The art of uninformed decisions

A primer to property testing
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Abstract

Property testing is a new field in computational theory, that deals with the information that
can be deduced from the input where the number of allowable queries (reads from the input) is
significantly smaller than the input size. This survey provides an introduction and reference to

this exciting field.

Dedicated to the memory of the victims of terror, September 11, 2001.

1 Motivation and introduction

With the recent advances in technology we are faced with the need to process increasingly larger
amounts of data in faster times. As was observed by Papadimitriou [47, Page 357], common notions
of the efficiency of algorithms tend to gravitate towards stricter time restrictions as computer
sciences progress. At first a problem was considered computable if there was an algorithm that
could decide it in a finite time given any input instance. Afterwords came the notion of polynomial
time computations, and later the possibility of making a computation faster for certain problems
through use of parallel machines was also investigated.

In all of the classes considered above, however, the algorithms involved still face the obvious
obstacle of having to read the entire input prior to its assessment (in the parallel setting it is
assumed that the input can also be read in parallel, which is not always a realistic assumption).

There are practical situations in which the input is so large, that even taking a linear time in

its size to provide an answer is too much. Many modern databases have overwhelming sizes. There
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are also other instances where the input is not easily accessible — it could be stored for example
on a server at the other end of a slow communication line. And it could also be the case that an
explicit representation of the input in fact does not exist, and an “oracle” procedure that calculates
its values in the requested locations is given instead.

This survey deals with algorithms that are designed to make a decision concerning the input
after reading only a small portion thereof. In the general setting it is assumed that an algorithm
has random access to the input, that is, the algorithm is told in advance what is the input size, and
is supplied with an oracle that for a query ‘4’ yields the value v; of the input in this location. The
goal is to minimize the number of calls to this oracle, and in the ideal case to make it a constant
independent of the actual input size.

One necessary feature of such algorithms, that is immediately apparent, is that they must be
probabilistic. The intuition is that even when not the whole input is actually read, all of the input
must still be “considered” by the algorithm in order to give an output relevant to its entirety, and
thus every component of the input must be read with some positive probability.

But even random algorithms cannot be expected to give accurate results. Consider for example
the simple property of the input being all zeros. No algorithm reading only a small fraction of
the input can distinguish with high probability between an input satisfying this property, and an
input containing a single ‘1’ in a randomly chosen location. In fact, there are some well known
conjectures and results stating that most properties are “evasive”, requiring a linear number of
queries to decide them, even using a probabilistic algorithm (evasiveness was studied extensively
for graph properties; for the interested reader [45] provides an introduction to this subject).

It follows that in order to describe what an algorithm can do without reading the whole input,
it is required to formulate a new notion of an approximated version of the original decision problem.
As a guide we look at what can be done with the above property of the input being all zeros — while
even this property cannot be decided by such an algorithm, it is very easy, using a constant time
randomized algorithm, to distinguish between the case that the input is all zeros, and the case that
at least an € fraction of the places in the input contain ones (where € is any constant independent of
the input size). The algorithm needs only to take O(e ') uniformly random samples of the input,

" in any of them.

and reject the input if it finds a ‘1
The following definition of a property’s approximation suffices for most instances of testing
problems. It deals with a fixed input size — since testing deals primarily with informational bounds

it is usually sufficient to analyze every fixed input size separately (and apart from rarely occurring



uniformity issues, it is almost the same as saying that the testing algorithm is given the size of the

input in advance).

Definition 1 An input, given as a function f : D — F, is said to be e-close to satisfying a property
P, if there exists a function ' : D — F that differs from f in no more than €|D| places, and satisfies

P. An input which is not e-close to satisfying P is called e-far from satisfying P.

There are some testability questions that deal with different notions of closeness, such as these
defined using the edit distance between inputs when considered as strings; such a case appears in
Section 6.

The notion of closeness leads to the following definition of what it means to e-test a property.
Remember that in this definition a read from the input, also called a query, is allowed from any

location (in other words, the algorithm is granted random access to the input).

Definition 2 Let P be a property, and let us fix the input size n. An e-test with ¢ = q(e, n) queries
for P is a probabilistic algorithm that reads the input in up to q places, and with probability at least
% distinguishes between the case that the input satisfies P, and the case that the input is e-far from

satisfying P.

The ‘%’ term in the definition is arbitrary of course, and can be amplified to any fixed probability
smaller than 1, at the price of a linear increase in ¢, by running the algorithm a constant number
of times and taking the majority vote.

Note that the above definition claims nothing about the running time of the algorithm, but
deals only with the amount of data that is allowed to be read from the input. This makes property
testing more related to the branches of computer science dealing with informational complexity,
rather than to those dealing with computational complexity. However, in most cases the algorithms
making decisions based on a small portion of the input happen to have a small running time as
well, making them also suitable for providing fast approximations of the input qualities.

A property that has an e-test as above is called e-testable with q queries. The best that can be
hoped for with regards to large inputs is the situation where ¢ depends only on € and not on n.
If this occurs for every fixed € > 0, then the property P is usually simply referred to as testable.
Lowering the dependency on € is also important, in which case the best that can be hoped for is a

! as is the case with the property of the input being all zeros.

number of queries that is linear in €~
Sometimes lower bounds on the number of queries can be proven as well. There is no “official”

standard as to what makes a property “totally non-testable”. In many cases involving inputs
property y y g



over a binary alphabet, any non-constant lower bound for a fixed € is said to make the property
non-testable. However, sometimes testing with O(logn) queries (for a fixed €) is also considered a
sufficient test, especially in cases, such as most problems dealing with inputs over infinite alphabets,
where there are some known (logn) lower bounds.

A lower bound of the type n¢ (for some positive constant ¢ and €) is sometimes considered the
final say, but in several instances even testing algorithms that read this many queries are considered
interesting, especially if they have a sublinear running time to match.

Sometimes, special types of testing algorithms are sought for. For example, by the definition
above the algorithm is allowed to have a 2-sided error probability. A 1-sided testing algorithm is
an algorithm that in addition accepts with probability 1 any input that satisfies the property to be
tested.

In other cases the adaptivity of the algorithm is also considered. A non-adaptive test for a
property is a testing algorithm that specifies all queries in advance (according to some distribution),
and only then is allowed to obtain the input values in the corresponding locations, based on which
the algorithm accepts or rejects the input. In other words, a non-adaptive test cannot use the
results of previous queries in the decision as to where to make the next query, but only in the final
decision as to whether to accept or reject the input.

The rest of this survey is organized as follows. Section 2 deals with the testing of a property
defined in terms of polynomial functions, in the context of the works that have started this field.
Section 3 deals with the testing of languages, motivated by an attempt to correlate the notion
of testing to other notions of low complexity (as it turns out there is little obvious correlation,
and some surprising results come into play). Section 4 and Section 5 deal with one model of
graph property testing, and another angle of the attempt to give a logical characterization of the
testable languages, and Section 6 deals with another graph testing model. Section 7 deals with the
testing of properties motivated by the notion of monotonicity. Finally, Section 8 deals with some
techniques for proving lower bounds on testability, and Section 9 deals with some recent trends and
future research directions, as well as the relation of property testing to other old and new topics in
computer science.

There is no hope to give complete proofs for all the results presented in a survey such as this.
The strategy used in the following is to give proofs for some of the easier results, and to give proofs
of special cases or proof outlines for some of the harder results. It is hoped that through this the

reader can get a taste of the techniques used in the field.



Although in general older results tend to appear earlier in this survey, there is no serious
attempt to fully reflect the chronological development of this field. For example, many of the

results presented in Section 4 have appeared earlier than those presented in Section 3.

2 A first offering — testing for polynomiality

The first results in property testing were motivated by program testing (Blum, Luby and Rubinfeld
[16], and Rubinfeld and Sudan [54]), and by probabilistically checkable proofs (Arora and Safra (8],
and Arora, Lund, Motwani, Sudan and Szegedy [7]).

In the context of program testing, the idea is that the “input” to be tested is not explicitly
given. Instead, a program is given; this program is considered as a function from the set of its
possible inputs to the set of its possible outputs, and we have to test for properties of this function.
The practical implication is clear — one cannot hope to explicitly write down the entire function,
but a “query” into it can be answered in a reasonable time by running the given program on the
input that corresponds to the queried “location”. Thus testing can ensure that this program will
perform within the expected parameters for most inputs.

Probabilistically checkable proofs deal with proving protocols that can be probabilistically veri-
fied by reading only a small portion of a proposed proof. Formulating the property of being an input
that satisfies the protocol, in a way that allows testing for this, is the connection here. Both the
context of program checking and the context of probabilistically checkable proofs place additional
requirements on the procedure beyond testability (that happen to be achievable for the example
below); their exact definition is outside the scope of this testing survey.

The first result regarding testability per-se is probably that of Blum, Luby and Rubinfeld [16]
concerning linearity, and the first explicit definition of property testing was given by Rubinfeld and
Sudan in [54] (in its turn it is based on some of the results of [55] and [34]). The first results dealt
mainly with the algebraic notion of being a low degree polynomial.

Suppose that for some finite field F the input is given as a function f from F to F, that a query
consists of finding the value of f at a specified location z € F, and that the distance is measured
by the number of values of f that have to be changed in order to make it satisfy the property to
be tested, divided by the input size |F|.

In this setting, it is easy to test using a few queries for the property that f is a polynomial

whose degree is bounded by some fixed constant k.



Proposition 2.1 It takes O(k + e 1) queries to e-test that a function f from F to F (where F is

a finite field of arbitrary size) is a polynomial of degree at most k

Proof: The algorithm first queries f in k+1 arbitrary different locations. If f is indeed a polynomial
of degree at most k, then by the interpolation property of polynomials these k£ + 1 queried values
determine all the other values of f.

The algorithm then queries f in O(e~!) additional locations chosen uniformly and independently
at random, and for each of these checks that the value of f indeed agrees with the value of the

polynomial interpolated from the first k£ + 1 queried values. [

In cases where functions from F? to F are needed to be tested for the property of being low-
degree (multivariate) polynomials, interpolation by itself is not satisfactory. The main results of
[54] are another test for the 1-dimensional case that satisfies some additional conditions mandated
by the context of program checking, as well as an efficient test for the multidimensional case (see
also [8] and [7] for related results and applications). The way to handle functions from F? to F is
by considering two random intersecting lines in F¢, and testing that the restrictions of the input

function to these give degree k polynomials that agree on the intersection point.

Theorem 2.2 ([54]) The property of a function f : F¢ — F being a polynomial of a total degree
bounded by k can be e-tested using O(k? + ke ') queries (independently of |F| and d).

There was extensive research in the topic of testing a function for being a low degree polynomial,

and related questions. The interested reader is referred to [9], that describes some additional results.

3 Testing of languages

As the possibility of testing an input for a property using few queries becomes apparent, the
next natural step is to correlate the traditional categorization of properties into computational
complexity classes with the new testing scheme.

An ultimate goal would be to try finding a logical characterization of all properties testable
with a number of queries independent of the input size, in much the same manner as, say, that the
properties recognizable by a finite automaton have a characterization as all properties expressible
in the appropriate monadic second order logic language.

This goal is far from achieved. A more humble goal is to identify whole classes, and not

just individual properties, that are efficiently testable. Such classes, sometimes identified by the



structure of their expression in an appropriate first order logic language, are given special attention
in this survey.

Results are sometimes surprising. On one hand, there exist properties that are in ACy and are
not testable even in a number of queries that is some fixed (small) power of the input size. On
the other hand, there exist NP-complete properties, such as graph 3-colorability, that are testable
with a number of queries that depends only on the approximation parameter €. A reason for this
is that up to changing a small portion of the input, even simple first order logic expressions can
capture surprisingly large classes of properties. For example, up to changing a small number of
edges, 3-colorability is in fact indistinguishable from some very simple ACy property. More on this
in Section 5.

For a potential source of classes of properties that are testable we turn first to the well-known
classes of languages with low computational complexity, starting with the lowest — the languages
recognizable by a finite automaton. These were investigated by Alon, Krivelevich, Newman and
Szegedy [5] and were found to be testable. However, in general one cannot prove similar testability
results for complexity classes substantially broader than this, as there are already context free
languages that are not testable even with relatively many queries — for example, the language of

all possible concatenations of two palindromes is such a language.

Theorem 3.1 ([5]) Any regular language is testable with a number of queries linear in e~ ' log®(e™1)
and independent of the input size. On the other hand, there exist context-free languages that are

not testable in a number of queries that is less than some fixed power of the input size.

To give a taste of how such a testability result can be proven, a testability proof for a special

case is given here.

Proposition 3.2 Let S be any fized binary string. The property of a binary input string not
containing S as a (not necessarily continuous) substring is e-testable, with a number of queries

linear in €' and independent of the input size.

Proof: We construct by induction on the length of S a test whose error probability is bounded by
Zﬁ‘l 2772 < i. When S is of size 1 the test is trivial (it just performs a random sampling of the
input and rejects if it finds an instance of the single character that comprises S).

Assume without loss of generality that the first character in S is ‘1’, and let S’ be the result of

removing this first character of S. Let vyvs ... v, be an input of size n. The algorithm then chooses



’ notation hides

uniformly and independently O(e~!) random locations in the input string (the ‘O
a coefficient dependent only on |S]), queries them, and notes the smallest queried location index
for which the input is ‘1’. Denote it by ;.

In the case that no ‘1’ was found in the previous stage, the algorithm accepts the input. This
will happen only with a small probability (which can be made smaller than 2-191=2), unless the
input is e-close to being all ‘0’, in which case it is clearly e-close to not containing S as a substring.

With high probability, if a ‘1’ was found in the preceding stage, then 7; is such that vy ...v;, 1
contains no more than %en instances ‘1. To see this, denote by {j1,... ,jm/z} C {1,...,n} the set
of the first %en instances of ‘1’ in the input (if such a set does not exist and yet i; was found then
it clearly satisfies the above condition). It is easy to see that O(e~!) queries will be sufficient to hit
a member of this set with probability 1 — 27151-2,

The algorithm now %e—tests the string v;,41...v, for the property of not containing S’ as
a substring (with error probability Zlﬂf ! 27%=2), and accepts the input if and only if this test
accepts. By the induction hypothesis, the number of queries in this stage is also linear in e~

For the correctness proof, it is quite clear that if the input does not contain S as a substring
then the algorithm will accept with probability 1, because this necessarily implies that v;, 41 ... v,
does not contain S’ as a substring.

On the other hand, if the algorithm accepts v; ...wv, with probability more than Zﬁ'1 2712
then we can define a string w; ... w, that is e-close to v; ... v, and does not contain S as follows:
wy, ..., w; 1 are all set to ‘0’ (this makes no more than %en changes from vy, ...,v,), w;, = v;, =1,
and wj, +1,...,wy, are set to a string that is %e—close to v;, 41 ... v, and contains no instance of S’.

It is clear that wy ... w, is e-close to vy ...v,. Also, w; ...w, does not contain an instance of S
that starts before 71 as there are no occurrences of ‘1’ in that range, and on the other hand does not
contain an instance of S starting at 4; or later because w;, 41 ... w, does not contain an instance of

S’. This completes the proof of the properties of vy ... v, in the case that the algorithm accepts,

and thus the correctness proof of the test. [

It is still not known whether the testing of all context free languages can be bounded from above
by a power of n that is smaller than 1. An investigation into this question is given in [49].
In [46], Newman found a generalization of the positive part of Theorem 3.1, by considering a

non-uniform counterpart of the notion of a finite automaton.

Theorem 3.3 ([46]) Every property identifiable by a read-once fixed-width oblivious branching

program is testable with a number of queries polynomial in e~' (and independent of the input size).



However, we close this section by noting that this result too is the best possible of its kind in

some sense.

Theorem 3.4 ([30]) There exists a property identifiable by a read-twice oblivious branching pro-
gram of width three, that is not testable with a number of queries that is less than some fized power

of the input size.

4 Graph testing in the dense context

Graph theory is a point of contact between pure mathematics and computer science. Because of
the major role it plays in the theory of computational complexity, it is only natural that problems
that arise from graph theory, such as (proper) vertex colorability, will also be investigated from the
point of view of property testing.

The first investigation into the testing of graph properties was performed by Goldreich, Gold-
wasser and Ron in [37]. It was motivated by the idea of property testing serving as a new notion
of approximation, and by some related questions that arise in computational learning theory. Here
the input is assumed to be an adjacency matrix of a graph G with n vertices. This means that a
query consists of obtaining an answer as to whether a pair v;v; of vertices is an edge of G' or not,
and that G is considered to be e-far from satisfying a property P if one has to add and remove
more than a total of €(3) edges in G to make it satisfy P.

This also means that we restrict ourselves to properties that relate to the graph G underlying
the input, such as vertex colorability or the existence of a large clique. Formally, it means that we
investigate only properties that are invariant with respect to graph isomorphisms — all permutations
of the input that result from permuting the vertex set of the underlying graph.

This invariance of graph properties has some useful implications for testing. For example, it
implies that if two graph properties P and () satisfy that for every e there exist only a finite number
of graphs that satisfy one of them but are e-far from satisfying the other, then either both of P and
@ are testable (for every €) with a number of queries that is independent of n, or neither of them
is thus testable. In this setting P and @) are said to be indistinguishable from one another; the
exact statement and proof of this observation are found in [4]. The above invariance has also strong
implications concerning the type of testers that exist for these properties, such as those described

in [40].



Lemma 4.1 ([40]) If there exists an e-tester for a graph property that makes q queries, then there
exists such a tester makes its queries by uniformly and randomly choosing a set of 2q vertices and

querying all their pairs. In particular, it is o non-adaptive e-tester making (22‘1) queries.

Proof sketch: We define a vertex uncovering tester to be a testing algorithm that in each stage
picks a new vertex v (possibly based on previous queries), and queries all the edges between v and
the vertices that were picked in the previous stages. This process is called the uncovering of v.
Any e-tester making up to ¢ queries can be transformed to a vertex uncovering tester that uncovers
exactly 2q vertices in the following manner: Whenever the original algorithm queries an edge, the
new algorithm uncovers one by one its two incident vertices, if they were not already uncovered in
earlier stages. In the end, if the original algorithm accepts or rejects the output before 2¢ vertices
were uncovered, the new algorithm first uncovers more arbitrarily chosen vertices until exactly 2¢
vertices are uncovered; after the uncovering is completed, the acceptance criterion of the original
algorithm is used.

The new algorithm that uncovers 2¢ vertices may still be adaptive, but now instead of running
it over the input graph G, we run it through a uniformly random permutation of the vertices of
G. It is now not hard to see that the result of this modification will be an algorithm satisfying the

statement of the lemma. m

As it turns out, for every fixed given k the property of a graph being k-colorable can be e-tested
with a number of queries depending only on € (and k). Informally, this means that the NP-hardness
of k-colorability for k > 3 essentially follows from constructions that are not k-colorable but can
be made k-colorable by removing only a small portion of the edges.

To illustrate the proof given in [37] for the testability of k-colorability, we give here the proof

for the special case k = 2.

Proposition 4.2 ([37]) There ezists an e-test for the property of a graph being bipartite, that

makes a number of queries which is polynomial in € (and is independent of the input size).

To prove this proposition, we first note that it is quite trivial to test for bipartiteness if one is

already given the supposed proper 2-coloring along with the input graph.

Lemma 4.3 There exists an algorithm, that given a graph G and a coloring of some of its vertices,
with the possibility also to query for a given vertex whether it is colored and with what color, can

distinguish (with high probability) using a number of queries that is linear in €', between the case

10



that G contains no edges whose incident vertices are colored with the same color, and the case that

G contains more than €(3) such edges.

Proof: There are a total of (g) vertex pairs in G, and we need to distinguish between the case that
none of these pairs is an edge connecting two identically colored vertices, and the case that more
than e(g) of the pairs are such edges. This is done by a simple sampling of the pairs, where for

every pair in the sample we query the colors of its vertices, and whether it is an edge of G. [

Proof sketch of Proposition 4.2: The test first picks a set S of O(e~!log(e™!)) vertices of the
input graph G independently and uniformly at random; with high probability it has the property
that all but at most %en of the vertices that have degree at least %en in G have also a neighbor in
S.

We now look at all possible partitions of S into S; and Sy, and define for each of these a partial
2-coloring of G: Every vertex that has a neighbor in S} is colored by 2, and every vertex that has
a neighbor in S5 but not in S; is colored by 1. With this definition, finding out whether a given
vertex is colored and with what color requires |S| = O(e !log(e!)) queries of G.

For every possible partition of S, we can use the algorithm from Lemma 4.3 to find out whether
the graph is %e—far from containing no monochromatic edges according to the corresponding color-
ing. However, the number of possible partitions is exponential in €. In order to check all possible
partitions of S at once, we first note that with a simple amplification technique, the error probability
of the algorithm in Lemma 4.3 can be made exponentially small in |S|; the resulting algorithm still
picks a number of vertices that is polynomial in €, and queries only for edges between these vertices
and between them and S. Thus we can pick a uniformly random set U consisting of a polynomial
number of vertices of G, and then for every partition of S run the algorithm from Lemma 4.3 on
this same set, reusing the same queries. With high probability the above algorithm will not make
an error concerning any of the 2I81 partitions of S.

To end the test, we accept the input if there exists a partition of S for which G is not far from
having no monochromatic edges in the corresponding coloring, and otherwise we reject the input.
The algorithm will never reject an input which is in fact bipartite, because a proper 2-coloring of
the input graph induces for every S a partition for which the corresponding coloring contains no
monochromatic edges.

On the other hand, with high probability it is the case that if the algorithm accepts then the
graph is e-close to being bipartite. To prove this we look at the appropriate partition of S and

11



its corresponding partial 2-coloring. For every vertex that is not colored by the coloring, we just
remove all of its incident edges and color it arbitrarily; we know that with high probability this
will change no more than 4¢(}) edges (no more than 2 () edges incident with vertices of degree no
more than %en, and no more than another %e(g) edges for up to %en additional vertices with higher
degrees that were not colored on account of having no neighbors in S). We also know that the

graph may contain up to %e(g) more edges that violate the original partial coloring; by removing

these as well we are done. n

The description of the calculation above is deceptively complex. In fact, one can easily show
that instead of picking a set of vertices S, and then checking all its partitions against a second set
of vertices U, one could just pick a set that serves as “S U U”, and check whether the subgraph
of GG induced on this set is bipartite. Thus the above proof also yields a graph-theoretic result —
a graph that is e-far from being bipartite contains at least %(2) induced subgraphs with &k vertices
that are not bipartite, where k& depends only on ¢! and is in fact polynomial in it.

This combinatorial corollary is not a coincidence, as the following result states that a similar
phenomenon occurs for any testable graph property that is closed under the taking of induced

subgraphs.

Proposition 4.4 (N. Alon, see Appendix D of [40]) If P is a graph property that is closed
under the taking of induced subgraphs, and there exists an e-test for P that always makes q queries
independently of the number of vertices of the input G, then there exists a e-test for P that works
by uniformly choosing f(q) vertices of the graph G, querying all the pairs, and checking that the
induced subgraph satisfies P. Moreover, f(q) is a global polynomial in q, independent of the other

parameters.

We conclude by referring the reader to [37] concerning other partition-related graph properties,
such as k-colorability (for a fixed k), having a given maximal cut, or having a large clique. Aside

from the testability proofs of these, [37] contains their generalization to the following grand theorem.

Theorem 4.5 ([37]) For a fized k, let P be the property of a graph G with n vertices having a
partition Vi,..., Vi of its vertex set, with ayn < |V;| < ain for every i (for fized, given o; < o),
and such that for every 1 <14 < j <k the number of edges between V; and V; (or within V; if i = j)
is between B; jn* and 51{,3‘"2 (for fized, given B;; < ﬂL])

Property P is testable, with a number of queries that is polynomial in €.
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5 Dense graphs continued — use of the Regularity Lemma

This section is about the use of Szemerédi’s Regularity Lemma, for property testing, and its appli-
cation to proving testability for a class of graph properties that are defined by certain first order
expressions.

To formulate logical expressions for properties, we shall use a language that includes variables
that range over vertices, first order quantifiers over these variables, the adjacency relation “u is
a neighbor of v”, the equality relation “u = v”, and boolean connectives. All properties thus
expressible are called first order graph properties. We further classify them by the first order

quantifiers that they use. The best way to illustrate this is by giving some examples:

e “The graph G contains a triangle”. This is a first order graph property of type ‘3’, as it has
an expression using only this quantifier: Jujuguz(uy ~ ug A up ~ ug A ug ~ u3), where u ~ v

is the relation stating that v and v are neighbors (and in particular are not the same vertex).

e “The graph G does not contain an induced square”. This is a first order graph property of
type ‘Y7, as it states that for every set of four distinct vertices, certain adjacency configurations

do not occur.

e “The graph G contains three distinct vertices wi,us,us such that every other vertex has
exactly one of them as a neighbor, and furthermore there exists no triangle containing any of

these three vertices”. This is a first order graph property of type ‘3V’.

It is not hard to show that the third example above is related to the property of 3-colorability:
Every graph satisfying this property is not far from being 3-colorable, as the vertices wup,ug,us
determine a proper 3-coloring of the rest of the graph, and conversely every proper 3-coloring of
a graph can be used to find a small modification of the graph that satisfies the property above.
In other words, the above first order property and the property of being 3-colorable are indistin-
guishable, as per the definition outlined in Section 4. When it comes to property testing, first
order expressions have more expressive power than they do in the context of traditional complexity
theory.

Alon, Fischer, Krivelevich and Szegedy have shown in [4] what classes of first order expressions

are wholly testable.

Theorem 5.1 ([4]) All first order graph properties of type 3V’ are testable with a number of
queries independent of n. On the other hand, there exists a Y3’ property that is not thus testable.

13



The proof of the positive part of this theorem relies heavily on the existence of regular pairs of
sets, as stated in Szemerédi’s Regularity Lemma [56]. As for the negative part, the main idea of
its proof is given in Section 8.

For a good exposition of Szemerédi’s Regularity Lemma (stated below) and its proof, the reader
is referred to [21, Chapter 7], and for a full survey regarding the many combinatorial applications
of regular pairs and the Regularity Lemma the reader is referred to [44]. In the following we give

a brief introduction to this useful tool, starting with the definition of regular pairs.

Definition 3 (density and regularity of set pairs) For two nonempty disjoint vertex sets A
and B of a graph G, we define e(A, B) to be the number of edges of G between A and B. The edge
density of the pair is defined by d(A, B) = 7%{5?. We say that the pair A, B is y-regular, if for any
two subsets A" of A and B' of B, satisfying |A'| > v|A| and |B'| > v|B|, the edge density satisfies
|d(A",B") —d(A,B)| < 7.

The main strength of the definition of regularity is in the characteristics that regular pairs share

with random bipartite graphs of the same density. Consider for example the following.

Lemma 5.2 For every n > 0 there exist v = v(n) and § = §(n) such that if A, B and C are
disjoint vertex sets of a graph G where each pair is y-reqular and has density at least n, then G
contains at least 6|A||B||C| distinct triangles with a vertex from A, a vertex from B, and a vertex

from C' respectively.

The proof is not very hard, but we shall omit it here and refer the reader to [44], or to [4] for
proofs that are more specific to the topic of testing.

The following lemma is a strong tool in graph theory, as it states that in essence most of the
vertex-pairs of any given graph can be neatly fitted into a structure of regular pairs. This structure
is given by an equipartition of G — a partition of its vertex set into sets whose sizes differ from each

other by no more than 1.

Lemma 5.3 (Szemerédi’s Regularity Lemma [56]) For every m and ¢ > 0 there exists some
T = T(m,¢€) with the following property.

If G is a graph with n > T vertices, and A is an equipartition of the vertex set of G into m
sets, then there exists an equipartition B that is o refinement of A with k sets, where m < k < T,

for which all set pairs but at most e(g) of them are e-regular.
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By using the Regularity Lemma, one could re-prove for example that proper k-colorability is
testable — in fact, a combinatorial statement to this effect was implicitly given in [51], before the
concept of algorithmic testing came into being.

Another typical use is when testing for the non-existence of fixed size cliques; see for example

the following combinatorial proposition.

Proposition 5.4 (N. Alon, private communication) For every e there exists & = 0(e) such
that any graph with n vertices, which is e-far from being triangle-free, contains at least § () distinct

triangles.

Proof sketch: To prove this we consider an equipartition {Vj,...,Vy} of the vertices of the
graph G according to Lemma 5.3, where 5e~! < k < T'(5¢71,€') (we make it a refinement of an
arbitrary equipartition into 5¢~! sets), in which all but at most ¢ (’2“) of the pairs are €'-regular.
The parameter € is set to min{%e, ’7(%6)}, where -y is the function appearing in Lemma 5.2.

We now consider a subgraph G’ of G, obtained by deleting all edges of G that are internal to
V; for any 4, or are between V; and V; for any pair V;, V; which is not €’-regular, or any pair whose
density is less than %e.

Noting that G’ was obtained from G by deleting less than () edges, it follows that G’ contains
a triangle, since G is e-far from being triangle-free. By the construction of G’, this is necessarily a
triangle with a vertex from V;, a vertex from V; and a vertex Vj, for some V;, V;, V}, which are all
distinct and for which all pairs are in particular fy(%e)—regular (with respect to G) and with density
at least %e. The existence of such V;,Vj,V; implies by Lemma 5.2 the existence of at least ¢’ (g)
distinct triangles in G, where ¢’ = 64 (%6)(T(5e*1,6' )) % with 6 denoting here the corresponding

function from Lemma 5.2. n

Proposition 5.4 implies that the following is a 1-sided e-test for being triangle-free: Choose
independently and uniformly O(6(¢)~!) random vertex triplets (where § is the function of the
proposition), and check whether any of them is a triangle. If a triangle was found then reject the
input; otherwise accept it.

There is one serious drawback to results proven using the Regularity Lemma: The dependency
of T'(m,€) on its parameters is very severe, a tower in a polynomial of me !, and by [41] this
dependency cannot be significantly improved as long as the full strength of the Regularity Lemma
is employed. This makes the tests thus derived of a theoretical importance rather than a practical

one.
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Unlike the situation with k-colorability, currently there is no known proof for a test (with a
constant number of queries) for the property of being triangle-free that has a better dependency
on €. However, it is known that the number of queries of a 1-sided test for this property cannot
be polynomial in €, using a bound from [14], and by Proposition 4.4 above this follows for 2-sided
tests as well.

When one tries to generalize the above result to properties defined as not containing a given fixed
induced subgraph, other than a clique, another problem arises (remember that an induced subgraph
is a subgraph obtained from the original graph by deleting vertices and their incident edges, but
deleting no other edges). In the above proof implicit use was made of the fact that removing edges
cannot add new triangles to the graph; but in the case of induced squares, for example, removing
an edge can actually make its pair part of a new copy of the forbidden subgraph.

In proving the Regularity Lemma one cannot do away completely with the existence of a small
fraction of non-regular pairs, which are the core of the problem in proving similar results for induced
subgraphs because of the above mentioned inability to safely remove edges. The workaround in [4]
to this problem is in proving a variant of the Regularity Lemma, that enables one to find a large
induced subgraph of the original graph, for which there exist an equipartition with all the pairs
being regular, and that has the additional property of being able to “model” the original graph, in
the sense that if the graph G is far from satisfying the property then so is this subgraph.

The full details are outside the scope of this survey; the reader is referred to [4], where this
method is used for proving that all ‘3V’ first order graph properties are testable, and to [25], where
testability is proven for some additional classes of properties that further generalize the ‘IV’ class.

As a final note, we mention some instances in which using the full version of the Regularity
Lemma can be avoided, making for a better dependency of the number of queries on €. It still
remains to be seen whether such a use can be avoided in the general case, or even for the property
of a graph being triangle-free.

In the case where the property is that of not containing a fixed bipartite graph as a not neces-
sarily induced subgraph, this can be tested with a number of queries polynomial in €. The proof
uses a Zarankiewicz type theorem, that states in essence that the only graphs satisfying such a
property are almost edge-less. On the other hand, there exists no test making a number of queries
that is polynomial in € !, for any property defined as not containing a fixed non-bipartite graph;
this was proven in [1]. There is also an investigation into what properties defined by a forbidden

induced subgraph have a test with a polynomial number of queries, in [6].
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Suppose now that a property is defined by not containing a fixed induced subgraph, and that
we wish to test only bipartite graphs for satisfying it. The following is achieved using a rather

restricted variant of the Regularity Lemma, proven for this purpose.

Theorem 5.5 ([29] with an improvement by N. Alon) Any property of bipartite graphs, that
s defined as not containing a given fized induced subgraph, has a 2-sided test using a number of

queries exponential in €, and a 1-sided test using a number of queries doubly-exponential in €.

It is not known at present whether testing of such properties of bipartite graphs can be made

1

polynomial in €~ or not.

6 Testing of sparse graphs

As far as inputs given in terms of the adjacency matrix of a graph are concerned, all graphs with
o(n?) edges are indistinguishable from null (edge-less) graphs. This makes testing of properties
such as not containing a cycle trivial — the algorithm just needs to sample and distinguish between
the case that G has more than €(7}) edges, and the case that G has less than 1¢(7}) edges. In the
first case the algorithm rejects GG, and in the second case it accepts G.

However, there is still the interesting (and non-trivial) question of whether one could, for an

input graph G with n vertices and m edges, distinguish between the case that G is acyclic, and the

n

5)) can make it acyclic. In

case that no removal of up to €(n + m) edges from G (rather than €(
[38] Goldreich and Ron have defined a different model for encoding input graphs, in which such a
testing notion makes sense (in the above €(n +m) is used, and not em, because of further technical
complications arising in graphs with o(n) edges).

Under the model discussed here, a graph is not encoded by its adjacency matrix, but instead
the list of neighbors is given for every vertex. It is assumed that the input is indeed an encoding of
a graph, so if u is in the list of neighbors of v then v is also in the list of neighbors of . Note that
the input is not a sequence of bits, but a sequence of integers, some of which serve as ‘pointers’ to
the different lists. Thus a query in this model consists of either finding out the number of neighbors
of a vertex v;, or finding the identity of the j’th neighbor of v; according to its adjacency list.

In the case where inputs are limited to graphs with a fixed maximum degree A, and the allowable
modifications of the graphs must also satisfy this restriction, one may assume that all the adjacency

lists are of this fixed size, with the possibility of some members in the lists being ‘null’ for vertices

with degree less than A. For this reason we may also assume that all queries are of the second
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type described above. In this model the difference between graphs in relation to n + m is linearly
proportional to the hamming distance between inputs, so we can just use the latter.

When the maximum degree is not bounded, the notion of the distance is more complex because
the sizes of the adjacency lists can vary. The distance between inputs is actually a function of the
edit distances between the corresponding adjacency lists; there are in addition models in which it
is also allowed to add and remove vertices from the graph (in removing a vertex it is natural to
take into account also the removal of its incident edges), but we shall not discuss these models in
detail here.

In a work by Goldreich and Ron [38] several properties (some of which, such as connectivity and
acyclicity, are trivial to test in the dense graph model but are not trivial in this one) are proven to
be testable. On the other hand, some other properties that are easily testable in the dense context

are not testable in the sparse one. The following is a partial summary of their results.

Theorem 6.1 ([38]) The following properties are testable with a number of queries not depending
on n, for the model of testing graphs with a bounded degree A given by their adjacency lists: k-edge
connectivity for any fized given k, not having a given fized graph H as a (not necessarily induced)
subgraph, and being acyclic.

On the other hand, e-testing of bipartiteness for some fized €, and A = 3, requires at least %\/ﬁ

queries.

It turns out that in the case of directed graphs, also the property of being acyclic requires many
queries to test for in the sparse model [15].

In the sparse context a testing algorithm typically consists of performing a breadth first search
from randomly chosen vertices, and then accepting or rejecting the input based on the resulting
subgraphs. For example, testing for connectedness can be done using the following simple lemma,
(one can show that this lemma is also translatable to the model where the input graph and its

modifications are subject to a bound on their maximum degree).

Lemma 6.2 If o graph G with n vertices requires the addition of at least en edges to make it

connected, then at least %en of the vertices of G are in connected components of size at most 2¢ .

Proof: It is easy to see that a graph G as above contains more than en connected components.
Each of them contains at least one vertex, and on the other hand it is clear that less than half of

them can be of size more than 2¢~!. n
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The test now consists of picking O(e ') random vertices, and performing a breadth first search
from each to them to check whether it is part of a connected component with less than 2¢~! vertices
(this requires O(e ') queries per vertex). If one of the chosen vertices is in such a component then
the algorithm rejects, and otherwise it accepts.

The above test takes O(e 2) queries, and works for both the bounded degree model and the
unbounded degree one. Note however that [38] contains an improved analysis, that in particular
requires only O(e ') queries for the unbounded degree model, and slightly more than that for the

bounded degree one.

7 Testing posets for monotonicity

Keeping lists in a sorted order is a common practice, and for well known reasons. This naturally
leads to the question of how many queries it takes to ensure that a sequence of n integers is mostly
sorted, that is, to distinguish between the case that it is monotone nondecreasing, and the case
that no subsequence of (1 — €)n integers from it is monotone nondecreasing.

This is equivalent to the question of e-testing a sequence of n integers for this property, where
the distance is given by the fraction of integers that need to be altered in order to make the sequence
monotone. Ergiin, Kannan, Kumar, Rubinfeld and Viswanathan have shown in [23] that for a fixed
€ it is enough to make O(logn) queries. Although this is dependent on n, it is still a much better

alternative than that of reading the whole input.

Theorem 7.1 ([23]) There exists an e-test that makes O(e~'logn) queries, for the property of a

sequence of n integers being monotone nondecreasing.

Proof sketch: For any monotone increasing sequence of size n, one can check using O(logn)
queries whether a given number appears in this sequence, by the well known binary search method.

We now look at our input, denote it by vyvs...v,. We can safely assume that all values are
distinct, as otherwise we can consider the sequence v v} ... v}, defined by v} = nv; + 7 instead. We
call v; well positioned if the binary search procedure above, when applied to v; over vivs...v,,
indeed finds the position 3.

It takes O(logn) queries to check that a given v; is well positioned. Our algorithm makes O(e™!)
iterations of this procedure for random #’s chosen uniformly and independently, to distinguish

between the case that all values are well positioned, and the case that at least en of the values are
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not well positioned. In the first case the algorithm accepts the input, and in the case where any
values that are not well positioned were found the algorithm rejects.

If the input is in fact monotone, then clearly all of its values are well positioned, and so the
algorithm accepts. On the other hand, if the algorithm accepts (with high enough probability),
then it means that more than (1 — €)n of the values are well positioned. To end the proof, we
show that the subsequence of all well positioned values is monotone; such a subsequence can easily
be completed to a monotone nondecreasing sequence of size n by putting new values in the places
where the original values are not well positioned.

Assuming that 4 < j, and that v; and v; are both well positioned, we now show that v; < v;.
For this it is sufficient to find an index k satisfying : < k& < j such that vy was visited by the binary
searches for both values, because this would imply that v; < v and v, < v;. To find it, we just
choose k to be the last location that was queried in both binary searches, the one for v; and the
one for v;. Common locations in the two searches exist because in particular the location %] is

common to all binary searches. [

One should note here that the above algorithm only looks adaptive. In fact, the algorithm can
supply all the query locations in advance — to check that a value is well positioned, it is enough to
unconditionally query the binary search sequence that would arise if it were well positioned, since
in order to know that a value is not well positioned it is enough to know that the actual binary
search sequence diverges at some point from the queried “expected” sequence.

As it turns out, the above property cannot be tested using a constant number of queries. An
(logn) lower bound (for some constant €) is given in [23] for non-adaptive algorithms that are
restricted to making decisions based on comparisons. In [26] it is proven that for this particular
property better general algorithms do not exist, by showing first that for a certain class of properties,
that includes monotonicity, there are comparison-based algorithms that are optimal.

It is also of interest to investigate testing for natural notions of monotonicity that differ from
the simple notion of a sequence being nondecreasing. The next step is to consider functions whose
domain is not endowed with a linear order as {1,...,n} is, but with other types of partial orders
instead. The first work in this direction is by Goldreich, Goldwasser, Lehman, Ron and Samorod-
nitsky [36], that have proven the following result about the monotonicity of functions from {0,1}¢

(with the usual product order over the hypercube) to {0,1}.

Theorem 7.2 ([36]) e-testing that a function from {0,1}¢ to {0,1} is monotone nondecreasing

can be done using O(e~1d) queries.
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The testing algorithm for this consists of choosing a random pair of points in {0,1}% that differ
in exactly one coordinate, comparing the values of the input function over these, and repeating this
procedure O(e 1d) times. For the correctness proof the reader is referred to [36].

A generalization of the above result to d-dimensional matrices of any size (and not only {0, 1}%)

is given in [22] (some generalizations in this direction were already proven in [36]).

Theorem 7.3 ([22]) A function from {1,...,n}¢ to {1,...,m} can be e-tested for monotonicity

using O(e 'dlognlogm) queries.

Dealing with d-dimensional matrices with integer values (not restricted to some {1,...,m}) is
also covered by [22] — a simple analysis of the algorithm that is given there implies that the ‘m’
term in the expression for the number of queries can be replaced by the actual size of the image
of the input function, which is bounded by n?. This gives an O(e~'d?log®n) upper bound on the
required number of queries in this case. As for binary functions over {1,...,n}¢ where d is fixed,
in [22] it is shown that in this case the number of queries does not need to depend on n at all.

Other partially ordered sets can also serve as domains for functions to be tested for monotonicity.
For example, rooted trees. Monotonicity testing in the general context is treated in [28]. There
are positive results for some partially ordered sets, such as the possibility of testing a binary
function over a rooted tree for monotonicity with a number of queries that depends only on the
approximation parameter . On the other hand, [28] also contains some non-trivial lower bounds,
including one for the case of a function from {0,1}? to {0,1}; in that case the number of queries
has to depend on d. Narrowing the gap between the upper and lower bounds on the number of

queries in this setting still remains an open (and interesting) question.

8 Proving non-testability results

The methods presented thus far deal with proving upper bounds for property testing, through
means of presenting efficient testing algorithms. As with other areas of computer science, lower
bounds play an essential role in the field of property testing as well, and the first example of a
property that is hard to test (one that belongs to NP in the traditional complexity framework) was
given in [37].

This section presents what is currently the most efficient tool for proving lower bounds for
property testing, Yao’s method [57]. The basic method is the following. Instead of trying to

find a worst case input for every possible (randomized) e-testing algorithm, we find a probability
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distribution over the inputs, such that every deterministic algorithm will fail with probability
greater than % on an input taken according to this distribution. From this it follows that every
randomized algorithm will also fail with at least the same probability over this input distribution,
and so for every fixed randomized algorithm there will be at least one (“non-randomized”) input
that demonstrates at least the same average failure rate.

In our context we usually deal with two distributions, one on inputs satisfying the property
and one on inputs that are e-far (for some constant €) from satisfying it, such that in some sense
it is hard for a (deterministic) algorithm making few queries to distinguish between them. For
simplifying the presentation we will only consider binary inputs in the following. We first need

some definitions.

Definition 4 (restrictions, variation distance) For a distribution D over inputs, where each
input is a function f : D — {0,1}, and for a subset Q of the domain D, we define the restriction
Dlo of D to Q to be the distribution over functions of the type g : Q — {0,1}, that results from
choosing a function f : D — {0,1} according to D, and setting g to be f|g, the restriction of f to
Q.

Given two distributions Dy and Do of binary functions from Q, we define the variation distance
between Dy and Dy as follows: d(Dy, Dy) = %Zg:Q—){O,l} |Prp, (9)—Prp,(g9)|, where Prp(g) denotes

the probability that a random function chosen according to D is identical to g.

It is a well known fact that if a deterministic algorithm is given an input chosen according to
either a distribution D, or a distribution D+, then its acceptance probabilities for the two cases
do not differ by more than d(D;, D2). The most common application in our case is the following

folklore lemma.

Lemma 8.1 Suppose that there exists a distribution Dp on inputs over D that satisfy a given
property P, and a distribution Dy on inputs that are e-far from satisfying the property, and suppose
further that for any Q C D of size q, the variation distance between Dplg and Dy|g is less than

%. Then it is not possible for a non-adaptive algorithm making q (or less) queries to e-test for P.

Proof: We construct a distribution D over inputs by deciding with probability % to choose an input

according to Dp, and with probability % to choose an input according to Dy. We now consider

deterministic algorithms — every deterministic non-adaptive testing algorithm with ¢ queries consists
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of querying the input f over a fixed set Q of size ¢, and then making an acceptance or a rejection
decision based on f|o.

Let ap be the acceptance probability of our algorithm when given a random input chosen
according to Dp, and let ay be its acceptance probability for an input chosen according to Dy.
The probability of making an error is clearly (1 — ap) + say, and by the assumptions on the
distributions and the discussion above we know that |ap — an| < % Putting these together shows
that the error probability for every such algorithm is more than % It thus follows from Yao’s
principal that there is no (probabilistic) non-adaptive e-testing algorithm for the property P that

makes at most ¢ queries and whose error probability is at most % [

In general, we would like to place lower bounds on all testing algorithms, including adaptive
ones, SO we now turn our attention to those. In cases where binary inputs are involved, a lower
bound of ¢ queries on non-adaptive algorithms implies a lower bound of log g queries on adaptive
ones (see the end of Section 9 for more information on this), which suffices if it is only required to
prove that a constant number of queries is insufficient for testing a particular property.

In some cases the gap between adaptive and non-adaptive testing is indeed exponential, but
sometimes the gap between adaptive and non-adaptive properties can be narrowed further. In
some cases this is accomplished using some feature of the particular hard to test property, such
as Lemma 4.1 that makes this gap no more than quadratic for properties formulated in the dense
graph model. In other cases it can be proven that the input distributions satisfy certain additional
conditions, ensuring stronger lower bounds for adaptive algorithms; more about this below. There
are also many properties for which the true gap between adaptive and non-adaptive testing is not
yet known.

As the main example here for using Yao’s method, we consider the following problem: Given
as input the adjacency matrices of two graphs with n vertices, test for the property of these two
graphs being isomorphic.

This property was shown in [4] to be non-testable, and this was then used to show that there
exist non-testable ‘V3’ type first order graph properties. The original exposition of the proof in [4]
uses counting instead of Yao’s method; here we give a proof using Yao’s method that can serve as

an example for proving lower bounds.

Proposition 8.2 ([4]) The property of two graphs (given by their adjacency matrices) being iso-

morphic is not %—testable with any constant number of queries.
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Proof: We show that for every ¢ there exists m, such that ¢ edge queries are insufficient for
distinguishing between the case that the two graphs with n vertices are isomorphic, and the case
that all vertex permutations of the first graph differ from the second graph in more than i(g) places
(remember that the total size of the input is 2(7)).

For this we construct two distributions over inputs. The distribution Dp is constructed by
letting the input consist of a random graph G, with each edge being independently chosen with
probability %, and a second graph that is a uniformly random permutation of G. The distribution
Dy is constructed by letting the input consist of a random graph G as before, and another,
independently chosen, random graph G'.

It is clear that an input chosen according to Dp satisfies the property with probability 1. On
the other hand, by a standard large deviation argument, in an input chosen according to Dy any
fixed vertex permutation of G will with probability at least 1 — 277°/30 differ in more than (%)
places from G’. Thus, with probability 1 —o(1), all vertex permutations of G will have at least this
difference from G'. While Dy does not exactly satisfy the requirements of Lemma 8.1 (as it requires
that an input chosen according to Dy will be far from satisfying the property with probability 1),
we will replace it with D’y the distribution that results from conditioning Dy on the event that
all permutations of G indeed differ in more than 1 (5) places from G'.

We now consider any fixed set Q = py,...,pq of vertex pairs, some inside the first graph, some
inside the second one. For an input chosen according to Dy, the values of these pairs will be ¢
uniformly and independently chosen random values in {0,1}. Since D'y is the conditioning of Dy
on an event that occurs with probability 1 — o(1), the variation distance between the restriction of

'v to @ and the uniform distribution over boolean functions from Q is o(1).

We now show that the distance between the restriction of Dp to @ and the uniform distribution
over Q is also o(1). For this, let uq,...,u; be all vertices of the first graph that appear in the pairs
D1,.-.,Pq, and let vy,...,v; be all such vertices of the second graph. It is clear that k£ < 2¢ and
[ <2q. Now let o : {1,...,n} — {1,...,n} be the permutation used in Dp to choose the second
graph according to the first one. Let F denote the event that, for this permutation, o(u;) # v; for
every 1 <7 < kand 1< j <[ Itis clear that, conditioned on the case that E occurs, pi,...,pq
will again be ¢ uniformly and independently chosen values of {0,1}. But since for every fixed ¢
the event E occurs with probability 1 — o(1) (for large enough n), this means that the restriction
of the (unconditioned) distribution Dp to Q will have variation distance o(1) from the uniform

distribution over boolean functions from Q.
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To conclude, we use Lemma 8.1 for the distributions Dp and D'y, where n is chosen to be large
enough so that the restriction of any of these to any set of ¢ queries will have variation distance
1

less than g from the corresponding uniform distribution. ]

The proof of the negative part of Theorem 5.1 in [4] was done by showing that there exists a
V3’ first order graph property that is indistinguishable from a graph isomorphism property similar
to the one above.

As for a quantified lower bound, it can be shown that the distributions of pq,...,p, in the two
cases become close enough for our purposes when n = Q(g?). Together with Lemma, 4.1, this means
that the above property cannot be tested with a number of queries that is less than some power of
2(3), the input size.

For proving lower bounds on non-adaptive 1-sided algorithms, the problem is usually much
easier than the case for 2-sided algorithms. It is enough in this case to find a distribution over
inputs that are e-far from satisfying the property, but in which for any fixed @ C D of size ¢, with
high probability the restriction of the input f to Q is extensible to some possible input (different
from f) that satisfies the property.

A concrete example can help explain this — in the case of testing a graph for being triangle free,
a lower bound that is super-polynomial in e~! (but in this case is of course independent of the input
size) is given by finding a graph that is far from being triangle free, but still does not contain too
many distinct triangles, so that ¢ queries will not capture a triangle with high probability. Such
graphs can be constructed using the number-theoretic construction in [14], and by Proposition 4.4
this actually implies a lower bound for 2-sided testing as well. The construction details and a
generalization thereof to other properties defined in terms of not containing a fixed (not necessarily
induced) subgraph are found in [1], and further investigation in the direction of forbidden induced
subgraphs is found in [6].

We now turn to some cases where the gap between the adaptive and the non-adaptive lower
bounds can be narrowed without relying on a symmetric nature of the property (such as the case
with graph properties in the dense model). Two examples of such cases are [38] (indeed, non-
adaptive lower bounds are meaningless in the context of sparse graphs) and [30]. We conclude
by proving the following lemma, which mimics the implicit argument used in [30]. A final word
of caution — when using the following lemma additional care has to be taken in constructing the
distributions Dp and Dy ; for example, it is quite important that an input chosen according to Dy

will be e-far from satisfying the property with probability 1, not just 1 — o(1).
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Lemma 8.3 Suppose that there exists a distribution Dp on inputs over D that satisfy a given
property P, and a distribution Dy on inputs that are e-far from satisfying the property. Suppose
further that for any @ C D of size ¢ and any g : Q — {0,1}, we have %PrDP‘Q(g) < Prpyo(9) <

%PrDP|Q(g). Then it is not possible for any algorithm making q (or less) queries to e-test for P.

Proof: As in the proof of Lemma 8.1, we construct D by deciding with probability % to choose
an input according to Dp, and with probability % to choose an input according to Dy. Every
(possibly adaptive) deterministic algorithm with ¢ queries takes the shape of a decision tree, which
is a complete binary tree of height ¢, where every non-leaf node corresponds to a query location
with its two children being labeled according to the two possible outcomes of the query, and every
leaf node corresponds to an acceptance or a rejection decision.

Now let ap denote the probability that the algorithm accepts an input chosen according to
Dp, and let ay denote the probability that the algorithm accepts an input according to Dy. It
is enough to prove now that |ap — ay| < %, because then the proof here can be concluded in an
identical manner to that of the proof of Lemma 8.1.

Let L be the set of leaves of the decision tree that accept the input. Every u € L corresponds
to a set of queries Q, and their answers g, : @, — {0,1}. Moreover, for every input f, the decision
tree of the algorithm will reach the leaf u if and only if f|o, = gu, implying ap = 3" ,c;, Prp,|o. (9u)
and similarly ay = 3°,c; Prpy|o. (9u). Finally, using the conditions on Dp and Dy we obtain
ap —an = Yuer(Prpyo, (9u) = Proye, (9u)) < 3 Cuer Proplo, (9u) = 5ap < 5, and similarly

any —ap < %, concluding the proof. [

9 Related research and future directions

Property testing is a young field, that currently enjoys rapid growth. The purpose of this section
is to give a glimpse into some topics not covered by the rest of this survey. Some of them were left
uncovered due to size or scope considerations, while others were left out simply because they are
still waiting to be investigated. The interested reader is also referred to other surveys of this and

related fields, such as [52], [43] and [35].

9.1 Other works concerning testability

As is the case with all surveys, this one also cannot cover every work in this field. The following

(also partial) list is given in acknowledgment of this fact.
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Other algebraically motivated properties: The question of whether an input function over
a vector space forms a bounded degree polynomial is just one of several algebraically motivated
properties. For example, one could ask whether a ‘multiplication table’ given as input forms a
(finite) group. In [23] some upper and lower bounds are given for this. For a supposed group with
n elements there is an e-test using O(n?/?log®n) queries, for some global ¢; this is a rather large
quantity, but it is still much smaller then the size of the input, n?. One should also note that in
the context of prover assisted testing (see below), this quantity can be further reduced; related
properties play a role in quantum property testing (see below) as well.

Another topic, somewhat related to testing polynomiality, is testing whether a given function
satisfies a property defined by a functional equation, for example “f(z+y)+ f(x—y) = 2f(z) f(y)”.

Some properties of this type are investigated for functions defined over certain subsets of R (the

field of real numbers), in [53].

Testing of matrix poset properties: Another way to generalize the result about testing binary
matrices for monotonicity is in extending it to other properties of matrices, defined in terms of first
order expressions using the partial order that underlies a matrix (that is, the product order of each

location’s coordinates). Such properties are investigated in [29].

Geometrically motivated properties: In this context the input is not a binary sequence or a
sequence of integers, but a sequence of real numbers. As a first example, it is shown in [23] how
to test, using O(logn) queries, a sequence of n points from R? for the property of being the nodes
of a convex polygon given in a clockwise order. In [20] testing for several geometric properties of
points from R%, such as being the nodes of a convex polygon given in any order, is considered. For
most of these matching upper and lower bounds are given; these are rather large (most are fixed
powers of n), but are still sublinear in the input size.

Another example, given a fixed d, is testing for the property of a given set of vectors in R? being
(k, b)-clusterable. Usually in such a context a more relaxed notion of testing needs to be used; here
it is possible to efficiently distinguish between the case that the input is (k, b)-clusterable, and the
case that even removing an e fraction of the points will not make the rest (k, (1 4 €)b)-clusterable.
The testing procedure is given in [2].

A geometrically motivated problem in a different direction is that of testing whether a given
matrix of real numbers has certain properties, that are expected from a distance function of a

discrete metric space. Properties of this type are investigated in [48].

Testing of boolean functions: In relatively recent years, discrete harmonic analysis is proving
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itself useful for computational issues. In a body of work that started in [50] and continued in
[27] this was applied to property testing. The main result of [27] is a test of a general boolean
function with n variables for the property of depending on only k£ on them, where the number of
queries depends only on k£ and the approximation parameter e. Although in a future version of
[27] harmonic analysis will play a lesser role, it still remains the source of many insights about the

nature of boolean functions.

Recent general results: With the advancement in the understanding of what properties are
testable comes advancement in the understanding of how a property tester works. For graph
properties in the dense model we already have some knowledge of how a property tester looks like
in general, as exemplified in [40], despite still being far from classifying all the testable properties
in the dense graph setting.

In [19] a general method for obtaining positive property testing results is developed. Although
only time will tell if this new method becomes widely used, it looks promising in view of the fact
that until now the methods used for proving upper bounds were usually narrower in scope (the
most general method in this respect is probably the use of Szemerédi’s Regularity Lemma for dense
graph properties; for proving negative results there is a very general method in the form of Yao’s

principal).

9.2 Some topics related to testability

Property testing is already making itself felt in other areas of computer science. The following are

some areas of interaction.

Low-rank approximations: There are many applications to finding a low-rank matrix that
approximates a given input matrix. In [33] it is shown how to construct a low-rank approximation
for a given matrix (in the form of a fast oracle), in time that depends only on the approximation
parameters and not on the size of the approximated matrix. While strictly speaking this is not a
testability result, it does share some of the methods. Other results regarding fast approximation

of matrices are given in [32].

Testing with a prover: This topic deals with accepting or rejecting an input based on commu-
nicating with a computationally unbounded prover. It is somewhat like interactive proofs, only the
operating requirements of the verifier here are the ones used in the field of property testing.

The general problem is to distinguish between the case that the input satisfies a property, and
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the case that the input is e-far from satisfying the property. In general the prover is allowed to
supply a long (usually polynomial size) proof, but the verifier is still allowed only a small number
of queries from the input as well as from the supplied proof.

Testing with a prover is investigated in [24] and [11]; in these the running time of the verifier is
restricted as well, and this poses some restrictions on the size of the proof through the size of the
allowable address-space. As expected, there are problems that are hard to test in the usual context
but are easy to test with a prover. For example, it takes Q(y/n) queries to test that a function
f:A{L,...,n} = {1,...,n} is a bijection, but if a prover provides a function g that is supposedly
the inverse of f, then it takes a constant number of queries to test that f and ¢ are indeed close to

being inverses of each other.

Statistical deductions: In this context one would like to check certain properties of a distribution
(say, the distribution of the heights of NBA basketball players), where closeness is defined by the
Ly norm |A — B| = > ,cr |A(¢) — B(4)| (or the variation distance as defined in Section 8, which
is half this norm). In here, instead of querying, one can only obtain a sample of values that were
independently chosen using this distribution (in the above example, one can only measure the
heights of randomly selected NBA players).

When the distribution is defined over a set of n elements, it takes many samples to ‘e-test’
(under this new definition) for a property, but in many cases the number of required samples is still
much less than the Q(n logn) samples needed to actually write down an approximation of the whole
distribution. For example, based on the methods of [39], one can prove that O(y/nlog®n) queries
(for some global constant c¢) are sufficient to e-test for the property of being the uniform distribution
over the whole set. On the other hand, it was proven that at least 2(y/n) samples are required for
this. Further results in this direction include those about testing that two distributions (also given
by samples) are close, and that a joint distribution (with two ‘coordinates’) is independent. These

are given in [13] and [12] respectively.

Quantum testability: Just as other notions of computational and informational complexity
have their quantum counterparts, a quantum counterpart of the notion of property testing is being
developed as well. The first results are in [17], showing that in some cases quantum computers can
efficiently test properties for which there exist no efficient classical test, while some other properties
are equally hard to test in the quantum context. The investigation into quantum property testing
is taken further in [31], where quantum testers for some algebraically motivated properties (which

are hard to test classically) are constructed.
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9.3 A few more questions

Let us conclude with a few possible future directions in property testing, that some of the people
in the field find interesting. The following list is not meant to be exhaustive or representative, and

was chosen based mainly on personal preference.

Weighted testing: In most of the cases described above, the distance used in the definition of
being e-far from satisfying a property is the hamming distance between inputs. It is interesting to
investigate also counterparts of the above testability questions in which closeness is measured by a
weighted hamming distance.

In the most lenient model it is assumed that the algorithm is given all the weights in advance;
thus the weights are not considered as part of the input, but as part of the description of the
parameters within which the algorithm is supposed to operate. For some of the results, such as the
result in [46] about the testing of languages recognizable by a read-once bounded width oblivious
branching program, the proof extends naturally to the weighted case. In other instances, such as
that of testing that a graph is triangle free, the question of the weighted case seems very hard
(though some special cases, such as that of a weight function generated by giving weights to the
vertices and using their multiples for the edges, can still be easily deduced from the unweighted
case).

While it seems very probable that for many properties testability in fact does not extend to the
weighted case, there are some recent positive advances. In [42] an even stricter model is considered,
that of distribution-free testing. In it, the algorithm is not given the weights in advance, but is only
given the ability to obtain independent samples of the distribution corresponding to the weight
function. This model in a sense connects property testing with the topic of statistical deductions
described above, and is motivated by a similar model from learning theory. One of the main results
in [42] supplies some non-trivial upper bounds on testing d-dimensional matrices for monotonicity

(on the other hand, these are still far from the bounds known for the unweighted case).

Additional kinds of queries: In certain settings it may be interesting to investigate what can
be done if we allow queries that are more powerful than the usual “what is the input value at
location 7. Of course allowing queries that are too powerful can easily lead to a trivializing of the
problem, but there may still be instances in which allowing certain types of queries is both natural
and feasible in some real-life scenarios. There is already an investigation in [18] into allowing ‘range

queries’ in the geometric context, i.e. queries as to whether there exist input points in a specified
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cube, and which are expected to provide one such point (chosen arbitrarily) if any such point exists.

Connections to traditional complexity: There are properties that are hard to decide but
are easy to test (such as graph 3-colorability), and properties that are easy to decide (even ACy
ones) but are hard to test. It would be interesting to take the approximating feature of testing into
account, and formulate some connections between testable properties (subject to some uniformity
assumptions on the testing algorithms) and easy to decide properties that approximate them, apart
from the nearly obvious connection to Promise-BPP (for graph properties it can also be made into
a connection with P, using the algorithmic version of Szemerédi’s Regularity Lemma from [3]).
Another somewhat related question is this: What is the expressive power of first order graph
expressions when approximations are taken into account? The results of [4] suggest that it may be

stronger then expected.

Adaptive versus non-adaptive testing: A reminder — a non-adaptive testing algorithm is an
algorithm that has to supply all the queries in advance, and only then is given the corresponding
input values, based on which it accepts or rejects the input. In general, an adaptive e-test for a
property of binary sequences using g queries can be converted to a non-adaptive one using up to
29 — 1 queries — one just goes over the whole decision tree of the adaptive algorithm, makes all
queries appearing there in advance, and then navigates the tree using the query results in order to
accept or reject the input. There are known properties for which this gap is essential, for example
properties derived from the sparse graph model investigated in [38]; the discussion in [26] contains
some examples and details.

For graph properties in the dense graph model, in [40] it is proven that an adaptive algorithm
making g queries can be converted to a non-adaptive one making only (22q) queries (this is stated
above as Lemma 4.1). A look at the simple proof reveals that it is based on the fact that graph
properties are invariant with respect to graph isomorphisms. Examining other properties, such
as counting properties that are invariant with respect to any permutation of the input (in [10]
arguments related to such invariance are used for proving lower bounds for certain approximation
problems), one gets the impression that a larger invariance group of a property implies a smaller
gap between its adaptive and non-adaptive testing possibilities. It would be interesting to formalize

and prove this observation.
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