φ and an oracle to σ, then
it returns 0 with probability at least ε/8.

Proof. We will prove this by induction on depth(Φ).
The base case, κr ∈ X, is handled correctly by Line 1. Assume next that ε > 3/4. Assume first

that the vertex s selected in Line 3 is (ε, σ)-critical. By Lemma 5.5, with probability at least 3/16 the
vertex s selected in Line 3 is indeed (ε, σ)-critical. Hence by definition σ is more than 1/2-far from
SAT(Φu) for every ancestor u of s. Thus by Observation 2.19 we have that κu ≡ ∧ for every ancestor u
of s. Consequently, by Line 2 and Line 11 the value returned will be σ(κs), and σ(κs) = 0 because s is
(ε, σ)-critical.

Thus, 0 is returned with probability at least 3/16, which is greater than ε/8 when 3/4 < ε ≤ 1.
For all other ε we proceed with the induction step. Assume that for any formula Φ′ such that

depth(Φ′) < depth(Φ) and any assignment σ′ to Φ′ that is η-far from SAT(Φ′) (for any η), Algorithm 3
returns 0 with probability at least η/8. Given this we prove that 0 is returned with probability at least
ε/8 for Φ and σ.

Assume first that the vertex s selected in Line 3 is (ε, σ)-critical. Let A,R be the sets from Line 4 and
Line 5. Since s is (ε, σ)-critical, by definition for every u ∈ A we have that σ is 2ε/3-far from SAT(Φu).
Also, because s is (ε, σ)-critical, by definition for every u ∈ A and w ∈ Children(u) ∩ R we have that
w 6= h(u), and therefore by Observation 2.19 we have that σ is 4ε/3-far from SAT(Φw) for every w ∈ R.

By the induction assumption, for every w ∈ R, with probability at least 1 − (4ε/3)/8 Algorithm 3
returns 0 when called with 4ε/3, Φw and an oracle to σ. Hence, for every w ∈ R, the probability that
on d20ε−1 log ε−1e such independent calls to Algorithm 3 the value 0 was never returned is at most
(1− (4ε/3)/8)d20ε−1 log ε−1e. This is less than (ε−2 log (2ε−1))/6.

Observation 5.11 ensures that |R| ≤ 3ε−2 log (2ε−1), and in particular the condition in Line 6 is not
invoked and the calls in Line 9 indeed take place. By the union bound over the vertices of R, with
probability at least 1/2, for every u ∈ R at least one of calls to Algorithm 3 with 4ε/3, Φu and an oracle
to σ returned the value 0. This means that for every u ∈ R, yu in Line 9 was set to 0. Consequently
this is the value returned in Line 11

Finally, since σ is ε-far from SAT(Φ), by Lemma 5.5 the vertex s selected in Line 3 is (ε, σ)-critical
with probability at least ε/4. Therefore 0 is returned with probability at least ε/8. �

6 The Computational Complexity of the Testers and Estimator
There are two parts to analyzing the computational complexity (as opposed to query complexity) of a
test for a massively parametrized property. The first part is the running time of the preprocessing phase,
which reads the entire parameter part of the input, in our case the formula, but has no access yet to the
tested part, in our case the assignment. This part is subject to traditional running time and working
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space definitions, and ideally should have a running time that is quasi-linear or at least polynomial in
the size of its input (the “massive parameter”). The second part is the testing part, which ideally should
take a time that is logarithmic in the input size for every query it makes (as a very basic example, even
a tester that just makes independent uniformly random queries over the input would require such a time
to draw the necessary log(n) random coins for each query).

In our case, the preprocessing part would need to take a k-ary formula and convert it to the basic
form corresponding to the algorithm that we run. We may assume that the formula is represented as a
graph with additional information stored in the vertices.

Constructing the basic form by itself can be done very efficiently (and also have an output size linear
in its input size). For example, if the input formula has only “∧” and “∨” gates, then a Depth First
Search over the input would do nicely, where the output would follow this traversal, but create a new
child gate in the output only when it is different than its parent (otherwise it would continue traversing
the input while remaining in the same output node). With more general monotone gates, a first pass
would convert them to unforceable gates by “splitting off” forceful children as in the proof of Lemma
2.14. It is not hard to efficiently handle “¬” gates using De-Morgan’s law too.

Aside from the basic form of the formula, the preprocessing part should construct several additional
data structures to make the second part (the test itself) as efficient as possible.

For Algorithm 1, we would need to quickly pick a child of a vertex with probability proportional
to its sub-formula size, and know who are the light children as well as what is the relative size of the
smallest child. This mainly requires storing the size of every sub-formula for every vertex of the tree,
as well as sorting the children of each vertex by their sizes and storing the value of the corresponding
“`”. Algorithm 2 requires very much the same additional data as Algorithm 1. This information can
be stored in the vertices of the graph while performing a depth-first traversal of it, starting at the root,
requiring a time linear in the size of the basic formula.

For Algorithm 3, we would need to navigate the tree both downwards and upwards (for finding
the ancestors of a vertex), as well as the ability to pick a vertex corresponding to a variable at random,
which in itself does not require special preprocessing but does require generating a list of all such vertices.
Constructing the set of ancestors is simply following the path from the vertex to the root, requiring time
linear in the depth of the vertex in the tree.

The only part in the algorithms above that depends on ε is designating the light children, but this
can also be done “for all ε” at a low cost by storing the range of ε for every positive `. Since ` is always
an integer no larger than k + 1, this requires an array of such size in every vertex.

Let us turn to analyzing the running time complexity of the second part, namely the testing algorithm.
Once the above preprocessing is performed, the time per instantiation (and thus per query) of the
algorithm will be very small (where we charge the time it takes to calculate a recursive call to the
recursive instantiation). In Algorithm 1, the cost in every instantiation is at most the cost of selecting a
child vertex at random for each iteration of the loop in line 6, a cost linear in k for performing the calls
in Lines 20 and 21 and a cost of O(2k) for searching the space of possible x’s in Line 23. This would
make it a cost logarithmic in the input size per query (multiplied by the time it takes to write and read
an address) – where the log incurrence is in fact only when we need to randomly choose a child according
to its weight. The case of Algorithm 2 is similar, except that while we don’t have the cost of iterating
over possible assignments to the root, there is an additional constant cost for every term in the mDNF,
of which there are at most 2k.

For Algorithm 3, every instantiation requires iterating over all the ancestors of one vertex picked at
random. This requires time linear in the depth of the formula and logarithmic in the input size per
query, where the depth only depends on the farness parameter (see observation 5.2).

7 The Untestable Formulas
We describe here a read-once formula over an alphabet with 4 values, defining a property that cannot be
1/4-tested using a constant number of queries. The formula will have a very simple structure, with only
one gate type. Then, building on this construction, we describe a read-once formula over an alphabet
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with 5-values that cannot be 1/12-tested, which satisfies an additional monotonicity condition: All gates
as well as the acceptance condition are monotone with respect to a fixed ordering of the alphabet.

7.1 The 4-valued formula
For convenience we denote our alphabet by Σ = {0, 1, P, F}. An input is said to be accepted by the
formula if, after performing the calculations in the gates, the value received at the root of the tree is
not “F”. We restrict the input variables to {0, 1}, although it is easy to see that the following argument
holds also if we allow other values to the input variables (and also if we change the acceptance condition
to the value at the root having to be “P”).

Definition 7.1 The balancing gate is the gate that receives two inputs from Σ and outputs the following.

• For (0, 0) the output is 0 and for (1, 1) the output is 1.

• For (1, 0) and (0, 1) the output is P .

• For (P, P ) the output is P ,

• For anything else the output is F .

For a fixed h > 0, the balancing formula of height h is the formula defined by the following.

• The tree is the full balanced binary tree of height h with variables at the leaves, and hence there are
2h variables.

• All gates are set to the balancing gate.

• The formula accepts if the value output at the root is not “F”.

We denote the variables of the formula in their order by x0, . . . , x2h−1. The following is easy.

Lemma 7.2 An assignment a0 ∈ {0, 1}, . . . , a2h−1 ∈ {0, 1} to x0, . . . , x2h−1 is accepted by the formula
if and only if for every 0 < k ≤ h and every 0 ≤ i < 2h−k, the number of 1 values in ai2k , . . . , a(i+1)2k−1
is either 0, 2k or 2k−1.

Proof. Denote the number of 1 values in variables descending from a gate u by num1(u). Note that
ai2k , . . . , a(i+1)2k−1 are the set of descendant leaves of a single vertex, denote it by v. We prove by
induction on k that:

• num1(v) = 0 if and only if the value of v is 0.

• num1(v) = 2k if and only if the value of v is 1.

• If the value of v is P then num1(v) = 2k−1.

• If num1(v) /∈ {0, 2k−1, 2k} then the value of v is F .

For k = 1 we have the two inputs of v, and by the definition of the balancing gate the claim follows.
For k > 1, if at least one of the children of v evaluates to F then so is v (and so does the entire formula)

and by the induction hypothesis one of the descendants of its children doesn’t have the correct number
of 1 values. If neither of them evaluates to F then by the induction hypothesis for both children of v,
denoted u,w, we have that num1(u),num1(w) ∈ {0, 2k−2, 2k−1} and that this determines their value. If
num1(w) = num1(u) = 0 then they both evaluate to 0 and so does v. Similarly, if num1(w) = num1(u) =
2k−1 then both evaluate to 1 and so does v. If num1(u) = 2k−1 and num1(w) = 0, then u evaluates
to 1 and w to 0, and indeed v evaluates to P (and similarly for the symmetric case). If num1(u) =
num1(w) = 2k−2, then both evaluate to P and so does v. The remaining case is num1(u) ∈ {0, 2k−1}
and num1(w) = 2k−2 (and the symmetric case). Here the induction hypothesis and the definition of
the balancing gate implies that v evaluates to F and the formula is unsatisfied, while the interval of all
descendant variables of v does not have the correct number of 1 values. �

In other words, for every satisfying assignment every “binary search interval” is either all 0, or all 1,
or has the same number of 0 and 1. This will allow us to easily prove that certain inputs are far from
satisfying the property.
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7.2 Two distributions
We now define two distributions, one over satisfying inputs and the other over far inputs.

Definition 7.3 The distribution DY is defined by the following process.

• Uniformly pick 2 ≤ k ≤ h.

• For every 0 ≤ i < 2h−k, independently pick either (yi,0, yi,1) = (0, 1) or (yi,0, yi,1) = (1, 0) (each
with probability 1/2).

• For every 0 ≤ i < 2h−k, set

xi2k = · · · = xi2k+2k−1−1 = yi,0; xi2k+2k−1 = · · · = x(i+1)2k−1 = yi,1.

Definition 7.4 The distribution DN is defined by the following process.

• Uniformly pick 2 ≤ k ≤ h.

• For every 0 ≤ i < 2h−k, independently choose (zi,0, zi,1, zi,2, zi,3) to have either one 1 and three 0
or one 0 and three 1 (each of the 8 possibilities with probability 1/8).

• For every 0 ≤ i < 2h−k, set

xi2k = · · · = xi2k+2k−2−1 = zi,0; xi2k+2k−2 = · · · = xi2k+2k−1−1 = zi,1;

xi2k+2k−1 = · · · = xi2k+2k−1+2k−2−1 = zi,2; xi2k+2k−1+2k−2 = · · · = x(i+1)2k−1 = zi,3.

It is easier to illustrate this by considering the calculation that results from the distributions. In both
distributions we can think of a randomly selected level k (counted from the bottom, where the leaf level
0 and the level above it, 1, are never selected). In DY , the output of all gates at or above level k is “P”,
while the inputs to every gate at level k will be either (0, 1) or (1, 0), chosen uniformly at random.

In DN all gates at level k will output “F” (note however that we cannot query a gate output directly);
looking two levels below, every gate as above holds the result from a quadruple chosen uniformly from
the 8 choices described in the definition of DN (the quadruple (zi,0, zi,1, zi,2, zi,3)). At level k − 2 or
lower the gate outputs are 0 and 1 and their distribution resembles very much the distribution as in the
case for DY , as long as we cannot “focus” on the transition level k. This is formalized in terms of lowest
common ancestors below.

Lemma 7.5 Let Q ⊂ {1, . . . , 2h} be a set of queries, and let H ⊂ {0, . . . , h} be the set of levels containing
lowest common ancestors of subsets of Q. Conditioned on neither k nor k − 1 being in H, both DY and
DN induce exactly the same distribution over the outcome of querying Q.

Proof. Let us condition the two distributions on a specific value of k satisfying the above. For two
queries q, q′ ∈ Q whose lowest common ancestor is on a level below k − 1, with probability 1 they will
receive the exact same value (this holds for both DN and DY ). The reason is clear from the construction
– their values will come from the same yi,j or zi,j .

Now let Q′ contain one representative from every set of queries in Q that must receive the same value
by the above argument. For any q, q′ ∈ Q′, their lowest common ancestor is on a level above k. For
DY it means that xq takes its value from some yi,j and xq′ takes its value from some yi′,j′ where i 6= i′.
Because each pair (yi,0, yi,1) is chosen independently from all other pairs, this means that the outcome
of the queries in Q′ is uniformly distributed among all 2|Q′| possibilities. The same argument (with zi,j
and zi′,j′ instead of yi,j and yi′,j′) holds for DN . Hence the distribution of outcomes over Q′ is the same
for both distributions, and by extension this holds over Q. �

On the other hand, the two distributions are very different with respect to satisfying the formula.

Lemma 7.6 An input chosen according to DY always satisfies the balancing formula, while an input
chosen according to DN is always 1/4-far from satisfying it.
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Proof. By Lemma 7.2, the assignment constructed in DY will always be satisfied. This is since for
every vertex in a level lower than k, all of its descendant variables will be of the same value, while for
every vertex in level k or above, exactly half of the variables will have each value.

Note that in an input constructed according to DN , every vertex at level k has one quarter of its
descendant variables of one value, while the rest are of the other value. By averaging, if one were to
change less than 1/4 of the input values, we would have a vertex v at level k for which less than 1/4 of
the values of its descendant variables were changed. This means that v cannot satisfy the requirements
in Lemma 7.2, and therefor it and hence the entire formula evaluate to F . �

7.3 Proving non-testability
We use here the following common application of Yao’s method (see e.g. [6]).

Lemma 7.7 If DY is a distribution over satisfying inputs and DN is a distribution over ε-far inputs,
such that for any fixed set of queries Q with |Q| ≤ l the probability distributions over the outcomes differ
by less than 1

3 (in the variation distance norm) for DY and DN , then there is no non-adaptive ε-test for
the property that makes at most l queries (1-sided or 2-sided).

This allows us to conclude the proof.

Theorem 7.8 Testing for being a satisfying assignment of the balancing formula of height h requires at
least Ω(h) queries for a non-adaptive test and Ω(log h) queries for a possibly adaptive one.

Proof. We note that for any set of queries Q, the size of the set of lowest common ancestors (outside
Q itself) is less than |Q|, and hence (in the notation of Lemma 7.5) we have |H| ≤ |Q|. If |Q| = o(h),
then the event of Lemma 7.5 happens with probability 1−o(1), and hence the variation distance between
the two (unconditional) distributions over outcomes is o(1). Together with Lemma 7.6 this fulfills the
conditions for Lemma 7.7 for concluding the proof for non-adaptive algorithms.

For adaptive algorithms the bound follows by the standard procedure that makes an adaptive al-
gorithm into a non-adaptive one at an exponential cost, by querying in advance the algorithm’s entire
decision tree given its internal coin tosses. �

7.4 An untestable 5-valued monotone formula
While the lower bound given above uses a gate which is highly non-monotone, we can also give a similar
construction where the alphabet is of size 5 and the gates are monotone (that is, where increasing any
input of the gate according to the order of the alphabet does not decrease its input).

Instead of just “{1, . . . , 5}” we denote our alphabet by Σ = {0, F0, P, F1, 1} in that order. We will
restrict the input variables to {0, 1}, although it is not hard to generalize to the case where the input
variables may take any value in the alphabet. At first we analyze a formula that has a non-monotone
satisfying condition.

Definition 7.9 The monotone balancing gate is the gate that receives two inputs from Σ and outputs
the following.

• For (0, 0) the output is 0 and for (1, 1) the output is 1.

• For (1, 0) and (0, 1) the output is P .

• For (P, P ) the output is P .

• For (0, P ) and (P, 0) the output is F0.

• For (1, P ) and (P, 1) the output is F1.

• For (P, F0), (F0, P ), (F0, 0), (0, F0) and (F0, F0) the output is F0.

• For (F0, 1) and (1, F0) the output is F1.
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• For any pair of inputs containing F1, the output is F1.

For a fixed h > 0, the almost-monotone balancing formula of height h is the formula defined by the
following.

• The tree is the full balanced binary tree of height h with variables at the leaves, and hence there are
2h variables.

• All gates are set to the monotone balancing gate.

• The formula accepts if the value output at the root is not “F0” or “F1”.

The following observation is easy by just running over all possible outcomes of the gate.

Observation 7.10 The monotone balancing gate is monotone. Additionally, if the values F0 and F1
are unified then the gate is still well-defined, and is isomorphic to the 4-valued balancing gate.

In particular, the above observation implies that the almost-monotone balancing formula has the
same property testing lower bound as that of the balancing formula, using the same proof with the
same distributions DY and DN . However, we would like a completely monotone formula. For that we
use a monotone decreasing acceptance condition; we note that a formula with a monotone increasing
acceptance condition can be obtained from it by just “reversing” the order over the alphabet.

Definition 7.11 The monotone sub-balancing formula is defined the same as the almost-monotone bal-
ancing formula, with the exception that the formula accepts if and only if the value output at the root is
not F1 or 1.

By Observation 7.10, the distribution DY is also supported by inputs satisfying the monotone sub-
balancing formula. To analyze DN , note the following.

Lemma 7.12 An assignment a0 ∈ {0, 1}, . . . , a2h−1 ∈ {0, 1} to x0, . . . , x2h−1, for which for some 0 <
k ≤ h and some 0 ≤ i < 2h−k the number of 1 values in ai2k , . . . , a(i+1)2k−1 is more than 2k−1 and less
than 2k, cannot be accepted by the formula.

Proof. We set u to be the gate whose descendant variables are exactly ai2k , . . . , a(i+1)2k−1. We first
note that it is enough to prove that u evaluates to F1, because then by the definition of the gates the
root will also evaluate to F1. We then use induction over k, while referring to Observation 7.10 and the
proof of Lemma 7.2. The base case k = 1 is true because then no assignment satisfies the conditions of
the lemma.

If any of the two children of u evaluates to F1 then we are also done by the definition of the gate. The
only other possible scenario (using induction) is when one of the children v of u must evaluate to 1, and
hence all of its 2k−1 descendant variables are 1, while for the other child w of u some of the descendant
variables are 0 and some are 1. But this means that w does not evaluate to either 0 or 1, which again
means that u evaluates to F1. �

This yields the following.

Lemma 7.13 With probability 1−o(1), an input chosen according to DN will be 1/12-far from satisfying
the monotone sub-balancing formula.

Proof. This is almost immediate from Lemma 7.12, as a large deviation inequality implies that with
probability 1− o(1), more than 1/3 of the quadruples (zi,0, zi,1, zi,2, zi,3) as per the definition of DN will
have three 1’s and one 0. �

Now we can prove a final lower bound.

Theorem 7.14 Testing for being a satisfying assignment of the monotone sub-balancing formula of
height h requires at least Ω(h) queries for a non-adaptive test and Ω(log h) queries for a possibly adaptive
one.

Proof. This follows exactly the proof of the lower bound for the balancing formula. Due to Observation
7.10 and Lemma 7.13 we can use the same DY and DN , since the o(1) probability of DN not producing
a far input makes no essential difference for the use of Yao’s method. �
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