
The art of uninformed de
isionsA primer to property testingEldar Fis
her �Abstra
tProperty testing is a new �eld in 
omputational theory, that deals with the information that
an be dedu
ed from the input where the number of allowable queries (reads from the input) issigni�
antly smaller than the input size. This survey provides an introdu
tion and referen
e tothis ex
iting �eld.Dedi
ated to the memory of the vi
tims of terror, September 11, 2001.1 Motivation and introdu
tionWith the re
ent advan
es in te
hnology we are fa
ed with the need to pro
ess in
reasingly largeramounts of data in faster times. As was observed by Papadimitriou [47, Page 357℄, 
ommon notionsof the eÆ
ien
y of algorithms tend to gravitate towards stri
ter time restri
tions as 
omputers
ien
es progress. At �rst a problem was 
onsidered 
omputable if there was an algorithm that
ould de
ide it in a �nite time given any input instan
e. Afterwords 
ame the notion of polynomialtime 
omputations, and later the possibility of making a 
omputation faster for 
ertain problemsthrough use of parallel ma
hines was also investigated.In all of the 
lasses 
onsidered above, however, the algorithms involved still fa
e the obviousobsta
le of having to read the entire input prior to its assessment (in the parallel setting it isassumed that the input 
an also be read in parallel, whi
h is not always a realisti
 assumption).There are pra
ti
al situations in whi
h the input is so large, that even taking a linear time inits size to provide an answer is too mu
h. Many modern databases have overwhelming sizes. There�NEC Resear
h Institute, 4 Independen
e Way, Prin
eton NJ 08540, USA; and DIMACS.Current address: Fa
ulty of Computer S
ien
e, Te
hnion { Israel institute of te
hnology, Te
hnion City, Haifa 32000,Israel. Email: eldar�
s.te
hnion.a
.il 1



are also other instan
es where the input is not easily a

essible { it 
ould be stored for exampleon a server at the other end of a slow 
ommuni
ation line. And it 
ould also be the 
ase that anexpli
it representation of the input in fa
t does not exist, and an \ora
le" pro
edure that 
al
ulatesits values in the requested lo
ations is given instead.This survey deals with algorithms that are designed to make a de
ision 
on
erning the inputafter reading only a small portion thereof. In the general setting it is assumed that an algorithmhas random a

ess to the input, that is, the algorithm is told in advan
e what is the input size, andis supplied with an ora
le that for a query `i' yields the value vi of the input in this lo
ation. Thegoal is to minimize the number of 
alls to this ora
le, and in the ideal 
ase to make it a 
onstantindependent of the a
tual input size.One ne
essary feature of su
h algorithms, that is immediately apparent, is that they must beprobabilisti
. The intuition is that even when not the whole input is a
tually read, all of the inputmust still be \
onsidered" by the algorithm in order to give an output relevant to its entirety, andthus every 
omponent of the input must be read with some positive probability.But even random algorithms 
annot be expe
ted to give a

urate results. Consider for examplethe simple property of the input being all zeros. No algorithm reading only a small fra
tion ofthe input 
an distinguish with high probability between an input satisfying this property, and aninput 
ontaining a single `1' in a randomly 
hosen lo
ation. In fa
t, there are some well known
onje
tures and results stating that most properties are \evasive", requiring a linear number ofqueries to de
ide them, even using a probabilisti
 algorithm (evasiveness was studied extensivelyfor graph properties; for the interested reader [45℄ provides an introdu
tion to this subje
t).It follows that in order to des
ribe what an algorithm 
an do without reading the whole input,it is required to formulate a new notion of an approximated version of the original de
ision problem.As a guide we look at what 
an be done with the above property of the input being all zeros { whileeven this property 
annot be de
ided by su
h an algorithm, it is very easy, using a 
onstant timerandomized algorithm, to distinguish between the 
ase that the input is all zeros, and the 
ase thatat least an � fra
tion of the pla
es in the input 
ontain ones (where � is any 
onstant independent ofthe input size). The algorithm needs only to take O(��1) uniformly random samples of the input,and reje
t the input if it �nds a `1' in any of them.The following de�nition of a property's approximation suÆ
es for most instan
es of testingproblems. It deals with a �xed input size { sin
e testing deals primarily with informational boundsit is usually suÆ
ient to analyze every �xed input size separately (and apart from rarely o

urring2



uniformity issues, it is almost the same as saying that the testing algorithm is given the size of theinput in advan
e).De�nition 1 An input, given as a fun
tion f : D ! F , is said to be �-
lose to satisfying a propertyP , if there exists a fun
tion f 0 : D ! F that di�ers from f in no more than �jDj pla
es, and satis�esP . An input whi
h is not �-
lose to satisfying P is 
alled �-far from satisfying P .There are some testability questions that deal with di�erent notions of 
loseness, su
h as thesede�ned using the edit distan
e between inputs when 
onsidered as strings; su
h a 
ase appears inSe
tion 6.The notion of 
loseness leads to the following de�nition of what it means to �-test a property.Remember that in this de�nition a read from the input, also 
alled a query, is allowed from anylo
ation (in other words, the algorithm is granted random a

ess to the input).De�nition 2 Let P be a property, and let us �x the input size n. An �-test with q = q(�; n) queriesfor P is a probabilisti
 algorithm that reads the input in up to q pla
es, and with probability at least23 distinguishes between the 
ase that the input satis�es P , and the 
ase that the input is �-far fromsatisfying P .The `23 ' term in the de�nition is arbitrary of 
ourse, and 
an be ampli�ed to any �xed probabilitysmaller than 1, at the pri
e of a linear in
rease in q, by running the algorithm a 
onstant numberof times and taking the majority vote.Note that the above de�nition 
laims nothing about the running time of the algorithm, butdeals only with the amount of data that is allowed to be read from the input. This makes propertytesting more related to the bran
hes of 
omputer s
ien
e dealing with informational 
omplexity,rather than to those dealing with 
omputational 
omplexity. However, in most 
ases the algorithmsmaking de
isions based on a small portion of the input happen to have a small running time aswell, making them also suitable for providing fast approximations of the input qualities.A property that has an �-test as above is 
alled �-testable with q queries. The best that 
an behoped for with regards to large inputs is the situation where q depends only on � and not on n.If this o

urs for every �xed � > 0, then the property P is usually simply referred to as testable.Lowering the dependen
y on � is also important, in whi
h 
ase the best that 
an be hoped for is anumber of queries that is linear in ��1, as is the 
ase with the property of the input being all zeros.Sometimes lower bounds on the number of queries 
an be proven as well. There is no \oÆ
ial"standard as to what makes a property \totally non-testable". In many 
ases involving inputs3



over a binary alphabet, any non-
onstant lower bound for a �xed � is said to make the propertynon-testable. However, sometimes testing with O(log n) queries (for a �xed �) is also 
onsidered asuÆ
ient test, espe
ially in 
ases, su
h as most problems dealing with inputs over in�nite alphabets,where there are some known 
(logn) lower bounds.A lower bound of the type n
 (for some positive 
onstant 
 and �) is sometimes 
onsidered the�nal say, but in several instan
es even testing algorithms that read this many queries are 
onsideredinteresting, espe
ially if they have a sublinear running time to mat
h.Sometimes, spe
ial types of testing algorithms are sought for. For example, by the de�nitionabove the algorithm is allowed to have a 2-sided error probability. A 1-sided testing algorithm isan algorithm that in addition a

epts with probability 1 any input that satis�es the property to betested.In other 
ases the adaptivity of the algorithm is also 
onsidered. A non-adaptive test for aproperty is a testing algorithm that spe
i�es all queries in advan
e (a

ording to some distribution),and only then is allowed to obtain the input values in the 
orresponding lo
ations, based on whi
hthe algorithm a

epts or reje
ts the input. In other words, a non-adaptive test 
annot use theresults of previous queries in the de
ision as to where to make the next query, but only in the �nalde
ision as to whether to a

ept or reje
t the input.The rest of this survey is organized as follows. Se
tion 2 deals with the testing of a propertyde�ned in terms of polynomial fun
tions, in the 
ontext of the works that have started this �eld.Se
tion 3 deals with the testing of languages, motivated by an attempt to 
orrelate the notionof testing to other notions of low 
omplexity (as it turns out there is little obvious 
orrelation,and some surprising results 
ome into play). Se
tion 4 and Se
tion 5 deal with one model ofgraph property testing, and another angle of the attempt to give a logi
al 
hara
terization of thetestable languages, and Se
tion 6 deals with another graph testing model. Se
tion 7 deals with thetesting of properties motivated by the notion of monotoni
ity. Finally, Se
tion 8 deals with somete
hniques for proving lower bounds on testability, and Se
tion 9 deals with some re
ent trends andfuture resear
h dire
tions, as well as the relation of property testing to other old and new topi
s in
omputer s
ien
e.There is no hope to give 
omplete proofs for all the results presented in a survey su
h as this.The strategy used in the following is to give proofs for some of the easier results, and to give proofsof spe
ial 
ases or proof outlines for some of the harder results. It is hoped that through this thereader 
an get a taste of the te
hniques used in the �eld.4



Although in general older results tend to appear earlier in this survey, there is no seriousattempt to fully re
e
t the 
hronologi
al development of this �eld. For example, many of theresults presented in Se
tion 4 have appeared earlier than those presented in Se
tion 3.2 A �rst o�ering { testing for polynomialityThe �rst results in property testing were motivated by program testing (Blum, Luby and Rubinfeld[16℄, and Rubinfeld and Sudan [54℄), and by probabilisti
ally 
he
kable proofs (Arora and Safra [8℄,and Arora, Lund, Motwani, Sudan and Szegedy [7℄).In the 
ontext of program testing, the idea is that the \input" to be tested is not expli
itlygiven. Instead, a program is given; this program is 
onsidered as a fun
tion from the set of itspossible inputs to the set of its possible outputs, and we have to test for properties of this fun
tion.The pra
ti
al impli
ation is 
lear { one 
annot hope to expli
itly write down the entire fun
tion,but a \query" into it 
an be answered in a reasonable time by running the given program on theinput that 
orresponds to the queried \lo
ation". Thus testing 
an ensure that this program willperform within the expe
ted parameters for most inputs.Probabilisti
ally 
he
kable proofs deal with proving proto
ols that 
an be probabilisti
ally veri-�ed by reading only a small portion of a proposed proof. Formulating the property of being an inputthat satis�es the proto
ol, in a way that allows testing for this, is the 
onne
tion here. Both the
ontext of program 
he
king and the 
ontext of probabilisti
ally 
he
kable proofs pla
e additionalrequirements on the pro
edure beyond testability (that happen to be a
hievable for the examplebelow); their exa
t de�nition is outside the s
ope of this testing survey.The �rst result regarding testability per-se is probably that of Blum, Luby and Rubinfeld [16℄
on
erning linearity, and the �rst expli
it de�nition of property testing was given by Rubinfeld andSudan in [54℄ (in its turn it is based on some of the results of [55℄ and [34℄). The �rst results dealtmainly with the algebrai
 notion of being a low degree polynomial.Suppose that for some �nite �eld F the input is given as a fun
tion f from F to F , that a query
onsists of �nding the value of f at a spe
i�ed lo
ation x 2 F , and that the distan
e is measuredby the number of values of f that have to be 
hanged in order to make it satisfy the property tobe tested, divided by the input size jFj.In this setting, it is easy to test using a few queries for the property that f is a polynomialwhose degree is bounded by some �xed 
onstant k.5



Proposition 2.1 It takes O(k + ��1) queries to �-test that a fun
tion f from F to F (where F isa �nite �eld of arbitrary size) is a polynomial of degree at most kProof: The algorithm �rst queries f in k+1 arbitrary di�erent lo
ations. If f is indeed a polynomialof degree at most k, then by the interpolation property of polynomials these k + 1 queried valuesdetermine all the other values of f .The algorithm then queries f in O(��1) additional lo
ations 
hosen uniformly and independentlyat random, and for ea
h of these 
he
ks that the value of f indeed agrees with the value of thepolynomial interpolated from the �rst k + 1 queried values.In 
ases where fun
tions from Fd to F are needed to be tested for the property of being low-degree (multivariate) polynomials, interpolation by itself is not satisfa
tory. The main results of[54℄ are another test for the 1-dimensional 
ase that satis�es some additional 
onditions mandatedby the 
ontext of program 
he
king, as well as an eÆ
ient test for the multidimensional 
ase (seealso [8℄ and [7℄ for related results and appli
ations). The way to handle fun
tions from Fd to F isby 
onsidering two random interse
ting lines in Fd, and testing that the restri
tions of the inputfun
tion to these give degree k polynomials that agree on the interse
tion point.Theorem 2.2 ([54℄) The property of a fun
tion f : Fd ! F being a polynomial of a total degreebounded by k 
an be �-tested using O(k2 + k��1) queries (independently of jFj and d).There was extensive resear
h in the topi
 of testing a fun
tion for being a low degree polynomial,and related questions. The interested reader is referred to [9℄, that des
ribes some additional results.3 Testing of languagesAs the possibility of testing an input for a property using few queries be
omes apparent, thenext natural step is to 
orrelate the traditional 
ategorization of properties into 
omputational
omplexity 
lasses with the new testing s
heme.An ultimate goal would be to try �nding a logi
al 
hara
terization of all properties testablewith a number of queries independent of the input size, in mu
h the same manner as, say, that theproperties re
ognizable by a �nite automaton have a 
hara
terization as all properties expressiblein the appropriate monadi
 se
ond order logi
 language.This goal is far from a
hieved. A more humble goal is to identify whole 
lasses, and notjust individual properties, that are eÆ
iently testable. Su
h 
lasses, sometimes identi�ed by the6



stru
ture of their expression in an appropriate �rst order logi
 language, are given spe
ial attentionin this survey.Results are sometimes surprising. On one hand, there exist properties that are in AC0 and arenot testable even in a number of queries that is some �xed (small) power of the input size. Onthe other hand, there exist NP-
omplete properties, su
h as graph 3-
olorability, that are testablewith a number of queries that depends only on the approximation parameter �. A reason for thisis that up to 
hanging a small portion of the input, even simple �rst order logi
 expressions 
an
apture surprisingly large 
lasses of properties. For example, up to 
hanging a small number ofedges, 3-
olorability is in fa
t indistinguishable from some very simple AC0 property. More on thisin Se
tion 5.For a potential sour
e of 
lasses of properties that are testable we turn �rst to the well-known
lasses of languages with low 
omputational 
omplexity, starting with the lowest { the languagesre
ognizable by a �nite automaton. These were investigated by Alon, Krivelevi
h, Newman andSzegedy [5℄ and were found to be testable. However, in general one 
annot prove similar testabilityresults for 
omplexity 
lasses substantially broader than this, as there are already 
ontext freelanguages that are not testable even with relatively many queries { for example, the language ofall possible 
on
atenations of two palindromes is su
h a language.Theorem 3.1 ([5℄) Any regular language is testable with a number of queries linear in ��1 log3(��1)and independent of the input size. On the other hand, there exist 
ontext-free languages that arenot testable in a number of queries that is less than some �xed power of the input size.To give a taste of how su
h a testability result 
an be proven, a testability proof for a spe
ial
ase is given here.Proposition 3.2 Let S be any �xed binary string. The property of a binary input string not
ontaining S as a (not ne
essarily 
ontinuous) substring is �-testable, with a number of querieslinear in ��1 and independent of the input size.Proof: We 
onstru
t by indu
tion on the length of S a test whose error probability is bounded byPjSji=1 2�i�2 < 14 . When S is of size 1 the test is trivial (it just performs a random sampling of theinput and reje
ts if it �nds an instan
e of the single 
hara
ter that 
omprises S).Assume without loss of generality that the �rst 
hara
ter in S is `1', and let S0 be the result ofremoving this �rst 
hara
ter of S. Let v1v2 : : : vn be an input of size n. The algorithm then 
hooses7



uniformly and independently O(��1) random lo
ations in the input string (the `O' notation hidesa 
oeÆ
ient dependent only on jSj), queries them, and notes the smallest queried lo
ation indexfor whi
h the input is `1'. Denote it by i1.In the 
ase that no `1' was found in the previous stage, the algorithm a

epts the input. Thiswill happen only with a small probability (whi
h 
an be made smaller than 2�jSj�2), unless theinput is �-
lose to being all `0', in whi
h 
ase it is 
learly �-
lose to not 
ontaining S as a substring.With high probability, if a `1' was found in the pre
eding stage, then i1 is su
h that v1 : : : vi1�1
ontains no more than 12�n instan
es `1'. To see this, denote by fj1; : : : ; j�n=2g � f1; : : : ; ng the setof the �rst 12�n instan
es of `1' in the input (if su
h a set does not exist and yet i1 was found thenit 
learly satis�es the above 
ondition). It is easy to see that O(��1) queries will be suÆ
ient to hita member of this set with probability 1� 2�jSj�2.The algorithm now 12�-tests the string vi1+1 : : : vn for the property of not 
ontaining S0 asa substring (with error probability PjSj�1i=1 2�i�2), and a

epts the input if and only if this testa

epts. By the indu
tion hypothesis, the number of queries in this stage is also linear in ��1.For the 
orre
tness proof, it is quite 
lear that if the input does not 
ontain S as a substringthen the algorithm will a

ept with probability 1, be
ause this ne
essarily implies that vi1+1 : : : vndoes not 
ontain S0 as a substring.On the other hand, if the algorithm a

epts v1 : : : vn with probability more than PjSji=1 2�i�2,then we 
an de�ne a string w1 : : : wn that is �-
lose to v1 : : : vn and does not 
ontain S as follows:w1; : : : ; wi1�1 are all set to `0' (this makes no more than 12�n 
hanges from v1; : : : ; vn), wi1 = vi1 = 1,and wi1+1; : : : ; wn are set to a string that is 12�-
lose to vi1+1 : : : vn and 
ontains no instan
e of S0.It is 
lear that w1 : : : wn is �-
lose to v1 : : : vn. Also, w1 : : : wn does not 
ontain an instan
e of Sthat starts before i1 as there are no o

urren
es of `1' in that range, and on the other hand does not
ontain an instan
e of S starting at i1 or later be
ause wi1+1 : : : wn does not 
ontain an instan
e ofS0. This 
ompletes the proof of the properties of v1 : : : vn in the 
ase that the algorithm a

epts,and thus the 
orre
tness proof of the test.It is still not known whether the testing of all 
ontext free languages 
an be bounded from aboveby a power of n that is smaller than 1. An investigation into this question is given in [49℄.In [46℄, Newman found a generalization of the positive part of Theorem 3.1, by 
onsidering anon-uniform 
ounterpart of the notion of a �nite automaton.Theorem 3.3 ([46℄) Every property identi�able by a read-on
e �xed-width oblivious bran
hingprogram is testable with a number of queries polynomial in ��1 (and independent of the input size).8



However, we 
lose this se
tion by noting that this result too is the best possible of its kind insome sense.Theorem 3.4 ([30℄) There exists a property identi�able by a read-twi
e oblivious bran
hing pro-gram of width three, that is not testable with a number of queries that is less than some �xed powerof the input size.4 Graph testing in the dense 
ontextGraph theory is a point of 
onta
t between pure mathemati
s and 
omputer s
ien
e. Be
ause ofthe major role it plays in the theory of 
omputational 
omplexity, it is only natural that problemsthat arise from graph theory, su
h as (proper) vertex 
olorability, will also be investigated from thepoint of view of property testing.The �rst investigation into the testing of graph properties was performed by Goldrei
h, Gold-wasser and Ron in [37℄. It was motivated by the idea of property testing serving as a new notionof approximation, and by some related questions that arise in 
omputational learning theory. Herethe input is assumed to be an adja
en
y matrix of a graph G with n verti
es. This means that aquery 
onsists of obtaining an answer as to whether a pair vivj of verti
es is an edge of G or not,and that G is 
onsidered to be �-far from satisfying a property P if one has to add and removemore than a total of ��n2� edges in G to make it satisfy P .This also means that we restri
t ourselves to properties that relate to the graph G underlyingthe input, su
h as vertex 
olorability or the existen
e of a large 
lique. Formally, it means that weinvestigate only properties that are invariant with respe
t to graph isomorphisms { all permutationsof the input that result from permuting the vertex set of the underlying graph.This invarian
e of graph properties has some useful impli
ations for testing. For example, itimplies that if two graph properties P and Q satisfy that for every � there exist only a �nite numberof graphs that satisfy one of them but are �-far from satisfying the other, then either both of P andQ are testable (for every �) with a number of queries that is independent of n, or neither of themis thus testable. In this setting P and Q are said to be indistinguishable from one another; theexa
t statement and proof of this observation are found in [4℄. The above invarian
e has also strongimpli
ations 
on
erning the type of testers that exist for these properties, su
h as those des
ribedin [40℄. 9



Lemma 4.1 ([40℄) If there exists an �-tester for a graph property that makes q queries, then thereexists su
h a tester makes its queries by uniformly and randomly 
hoosing a set of 2q verti
es andquerying all their pairs. In parti
ular, it is a non-adaptive �-tester making �2q2 � queries.Proof sket
h: We de�ne a vertex un
overing tester to be a testing algorithm that in ea
h stagepi
ks a new vertex v (possibly based on previous queries), and queries all the edges between v andthe verti
es that were pi
ked in the previous stages. This pro
ess is 
alled the un
overing of v.Any �-tester making up to q queries 
an be transformed to a vertex un
overing tester that un
oversexa
tly 2q verti
es in the following manner: Whenever the original algorithm queries an edge, thenew algorithm un
overs one by one its two in
ident verti
es, if they were not already un
overed inearlier stages. In the end, if the original algorithm a

epts or reje
ts the output before 2q verti
eswere un
overed, the new algorithm �rst un
overs more arbitrarily 
hosen verti
es until exa
tly 2qverti
es are un
overed; after the un
overing is 
ompleted, the a

eptan
e 
riterion of the originalalgorithm is used.The new algorithm that un
overs 2q verti
es may still be adaptive, but now instead of runningit over the input graph G, we run it through a uniformly random permutation of the verti
es ofG. It is now not hard to see that the result of this modi�
ation will be an algorithm satisfying thestatement of the lemma.As it turns out, for every �xed given k the property of a graph being k-
olorable 
an be �-testedwith a number of queries depending only on � (and k). Informally, this means that the NP-hardnessof k-
olorability for k � 3 essentially follows from 
onstru
tions that are not k-
olorable but 
anbe made k-
olorable by removing only a small portion of the edges.To illustrate the proof given in [37℄ for the testability of k-
olorability, we give here the prooffor the spe
ial 
ase k = 2.Proposition 4.2 ([37℄) There exists an �-test for the property of a graph being bipartite, thatmakes a number of queries whi
h is polynomial in � (and is independent of the input size).To prove this proposition, we �rst note that it is quite trivial to test for bipartiteness if one isalready given the supposed proper 2-
oloring along with the input graph.Lemma 4.3 There exists an algorithm, that given a graph G and a 
oloring of some of its verti
es,with the possibility also to query for a given vertex whether it is 
olored and with what 
olor, 
andistinguish (with high probability) using a number of queries that is linear in ��1, between the 
ase10



that G 
ontains no edges whose in
ident verti
es are 
olored with the same 
olor, and the 
ase thatG 
ontains more than ��n2� su
h edges.Proof: There are a total of �n2� vertex pairs in G, and we need to distinguish between the 
ase thatnone of these pairs is an edge 
onne
ting two identi
ally 
olored verti
es, and the 
ase that morethan ��n2� of the pairs are su
h edges. This is done by a simple sampling of the pairs, where forevery pair in the sample we query the 
olors of its verti
es, and whether it is an edge of G.Proof sket
h of Proposition 4.2: The test �rst pi
ks a set S of O(��1 log(��1)) verti
es of theinput graph G independently and uniformly at random; with high probability it has the propertythat all but at most 15�n of the verti
es that have degree at least 15�n in G have also a neighbor inS. We now look at all possible partitions of S into S1 and S2, and de�ne for ea
h of these a partial2-
oloring of G: Every vertex that has a neighbor in S1 is 
olored by 2, and every vertex that hasa neighbor in S2 but not in S1 is 
olored by 1. With this de�nition, �nding out whether a givenvertex is 
olored and with what 
olor requires jSj = O(��1 log(��1)) queries of G.For every possible partition of S, we 
an use the algorithm from Lemma 4.3 to �nd out whetherthe graph is 15�-far from 
ontaining no mono
hromati
 edges a

ording to the 
orresponding 
olor-ing. However, the number of possible partitions is exponential in �. In order to 
he
k all possiblepartitions of S at on
e, we �rst note that with a simple ampli�
ation te
hnique, the error probabilityof the algorithm in Lemma 4.3 
an be made exponentially small in jSj; the resulting algorithm stillpi
ks a number of verti
es that is polynomial in �, and queries only for edges between these verti
esand between them and S. Thus we 
an pi
k a uniformly random set U 
onsisting of a polynomialnumber of verti
es of G, and then for every partition of S run the algorithm from Lemma 4.3 onthis same set, reusing the same queries. With high probability the above algorithm will not makean error 
on
erning any of the 2jSj partitions of S.To end the test, we a

ept the input if there exists a partition of S for whi
h G is not far fromhaving no mono
hromati
 edges in the 
orresponding 
oloring, and otherwise we reje
t the input.The algorithm will never reje
t an input whi
h is in fa
t bipartite, be
ause a proper 2-
oloring ofthe input graph indu
es for every S a partition for whi
h the 
orresponding 
oloring 
ontains nomono
hromati
 edges.On the other hand, with high probability it is the 
ase that if the algorithm a

epts then thegraph is �-
lose to being bipartite. To prove this we look at the appropriate partition of S and11



its 
orresponding partial 2-
oloring. For every vertex that is not 
olored by the 
oloring, we justremove all of its in
ident edges and 
olor it arbitrarily; we know that with high probability thiswill 
hange no more than 45��n2� edges (no more than 25�n�2 � edges in
ident with verti
es of degree nomore than 15�n, and no more than another 25��n2� edges for up to 15�n additional verti
es with higherdegrees that were not 
olored on a

ount of having no neighbors in S). We also know that thegraph may 
ontain up to 15��n2� more edges that violate the original partial 
oloring; by removingthese as well we are done.The des
ription of the 
al
ulation above is de
eptively 
omplex. In fa
t, one 
an easily showthat instead of pi
king a set of verti
es S, and then 
he
king all its partitions against a se
ond setof verti
es U , one 
ould just pi
k a set that serves as \S [ U", and 
he
k whether the subgraphof G indu
ed on this set is bipartite. Thus the above proof also yields a graph-theoreti
 result {a graph that is �-far from being bipartite 
ontains at least 23�nk� indu
ed subgraphs with k verti
esthat are not bipartite, where k depends only on ��1 and is in fa
t polynomial in it.This 
ombinatorial 
orollary is not a 
oin
iden
e, as the following result states that a similarphenomenon o

urs for any testable graph property that is 
losed under the taking of indu
edsubgraphs.Proposition 4.4 (N. Alon, see Appendix D of [40℄) If P is a graph property that is 
losedunder the taking of indu
ed subgraphs, and there exists an �-test for P that always makes q queriesindependently of the number of verti
es of the input G, then there exists a �-test for P that worksby uniformly 
hoosing f(q) verti
es of the graph G, querying all the pairs, and 
he
king that theindu
ed subgraph satis�es P . Moreover, f(q) is a global polynomial in q, independent of the otherparameters.We 
on
lude by referring the reader to [37℄ 
on
erning other partition-related graph properties,su
h as k-
olorability (for a �xed k), having a given maximal 
ut, or having a large 
lique. Asidefrom the testability proofs of these, [37℄ 
ontains their generalization to the following grand theorem.Theorem 4.5 ([37℄) For a �xed k, let P be the property of a graph G with n verti
es having apartition V1; : : : ; Vk of its vertex set, with �in � jVij � �0in for every i (for �xed, given �i < �0i),and su
h that for every 1 � i � j � k the number of edges between Vi and Vj (or within Vi if i = j)is between �i;jn2 and �0i;jn2 (for �xed, given �i;j < �0i;j).Property P is testable, with a number of queries that is polynomial in �.12



5 Dense graphs 
ontinued { use of the Regularity LemmaThis se
tion is about the use of Szemer�edi's Regularity Lemma for property testing, and its appli-
ation to proving testability for a 
lass of graph properties that are de�ned by 
ertain �rst orderexpressions.To formulate logi
al expressions for properties, we shall use a language that in
ludes variablesthat range over verti
es, �rst order quanti�ers over these variables, the adja
en
y relation \u isa neighbor of v", the equality relation \u = v", and boolean 
onne
tives. All properties thusexpressible are 
alled �rst order graph properties. We further 
lassify them by the �rst orderquanti�ers that they use. The best way to illustrate this is by giving some examples:� \The graph G 
ontains a triangle". This is a �rst order graph property of type `9', as it hasan expression using only this quanti�er: 9u1u2u3(u1 � u2 ^ u1 � u3 ^ u2 � u3), where u � vis the relation stating that u and v are neighbors (and in parti
ular are not the same vertex).� \The graph G does not 
ontain an indu
ed square". This is a �rst order graph property oftype `8', as it states that for every set of four distin
t verti
es, 
ertain adja
en
y 
on�gurationsdo not o

ur.� \The graph G 
ontains three distin
t verti
es u1; u2; u3 su
h that every other vertex hasexa
tly one of them as a neighbor, and furthermore there exists no triangle 
ontaining any ofthese three verti
es". This is a �rst order graph property of type `98'.It is not hard to show that the third example above is related to the property of 3-
olorability:Every graph satisfying this property is not far from being 3-
olorable, as the verti
es u1; u2; u3determine a proper 3-
oloring of the rest of the graph, and 
onversely every proper 3-
oloring ofa graph 
an be used to �nd a small modi�
ation of the graph that satis�es the property above.In other words, the above �rst order property and the property of being 3-
olorable are indistin-guishable, as per the de�nition outlined in Se
tion 4. When it 
omes to property testing, �rstorder expressions have more expressive power than they do in the 
ontext of traditional 
omplexitytheory.Alon, Fis
her, Krivelevi
h and Szegedy have shown in [4℄ what 
lasses of �rst order expressionsare wholly testable.Theorem 5.1 ([4℄) All �rst order graph properties of type `98' are testable with a number ofqueries independent of n. On the other hand, there exists a `89' property that is not thus testable.13



The proof of the positive part of this theorem relies heavily on the existen
e of regular pairs ofsets, as stated in Szemer�edi's Regularity Lemma [56℄. As for the negative part, the main idea ofits proof is given in Se
tion 8.For a good exposition of Szemer�edi's Regularity Lemma (stated below) and its proof, the readeris referred to [21, Chapter 7℄, and for a full survey regarding the many 
ombinatorial appli
ationsof regular pairs and the Regularity Lemma the reader is referred to [44℄. In the following we givea brief introdu
tion to this useful tool, starting with the de�nition of regular pairs.De�nition 3 (density and regularity of set pairs) For two nonempty disjoint vertex sets Aand B of a graph G, we de�ne e(A;B) to be the number of edges of G between A and B. The edgedensity of the pair is de�ned by d(A;B) = e(A;B)jAjjBj . We say that the pair A;B is 
-regular, if for anytwo subsets A0 of A and B0 of B, satisfying jA0j � 
jAj and jB0j � 
jBj, the edge density satis�esjd(A0; B0)� d(A;B)j < 
.The main strength of the de�nition of regularity is in the 
hara
teristi
s that regular pairs sharewith random bipartite graphs of the same density. Consider for example the following.Lemma 5.2 For every � > 0 there exist 
 = 
(�) and Æ = Æ(�) su
h that if A, B and C aredisjoint vertex sets of a graph G where ea
h pair is 
-regular and has density at least �, then G
ontains at least ÆjAjjBjjCj distin
t triangles with a vertex from A, a vertex from B, and a vertexfrom C respe
tively.The proof is not very hard, but we shall omit it here and refer the reader to [44℄, or to [4℄ forproofs that are more spe
i�
 to the topi
 of testing.The following lemma is a strong tool in graph theory, as it states that in essen
e most of thevertex-pairs of any given graph 
an be neatly �tted into a stru
ture of regular pairs. This stru
tureis given by an equipartition of G { a partition of its vertex set into sets whose sizes di�er from ea
hother by no more than 1.Lemma 5.3 (Szemer�edi's Regularity Lemma [56℄) For every m and � > 0 there exists someT = T (m; �) with the following property.If G is a graph with n � T verti
es, and A is an equipartition of the vertex set of G into msets, then there exists an equipartition B that is a re�nement of A with k sets, where m � k � T ,for whi
h all set pairs but at most ��k2� of them are �-regular.14



By using the Regularity Lemma, one 
ould re-prove for example that proper k-
olorability istestable { in fa
t, a 
ombinatorial statement to this e�e
t was impli
itly given in [51℄, before the
on
ept of algorithmi
 testing 
ame into being.Another typi
al use is when testing for the non-existen
e of �xed size 
liques; see for examplethe following 
ombinatorial proposition.Proposition 5.4 (N. Alon, private 
ommuni
ation) For every � there exists Æ = Æ(�) su
hthat any graph with n verti
es, whi
h is �-far from being triangle-free, 
ontains at least Æ�n3� distin
ttriangles.Proof sket
h: To prove this we 
onsider an equipartition fV1; : : : ; Vkg of the verti
es of thegraph G a

ording to Lemma 5.3, where 5��1 � k � T (5��1; �0) (we make it a re�nement of anarbitrary equipartition into 5��1 sets), in whi
h all but at most �0�k2� of the pairs are �0-regular.The parameter �0 is set to minf15�; 
(15�)g, where 
 is the fun
tion appearing in Lemma 5.2.We now 
onsider a subgraph G0 of G, obtained by deleting all edges of G that are internal toVi for any i, or are between Vi and Vj for any pair Vi; Vj whi
h is not �0-regular, or any pair whosedensity is less than 15�.Noting that G0 was obtained from G by deleting less than ��n2� edges, it follows that G0 
ontainsa triangle, sin
e G is �-far from being triangle-free. By the 
onstru
tion of G0, this is ne
essarily atriangle with a vertex from Vi, a vertex from Vj and a vertex Vk, for some Vi; Vj ; Vk whi
h are alldistin
t and for whi
h all pairs are in parti
ular 
(15�)-regular (with respe
t to G) and with densityat least 15�. The existen
e of su
h Vi; Vj ; Vk implies by Lemma 5.2 the existen
e of at least Æ0�n3�distin
t triangles in G, where Æ0 = 6Æ(15�)(T (5��1; �0))�3 with Æ denoting here the 
orrespondingfun
tion from Lemma 5.2.Proposition 5.4 implies that the following is a 1-sided �-test for being triangle-free: Chooseindependently and uniformly O(Æ(�)�1) random vertex triplets (where Æ is the fun
tion of theproposition), and 
he
k whether any of them is a triangle. If a triangle was found then reje
t theinput; otherwise a

ept it.There is one serious drawba
k to results proven using the Regularity Lemma: The dependen
yof T (m; �) on its parameters is very severe, a tower in a polynomial of m��1, and by [41℄ thisdependen
y 
annot be signi�
antly improved as long as the full strength of the Regularity Lemmais employed. This makes the tests thus derived of a theoreti
al importan
e rather than a pra
ti
alone. 15



Unlike the situation with k-
olorability, 
urrently there is no known proof for a test (with a
onstant number of queries) for the property of being triangle-free that has a better dependen
yon �. However, it is known that the number of queries of a 1-sided test for this property 
annotbe polynomial in �, using a bound from [14℄, and by Proposition 4.4 above this follows for 2-sidedtests as well.When one tries to generalize the above result to properties de�ned as not 
ontaining a given �xedindu
ed subgraph, other than a 
lique, another problem arises (remember that an indu
ed subgraphis a subgraph obtained from the original graph by deleting verti
es and their in
ident edges, butdeleting no other edges). In the above proof impli
it use was made of the fa
t that removing edges
annot add new triangles to the graph; but in the 
ase of indu
ed squares, for example, removingan edge 
an a
tually make its pair part of a new 
opy of the forbidden subgraph.In proving the Regularity Lemma one 
annot do away 
ompletely with the existen
e of a smallfra
tion of non-regular pairs, whi
h are the 
ore of the problem in proving similar results for indu
edsubgraphs be
ause of the above mentioned inability to safely remove edges. The workaround in [4℄to this problem is in proving a variant of the Regularity Lemma, that enables one to �nd a largeindu
ed subgraph of the original graph, for whi
h there exist an equipartition with all the pairsbeing regular, and that has the additional property of being able to \model" the original graph, inthe sense that if the graph G is far from satisfying the property then so is this subgraph.The full details are outside the s
ope of this survey; the reader is referred to [4℄, where thismethod is used for proving that all `98' �rst order graph properties are testable, and to [25℄, wheretestability is proven for some additional 
lasses of properties that further generalize the `98' 
lass.As a �nal note, we mention some instan
es in whi
h using the full version of the RegularityLemma 
an be avoided, making for a better dependen
y of the number of queries on �. It stillremains to be seen whether su
h a use 
an be avoided in the general 
ase, or even for the propertyof a graph being triangle-free.In the 
ase where the property is that of not 
ontaining a �xed bipartite graph as a not ne
es-sarily indu
ed subgraph, this 
an be tested with a number of queries polynomial in �. The proofuses a Zarankiewi
z type theorem, that states in essen
e that the only graphs satisfying su
h aproperty are almost edge-less. On the other hand, there exists no test making a number of queriesthat is polynomial in ��1, for any property de�ned as not 
ontaining a �xed non-bipartite graph;this was proven in [1℄. There is also an investigation into what properties de�ned by a forbiddenindu
ed subgraph have a test with a polynomial number of queries, in [6℄.16



Suppose now that a property is de�ned by not 
ontaining a �xed indu
ed subgraph, and thatwe wish to test only bipartite graphs for satisfying it. The following is a
hieved using a ratherrestri
ted variant of the Regularity Lemma, proven for this purpose.Theorem 5.5 ([29℄ with an improvement by N. Alon) Any property of bipartite graphs, thatis de�ned as not 
ontaining a given �xed indu
ed subgraph, has a 2-sided test using a number ofqueries exponential in �, and a 1-sided test using a number of queries doubly-exponential in �.It is not known at present whether testing of su
h properties of bipartite graphs 
an be madepolynomial in ��1 or not.6 Testing of sparse graphsAs far as inputs given in terms of the adja
en
y matrix of a graph are 
on
erned, all graphs witho(n2) edges are indistinguishable from null (edge-less) graphs. This makes testing of propertiessu
h as not 
ontaining a 
y
le trivial { the algorithm just needs to sample and distinguish betweenthe 
ase that G has more than ��n2� edges, and the 
ase that G has less than 12��n2� edges. In the�rst 
ase the algorithm reje
ts G, and in the se
ond 
ase it a

epts G.However, there is still the interesting (and non-trivial) question of whether one 
ould, for aninput graph G with n verti
es and m edges, distinguish between the 
ase that G is a
y
li
, and the
ase that no removal of up to �(n +m) edges from G (rather than ��n2�) 
an make it a
y
li
. In[38℄ Goldrei
h and Ron have de�ned a di�erent model for en
oding input graphs, in whi
h su
h atesting notion makes sense (in the above �(n+m) is used, and not �m, be
ause of further te
hni
al
ompli
ations arising in graphs with o(n) edges).Under the model dis
ussed here, a graph is not en
oded by its adja
en
y matrix, but insteadthe list of neighbors is given for every vertex. It is assumed that the input is indeed an en
oding ofa graph, so if u is in the list of neighbors of v then v is also in the list of neighbors of u. Note thatthe input is not a sequen
e of bits, but a sequen
e of integers, some of whi
h serve as `pointers' tothe di�erent lists. Thus a query in this model 
onsists of either �nding out the number of neighborsof a vertex vi, or �nding the identity of the j'th neighbor of vi a

ording to its adja
en
y list.In the 
ase where inputs are limited to graphs with a �xed maximum degree �, and the allowablemodi�
ations of the graphs must also satisfy this restri
tion, one may assume that all the adja
en
ylists are of this �xed size, with the possibility of some members in the lists being `null' for verti
eswith degree less than �. For this reason we may also assume that all queries are of the se
ond17



type des
ribed above. In this model the di�eren
e between graphs in relation to n+m is linearlyproportional to the hamming distan
e between inputs, so we 
an just use the latter.When the maximum degree is not bounded, the notion of the distan
e is more 
omplex be
ausethe sizes of the adja
en
y lists 
an vary. The distan
e between inputs is a
tually a fun
tion of theedit distan
es between the 
orresponding adja
en
y lists; there are in addition models in whi
h itis also allowed to add and remove verti
es from the graph (in removing a vertex it is natural totake into a

ount also the removal of its in
ident edges), but we shall not dis
uss these models indetail here.In a work by Goldrei
h and Ron [38℄ several properties (some of whi
h, su
h as 
onne
tivity anda
y
li
ity, are trivial to test in the dense graph model but are not trivial in this one) are proven tobe testable. On the other hand, some other properties that are easily testable in the dense 
ontextare not testable in the sparse one. The following is a partial summary of their results.Theorem 6.1 ([38℄) The following properties are testable with a number of queries not dependingon n, for the model of testing graphs with a bounded degree � given by their adja
en
y lists: k-edge
onne
tivity for any �xed given k, not having a given �xed graph H as a (not ne
essarily indu
ed)subgraph, and being a
y
li
.On the other hand, �-testing of bipartiteness for some �xed �, and � = 3, requires at least 13pnqueries.It turns out that in the 
ase of dire
ted graphs, also the property of being a
y
li
 requires manyqueries to test for in the sparse model [15℄.In the sparse 
ontext a testing algorithm typi
ally 
onsists of performing a breadth �rst sear
hfrom randomly 
hosen verti
es, and then a

epting or reje
ting the input based on the resultingsubgraphs. For example, testing for 
onne
tedness 
an be done using the following simple lemma(one 
an show that this lemma is also translatable to the model where the input graph and itsmodi�
ations are subje
t to a bound on their maximum degree).Lemma 6.2 If a graph G with n verti
es requires the addition of at least �n edges to make it
onne
ted, then at least 12�n of the verti
es of G are in 
onne
ted 
omponents of size at most 2��1.Proof: It is easy to see that a graph G as above 
ontains more than �n 
onne
ted 
omponents.Ea
h of them 
ontains at least one vertex, and on the other hand it is 
lear that less than half ofthem 
an be of size more than 2��1. 18



The test now 
onsists of pi
king O(��1) random verti
es, and performing a breadth �rst sear
hfrom ea
h to them to 
he
k whether it is part of a 
onne
ted 
omponent with less than 2��1 verti
es(this requires O(��1) queries per vertex). If one of the 
hosen verti
es is in su
h a 
omponent thenthe algorithm reje
ts, and otherwise it a

epts.The above test takes O(��2) queries, and works for both the bounded degree model and theunbounded degree one. Note however that [38℄ 
ontains an improved analysis, that in parti
ularrequires only O(��1) queries for the unbounded degree model, and slightly more than that for thebounded degree one.7 Testing posets for monotoni
ityKeeping lists in a sorted order is a 
ommon pra
ti
e, and for well known reasons. This naturallyleads to the question of how many queries it takes to ensure that a sequen
e of n integers is mostlysorted, that is, to distinguish between the 
ase that it is monotone nonde
reasing, and the 
asethat no subsequen
e of (1� �)n integers from it is monotone nonde
reasing.This is equivalent to the question of �-testing a sequen
e of n integers for this property, wherethe distan
e is given by the fra
tion of integers that need to be altered in order to make the sequen
emonotone. Erg�un, Kannan, Kumar, Rubinfeld and Viswanathan have shown in [23℄ that for a �xed� it is enough to make O(log n) queries. Although this is dependent on n, it is still a mu
h betteralternative than that of reading the whole input.Theorem 7.1 ([23℄) There exists an �-test that makes O(��1 log n) queries, for the property of asequen
e of n integers being monotone nonde
reasing.Proof sket
h: For any monotone in
reasing sequen
e of size n, one 
an 
he
k using O(log n)queries whether a given number appears in this sequen
e, by the well known binary sear
h method.We now look at our input, denote it by v1v2 : : : vn. We 
an safely assume that all values aredistin
t, as otherwise we 
an 
onsider the sequen
e v01v02 : : : v0n de�ned by v0i = nvi + i instead. We
all vi well positioned if the binary sear
h pro
edure above, when applied to vi over v1v2 : : : vn,indeed �nds the position i.It takes O(log n) queries to 
he
k that a given vi is well positioned. Our algorithm makes O(��1)iterations of this pro
edure for random i's 
hosen uniformly and independently, to distinguishbetween the 
ase that all values are well positioned, and the 
ase that at least �n of the values are19



not well positioned. In the �rst 
ase the algorithm a

epts the input, and in the 
ase where anyvalues that are not well positioned were found the algorithm reje
ts.If the input is in fa
t monotone, then 
learly all of its values are well positioned, and so thealgorithm a

epts. On the other hand, if the algorithm a

epts (with high enough probability),then it means that more than (1 � �)n of the values are well positioned. To end the proof, weshow that the subsequen
e of all well positioned values is monotone; su
h a subsequen
e 
an easilybe 
ompleted to a monotone nonde
reasing sequen
e of size n by putting new values in the pla
eswhere the original values are not well positioned.Assuming that i < j, and that vi and vj are both well positioned, we now show that vi � vj .For this it is suÆ
ient to �nd an index k satisfying i � k � j su
h that vk was visited by the binarysear
hes for both values, be
ause this would imply that vi � vk and vk � vj. To �nd it, we just
hoose k to be the last lo
ation that was queried in both binary sear
hes, the one for vi and theone for vj . Common lo
ations in the two sear
hes exist be
ause in parti
ular the lo
ation bn2 
 is
ommon to all binary sear
hes.One should note here that the above algorithm only looks adaptive. In fa
t, the algorithm 
ansupply all the query lo
ations in advan
e { to 
he
k that a value is well positioned, it is enough toun
onditionally query the binary sear
h sequen
e that would arise if it were well positioned, sin
ein order to know that a value is not well positioned it is enough to know that the a
tual binarysear
h sequen
e diverges at some point from the queried \expe
ted" sequen
e.As it turns out, the above property 
annot be tested using a 
onstant number of queries. An
(log n) lower bound (for some 
onstant �) is given in [23℄ for non-adaptive algorithms that arerestri
ted to making de
isions based on 
omparisons. In [26℄ it is proven that for this parti
ularproperty better general algorithms do not exist, by showing �rst that for a 
ertain 
lass of properties,that in
ludes monotoni
ity, there are 
omparison-based algorithms that are optimal.It is also of interest to investigate testing for natural notions of monotoni
ity that di�er fromthe simple notion of a sequen
e being nonde
reasing. The next step is to 
onsider fun
tions whosedomain is not endowed with a linear order as f1; : : : ; ng is, but with other types of partial ordersinstead. The �rst work in this dire
tion is by Goldrei
h, Goldwasser, Lehman, Ron and Samorod-nitsky [36℄, that have proven the following result about the monotoni
ity of fun
tions from f0; 1gd(with the usual produ
t order over the hyper
ube) to f0; 1g.Theorem 7.2 ([36℄) �-testing that a fun
tion from f0; 1gd to f0; 1g is monotone nonde
reasing
an be done using O(��1d) queries. 20



The testing algorithm for this 
onsists of 
hoosing a random pair of points in f0; 1gd that di�erin exa
tly one 
oordinate, 
omparing the values of the input fun
tion over these, and repeating thispro
edure O(��1d) times. For the 
orre
tness proof the reader is referred to [36℄.A generalization of the above result to d-dimensional matri
es of any size (and not only f0; 1gd)is given in [22℄ (some generalizations in this dire
tion were already proven in [36℄).Theorem 7.3 ([22℄) A fun
tion from f1; : : : ; ngd to f1; : : : ;mg 
an be �-tested for monotoni
ityusing O(��1d log n logm) queries.Dealing with d-dimensional matri
es with integer values (not restri
ted to some f1; : : : ;mg) isalso 
overed by [22℄ { a simple analysis of the algorithm that is given there implies that the `m'term in the expression for the number of queries 
an be repla
ed by the a
tual size of the imageof the input fun
tion, whi
h is bounded by nd. This gives an O(��1d2 log2 n) upper bound on therequired number of queries in this 
ase. As for binary fun
tions over f1; : : : ; ngd where d is �xed,in [22℄ it is shown that in this 
ase the number of queries does not need to depend on n at all.Other partially ordered sets 
an also serve as domains for fun
tions to be tested for monotoni
ity.For example, rooted trees. Monotoni
ity testing in the general 
ontext is treated in [28℄. Thereare positive results for some partially ordered sets, su
h as the possibility of testing a binaryfun
tion over a rooted tree for monotoni
ity with a number of queries that depends only on theapproximation parameter �. On the other hand, [28℄ also 
ontains some non-trivial lower bounds,in
luding one for the 
ase of a fun
tion from f0; 1gd to f0; 1g; in that 
ase the number of querieshas to depend on d. Narrowing the gap between the upper and lower bounds on the number ofqueries in this setting still remains an open (and interesting) question.8 Proving non-testability resultsThe methods presented thus far deal with proving upper bounds for property testing, throughmeans of presenting eÆ
ient testing algorithms. As with other areas of 
omputer s
ien
e, lowerbounds play an essential role in the �eld of property testing as well, and the �rst example of aproperty that is hard to test (one that belongs to NP in the traditional 
omplexity framework) wasgiven in [37℄.This se
tion presents what is 
urrently the most eÆ
ient tool for proving lower bounds forproperty testing, Yao's method [57℄. The basi
 method is the following. Instead of trying to�nd a worst 
ase input for every possible (randomized) �-testing algorithm, we �nd a probability21



distribution over the inputs, su
h that every deterministi
 algorithm will fail with probabilitygreater than 13 on an input taken a

ording to this distribution. From this it follows that everyrandomized algorithm will also fail with at least the same probability over this input distribution,and so for every �xed randomized algorithm there will be at least one (\non-randomized") inputthat demonstrates at least the same average failure rate.In our 
ontext we usually deal with two distributions, one on inputs satisfying the propertyand one on inputs that are �-far (for some 
onstant �) from satisfying it, su
h that in some senseit is hard for a (deterministi
) algorithm making few queries to distinguish between them. Forsimplifying the presentation we will only 
onsider binary inputs in the following. We �rst needsome de�nitions.De�nition 4 (restri
tions, variation distan
e) For a distribution D over inputs, where ea
hinput is a fun
tion f : D ! f0; 1g, and for a subset Q of the domain D, we de�ne the restri
tionDjQ of D to Q to be the distribution over fun
tions of the type g : Q ! f0; 1g, that results from
hoosing a fun
tion f : D ! f0; 1g a

ording to D, and setting g to be f jQ, the restri
tion of f toQ. Given two distributions D1 and D2 of binary fun
tions from Q, we de�ne the variation distan
ebetween D1 and D2 as follows: d(D1;D2) = 12 Pg:Q!f0;1g jPrD1(g)�PrD2(g)j, where PrD(g) denotesthe probability that a random fun
tion 
hosen a

ording to D is identi
al to g.It is a well known fa
t that if a deterministi
 algorithm is given an input 
hosen a

ording toeither a distribution D1 or a distribution D2, then its a

eptan
e probabilities for the two 
asesdo not di�er by more than d(D1;D2). The most 
ommon appli
ation in our 
ase is the followingfolklore lemma.Lemma 8.1 Suppose that there exists a distribution DP on inputs over D that satisfy a givenproperty P , and a distribution DN on inputs that are �-far from satisfying the property, and supposefurther that for any Q � D of size q, the variation distan
e between DP jQ and DN jQ is less than13 . Then it is not possible for a non-adaptive algorithm making q (or less) queries to �-test for P .Proof: We 
onstru
t a distributionD over inputs by de
iding with probability 12 to 
hoose an inputa

ording to DP , and with probability 12 to 
hoose an input a

ording to DN . We now 
onsiderdeterministi
 algorithms { every deterministi
 non-adaptive testing algorithm with q queries 
onsists22



of querying the input f over a �xed set Q of size q, and then making an a

eptan
e or a reje
tionde
ision based on f jQ.Let aP be the a

eptan
e probability of our algorithm when given a random input 
hosena

ording to DP , and let aN be its a

eptan
e probability for an input 
hosen a

ording to DN .The probability of making an error is 
learly 12 (1 � aP ) + 12aN , and by the assumptions on thedistributions and the dis
ussion above we know that jaP � aN j < 13 . Putting these together showsthat the error probability for every su
h algorithm is more than 13 . It thus follows from Yao'sprin
ipal that there is no (probabilisti
) non-adaptive �-testing algorithm for the property P thatmakes at most q queries and whose error probability is at most 13 .In general, we would like to pla
e lower bounds on all testing algorithms, in
luding adaptiveones, so we now turn our attention to those. In 
ases where binary inputs are involved, a lowerbound of q queries on non-adaptive algorithms implies a lower bound of log q queries on adaptiveones (see the end of Se
tion 9 for more information on this), whi
h suÆ
es if it is only required toprove that a 
onstant number of queries is insuÆ
ient for testing a parti
ular property.In some 
ases the gap between adaptive and non-adaptive testing is indeed exponential, butsometimes the gap between adaptive and non-adaptive properties 
an be narrowed further. Insome 
ases this is a

omplished using some feature of the parti
ular hard to test property, su
has Lemma 4.1 that makes this gap no more than quadrati
 for properties formulated in the densegraph model. In other 
ases it 
an be proven that the input distributions satisfy 
ertain additional
onditions, ensuring stronger lower bounds for adaptive algorithms; more about this below. Thereare also many properties for whi
h the true gap between adaptive and non-adaptive testing is notyet known.As the main example here for using Yao's method, we 
onsider the following problem: Givenas input the adja
en
y matri
es of two graphs with n verti
es, test for the property of these twographs being isomorphi
.This property was shown in [4℄ to be non-testable, and this was then used to show that thereexist non-testable `89' type �rst order graph properties. The original exposition of the proof in [4℄uses 
ounting instead of Yao's method; here we give a proof using Yao's method that 
an serve asan example for proving lower bounds.Proposition 8.2 ([4℄) The property of two graphs (given by their adja
en
y matri
es) being iso-morphi
 is not 18 -testable with any 
onstant number of queries.23



Proof: We show that for every q there exists n, su
h that q edge queries are insuÆ
ient fordistinguishing between the 
ase that the two graphs with n verti
es are isomorphi
, and the 
asethat all vertex permutations of the �rst graph di�er from the se
ond graph in more than 14�n2� pla
es(remember that the total size of the input is 2�n2�).For this we 
onstru
t two distributions over inputs. The distribution DP is 
onstru
ted byletting the input 
onsist of a random graph G, with ea
h edge being independently 
hosen withprobability 12 , and a se
ond graph that is a uniformly random permutation of G. The distributionDN is 
onstru
ted by letting the input 
onsist of a random graph G as before, and another,independently 
hosen, random graph G0.It is 
lear that an input 
hosen a

ording to DP satis�es the property with probability 1. Onthe other hand, by a standard large deviation argument, in an input 
hosen a

ording to DN any�xed vertex permutation of G will with probability at least 1 � 2�n2=50 di�er in more than 14�n2�pla
es from G0. Thus, with probability 1� o(1), all vertex permutations of G will have at least thisdi�eren
e from G0. WhileDN does not exa
tly satisfy the requirements of Lemma 8.1 (as it requiresthat an input 
hosen a

ording to DN will be far from satisfying the property with probability 1),we will repla
e it with D0N , the distribution that results from 
onditioning DN on the event thatall permutations of G indeed di�er in more than 14�n2� pla
es from G0.We now 
onsider any �xed set Q = p1; : : : ; pq of vertex pairs, some inside the �rst graph, someinside the se
ond one. For an input 
hosen a

ording to DN , the values of these pairs will be quniformly and independently 
hosen random values in f0; 1g. Sin
e D0N is the 
onditioning of DNon an event that o

urs with probability 1� o(1), the variation distan
e between the restri
tion ofD0N to Q and the uniform distribution over boolean fun
tions from Q is o(1).We now show that the distan
e between the restri
tion of DP to Q and the uniform distributionover Q is also o(1). For this, let u1; : : : ; uk be all verti
es of the �rst graph that appear in the pairsp1; : : : ; pq, and let v1; : : : ; vl be all su
h verti
es of the se
ond graph. It is 
lear that k � 2q andl � 2q. Now let � : f1; : : : ; ng ! f1; : : : ; ng be the permutation used in DP to 
hoose the se
ondgraph a

ording to the �rst one. Let E denote the event that, for this permutation, �(ui) 6= vj forevery 1 � i � k and 1 � j � l. It is 
lear that, 
onditioned on the 
ase that E o

urs, p1; : : : ; pqwill again be q uniformly and independently 
hosen values of f0; 1g. But sin
e for every �xed qthe event E o

urs with probability 1 � o(1) (for large enough n), this means that the restri
tionof the (un
onditioned) distribution DP to Q will have variation distan
e o(1) from the uniformdistribution over boolean fun
tions from Q. 24



To 
on
lude, we use Lemma 8.1 for the distributions DP and D0N , where n is 
hosen to be largeenough so that the restri
tion of any of these to any set of q queries will have variation distan
eless than 16 from the 
orresponding uniform distribution.The proof of the negative part of Theorem 5.1 in [4℄ was done by showing that there exists a`89' �rst order graph property that is indistinguishable from a graph isomorphism property similarto the one above.As for a quanti�ed lower bound, it 
an be shown that the distributions of p1; : : : ; pk in the two
ases be
ome 
lose enough for our purposes when n = 
(q2). Together with Lemma 4.1, this meansthat the above property 
annot be tested with a number of queries that is less than some power of2�n2�, the input size.For proving lower bounds on non-adaptive 1-sided algorithms, the problem is usually mu
heasier than the 
ase for 2-sided algorithms. It is enough in this 
ase to �nd a distribution overinputs that are �-far from satisfying the property, but in whi
h for any �xed Q � D of size q, withhigh probability the restri
tion of the input f to Q is extensible to some possible input (di�erentfrom f) that satis�es the property.A 
on
rete example 
an help explain this { in the 
ase of testing a graph for being triangle free,a lower bound that is super-polynomial in ��1 (but in this 
ase is of 
ourse independent of the inputsize) is given by �nding a graph that is far from being triangle free, but still does not 
ontain toomany distin
t triangles, so that q queries will not 
apture a triangle with high probability. Su
hgraphs 
an be 
onstru
ted using the number-theoreti
 
onstru
tion in [14℄, and by Proposition 4.4this a
tually implies a lower bound for 2-sided testing as well. The 
onstru
tion details and ageneralization thereof to other properties de�ned in terms of not 
ontaining a �xed (not ne
essarilyindu
ed) subgraph are found in [1℄, and further investigation in the dire
tion of forbidden indu
edsubgraphs is found in [6℄.We now turn to some 
ases where the gap between the adaptive and the non-adaptive lowerbounds 
an be narrowed without relying on a symmetri
 nature of the property (su
h as the 
asewith graph properties in the dense model). Two examples of su
h 
ases are [38℄ (indeed, non-adaptive lower bounds are meaningless in the 
ontext of sparse graphs) and [30℄. We 
on
ludeby proving the following lemma, whi
h mimi
s the impli
it argument used in [30℄. A �nal wordof 
aution { when using the following lemma additional 
are has to be taken in 
onstru
ting thedistributions DP and DN ; for example, it is quite important that an input 
hosen a

ording to DNwill be �-far from satisfying the property with probability 1, not just 1� o(1).25



Lemma 8.3 Suppose that there exists a distribution DP on inputs over D that satisfy a givenproperty P , and a distribution DN on inputs that are �-far from satisfying the property. Supposefurther that for any Q � D of size q and any g : Q ! f0; 1g, we have 23PrDP jQ(g) < PrDN jQ(g) <32PrDP jQ(g). Then it is not possible for any algorithm making q (or less) queries to �-test for P .Proof: As in the proof of Lemma 8.1, we 
onstru
t D by de
iding with probability 12 to 
hoosean input a

ording to DP , and with probability 12 to 
hoose an input a

ording to DN . Every(possibly adaptive) deterministi
 algorithm with q queries takes the shape of a de
ision tree, whi
his a 
omplete binary tree of height q, where every non-leaf node 
orresponds to a query lo
ationwith its two 
hildren being labeled a

ording to the two possible out
omes of the query, and everyleaf node 
orresponds to an a

eptan
e or a reje
tion de
ision.Now let aP denote the probability that the algorithm a

epts an input 
hosen a

ording toDP , and let aN denote the probability that the algorithm a

epts an input a

ording to DN . Itis enough to prove now that jaP � aN j < 13 , be
ause then the proof here 
an be 
on
luded in anidenti
al manner to that of the proof of Lemma 8.1.Let L be the set of leaves of the de
ision tree that a

ept the input. Every u 2 L 
orrespondsto a set of queries Qu and their answers gu : Qu ! f0; 1g. Moreover, for every input f , the de
isiontree of the algorithm will rea
h the leaf u if and only if f jQu = gu, implying aP =Pu2L PrDP jQu (gu)and similarly aN = Pu2L PrDN jQu (gu). Finally, using the 
onditions on DP and DN we obtainaP � aN = Pu2L(PrDP jQu (gu) � PrDN jQu (gu)) < 13 Pu2L PrDP jQu (gu) = 13aP � 13 , and similarlyaN � aP < 13 , 
on
luding the proof.9 Related resear
h and future dire
tionsProperty testing is a young �eld, that 
urrently enjoys rapid growth. The purpose of this se
tionis to give a glimpse into some topi
s not 
overed by the rest of this survey. Some of them were leftun
overed due to size or s
ope 
onsiderations, while others were left out simply be
ause they arestill waiting to be investigated. The interested reader is also referred to other surveys of this andrelated �elds, su
h as [52℄, [43℄ and [35℄.9.1 Other works 
on
erning testabilityAs is the 
ase with all surveys, this one also 
annot 
over every work in this �eld. The following(also partial) list is given in a
knowledgment of this fa
t.26



Other algebrai
ally motivated properties: The question of whether an input fun
tion overa ve
tor spa
e forms a bounded degree polynomial is just one of several algebrai
ally motivatedproperties. For example, one 
ould ask whether a `multipli
ation table' given as input forms a(�nite) group. In [23℄ some upper and lower bounds are given for this. For a supposed group withn elements there is an �-test using O(n3=2 log
 n) queries, for some global 
; this is a rather largequantity, but it is still mu
h smaller then the size of the input, n2. One should also note that inthe 
ontext of prover assisted testing (see below), this quantity 
an be further redu
ed; relatedproperties play a role in quantum property testing (see below) as well.Another topi
, somewhat related to testing polynomiality, is testing whether a given fun
tionsatis�es a property de�ned by a fun
tional equation, for example \f(x+y)+f(x�y) = 2f(x)f(y)".Some properties of this type are investigated for fun
tions de�ned over 
ertain subsets of R (the�eld of real numbers), in [53℄.Testing of matrix poset properties: Another way to generalize the result about testing binarymatri
es for monotoni
ity is in extending it to other properties of matri
es, de�ned in terms of �rstorder expressions using the partial order that underlies a matrix (that is, the produ
t order of ea
hlo
ation's 
oordinates). Su
h properties are investigated in [29℄.Geometri
ally motivated properties: In this 
ontext the input is not a binary sequen
e or asequen
e of integers, but a sequen
e of real numbers. As a �rst example, it is shown in [23℄ howto test, using O(log n) queries, a sequen
e of n points from R2 for the property of being the nodesof a 
onvex polygon given in a 
lo
kwise order. In [20℄ testing for several geometri
 properties ofpoints from Rd, su
h as being the nodes of a 
onvex polygon given in any order, is 
onsidered. Formost of these mat
hing upper and lower bounds are given; these are rather large (most are �xedpowers of n), but are still sublinear in the input size.Another example, given a �xed d, is testing for the property of a given set of ve
tors in Rd being(k; b)-
lusterable. Usually in su
h a 
ontext a more relaxed notion of testing needs to be used; hereit is possible to eÆ
iently distinguish between the 
ase that the input is (k; b)-
lusterable, and the
ase that even removing an � fra
tion of the points will not make the rest (k; (1 + �)b)-
lusterable.The testing pro
edure is given in [2℄.A geometri
ally motivated problem in a di�erent dire
tion is that of testing whether a givenmatrix of real numbers has 
ertain properties, that are expe
ted from a distan
e fun
tion of adis
rete metri
 spa
e. Properties of this type are investigated in [48℄.Testing of boolean fun
tions: In relatively re
ent years, dis
rete harmoni
 analysis is proving27



itself useful for 
omputational issues. In a body of work that started in [50℄ and 
ontinued in[27℄ this was applied to property testing. The main result of [27℄ is a test of a general booleanfun
tion with n variables for the property of depending on only k on them, where the number ofqueries depends only on k and the approximation parameter �. Although in a future version of[27℄ harmoni
 analysis will play a lesser role, it still remains the sour
e of many insights about thenature of boolean fun
tions.Re
ent general results: With the advan
ement in the understanding of what properties aretestable 
omes advan
ement in the understanding of how a property tester works. For graphproperties in the dense model we already have some knowledge of how a property tester looks likein general, as exempli�ed in [40℄, despite still being far from 
lassifying all the testable propertiesin the dense graph setting.In [19℄ a general method for obtaining positive property testing results is developed. Althoughonly time will tell if this new method be
omes widely used, it looks promising in view of the fa
tthat until now the methods used for proving upper bounds were usually narrower in s
ope (themost general method in this respe
t is probably the use of Szemer�edi's Regularity Lemma for densegraph properties; for proving negative results there is a very general method in the form of Yao'sprin
ipal).9.2 Some topi
s related to testabilityProperty testing is already making itself felt in other areas of 
omputer s
ien
e. The following aresome areas of intera
tion.Low-rank approximations: There are many appli
ations to �nding a low-rank matrix thatapproximates a given input matrix. In [33℄ it is shown how to 
onstru
t a low-rank approximationfor a given matrix (in the form of a fast ora
le), in time that depends only on the approximationparameters and not on the size of the approximated matrix. While stri
tly speaking this is not atestability result, it does share some of the methods. Other results regarding fast approximationof matri
es are given in [32℄.Testing with a prover: This topi
 deals with a

epting or reje
ting an input based on 
ommu-ni
ating with a 
omputationally unbounded prover. It is somewhat like intera
tive proofs, only theoperating requirements of the veri�er here are the ones used in the �eld of property testing.The general problem is to distinguish between the 
ase that the input satis�es a property, and28



the 
ase that the input is �-far from satisfying the property. In general the prover is allowed tosupply a long (usually polynomial size) proof, but the veri�er is still allowed only a small numberof queries from the input as well as from the supplied proof.Testing with a prover is investigated in [24℄ and [11℄; in these the running time of the veri�er isrestri
ted as well, and this poses some restri
tions on the size of the proof through the size of theallowable address-spa
e. As expe
ted, there are problems that are hard to test in the usual 
ontextbut are easy to test with a prover. For example, it takes 
(pn) queries to test that a fun
tionf : f1; : : : ; ng ! f1; : : : ; ng is a bije
tion, but if a prover provides a fun
tion g that is supposedlythe inverse of f , then it takes a 
onstant number of queries to test that f and g are indeed 
lose tobeing inverses of ea
h other.Statisti
al dedu
tions: In this 
ontext one would like to 
he
k 
ertain properties of a distribution(say, the distribution of the heights of NBA basketball players), where 
loseness is de�ned by theL1 norm jA � Bj = Pi2R jA(i) � B(i)j (or the variation distan
e as de�ned in Se
tion 8, whi
his half this norm). In here, instead of querying, one 
an only obtain a sample of values that wereindependently 
hosen using this distribution (in the above example, one 
an only measure theheights of randomly sele
ted NBA players).When the distribution is de�ned over a set of n elements, it takes many samples to `�-test'(under this new de�nition) for a property, but in many 
ases the number of required samples is stillmu
h less than the 
(n logn) samples needed to a
tually write down an approximation of the wholedistribution. For example, based on the methods of [39℄, one 
an prove that O(pn log
 n) queries(for some global 
onstant 
) are suÆ
ient to �-test for the property of being the uniform distributionover the whole set. On the other hand, it was proven that at least 
(pn) samples are required forthis. Further results in this dire
tion in
lude those about testing that two distributions (also givenby samples) are 
lose, and that a joint distribution (with two `
oordinates') is independent. Theseare given in [13℄ and [12℄ respe
tively.Quantum testability: Just as other notions of 
omputational and informational 
omplexityhave their quantum 
ounterparts, a quantum 
ounterpart of the notion of property testing is beingdeveloped as well. The �rst results are in [17℄, showing that in some 
ases quantum 
omputers 
aneÆ
iently test properties for whi
h there exist no eÆ
ient 
lassi
al test, while some other propertiesare equally hard to test in the quantum 
ontext. The investigation into quantum property testingis taken further in [31℄, where quantum testers for some algebrai
ally motivated properties (whi
hare hard to test 
lassi
ally) are 
onstru
ted. 29



9.3 A few more questionsLet us 
on
lude with a few possible future dire
tions in property testing, that some of the peoplein the �eld �nd interesting. The following list is not meant to be exhaustive or representative, andwas 
hosen based mainly on personal preferen
e.Weighted testing: In most of the 
ases des
ribed above, the distan
e used in the de�nition ofbeing �-far from satisfying a property is the hamming distan
e between inputs. It is interesting toinvestigate also 
ounterparts of the above testability questions in whi
h 
loseness is measured by aweighted hamming distan
e.In the most lenient model it is assumed that the algorithm is given all the weights in advan
e;thus the weights are not 
onsidered as part of the input, but as part of the des
ription of theparameters within whi
h the algorithm is supposed to operate. For some of the results, su
h as theresult in [46℄ about the testing of languages re
ognizable by a read-on
e bounded width obliviousbran
hing program, the proof extends naturally to the weighted 
ase. In other instan
es, su
h asthat of testing that a graph is triangle free, the question of the weighted 
ase seems very hard(though some spe
ial 
ases, su
h as that of a weight fun
tion generated by giving weights to theverti
es and using their multiples for the edges, 
an still be easily dedu
ed from the unweighted
ase).While it seems very probable that for many properties testability in fa
t does not extend to theweighted 
ase, there are some re
ent positive advan
es. In [42℄ an even stri
ter model is 
onsidered,that of distribution-free testing. In it, the algorithm is not given the weights in advan
e, but is onlygiven the ability to obtain independent samples of the distribution 
orresponding to the weightfun
tion. This model in a sense 
onne
ts property testing with the topi
 of statisti
al dedu
tionsdes
ribed above, and is motivated by a similar model from learning theory. One of the main resultsin [42℄ supplies some non-trivial upper bounds on testing d-dimensional matri
es for monotoni
ity(on the other hand, these are still far from the bounds known for the unweighted 
ase).Additional kinds of queries: In 
ertain settings it may be interesting to investigate what 
anbe done if we allow queries that are more powerful than the usual \what is the input value atlo
ation i". Of 
ourse allowing queries that are too powerful 
an easily lead to a trivializing of theproblem, but there may still be instan
es in whi
h allowing 
ertain types of queries is both naturaland feasible in some real-life s
enarios. There is already an investigation in [18℄ into allowing `rangequeries' in the geometri
 
ontext, i.e. queries as to whether there exist input points in a spe
i�ed30




ube, and whi
h are expe
ted to provide one su
h point (
hosen arbitrarily) if any su
h point exists.Conne
tions to traditional 
omplexity: There are properties that are hard to de
ide butare easy to test (su
h as graph 3-
olorability), and properties that are easy to de
ide (even AC0ones) but are hard to test. It would be interesting to take the approximating feature of testing intoa

ount, and formulate some 
onne
tions between testable properties (subje
t to some uniformityassumptions on the testing algorithms) and easy to de
ide properties that approximate them, apartfrom the nearly obvious 
onne
tion to Promise-BPP (for graph properties it 
an also be made intoa 
onne
tion with P, using the algorithmi
 version of Szemer�edi's Regularity Lemma from [3℄).Another somewhat related question is this: What is the expressive power of �rst order graphexpressions when approximations are taken into a

ount? The results of [4℄ suggest that it may bestronger then expe
ted.Adaptive versus non-adaptive testing: A reminder { a non-adaptive testing algorithm is analgorithm that has to supply all the queries in advan
e, and only then is given the 
orrespondinginput values, based on whi
h it a

epts or reje
ts the input. In general, an adaptive �-test for aproperty of binary sequen
es using q queries 
an be 
onverted to a non-adaptive one using up to2q � 1 queries { one just goes over the whole de
ision tree of the adaptive algorithm, makes allqueries appearing there in advan
e, and then navigates the tree using the query results in order toa

ept or reje
t the input. There are known properties for whi
h this gap is essential, for exampleproperties derived from the sparse graph model investigated in [38℄; the dis
ussion in [26℄ 
ontainssome examples and details.For graph properties in the dense graph model, in [40℄ it is proven that an adaptive algorithmmaking q queries 
an be 
onverted to a non-adaptive one making only �2q2 � queries (this is statedabove as Lemma 4.1). A look at the simple proof reveals that it is based on the fa
t that graphproperties are invariant with respe
t to graph isomorphisms. Examining other properties, su
has 
ounting properties that are invariant with respe
t to any permutation of the input (in [10℄arguments related to su
h invarian
e are used for proving lower bounds for 
ertain approximationproblems), one gets the impression that a larger invarian
e group of a property implies a smallergap between its adaptive and non-adaptive testing possibilities. It would be interesting to formalizeand prove this observation.
31
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