
The art of uninformed deisionsA primer to property testingEldar Fisher �AbstratProperty testing is a new �eld in omputational theory, that deals with the information thatan be dedued from the input where the number of allowable queries (reads from the input) issigni�antly smaller than the input size. This survey provides an introdution and referene tothis exiting �eld.Dediated to the memory of the vitims of terror, September 11, 2001.1 Motivation and introdutionWith the reent advanes in tehnology we are faed with the need to proess inreasingly largeramounts of data in faster times. As was observed by Papadimitriou [47, Page 357℄, ommon notionsof the eÆieny of algorithms tend to gravitate towards striter time restritions as omputersienes progress. At �rst a problem was onsidered omputable if there was an algorithm thatould deide it in a �nite time given any input instane. Afterwords ame the notion of polynomialtime omputations, and later the possibility of making a omputation faster for ertain problemsthrough use of parallel mahines was also investigated.In all of the lasses onsidered above, however, the algorithms involved still fae the obviousobstale of having to read the entire input prior to its assessment (in the parallel setting it isassumed that the input an also be read in parallel, whih is not always a realisti assumption).There are pratial situations in whih the input is so large, that even taking a linear time inits size to provide an answer is too muh. Many modern databases have overwhelming sizes. There�NEC Researh Institute, 4 Independene Way, Prineton NJ 08540, USA; and DIMACS.Current address: Faulty of Computer Siene, Tehnion { Israel institute of tehnology, Tehnion City, Haifa 32000,Israel. Email: eldar�s.tehnion.a.il 1



are also other instanes where the input is not easily aessible { it ould be stored for exampleon a server at the other end of a slow ommuniation line. And it ould also be the ase that anexpliit representation of the input in fat does not exist, and an \orale" proedure that alulatesits values in the requested loations is given instead.This survey deals with algorithms that are designed to make a deision onerning the inputafter reading only a small portion thereof. In the general setting it is assumed that an algorithmhas random aess to the input, that is, the algorithm is told in advane what is the input size, andis supplied with an orale that for a query `i' yields the value vi of the input in this loation. Thegoal is to minimize the number of alls to this orale, and in the ideal ase to make it a onstantindependent of the atual input size.One neessary feature of suh algorithms, that is immediately apparent, is that they must beprobabilisti. The intuition is that even when not the whole input is atually read, all of the inputmust still be \onsidered" by the algorithm in order to give an output relevant to its entirety, andthus every omponent of the input must be read with some positive probability.But even random algorithms annot be expeted to give aurate results. Consider for examplethe simple property of the input being all zeros. No algorithm reading only a small fration ofthe input an distinguish with high probability between an input satisfying this property, and aninput ontaining a single `1' in a randomly hosen loation. In fat, there are some well knownonjetures and results stating that most properties are \evasive", requiring a linear number ofqueries to deide them, even using a probabilisti algorithm (evasiveness was studied extensivelyfor graph properties; for the interested reader [45℄ provides an introdution to this subjet).It follows that in order to desribe what an algorithm an do without reading the whole input,it is required to formulate a new notion of an approximated version of the original deision problem.As a guide we look at what an be done with the above property of the input being all zeros { whileeven this property annot be deided by suh an algorithm, it is very easy, using a onstant timerandomized algorithm, to distinguish between the ase that the input is all zeros, and the ase thatat least an � fration of the plaes in the input ontain ones (where � is any onstant independent ofthe input size). The algorithm needs only to take O(��1) uniformly random samples of the input,and rejet the input if it �nds a `1' in any of them.The following de�nition of a property's approximation suÆes for most instanes of testingproblems. It deals with a �xed input size { sine testing deals primarily with informational boundsit is usually suÆient to analyze every �xed input size separately (and apart from rarely ourring2



uniformity issues, it is almost the same as saying that the testing algorithm is given the size of theinput in advane).De�nition 1 An input, given as a funtion f : D ! F , is said to be �-lose to satisfying a propertyP , if there exists a funtion f 0 : D ! F that di�ers from f in no more than �jDj plaes, and satis�esP . An input whih is not �-lose to satisfying P is alled �-far from satisfying P .There are some testability questions that deal with di�erent notions of loseness, suh as thesede�ned using the edit distane between inputs when onsidered as strings; suh a ase appears inSetion 6.The notion of loseness leads to the following de�nition of what it means to �-test a property.Remember that in this de�nition a read from the input, also alled a query, is allowed from anyloation (in other words, the algorithm is granted random aess to the input).De�nition 2 Let P be a property, and let us �x the input size n. An �-test with q = q(�; n) queriesfor P is a probabilisti algorithm that reads the input in up to q plaes, and with probability at least23 distinguishes between the ase that the input satis�es P , and the ase that the input is �-far fromsatisfying P .The `23 ' term in the de�nition is arbitrary of ourse, and an be ampli�ed to any �xed probabilitysmaller than 1, at the prie of a linear inrease in q, by running the algorithm a onstant numberof times and taking the majority vote.Note that the above de�nition laims nothing about the running time of the algorithm, butdeals only with the amount of data that is allowed to be read from the input. This makes propertytesting more related to the branhes of omputer siene dealing with informational omplexity,rather than to those dealing with omputational omplexity. However, in most ases the algorithmsmaking deisions based on a small portion of the input happen to have a small running time aswell, making them also suitable for providing fast approximations of the input qualities.A property that has an �-test as above is alled �-testable with q queries. The best that an behoped for with regards to large inputs is the situation where q depends only on � and not on n.If this ours for every �xed � > 0, then the property P is usually simply referred to as testable.Lowering the dependeny on � is also important, in whih ase the best that an be hoped for is anumber of queries that is linear in ��1, as is the ase with the property of the input being all zeros.Sometimes lower bounds on the number of queries an be proven as well. There is no \oÆial"standard as to what makes a property \totally non-testable". In many ases involving inputs3



over a binary alphabet, any non-onstant lower bound for a �xed � is said to make the propertynon-testable. However, sometimes testing with O(log n) queries (for a �xed �) is also onsidered asuÆient test, espeially in ases, suh as most problems dealing with inputs over in�nite alphabets,where there are some known 
(logn) lower bounds.A lower bound of the type n (for some positive onstant  and �) is sometimes onsidered the�nal say, but in several instanes even testing algorithms that read this many queries are onsideredinteresting, espeially if they have a sublinear running time to math.Sometimes, speial types of testing algorithms are sought for. For example, by the de�nitionabove the algorithm is allowed to have a 2-sided error probability. A 1-sided testing algorithm isan algorithm that in addition aepts with probability 1 any input that satis�es the property to betested.In other ases the adaptivity of the algorithm is also onsidered. A non-adaptive test for aproperty is a testing algorithm that spei�es all queries in advane (aording to some distribution),and only then is allowed to obtain the input values in the orresponding loations, based on whihthe algorithm aepts or rejets the input. In other words, a non-adaptive test annot use theresults of previous queries in the deision as to where to make the next query, but only in the �naldeision as to whether to aept or rejet the input.The rest of this survey is organized as follows. Setion 2 deals with the testing of a propertyde�ned in terms of polynomial funtions, in the ontext of the works that have started this �eld.Setion 3 deals with the testing of languages, motivated by an attempt to orrelate the notionof testing to other notions of low omplexity (as it turns out there is little obvious orrelation,and some surprising results ome into play). Setion 4 and Setion 5 deal with one model ofgraph property testing, and another angle of the attempt to give a logial haraterization of thetestable languages, and Setion 6 deals with another graph testing model. Setion 7 deals with thetesting of properties motivated by the notion of monotoniity. Finally, Setion 8 deals with sometehniques for proving lower bounds on testability, and Setion 9 deals with some reent trends andfuture researh diretions, as well as the relation of property testing to other old and new topis inomputer siene.There is no hope to give omplete proofs for all the results presented in a survey suh as this.The strategy used in the following is to give proofs for some of the easier results, and to give proofsof speial ases or proof outlines for some of the harder results. It is hoped that through this thereader an get a taste of the tehniques used in the �eld.4



Although in general older results tend to appear earlier in this survey, there is no seriousattempt to fully reet the hronologial development of this �eld. For example, many of theresults presented in Setion 4 have appeared earlier than those presented in Setion 3.2 A �rst o�ering { testing for polynomialityThe �rst results in property testing were motivated by program testing (Blum, Luby and Rubinfeld[16℄, and Rubinfeld and Sudan [54℄), and by probabilistially hekable proofs (Arora and Safra [8℄,and Arora, Lund, Motwani, Sudan and Szegedy [7℄).In the ontext of program testing, the idea is that the \input" to be tested is not expliitlygiven. Instead, a program is given; this program is onsidered as a funtion from the set of itspossible inputs to the set of its possible outputs, and we have to test for properties of this funtion.The pratial impliation is lear { one annot hope to expliitly write down the entire funtion,but a \query" into it an be answered in a reasonable time by running the given program on theinput that orresponds to the queried \loation". Thus testing an ensure that this program willperform within the expeted parameters for most inputs.Probabilistially hekable proofs deal with proving protools that an be probabilistially veri-�ed by reading only a small portion of a proposed proof. Formulating the property of being an inputthat satis�es the protool, in a way that allows testing for this, is the onnetion here. Both theontext of program heking and the ontext of probabilistially hekable proofs plae additionalrequirements on the proedure beyond testability (that happen to be ahievable for the examplebelow); their exat de�nition is outside the sope of this testing survey.The �rst result regarding testability per-se is probably that of Blum, Luby and Rubinfeld [16℄onerning linearity, and the �rst expliit de�nition of property testing was given by Rubinfeld andSudan in [54℄ (in its turn it is based on some of the results of [55℄ and [34℄). The �rst results dealtmainly with the algebrai notion of being a low degree polynomial.Suppose that for some �nite �eld F the input is given as a funtion f from F to F , that a queryonsists of �nding the value of f at a spei�ed loation x 2 F , and that the distane is measuredby the number of values of f that have to be hanged in order to make it satisfy the property tobe tested, divided by the input size jFj.In this setting, it is easy to test using a few queries for the property that f is a polynomialwhose degree is bounded by some �xed onstant k.5



Proposition 2.1 It takes O(k + ��1) queries to �-test that a funtion f from F to F (where F isa �nite �eld of arbitrary size) is a polynomial of degree at most kProof: The algorithm �rst queries f in k+1 arbitrary di�erent loations. If f is indeed a polynomialof degree at most k, then by the interpolation property of polynomials these k + 1 queried valuesdetermine all the other values of f .The algorithm then queries f in O(��1) additional loations hosen uniformly and independentlyat random, and for eah of these heks that the value of f indeed agrees with the value of thepolynomial interpolated from the �rst k + 1 queried values.In ases where funtions from Fd to F are needed to be tested for the property of being low-degree (multivariate) polynomials, interpolation by itself is not satisfatory. The main results of[54℄ are another test for the 1-dimensional ase that satis�es some additional onditions mandatedby the ontext of program heking, as well as an eÆient test for the multidimensional ase (seealso [8℄ and [7℄ for related results and appliations). The way to handle funtions from Fd to F isby onsidering two random interseting lines in Fd, and testing that the restritions of the inputfuntion to these give degree k polynomials that agree on the intersetion point.Theorem 2.2 ([54℄) The property of a funtion f : Fd ! F being a polynomial of a total degreebounded by k an be �-tested using O(k2 + k��1) queries (independently of jFj and d).There was extensive researh in the topi of testing a funtion for being a low degree polynomial,and related questions. The interested reader is referred to [9℄, that desribes some additional results.3 Testing of languagesAs the possibility of testing an input for a property using few queries beomes apparent, thenext natural step is to orrelate the traditional ategorization of properties into omputationalomplexity lasses with the new testing sheme.An ultimate goal would be to try �nding a logial haraterization of all properties testablewith a number of queries independent of the input size, in muh the same manner as, say, that theproperties reognizable by a �nite automaton have a haraterization as all properties expressiblein the appropriate monadi seond order logi language.This goal is far from ahieved. A more humble goal is to identify whole lasses, and notjust individual properties, that are eÆiently testable. Suh lasses, sometimes identi�ed by the6



struture of their expression in an appropriate �rst order logi language, are given speial attentionin this survey.Results are sometimes surprising. On one hand, there exist properties that are in AC0 and arenot testable even in a number of queries that is some �xed (small) power of the input size. Onthe other hand, there exist NP-omplete properties, suh as graph 3-olorability, that are testablewith a number of queries that depends only on the approximation parameter �. A reason for thisis that up to hanging a small portion of the input, even simple �rst order logi expressions anapture surprisingly large lasses of properties. For example, up to hanging a small number ofedges, 3-olorability is in fat indistinguishable from some very simple AC0 property. More on thisin Setion 5.For a potential soure of lasses of properties that are testable we turn �rst to the well-knownlasses of languages with low omputational omplexity, starting with the lowest { the languagesreognizable by a �nite automaton. These were investigated by Alon, Krivelevih, Newman andSzegedy [5℄ and were found to be testable. However, in general one annot prove similar testabilityresults for omplexity lasses substantially broader than this, as there are already ontext freelanguages that are not testable even with relatively many queries { for example, the language ofall possible onatenations of two palindromes is suh a language.Theorem 3.1 ([5℄) Any regular language is testable with a number of queries linear in ��1 log3(��1)and independent of the input size. On the other hand, there exist ontext-free languages that arenot testable in a number of queries that is less than some �xed power of the input size.To give a taste of how suh a testability result an be proven, a testability proof for a speialase is given here.Proposition 3.2 Let S be any �xed binary string. The property of a binary input string notontaining S as a (not neessarily ontinuous) substring is �-testable, with a number of querieslinear in ��1 and independent of the input size.Proof: We onstrut by indution on the length of S a test whose error probability is bounded byPjSji=1 2�i�2 < 14 . When S is of size 1 the test is trivial (it just performs a random sampling of theinput and rejets if it �nds an instane of the single harater that omprises S).Assume without loss of generality that the �rst harater in S is `1', and let S0 be the result ofremoving this �rst harater of S. Let v1v2 : : : vn be an input of size n. The algorithm then hooses7



uniformly and independently O(��1) random loations in the input string (the `O' notation hidesa oeÆient dependent only on jSj), queries them, and notes the smallest queried loation indexfor whih the input is `1'. Denote it by i1.In the ase that no `1' was found in the previous stage, the algorithm aepts the input. Thiswill happen only with a small probability (whih an be made smaller than 2�jSj�2), unless theinput is �-lose to being all `0', in whih ase it is learly �-lose to not ontaining S as a substring.With high probability, if a `1' was found in the preeding stage, then i1 is suh that v1 : : : vi1�1ontains no more than 12�n instanes `1'. To see this, denote by fj1; : : : ; j�n=2g � f1; : : : ; ng the setof the �rst 12�n instanes of `1' in the input (if suh a set does not exist and yet i1 was found thenit learly satis�es the above ondition). It is easy to see that O(��1) queries will be suÆient to hita member of this set with probability 1� 2�jSj�2.The algorithm now 12�-tests the string vi1+1 : : : vn for the property of not ontaining S0 asa substring (with error probability PjSj�1i=1 2�i�2), and aepts the input if and only if this testaepts. By the indution hypothesis, the number of queries in this stage is also linear in ��1.For the orretness proof, it is quite lear that if the input does not ontain S as a substringthen the algorithm will aept with probability 1, beause this neessarily implies that vi1+1 : : : vndoes not ontain S0 as a substring.On the other hand, if the algorithm aepts v1 : : : vn with probability more than PjSji=1 2�i�2,then we an de�ne a string w1 : : : wn that is �-lose to v1 : : : vn and does not ontain S as follows:w1; : : : ; wi1�1 are all set to `0' (this makes no more than 12�n hanges from v1; : : : ; vn), wi1 = vi1 = 1,and wi1+1; : : : ; wn are set to a string that is 12�-lose to vi1+1 : : : vn and ontains no instane of S0.It is lear that w1 : : : wn is �-lose to v1 : : : vn. Also, w1 : : : wn does not ontain an instane of Sthat starts before i1 as there are no ourrenes of `1' in that range, and on the other hand does notontain an instane of S starting at i1 or later beause wi1+1 : : : wn does not ontain an instane ofS0. This ompletes the proof of the properties of v1 : : : vn in the ase that the algorithm aepts,and thus the orretness proof of the test.It is still not known whether the testing of all ontext free languages an be bounded from aboveby a power of n that is smaller than 1. An investigation into this question is given in [49℄.In [46℄, Newman found a generalization of the positive part of Theorem 3.1, by onsidering anon-uniform ounterpart of the notion of a �nite automaton.Theorem 3.3 ([46℄) Every property identi�able by a read-one �xed-width oblivious branhingprogram is testable with a number of queries polynomial in ��1 (and independent of the input size).8



However, we lose this setion by noting that this result too is the best possible of its kind insome sense.Theorem 3.4 ([30℄) There exists a property identi�able by a read-twie oblivious branhing pro-gram of width three, that is not testable with a number of queries that is less than some �xed powerof the input size.4 Graph testing in the dense ontextGraph theory is a point of ontat between pure mathematis and omputer siene. Beause ofthe major role it plays in the theory of omputational omplexity, it is only natural that problemsthat arise from graph theory, suh as (proper) vertex olorability, will also be investigated from thepoint of view of property testing.The �rst investigation into the testing of graph properties was performed by Goldreih, Gold-wasser and Ron in [37℄. It was motivated by the idea of property testing serving as a new notionof approximation, and by some related questions that arise in omputational learning theory. Herethe input is assumed to be an adjaeny matrix of a graph G with n verties. This means that aquery onsists of obtaining an answer as to whether a pair vivj of verties is an edge of G or not,and that G is onsidered to be �-far from satisfying a property P if one has to add and removemore than a total of ��n2� edges in G to make it satisfy P .This also means that we restrit ourselves to properties that relate to the graph G underlyingthe input, suh as vertex olorability or the existene of a large lique. Formally, it means that weinvestigate only properties that are invariant with respet to graph isomorphisms { all permutationsof the input that result from permuting the vertex set of the underlying graph.This invariane of graph properties has some useful impliations for testing. For example, itimplies that if two graph properties P and Q satisfy that for every � there exist only a �nite numberof graphs that satisfy one of them but are �-far from satisfying the other, then either both of P andQ are testable (for every �) with a number of queries that is independent of n, or neither of themis thus testable. In this setting P and Q are said to be indistinguishable from one another; theexat statement and proof of this observation are found in [4℄. The above invariane has also strongimpliations onerning the type of testers that exist for these properties, suh as those desribedin [40℄. 9



Lemma 4.1 ([40℄) If there exists an �-tester for a graph property that makes q queries, then thereexists suh a tester makes its queries by uniformly and randomly hoosing a set of 2q verties andquerying all their pairs. In partiular, it is a non-adaptive �-tester making �2q2 � queries.Proof sketh: We de�ne a vertex unovering tester to be a testing algorithm that in eah stagepiks a new vertex v (possibly based on previous queries), and queries all the edges between v andthe verties that were piked in the previous stages. This proess is alled the unovering of v.Any �-tester making up to q queries an be transformed to a vertex unovering tester that unoversexatly 2q verties in the following manner: Whenever the original algorithm queries an edge, thenew algorithm unovers one by one its two inident verties, if they were not already unovered inearlier stages. In the end, if the original algorithm aepts or rejets the output before 2q vertieswere unovered, the new algorithm �rst unovers more arbitrarily hosen verties until exatly 2qverties are unovered; after the unovering is ompleted, the aeptane riterion of the originalalgorithm is used.The new algorithm that unovers 2q verties may still be adaptive, but now instead of runningit over the input graph G, we run it through a uniformly random permutation of the verties ofG. It is now not hard to see that the result of this modi�ation will be an algorithm satisfying thestatement of the lemma.As it turns out, for every �xed given k the property of a graph being k-olorable an be �-testedwith a number of queries depending only on � (and k). Informally, this means that the NP-hardnessof k-olorability for k � 3 essentially follows from onstrutions that are not k-olorable but anbe made k-olorable by removing only a small portion of the edges.To illustrate the proof given in [37℄ for the testability of k-olorability, we give here the prooffor the speial ase k = 2.Proposition 4.2 ([37℄) There exists an �-test for the property of a graph being bipartite, thatmakes a number of queries whih is polynomial in � (and is independent of the input size).To prove this proposition, we �rst note that it is quite trivial to test for bipartiteness if one isalready given the supposed proper 2-oloring along with the input graph.Lemma 4.3 There exists an algorithm, that given a graph G and a oloring of some of its verties,with the possibility also to query for a given vertex whether it is olored and with what olor, andistinguish (with high probability) using a number of queries that is linear in ��1, between the ase10



that G ontains no edges whose inident verties are olored with the same olor, and the ase thatG ontains more than ��n2� suh edges.Proof: There are a total of �n2� vertex pairs in G, and we need to distinguish between the ase thatnone of these pairs is an edge onneting two identially olored verties, and the ase that morethan ��n2� of the pairs are suh edges. This is done by a simple sampling of the pairs, where forevery pair in the sample we query the olors of its verties, and whether it is an edge of G.Proof sketh of Proposition 4.2: The test �rst piks a set S of O(��1 log(��1)) verties of theinput graph G independently and uniformly at random; with high probability it has the propertythat all but at most 15�n of the verties that have degree at least 15�n in G have also a neighbor inS. We now look at all possible partitions of S into S1 and S2, and de�ne for eah of these a partial2-oloring of G: Every vertex that has a neighbor in S1 is olored by 2, and every vertex that hasa neighbor in S2 but not in S1 is olored by 1. With this de�nition, �nding out whether a givenvertex is olored and with what olor requires jSj = O(��1 log(��1)) queries of G.For every possible partition of S, we an use the algorithm from Lemma 4.3 to �nd out whetherthe graph is 15�-far from ontaining no monohromati edges aording to the orresponding olor-ing. However, the number of possible partitions is exponential in �. In order to hek all possiblepartitions of S at one, we �rst note that with a simple ampli�ation tehnique, the error probabilityof the algorithm in Lemma 4.3 an be made exponentially small in jSj; the resulting algorithm stillpiks a number of verties that is polynomial in �, and queries only for edges between these vertiesand between them and S. Thus we an pik a uniformly random set U onsisting of a polynomialnumber of verties of G, and then for every partition of S run the algorithm from Lemma 4.3 onthis same set, reusing the same queries. With high probability the above algorithm will not makean error onerning any of the 2jSj partitions of S.To end the test, we aept the input if there exists a partition of S for whih G is not far fromhaving no monohromati edges in the orresponding oloring, and otherwise we rejet the input.The algorithm will never rejet an input whih is in fat bipartite, beause a proper 2-oloring ofthe input graph indues for every S a partition for whih the orresponding oloring ontains nomonohromati edges.On the other hand, with high probability it is the ase that if the algorithm aepts then thegraph is �-lose to being bipartite. To prove this we look at the appropriate partition of S and11



its orresponding partial 2-oloring. For every vertex that is not olored by the oloring, we justremove all of its inident edges and olor it arbitrarily; we know that with high probability thiswill hange no more than 45��n2� edges (no more than 25�n�2 � edges inident with verties of degree nomore than 15�n, and no more than another 25��n2� edges for up to 15�n additional verties with higherdegrees that were not olored on aount of having no neighbors in S). We also know that thegraph may ontain up to 15��n2� more edges that violate the original partial oloring; by removingthese as well we are done.The desription of the alulation above is deeptively omplex. In fat, one an easily showthat instead of piking a set of verties S, and then heking all its partitions against a seond setof verties U , one ould just pik a set that serves as \S [ U", and hek whether the subgraphof G indued on this set is bipartite. Thus the above proof also yields a graph-theoreti result {a graph that is �-far from being bipartite ontains at least 23�nk� indued subgraphs with k vertiesthat are not bipartite, where k depends only on ��1 and is in fat polynomial in it.This ombinatorial orollary is not a oinidene, as the following result states that a similarphenomenon ours for any testable graph property that is losed under the taking of induedsubgraphs.Proposition 4.4 (N. Alon, see Appendix D of [40℄) If P is a graph property that is losedunder the taking of indued subgraphs, and there exists an �-test for P that always makes q queriesindependently of the number of verties of the input G, then there exists a �-test for P that worksby uniformly hoosing f(q) verties of the graph G, querying all the pairs, and heking that theindued subgraph satis�es P . Moreover, f(q) is a global polynomial in q, independent of the otherparameters.We onlude by referring the reader to [37℄ onerning other partition-related graph properties,suh as k-olorability (for a �xed k), having a given maximal ut, or having a large lique. Asidefrom the testability proofs of these, [37℄ ontains their generalization to the following grand theorem.Theorem 4.5 ([37℄) For a �xed k, let P be the property of a graph G with n verties having apartition V1; : : : ; Vk of its vertex set, with �in � jVij � �0in for every i (for �xed, given �i < �0i),and suh that for every 1 � i � j � k the number of edges between Vi and Vj (or within Vi if i = j)is between �i;jn2 and �0i;jn2 (for �xed, given �i;j < �0i;j).Property P is testable, with a number of queries that is polynomial in �.12



5 Dense graphs ontinued { use of the Regularity LemmaThis setion is about the use of Szemer�edi's Regularity Lemma for property testing, and its appli-ation to proving testability for a lass of graph properties that are de�ned by ertain �rst orderexpressions.To formulate logial expressions for properties, we shall use a language that inludes variablesthat range over verties, �rst order quanti�ers over these variables, the adjaeny relation \u isa neighbor of v", the equality relation \u = v", and boolean onnetives. All properties thusexpressible are alled �rst order graph properties. We further lassify them by the �rst orderquanti�ers that they use. The best way to illustrate this is by giving some examples:� \The graph G ontains a triangle". This is a �rst order graph property of type `9', as it hasan expression using only this quanti�er: 9u1u2u3(u1 � u2 ^ u1 � u3 ^ u2 � u3), where u � vis the relation stating that u and v are neighbors (and in partiular are not the same vertex).� \The graph G does not ontain an indued square". This is a �rst order graph property oftype `8', as it states that for every set of four distint verties, ertain adjaeny on�gurationsdo not our.� \The graph G ontains three distint verties u1; u2; u3 suh that every other vertex hasexatly one of them as a neighbor, and furthermore there exists no triangle ontaining any ofthese three verties". This is a �rst order graph property of type `98'.It is not hard to show that the third example above is related to the property of 3-olorability:Every graph satisfying this property is not far from being 3-olorable, as the verties u1; u2; u3determine a proper 3-oloring of the rest of the graph, and onversely every proper 3-oloring ofa graph an be used to �nd a small modi�ation of the graph that satis�es the property above.In other words, the above �rst order property and the property of being 3-olorable are indistin-guishable, as per the de�nition outlined in Setion 4. When it omes to property testing, �rstorder expressions have more expressive power than they do in the ontext of traditional omplexitytheory.Alon, Fisher, Krivelevih and Szegedy have shown in [4℄ what lasses of �rst order expressionsare wholly testable.Theorem 5.1 ([4℄) All �rst order graph properties of type `98' are testable with a number ofqueries independent of n. On the other hand, there exists a `89' property that is not thus testable.13



The proof of the positive part of this theorem relies heavily on the existene of regular pairs ofsets, as stated in Szemer�edi's Regularity Lemma [56℄. As for the negative part, the main idea ofits proof is given in Setion 8.For a good exposition of Szemer�edi's Regularity Lemma (stated below) and its proof, the readeris referred to [21, Chapter 7℄, and for a full survey regarding the many ombinatorial appliationsof regular pairs and the Regularity Lemma the reader is referred to [44℄. In the following we givea brief introdution to this useful tool, starting with the de�nition of regular pairs.De�nition 3 (density and regularity of set pairs) For two nonempty disjoint vertex sets Aand B of a graph G, we de�ne e(A;B) to be the number of edges of G between A and B. The edgedensity of the pair is de�ned by d(A;B) = e(A;B)jAjjBj . We say that the pair A;B is -regular, if for anytwo subsets A0 of A and B0 of B, satisfying jA0j � jAj and jB0j � jBj, the edge density satis�esjd(A0; B0)� d(A;B)j < .The main strength of the de�nition of regularity is in the harateristis that regular pairs sharewith random bipartite graphs of the same density. Consider for example the following.Lemma 5.2 For every � > 0 there exist  = (�) and Æ = Æ(�) suh that if A, B and C aredisjoint vertex sets of a graph G where eah pair is -regular and has density at least �, then Gontains at least ÆjAjjBjjCj distint triangles with a vertex from A, a vertex from B, and a vertexfrom C respetively.The proof is not very hard, but we shall omit it here and refer the reader to [44℄, or to [4℄ forproofs that are more spei� to the topi of testing.The following lemma is a strong tool in graph theory, as it states that in essene most of thevertex-pairs of any given graph an be neatly �tted into a struture of regular pairs. This strutureis given by an equipartition of G { a partition of its vertex set into sets whose sizes di�er from eahother by no more than 1.Lemma 5.3 (Szemer�edi's Regularity Lemma [56℄) For every m and � > 0 there exists someT = T (m; �) with the following property.If G is a graph with n � T verties, and A is an equipartition of the vertex set of G into msets, then there exists an equipartition B that is a re�nement of A with k sets, where m � k � T ,for whih all set pairs but at most ��k2� of them are �-regular.14



By using the Regularity Lemma, one ould re-prove for example that proper k-olorability istestable { in fat, a ombinatorial statement to this e�et was impliitly given in [51℄, before theonept of algorithmi testing ame into being.Another typial use is when testing for the non-existene of �xed size liques; see for examplethe following ombinatorial proposition.Proposition 5.4 (N. Alon, private ommuniation) For every � there exists Æ = Æ(�) suhthat any graph with n verties, whih is �-far from being triangle-free, ontains at least Æ�n3� distinttriangles.Proof sketh: To prove this we onsider an equipartition fV1; : : : ; Vkg of the verties of thegraph G aording to Lemma 5.3, where 5��1 � k � T (5��1; �0) (we make it a re�nement of anarbitrary equipartition into 5��1 sets), in whih all but at most �0�k2� of the pairs are �0-regular.The parameter �0 is set to minf15�; (15�)g, where  is the funtion appearing in Lemma 5.2.We now onsider a subgraph G0 of G, obtained by deleting all edges of G that are internal toVi for any i, or are between Vi and Vj for any pair Vi; Vj whih is not �0-regular, or any pair whosedensity is less than 15�.Noting that G0 was obtained from G by deleting less than ��n2� edges, it follows that G0 ontainsa triangle, sine G is �-far from being triangle-free. By the onstrution of G0, this is neessarily atriangle with a vertex from Vi, a vertex from Vj and a vertex Vk, for some Vi; Vj ; Vk whih are alldistint and for whih all pairs are in partiular (15�)-regular (with respet to G) and with densityat least 15�. The existene of suh Vi; Vj ; Vk implies by Lemma 5.2 the existene of at least Æ0�n3�distint triangles in G, where Æ0 = 6Æ(15�)(T (5��1; �0))�3 with Æ denoting here the orrespondingfuntion from Lemma 5.2.Proposition 5.4 implies that the following is a 1-sided �-test for being triangle-free: Chooseindependently and uniformly O(Æ(�)�1) random vertex triplets (where Æ is the funtion of theproposition), and hek whether any of them is a triangle. If a triangle was found then rejet theinput; otherwise aept it.There is one serious drawbak to results proven using the Regularity Lemma: The dependenyof T (m; �) on its parameters is very severe, a tower in a polynomial of m��1, and by [41℄ thisdependeny annot be signi�antly improved as long as the full strength of the Regularity Lemmais employed. This makes the tests thus derived of a theoretial importane rather than a pratialone. 15



Unlike the situation with k-olorability, urrently there is no known proof for a test (with aonstant number of queries) for the property of being triangle-free that has a better dependenyon �. However, it is known that the number of queries of a 1-sided test for this property annotbe polynomial in �, using a bound from [14℄, and by Proposition 4.4 above this follows for 2-sidedtests as well.When one tries to generalize the above result to properties de�ned as not ontaining a given �xedindued subgraph, other than a lique, another problem arises (remember that an indued subgraphis a subgraph obtained from the original graph by deleting verties and their inident edges, butdeleting no other edges). In the above proof impliit use was made of the fat that removing edgesannot add new triangles to the graph; but in the ase of indued squares, for example, removingan edge an atually make its pair part of a new opy of the forbidden subgraph.In proving the Regularity Lemma one annot do away ompletely with the existene of a smallfration of non-regular pairs, whih are the ore of the problem in proving similar results for induedsubgraphs beause of the above mentioned inability to safely remove edges. The workaround in [4℄to this problem is in proving a variant of the Regularity Lemma, that enables one to �nd a largeindued subgraph of the original graph, for whih there exist an equipartition with all the pairsbeing regular, and that has the additional property of being able to \model" the original graph, inthe sense that if the graph G is far from satisfying the property then so is this subgraph.The full details are outside the sope of this survey; the reader is referred to [4℄, where thismethod is used for proving that all `98' �rst order graph properties are testable, and to [25℄, wheretestability is proven for some additional lasses of properties that further generalize the `98' lass.As a �nal note, we mention some instanes in whih using the full version of the RegularityLemma an be avoided, making for a better dependeny of the number of queries on �. It stillremains to be seen whether suh a use an be avoided in the general ase, or even for the propertyof a graph being triangle-free.In the ase where the property is that of not ontaining a �xed bipartite graph as a not nees-sarily indued subgraph, this an be tested with a number of queries polynomial in �. The proofuses a Zarankiewiz type theorem, that states in essene that the only graphs satisfying suh aproperty are almost edge-less. On the other hand, there exists no test making a number of queriesthat is polynomial in ��1, for any property de�ned as not ontaining a �xed non-bipartite graph;this was proven in [1℄. There is also an investigation into what properties de�ned by a forbiddenindued subgraph have a test with a polynomial number of queries, in [6℄.16



Suppose now that a property is de�ned by not ontaining a �xed indued subgraph, and thatwe wish to test only bipartite graphs for satisfying it. The following is ahieved using a ratherrestrited variant of the Regularity Lemma, proven for this purpose.Theorem 5.5 ([29℄ with an improvement by N. Alon) Any property of bipartite graphs, thatis de�ned as not ontaining a given �xed indued subgraph, has a 2-sided test using a number ofqueries exponential in �, and a 1-sided test using a number of queries doubly-exponential in �.It is not known at present whether testing of suh properties of bipartite graphs an be madepolynomial in ��1 or not.6 Testing of sparse graphsAs far as inputs given in terms of the adjaeny matrix of a graph are onerned, all graphs witho(n2) edges are indistinguishable from null (edge-less) graphs. This makes testing of propertiessuh as not ontaining a yle trivial { the algorithm just needs to sample and distinguish betweenthe ase that G has more than ��n2� edges, and the ase that G has less than 12��n2� edges. In the�rst ase the algorithm rejets G, and in the seond ase it aepts G.However, there is still the interesting (and non-trivial) question of whether one ould, for aninput graph G with n verties and m edges, distinguish between the ase that G is ayli, and thease that no removal of up to �(n +m) edges from G (rather than ��n2�) an make it ayli. In[38℄ Goldreih and Ron have de�ned a di�erent model for enoding input graphs, in whih suh atesting notion makes sense (in the above �(n+m) is used, and not �m, beause of further tehnialompliations arising in graphs with o(n) edges).Under the model disussed here, a graph is not enoded by its adjaeny matrix, but insteadthe list of neighbors is given for every vertex. It is assumed that the input is indeed an enoding ofa graph, so if u is in the list of neighbors of v then v is also in the list of neighbors of u. Note thatthe input is not a sequene of bits, but a sequene of integers, some of whih serve as `pointers' tothe di�erent lists. Thus a query in this model onsists of either �nding out the number of neighborsof a vertex vi, or �nding the identity of the j'th neighbor of vi aording to its adjaeny list.In the ase where inputs are limited to graphs with a �xed maximum degree �, and the allowablemodi�ations of the graphs must also satisfy this restrition, one may assume that all the adjaenylists are of this �xed size, with the possibility of some members in the lists being `null' for vertieswith degree less than �. For this reason we may also assume that all queries are of the seond17



type desribed above. In this model the di�erene between graphs in relation to n+m is linearlyproportional to the hamming distane between inputs, so we an just use the latter.When the maximum degree is not bounded, the notion of the distane is more omplex beausethe sizes of the adjaeny lists an vary. The distane between inputs is atually a funtion of theedit distanes between the orresponding adjaeny lists; there are in addition models in whih itis also allowed to add and remove verties from the graph (in removing a vertex it is natural totake into aount also the removal of its inident edges), but we shall not disuss these models indetail here.In a work by Goldreih and Ron [38℄ several properties (some of whih, suh as onnetivity andayliity, are trivial to test in the dense graph model but are not trivial in this one) are proven tobe testable. On the other hand, some other properties that are easily testable in the dense ontextare not testable in the sparse one. The following is a partial summary of their results.Theorem 6.1 ([38℄) The following properties are testable with a number of queries not dependingon n, for the model of testing graphs with a bounded degree � given by their adjaeny lists: k-edgeonnetivity for any �xed given k, not having a given �xed graph H as a (not neessarily indued)subgraph, and being ayli.On the other hand, �-testing of bipartiteness for some �xed �, and � = 3, requires at least 13pnqueries.It turns out that in the ase of direted graphs, also the property of being ayli requires manyqueries to test for in the sparse model [15℄.In the sparse ontext a testing algorithm typially onsists of performing a breadth �rst searhfrom randomly hosen verties, and then aepting or rejeting the input based on the resultingsubgraphs. For example, testing for onnetedness an be done using the following simple lemma(one an show that this lemma is also translatable to the model where the input graph and itsmodi�ations are subjet to a bound on their maximum degree).Lemma 6.2 If a graph G with n verties requires the addition of at least �n edges to make itonneted, then at least 12�n of the verties of G are in onneted omponents of size at most 2��1.Proof: It is easy to see that a graph G as above ontains more than �n onneted omponents.Eah of them ontains at least one vertex, and on the other hand it is lear that less than half ofthem an be of size more than 2��1. 18



The test now onsists of piking O(��1) random verties, and performing a breadth �rst searhfrom eah to them to hek whether it is part of a onneted omponent with less than 2��1 verties(this requires O(��1) queries per vertex). If one of the hosen verties is in suh a omponent thenthe algorithm rejets, and otherwise it aepts.The above test takes O(��2) queries, and works for both the bounded degree model and theunbounded degree one. Note however that [38℄ ontains an improved analysis, that in partiularrequires only O(��1) queries for the unbounded degree model, and slightly more than that for thebounded degree one.7 Testing posets for monotoniityKeeping lists in a sorted order is a ommon pratie, and for well known reasons. This naturallyleads to the question of how many queries it takes to ensure that a sequene of n integers is mostlysorted, that is, to distinguish between the ase that it is monotone nondereasing, and the asethat no subsequene of (1� �)n integers from it is monotone nondereasing.This is equivalent to the question of �-testing a sequene of n integers for this property, wherethe distane is given by the fration of integers that need to be altered in order to make the sequenemonotone. Erg�un, Kannan, Kumar, Rubinfeld and Viswanathan have shown in [23℄ that for a �xed� it is enough to make O(log n) queries. Although this is dependent on n, it is still a muh betteralternative than that of reading the whole input.Theorem 7.1 ([23℄) There exists an �-test that makes O(��1 log n) queries, for the property of asequene of n integers being monotone nondereasing.Proof sketh: For any monotone inreasing sequene of size n, one an hek using O(log n)queries whether a given number appears in this sequene, by the well known binary searh method.We now look at our input, denote it by v1v2 : : : vn. We an safely assume that all values aredistint, as otherwise we an onsider the sequene v01v02 : : : v0n de�ned by v0i = nvi + i instead. Weall vi well positioned if the binary searh proedure above, when applied to vi over v1v2 : : : vn,indeed �nds the position i.It takes O(log n) queries to hek that a given vi is well positioned. Our algorithm makes O(��1)iterations of this proedure for random i's hosen uniformly and independently, to distinguishbetween the ase that all values are well positioned, and the ase that at least �n of the values are19



not well positioned. In the �rst ase the algorithm aepts the input, and in the ase where anyvalues that are not well positioned were found the algorithm rejets.If the input is in fat monotone, then learly all of its values are well positioned, and so thealgorithm aepts. On the other hand, if the algorithm aepts (with high enough probability),then it means that more than (1 � �)n of the values are well positioned. To end the proof, weshow that the subsequene of all well positioned values is monotone; suh a subsequene an easilybe ompleted to a monotone nondereasing sequene of size n by putting new values in the plaeswhere the original values are not well positioned.Assuming that i < j, and that vi and vj are both well positioned, we now show that vi � vj .For this it is suÆient to �nd an index k satisfying i � k � j suh that vk was visited by the binarysearhes for both values, beause this would imply that vi � vk and vk � vj. To �nd it, we justhoose k to be the last loation that was queried in both binary searhes, the one for vi and theone for vj . Common loations in the two searhes exist beause in partiular the loation bn2  isommon to all binary searhes.One should note here that the above algorithm only looks adaptive. In fat, the algorithm ansupply all the query loations in advane { to hek that a value is well positioned, it is enough tounonditionally query the binary searh sequene that would arise if it were well positioned, sinein order to know that a value is not well positioned it is enough to know that the atual binarysearh sequene diverges at some point from the queried \expeted" sequene.As it turns out, the above property annot be tested using a onstant number of queries. An
(log n) lower bound (for some onstant �) is given in [23℄ for non-adaptive algorithms that arerestrited to making deisions based on omparisons. In [26℄ it is proven that for this partiularproperty better general algorithms do not exist, by showing �rst that for a ertain lass of properties,that inludes monotoniity, there are omparison-based algorithms that are optimal.It is also of interest to investigate testing for natural notions of monotoniity that di�er fromthe simple notion of a sequene being nondereasing. The next step is to onsider funtions whosedomain is not endowed with a linear order as f1; : : : ; ng is, but with other types of partial ordersinstead. The �rst work in this diretion is by Goldreih, Goldwasser, Lehman, Ron and Samorod-nitsky [36℄, that have proven the following result about the monotoniity of funtions from f0; 1gd(with the usual produt order over the hyperube) to f0; 1g.Theorem 7.2 ([36℄) �-testing that a funtion from f0; 1gd to f0; 1g is monotone nondereasingan be done using O(��1d) queries. 20



The testing algorithm for this onsists of hoosing a random pair of points in f0; 1gd that di�erin exatly one oordinate, omparing the values of the input funtion over these, and repeating thisproedure O(��1d) times. For the orretness proof the reader is referred to [36℄.A generalization of the above result to d-dimensional matries of any size (and not only f0; 1gd)is given in [22℄ (some generalizations in this diretion were already proven in [36℄).Theorem 7.3 ([22℄) A funtion from f1; : : : ; ngd to f1; : : : ;mg an be �-tested for monotoniityusing O(��1d log n logm) queries.Dealing with d-dimensional matries with integer values (not restrited to some f1; : : : ;mg) isalso overed by [22℄ { a simple analysis of the algorithm that is given there implies that the `m'term in the expression for the number of queries an be replaed by the atual size of the imageof the input funtion, whih is bounded by nd. This gives an O(��1d2 log2 n) upper bound on therequired number of queries in this ase. As for binary funtions over f1; : : : ; ngd where d is �xed,in [22℄ it is shown that in this ase the number of queries does not need to depend on n at all.Other partially ordered sets an also serve as domains for funtions to be tested for monotoniity.For example, rooted trees. Monotoniity testing in the general ontext is treated in [28℄. Thereare positive results for some partially ordered sets, suh as the possibility of testing a binaryfuntion over a rooted tree for monotoniity with a number of queries that depends only on theapproximation parameter �. On the other hand, [28℄ also ontains some non-trivial lower bounds,inluding one for the ase of a funtion from f0; 1gd to f0; 1g; in that ase the number of querieshas to depend on d. Narrowing the gap between the upper and lower bounds on the number ofqueries in this setting still remains an open (and interesting) question.8 Proving non-testability resultsThe methods presented thus far deal with proving upper bounds for property testing, throughmeans of presenting eÆient testing algorithms. As with other areas of omputer siene, lowerbounds play an essential role in the �eld of property testing as well, and the �rst example of aproperty that is hard to test (one that belongs to NP in the traditional omplexity framework) wasgiven in [37℄.This setion presents what is urrently the most eÆient tool for proving lower bounds forproperty testing, Yao's method [57℄. The basi method is the following. Instead of trying to�nd a worst ase input for every possible (randomized) �-testing algorithm, we �nd a probability21



distribution over the inputs, suh that every deterministi algorithm will fail with probabilitygreater than 13 on an input taken aording to this distribution. From this it follows that everyrandomized algorithm will also fail with at least the same probability over this input distribution,and so for every �xed randomized algorithm there will be at least one (\non-randomized") inputthat demonstrates at least the same average failure rate.In our ontext we usually deal with two distributions, one on inputs satisfying the propertyand one on inputs that are �-far (for some onstant �) from satisfying it, suh that in some senseit is hard for a (deterministi) algorithm making few queries to distinguish between them. Forsimplifying the presentation we will only onsider binary inputs in the following. We �rst needsome de�nitions.De�nition 4 (restritions, variation distane) For a distribution D over inputs, where eahinput is a funtion f : D ! f0; 1g, and for a subset Q of the domain D, we de�ne the restritionDjQ of D to Q to be the distribution over funtions of the type g : Q ! f0; 1g, that results fromhoosing a funtion f : D ! f0; 1g aording to D, and setting g to be f jQ, the restrition of f toQ. Given two distributions D1 and D2 of binary funtions from Q, we de�ne the variation distanebetween D1 and D2 as follows: d(D1;D2) = 12 Pg:Q!f0;1g jPrD1(g)�PrD2(g)j, where PrD(g) denotesthe probability that a random funtion hosen aording to D is idential to g.It is a well known fat that if a deterministi algorithm is given an input hosen aording toeither a distribution D1 or a distribution D2, then its aeptane probabilities for the two asesdo not di�er by more than d(D1;D2). The most ommon appliation in our ase is the followingfolklore lemma.Lemma 8.1 Suppose that there exists a distribution DP on inputs over D that satisfy a givenproperty P , and a distribution DN on inputs that are �-far from satisfying the property, and supposefurther that for any Q � D of size q, the variation distane between DP jQ and DN jQ is less than13 . Then it is not possible for a non-adaptive algorithm making q (or less) queries to �-test for P .Proof: We onstrut a distributionD over inputs by deiding with probability 12 to hoose an inputaording to DP , and with probability 12 to hoose an input aording to DN . We now onsiderdeterministi algorithms { every deterministi non-adaptive testing algorithm with q queries onsists22



of querying the input f over a �xed set Q of size q, and then making an aeptane or a rejetiondeision based on f jQ.Let aP be the aeptane probability of our algorithm when given a random input hosenaording to DP , and let aN be its aeptane probability for an input hosen aording to DN .The probability of making an error is learly 12 (1 � aP ) + 12aN , and by the assumptions on thedistributions and the disussion above we know that jaP � aN j < 13 . Putting these together showsthat the error probability for every suh algorithm is more than 13 . It thus follows from Yao'sprinipal that there is no (probabilisti) non-adaptive �-testing algorithm for the property P thatmakes at most q queries and whose error probability is at most 13 .In general, we would like to plae lower bounds on all testing algorithms, inluding adaptiveones, so we now turn our attention to those. In ases where binary inputs are involved, a lowerbound of q queries on non-adaptive algorithms implies a lower bound of log q queries on adaptiveones (see the end of Setion 9 for more information on this), whih suÆes if it is only required toprove that a onstant number of queries is insuÆient for testing a partiular property.In some ases the gap between adaptive and non-adaptive testing is indeed exponential, butsometimes the gap between adaptive and non-adaptive properties an be narrowed further. Insome ases this is aomplished using some feature of the partiular hard to test property, suhas Lemma 4.1 that makes this gap no more than quadrati for properties formulated in the densegraph model. In other ases it an be proven that the input distributions satisfy ertain additionalonditions, ensuring stronger lower bounds for adaptive algorithms; more about this below. Thereare also many properties for whih the true gap between adaptive and non-adaptive testing is notyet known.As the main example here for using Yao's method, we onsider the following problem: Givenas input the adjaeny matries of two graphs with n verties, test for the property of these twographs being isomorphi.This property was shown in [4℄ to be non-testable, and this was then used to show that thereexist non-testable `89' type �rst order graph properties. The original exposition of the proof in [4℄uses ounting instead of Yao's method; here we give a proof using Yao's method that an serve asan example for proving lower bounds.Proposition 8.2 ([4℄) The property of two graphs (given by their adjaeny matries) being iso-morphi is not 18 -testable with any onstant number of queries.23



Proof: We show that for every q there exists n, suh that q edge queries are insuÆient fordistinguishing between the ase that the two graphs with n verties are isomorphi, and the asethat all vertex permutations of the �rst graph di�er from the seond graph in more than 14�n2� plaes(remember that the total size of the input is 2�n2�).For this we onstrut two distributions over inputs. The distribution DP is onstruted byletting the input onsist of a random graph G, with eah edge being independently hosen withprobability 12 , and a seond graph that is a uniformly random permutation of G. The distributionDN is onstruted by letting the input onsist of a random graph G as before, and another,independently hosen, random graph G0.It is lear that an input hosen aording to DP satis�es the property with probability 1. Onthe other hand, by a standard large deviation argument, in an input hosen aording to DN any�xed vertex permutation of G will with probability at least 1 � 2�n2=50 di�er in more than 14�n2�plaes from G0. Thus, with probability 1� o(1), all vertex permutations of G will have at least thisdi�erene from G0. WhileDN does not exatly satisfy the requirements of Lemma 8.1 (as it requiresthat an input hosen aording to DN will be far from satisfying the property with probability 1),we will replae it with D0N , the distribution that results from onditioning DN on the event thatall permutations of G indeed di�er in more than 14�n2� plaes from G0.We now onsider any �xed set Q = p1; : : : ; pq of vertex pairs, some inside the �rst graph, someinside the seond one. For an input hosen aording to DN , the values of these pairs will be quniformly and independently hosen random values in f0; 1g. Sine D0N is the onditioning of DNon an event that ours with probability 1� o(1), the variation distane between the restrition ofD0N to Q and the uniform distribution over boolean funtions from Q is o(1).We now show that the distane between the restrition of DP to Q and the uniform distributionover Q is also o(1). For this, let u1; : : : ; uk be all verties of the �rst graph that appear in the pairsp1; : : : ; pq, and let v1; : : : ; vl be all suh verties of the seond graph. It is lear that k � 2q andl � 2q. Now let � : f1; : : : ; ng ! f1; : : : ; ng be the permutation used in DP to hoose the seondgraph aording to the �rst one. Let E denote the event that, for this permutation, �(ui) 6= vj forevery 1 � i � k and 1 � j � l. It is lear that, onditioned on the ase that E ours, p1; : : : ; pqwill again be q uniformly and independently hosen values of f0; 1g. But sine for every �xed qthe event E ours with probability 1 � o(1) (for large enough n), this means that the restritionof the (unonditioned) distribution DP to Q will have variation distane o(1) from the uniformdistribution over boolean funtions from Q. 24



To onlude, we use Lemma 8.1 for the distributions DP and D0N , where n is hosen to be largeenough so that the restrition of any of these to any set of q queries will have variation distaneless than 16 from the orresponding uniform distribution.The proof of the negative part of Theorem 5.1 in [4℄ was done by showing that there exists a`89' �rst order graph property that is indistinguishable from a graph isomorphism property similarto the one above.As for a quanti�ed lower bound, it an be shown that the distributions of p1; : : : ; pk in the twoases beome lose enough for our purposes when n = 
(q2). Together with Lemma 4.1, this meansthat the above property annot be tested with a number of queries that is less than some power of2�n2�, the input size.For proving lower bounds on non-adaptive 1-sided algorithms, the problem is usually muheasier than the ase for 2-sided algorithms. It is enough in this ase to �nd a distribution overinputs that are �-far from satisfying the property, but in whih for any �xed Q � D of size q, withhigh probability the restrition of the input f to Q is extensible to some possible input (di�erentfrom f) that satis�es the property.A onrete example an help explain this { in the ase of testing a graph for being triangle free,a lower bound that is super-polynomial in ��1 (but in this ase is of ourse independent of the inputsize) is given by �nding a graph that is far from being triangle free, but still does not ontain toomany distint triangles, so that q queries will not apture a triangle with high probability. Suhgraphs an be onstruted using the number-theoreti onstrution in [14℄, and by Proposition 4.4this atually implies a lower bound for 2-sided testing as well. The onstrution details and ageneralization thereof to other properties de�ned in terms of not ontaining a �xed (not neessarilyindued) subgraph are found in [1℄, and further investigation in the diretion of forbidden induedsubgraphs is found in [6℄.We now turn to some ases where the gap between the adaptive and the non-adaptive lowerbounds an be narrowed without relying on a symmetri nature of the property (suh as the asewith graph properties in the dense model). Two examples of suh ases are [38℄ (indeed, non-adaptive lower bounds are meaningless in the ontext of sparse graphs) and [30℄. We onludeby proving the following lemma, whih mimis the impliit argument used in [30℄. A �nal wordof aution { when using the following lemma additional are has to be taken in onstruting thedistributions DP and DN ; for example, it is quite important that an input hosen aording to DNwill be �-far from satisfying the property with probability 1, not just 1� o(1).25



Lemma 8.3 Suppose that there exists a distribution DP on inputs over D that satisfy a givenproperty P , and a distribution DN on inputs that are �-far from satisfying the property. Supposefurther that for any Q � D of size q and any g : Q ! f0; 1g, we have 23PrDP jQ(g) < PrDN jQ(g) <32PrDP jQ(g). Then it is not possible for any algorithm making q (or less) queries to �-test for P .Proof: As in the proof of Lemma 8.1, we onstrut D by deiding with probability 12 to hoosean input aording to DP , and with probability 12 to hoose an input aording to DN . Every(possibly adaptive) deterministi algorithm with q queries takes the shape of a deision tree, whihis a omplete binary tree of height q, where every non-leaf node orresponds to a query loationwith its two hildren being labeled aording to the two possible outomes of the query, and everyleaf node orresponds to an aeptane or a rejetion deision.Now let aP denote the probability that the algorithm aepts an input hosen aording toDP , and let aN denote the probability that the algorithm aepts an input aording to DN . Itis enough to prove now that jaP � aN j < 13 , beause then the proof here an be onluded in anidential manner to that of the proof of Lemma 8.1.Let L be the set of leaves of the deision tree that aept the input. Every u 2 L orrespondsto a set of queries Qu and their answers gu : Qu ! f0; 1g. Moreover, for every input f , the deisiontree of the algorithm will reah the leaf u if and only if f jQu = gu, implying aP =Pu2L PrDP jQu (gu)and similarly aN = Pu2L PrDN jQu (gu). Finally, using the onditions on DP and DN we obtainaP � aN = Pu2L(PrDP jQu (gu) � PrDN jQu (gu)) < 13 Pu2L PrDP jQu (gu) = 13aP � 13 , and similarlyaN � aP < 13 , onluding the proof.9 Related researh and future diretionsProperty testing is a young �eld, that urrently enjoys rapid growth. The purpose of this setionis to give a glimpse into some topis not overed by the rest of this survey. Some of them were leftunovered due to size or sope onsiderations, while others were left out simply beause they arestill waiting to be investigated. The interested reader is also referred to other surveys of this andrelated �elds, suh as [52℄, [43℄ and [35℄.9.1 Other works onerning testabilityAs is the ase with all surveys, this one also annot over every work in this �eld. The following(also partial) list is given in aknowledgment of this fat.26



Other algebraially motivated properties: The question of whether an input funtion overa vetor spae forms a bounded degree polynomial is just one of several algebraially motivatedproperties. For example, one ould ask whether a `multipliation table' given as input forms a(�nite) group. In [23℄ some upper and lower bounds are given for this. For a supposed group withn elements there is an �-test using O(n3=2 log n) queries, for some global ; this is a rather largequantity, but it is still muh smaller then the size of the input, n2. One should also note that inthe ontext of prover assisted testing (see below), this quantity an be further redued; relatedproperties play a role in quantum property testing (see below) as well.Another topi, somewhat related to testing polynomiality, is testing whether a given funtionsatis�es a property de�ned by a funtional equation, for example \f(x+y)+f(x�y) = 2f(x)f(y)".Some properties of this type are investigated for funtions de�ned over ertain subsets of R (the�eld of real numbers), in [53℄.Testing of matrix poset properties: Another way to generalize the result about testing binarymatries for monotoniity is in extending it to other properties of matries, de�ned in terms of �rstorder expressions using the partial order that underlies a matrix (that is, the produt order of eahloation's oordinates). Suh properties are investigated in [29℄.Geometrially motivated properties: In this ontext the input is not a binary sequene or asequene of integers, but a sequene of real numbers. As a �rst example, it is shown in [23℄ howto test, using O(log n) queries, a sequene of n points from R2 for the property of being the nodesof a onvex polygon given in a lokwise order. In [20℄ testing for several geometri properties ofpoints from Rd, suh as being the nodes of a onvex polygon given in any order, is onsidered. Formost of these mathing upper and lower bounds are given; these are rather large (most are �xedpowers of n), but are still sublinear in the input size.Another example, given a �xed d, is testing for the property of a given set of vetors in Rd being(k; b)-lusterable. Usually in suh a ontext a more relaxed notion of testing needs to be used; hereit is possible to eÆiently distinguish between the ase that the input is (k; b)-lusterable, and thease that even removing an � fration of the points will not make the rest (k; (1 + �)b)-lusterable.The testing proedure is given in [2℄.A geometrially motivated problem in a di�erent diretion is that of testing whether a givenmatrix of real numbers has ertain properties, that are expeted from a distane funtion of adisrete metri spae. Properties of this type are investigated in [48℄.Testing of boolean funtions: In relatively reent years, disrete harmoni analysis is proving27



itself useful for omputational issues. In a body of work that started in [50℄ and ontinued in[27℄ this was applied to property testing. The main result of [27℄ is a test of a general booleanfuntion with n variables for the property of depending on only k on them, where the number ofqueries depends only on k and the approximation parameter �. Although in a future version of[27℄ harmoni analysis will play a lesser role, it still remains the soure of many insights about thenature of boolean funtions.Reent general results: With the advanement in the understanding of what properties aretestable omes advanement in the understanding of how a property tester works. For graphproperties in the dense model we already have some knowledge of how a property tester looks likein general, as exempli�ed in [40℄, despite still being far from lassifying all the testable propertiesin the dense graph setting.In [19℄ a general method for obtaining positive property testing results is developed. Althoughonly time will tell if this new method beomes widely used, it looks promising in view of the fatthat until now the methods used for proving upper bounds were usually narrower in sope (themost general method in this respet is probably the use of Szemer�edi's Regularity Lemma for densegraph properties; for proving negative results there is a very general method in the form of Yao'sprinipal).9.2 Some topis related to testabilityProperty testing is already making itself felt in other areas of omputer siene. The following aresome areas of interation.Low-rank approximations: There are many appliations to �nding a low-rank matrix thatapproximates a given input matrix. In [33℄ it is shown how to onstrut a low-rank approximationfor a given matrix (in the form of a fast orale), in time that depends only on the approximationparameters and not on the size of the approximated matrix. While stritly speaking this is not atestability result, it does share some of the methods. Other results regarding fast approximationof matries are given in [32℄.Testing with a prover: This topi deals with aepting or rejeting an input based on ommu-niating with a omputationally unbounded prover. It is somewhat like interative proofs, only theoperating requirements of the veri�er here are the ones used in the �eld of property testing.The general problem is to distinguish between the ase that the input satis�es a property, and28



the ase that the input is �-far from satisfying the property. In general the prover is allowed tosupply a long (usually polynomial size) proof, but the veri�er is still allowed only a small numberof queries from the input as well as from the supplied proof.Testing with a prover is investigated in [24℄ and [11℄; in these the running time of the veri�er isrestrited as well, and this poses some restritions on the size of the proof through the size of theallowable address-spae. As expeted, there are problems that are hard to test in the usual ontextbut are easy to test with a prover. For example, it takes 
(pn) queries to test that a funtionf : f1; : : : ; ng ! f1; : : : ; ng is a bijetion, but if a prover provides a funtion g that is supposedlythe inverse of f , then it takes a onstant number of queries to test that f and g are indeed lose tobeing inverses of eah other.Statistial dedutions: In this ontext one would like to hek ertain properties of a distribution(say, the distribution of the heights of NBA basketball players), where loseness is de�ned by theL1 norm jA � Bj = Pi2R jA(i) � B(i)j (or the variation distane as de�ned in Setion 8, whihis half this norm). In here, instead of querying, one an only obtain a sample of values that wereindependently hosen using this distribution (in the above example, one an only measure theheights of randomly seleted NBA players).When the distribution is de�ned over a set of n elements, it takes many samples to `�-test'(under this new de�nition) for a property, but in many ases the number of required samples is stillmuh less than the 
(n logn) samples needed to atually write down an approximation of the wholedistribution. For example, based on the methods of [39℄, one an prove that O(pn log n) queries(for some global onstant ) are suÆient to �-test for the property of being the uniform distributionover the whole set. On the other hand, it was proven that at least 
(pn) samples are required forthis. Further results in this diretion inlude those about testing that two distributions (also givenby samples) are lose, and that a joint distribution (with two `oordinates') is independent. Theseare given in [13℄ and [12℄ respetively.Quantum testability: Just as other notions of omputational and informational omplexityhave their quantum ounterparts, a quantum ounterpart of the notion of property testing is beingdeveloped as well. The �rst results are in [17℄, showing that in some ases quantum omputers aneÆiently test properties for whih there exist no eÆient lassial test, while some other propertiesare equally hard to test in the quantum ontext. The investigation into quantum property testingis taken further in [31℄, where quantum testers for some algebraially motivated properties (whihare hard to test lassially) are onstruted. 29



9.3 A few more questionsLet us onlude with a few possible future diretions in property testing, that some of the peoplein the �eld �nd interesting. The following list is not meant to be exhaustive or representative, andwas hosen based mainly on personal preferene.Weighted testing: In most of the ases desribed above, the distane used in the de�nition ofbeing �-far from satisfying a property is the hamming distane between inputs. It is interesting toinvestigate also ounterparts of the above testability questions in whih loseness is measured by aweighted hamming distane.In the most lenient model it is assumed that the algorithm is given all the weights in advane;thus the weights are not onsidered as part of the input, but as part of the desription of theparameters within whih the algorithm is supposed to operate. For some of the results, suh as theresult in [46℄ about the testing of languages reognizable by a read-one bounded width obliviousbranhing program, the proof extends naturally to the weighted ase. In other instanes, suh asthat of testing that a graph is triangle free, the question of the weighted ase seems very hard(though some speial ases, suh as that of a weight funtion generated by giving weights to theverties and using their multiples for the edges, an still be easily dedued from the unweightedase).While it seems very probable that for many properties testability in fat does not extend to theweighted ase, there are some reent positive advanes. In [42℄ an even striter model is onsidered,that of distribution-free testing. In it, the algorithm is not given the weights in advane, but is onlygiven the ability to obtain independent samples of the distribution orresponding to the weightfuntion. This model in a sense onnets property testing with the topi of statistial dedutionsdesribed above, and is motivated by a similar model from learning theory. One of the main resultsin [42℄ supplies some non-trivial upper bounds on testing d-dimensional matries for monotoniity(on the other hand, these are still far from the bounds known for the unweighted ase).Additional kinds of queries: In ertain settings it may be interesting to investigate what anbe done if we allow queries that are more powerful than the usual \what is the input value atloation i". Of ourse allowing queries that are too powerful an easily lead to a trivializing of theproblem, but there may still be instanes in whih allowing ertain types of queries is both naturaland feasible in some real-life senarios. There is already an investigation in [18℄ into allowing `rangequeries' in the geometri ontext, i.e. queries as to whether there exist input points in a spei�ed30



ube, and whih are expeted to provide one suh point (hosen arbitrarily) if any suh point exists.Connetions to traditional omplexity: There are properties that are hard to deide butare easy to test (suh as graph 3-olorability), and properties that are easy to deide (even AC0ones) but are hard to test. It would be interesting to take the approximating feature of testing intoaount, and formulate some onnetions between testable properties (subjet to some uniformityassumptions on the testing algorithms) and easy to deide properties that approximate them, apartfrom the nearly obvious onnetion to Promise-BPP (for graph properties it an also be made intoa onnetion with P, using the algorithmi version of Szemer�edi's Regularity Lemma from [3℄).Another somewhat related question is this: What is the expressive power of �rst order graphexpressions when approximations are taken into aount? The results of [4℄ suggest that it may bestronger then expeted.Adaptive versus non-adaptive testing: A reminder { a non-adaptive testing algorithm is analgorithm that has to supply all the queries in advane, and only then is given the orrespondinginput values, based on whih it aepts or rejets the input. In general, an adaptive �-test for aproperty of binary sequenes using q queries an be onverted to a non-adaptive one using up to2q � 1 queries { one just goes over the whole deision tree of the adaptive algorithm, makes allqueries appearing there in advane, and then navigates the tree using the query results in order toaept or rejet the input. There are known properties for whih this gap is essential, for exampleproperties derived from the sparse graph model investigated in [38℄; the disussion in [26℄ ontainssome examples and details.For graph properties in the dense graph model, in [40℄ it is proven that an adaptive algorithmmaking q queries an be onverted to a non-adaptive one making only �2q2 � queries (this is statedabove as Lemma 4.1). A look at the simple proof reveals that it is based on the fat that graphproperties are invariant with respet to graph isomorphisms. Examining other properties, suhas ounting properties that are invariant with respet to any permutation of the input (in [10℄arguments related to suh invariane are used for proving lower bounds for ertain approximationproblems), one gets the impression that a larger invariane group of a property implies a smallergap between its adaptive and non-adaptive testing possibilities. It would be interesting to formalizeand prove this observation.
31
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