
PCP Characterizations of NP:
Towards a Polynomially-Small

Error-Probability

Irit Dinur∗ Eldar Fischer† Guy Kindler‡ Ran Raz§

Shmuel Safra‡

January 25, 2010

Abstract

This paper strengthens the low-error PCP characterization of NP,
coming closer to the upper limit of the BGLR conjecture. Consider
the task of verifying a witness for the membership of a given input in
an NP language, using a constant number of accesses. We show that
it is possible to achieve an error probability exponentially small in the
number of bits accessed, where the number of bits in each access is as
high as logβ n , for any constant β < 1. The BGLR conjecture asserts
the same for a constant β where β ≤ 1.

Our results are in fact stronger, implying that the Gap-Quadratic-
Solvability problem with a constant number of variables in each equa-
tion is NP-hard. That is, given a system of n quadratic-equations
over a field F of size up to 2logβ n, where each equation depends on
a constant number of variables, it is NP-hard to distinguish between
the case where there is a common solution to all of the equations, and
the case where any assignment satisfies at most a 2

|F| fraction of them.
At the same time, our proof presents a direct construction of a

low-degree-test whose error-probability is exponentially small in the

∗ School of Mathematics, Institute for Advanced Study, Princeton, NJ. .
† The Faculty of Computer Science, Technion, Israel.
‡ School of Mathematical Sciences, Tel Aviv University, Israel.
§ Weizmann Institute of Science, Israel.

1



number of bits accessed. Such a result was previously known only
relying on recursive applications of the entire PCP theorem.

1 Introduction

Cook-Levin’s characterization of NP implies that every L ∈ NP is reducible
to 3-SAT. The reduction from L to 3-SAT is a polynomial-time algorithm
that receives an input string I, and produces a set Ψ of boolean functions
(called local-tests), each depending on a constant number of variables. Ψ rep-
resents the membership of I in L, in the sense that there exists an assignment
satisfying all local-tests if and only if I ∈ L.

A PCP characterization of NP differs from Cook-Levin’s characterization
in regards to what is guaranteed in the case where the input is not in L: In
Cook’s characterization, one can only be sure that the reduction will produce
a system that cannot be entirely satisfied. To characterize NP in terms of
PCP, it must be guaranteed that the reduction algorithm produces a system
Ψ such that no assignment can satisfy even a small fraction ε of its local-tests.

In both cases, a satisfying assignment to Ψ can be viewed as a witness
for I’s membership in L (and hence Ψ can be viewed as a membership-
verification system). In a PCP framework, however, this witness can be
efficiently verified by randomly picking a local-test of Ψ and verifying that
it holds (hence the term PCP – Probabilistic Checking of Proofs). In this
case, the error probability parameter, ε, of the PCP, bounds the probability of
accepting I even though I 6∈ L. Other parameters of Ψ, such as the variable
range and the number of variables accessed by each local-test, are also part
of the PCP characterization.

For many applications of PCP, the characterization of NP with a constant
error-probability and variables of a constant range [AS92, ALM+92] suffices.
In order to prove NP-hardness of other problems, however, sub-constant
error-probability has turned out to be essential. For example, [LY94] and
[BGLR93] were able to prove that approximating SET-COVER to within
logarithmic factors is almost NP-hard, using the constant error-probability
PCP characterization of NP. To improve this result to strict NP-hardness,
[BGLR93] had suggested the “sliding scale” conjecture.

The sliding scale conjecture states that it is possible to keep the number of
variables accessed by each local-reader constant, and to make the variables’

2



range non-constant, obtaining an error probability polynomially small in the
size of the variable-range. In other words, it is possible to achieve a member-
ship verification system for any NP-language where each local-test accesses
a constant number of ‘words’ (variables), and where the error-probability is
exponentially small in the ‘word-length’ (number of bits in each variable).

One cannot expect the error-probability to be less than polynomially
small in the size of the variables’ range, since a random assignment will
satisfy any satisfiable local-test with such a probability (recall that each
test depends on a constant number of variables). Hence the sliding scale
conjecture is optimal in the sense of error-probability.

According to the conjecture, the variables’ range may be increased up to
a size polynomial in the length of the original input (note that each local-test
can be given as a truth-table). Reaching larger range-size is unlikely since
the error-probability would then become less than 1/|Ψ|. In the case where
the input is not in L, this implies that no local-test succeeds, so the problem
of deciding whether the input is in L reduces to that of deciding whether any
of the local-tests is satisfiable.

The sliding scale conjecture was shown to hold for a sizable portion of
the applicable range-size in [RS97], where a PCP characterization of NP was
shown that achieves error-probability polynomially small in the size of the
variable range for a variable range of size up to 2logβ n, where β < 1 is a
certain positive constant (see also [AS97]).

Our Main Results

In this paper, we prove the sliding scale conjecture for variable range sizes of
up to 2logβ n where β is any constant smaller than one (as opposed to “some
constant” achieved by [RS97]), thus coming closer to proving the sliding scale
conjecture for the full applicable range.

In fact our result is somewhat stronger, proving the conjecture for the
aforementioned range using proof verification systems of a specific structure.
In these systems the local-tests have the form of quadratic-equations instead
of being general boolean functions, with the variables’ range representing a
finite field. This result implies that for a quadratic equation-system of n
equations over a field F (with |F| ≈ 2logβ n for any fixed constant β < 1),
where each equation depends on a constant number of variables, it is NP-
hard to decide whether there exists a common solution to all equations, or
whether any assignment to the variables satisfies no more than a 2

|F| fraction

3



of them.
One of the main tools used to obtain the above result, which is interesting

in its own right, is that of LDF-readers, a version of what is known in the
literature as a low-degree test (see [RS97, AS97]). A direct construction of
an LDF-reader is shown herein, that achieves an exponentially-small error-
probability with respect to the number of bits it accesses. Such LDF-readers
could previously be attained only by recursive applications of the entire PCP
theorem.

Related Results

We note that there is no known PCP characterization of NP, where the size
of the variable-range is polynomial in the size of the membership-verification
system (or equivalently, the length of each variable is logarithmic in it), and
the error probability is exponentially small in the number of accessed bits.
This is true even when allowing a super-polynomial time reduction. The
repetition lemma of [Raz98] shows that by two accesses to Θ(log n) bits,
the error-probability can be made polynomially small in n, where n is the
size of the original input, while the size of the generated system is nlogn.
Similarly, the multi-linear extension of [BFL91] yields a system with a 1

n

error-probability, whose size is nlogn. In fact, in any known reduction there
is always a factor of at least logε n in the exponent that separates the error-
probability from the size of the generated instance.

Achieving an error-probability polynomially small in the size of the gen-
erated instance is an important open problem. Such a characterization
of NP would improve hardness results for several problems. For exam-
ple, approximating the ‘Monotone-Minimum-Satisfying-Assignment’ prob-
lem (which is closely related to approximating the length of propositional
proofs [ABMP98]) has been shown to be NP-hard in [DS98] via a reduc-
tion from PCP, such that the hardness of approximation ratio is preserved.
Hence a polynomially small error-probability PCP characterization of NP
would immediately imply that it is NP-hard to approximate the length of
propositional proofs to within an nε factor for some constant ε > 0.

[RS97] managed to keep the exponential relation between the number of
bits accessed and the error-probability, thus showing the sliding scale conjec-
ture true for a variable range of size up to 2logβ n for some constant β < 1.
For larger β (any constant β < 1) [RS97] showed a system whose error prob-

ability is 2− logβ n, yet without the exponential relation between the number

4



of accessed bits and the error-probability, since the number of bits accessed
was O(logβ n · poly log log n). This factor of poly log log n is significant when
viewing, for example, the result in terms of Gap-Quadratic-Solvability. The
result of [RS97], if it were to be translated to Gap-Quadratic-Solvability
terms, would at best give an equation system with each equation depend-
ing on O(poly log log n) variables. In comparison, our result translates to a
quadratic equation-system with the same error-probability, but where every
equation depends on a constant number of variables, namely Θ( 1

(1−β)2
).

Techniques

We use the general framework of [AS92, ALM+92, RS97] for our proof. How-
ever, instead of the generalized form of the composition paradigm utilized
in previous PCP proofs, we use a more concrete representation. Our result
could have been obtained using the previous structure, but this representa-
tion simplifies our proof, and some of its techniques may be of independent
interest.

In [HPS93], it was shown that given a system of quadratic equations over
a finite field, it is NP-hard to distinguish between the case that the system
can be completely satisfied, and the case that not even a small fraction of
the equations can be satisfied by a single assignment. The crucial difference
between this and our main result is that in the [HPS93] reduction each equa-
tion depends on almost all the variables in the system, while our main result
claims the same for the case where the equations are restricted to having a
constant number of variables each.

Our proof begins with a system Ψ of quadratic equations as in [HPS93],
and reduces it to a system Ψ′ of quadratic equations with a constant number
of variables in each. The key property of our proof is that throughout the
reduction we use systems of equations over the same field F , the field over
which Ψ is defined. The field structure is utilized through various steps
of composition, thus enabling us to cross the barrier that limits the proof
technique of [RS97].

To simplify the exposition, the reduction partitions the variables of Ψ′

into subsets called domains. In each such domain a mapping is defined,
associating each variable to a point in a linear space of the form Fd over F .
An assignment to these variables can thus be regarded as a function over the
linear space.

5



The reduction has two main steps. At first, it transforms Ψ into a
system Ψsc where the number of variables in each equation is constant.
This is accomplished by an iterative application of the sum-check technique
from [BFL91]. The system Ψsc has the required properties only if the as-
signment to the variables in each domain, when viewed as a function, is a
low-degree polynomial. In order to get rid of this restriction, the reduc-
tion then generates LDF-readers and plugs them into the equations of Ψsc,
thereby obtaining the final system Ψ′.

LDF-readers. LDF-readers are used to obtain evaluations of polynomial
functions of low-degree that are represented by a set of variables, by access-
ing only a very small part of their representation. An LDF-reader should
either reject or return values that are consistent with some low-degree poly-
nomial, even if the assignment to the representation variables is not totally
consistent with the representation of one polynomial. The probability that,
given an incorrect representation, the LDF-reader does not reject but still
the returned evaluations are not consistent with a low-degree polynomial, is
its error probability. For a more accurate definition of an LDF-reader, the
reader is referred to Section 2.

An LDF-reader of sub-constant error-probability seems necessary in order
to attain PCP characterizations of NP with sub-constant error-probability.
The plane-vs.-plane LDF-reader introduced by [RS97], where a polynomial is
represented by its restriction to planes, achieves a sub-constant probability.
The previously used line-vs.-point LDF-reader was shown by [AS97] to have
a small error-probability as well. However, the error probability of these
LDF-readers is not exponentially small in the number of bits they access.

It seems to be difficult to achieve error-probability smaller than polyno-
mial in the number of accessed bits, using a direct LDF-reader comparing
subspaces (lines, planes, etc.) for consistency. This is since many bits are re-
quired to represent the restriction of a polynomial to a subspace. One way to
attain exponentially small error-probability from these LDF-readers is by uti-
lizing the composition technique, applying the entire PCP theorem to them.
Our proof, in contrast, makes this recursion concrete, utilizing an explicit
representation of low-degree polynomial functions that yields LDF-readers
with an exponentially small error probability.

6



The composition-recursion LDF-reader. Our LDF-reader uses a rep-
resentation of low-degree polynomials as follows. We begin with a repre-
sentation where a multi-dimensional polynomial is represented by all of its
point evaluations, and also by its restriction to certain constant dimensional
subspaces. We use a new power-substitution technique to then replace each
constant dimensional restriction of the polynomial by a multi-dimensional
polynomial of a much smaller degree. This is done, roughly, by replacing
monomials of high degree with new variables. The polynomials whose de-
gree was reduced are then represented by their point evaluations and their
restriction to constant dimensional subspaces, and the process is repeated.

After a constant number of such iterations we obtain polynomials of linear
degree over constant dimensional spaces. Each of these polynomials is then
represented by a constant number of variables that range over the field F .
Hence to obtain evaluations our LDF-reader is not required to completely
read a low-degree polynomial over some subspace – instead it only accesses
a constant number of variables that range over F .

Organization of the paper

Our main result and the main definitions required for its proof are stated in
Section 2. The proof of the main result, based on lemmas that are proven in
the following sections, appears in Section 3. The construction of the LDF-
reader that is utilized in the proof of the main result appears in Section 4. In
particular, the power-substitution technique, used in the construction of the
LDF-reader to represent polynomials using other polynomials with more vari-
ables but with considerably smaller degrees, is described in Subsection 4.4.
Finally, Section 5 describes the recursive application of the sum-check (and
other) techniques, which are used in the reduction to obtain from the original
system Ψ a system Ψsc with a constant number of variables in each equation.

2 Preliminaries

In this section we describe the basic ideas and definitions utilized in the proof
of our main result.

7



Gap-Quadratic-Solvability

The Gap-Quadratic-Solvability problem is that of determining whether all
the equations in a given system of quadratic-equations can be simultaneously
satisfied, or whether only a small fraction of the equations can be satisfied.
Viewing the quadratic equations as local-tests of a PCP system, showing this
problem to be NP-hard yields a PCP characterization of NP.

Definition 1 (Gap-Quadratic-Solvability). The Gap-Quadratic-Solvability
problem with parameters D, σ and ε (which may be, implicitly, functions of
the system size n), is denoted by gap-QS[D, σ, ε]. An instance of the problem
is a fields F of size∗ σ, and a set of n quadratic-equations over F , where each
equation has at most D variables (D is called the dependency parameter).
The problem is to distinguish between the following two cases:

Yes. There is an assignment to the variables that satisfies all of the equa-
tions.

No. Every assignment to the variables satisfies at most an ε fraction of the
equations – ε is called the error parameter.

An instance which falls under one of the above criteria is said to have the
gap property. Any outcome is acceptable for instances that do not have the
gap property.

Our main theorem shows NP-hardness of gap-QS with a constant depen-
dency parameter, for a field of size σ ≈ 2c logβ n and an error parameter ε = 2

σ
,

where β < 1 is any constant smaller than 1 and c > 0 is some constant.
Note that the requirement for a 2

σ
error is almost optimal, since it is

easy to satisfy a 1
σ

fraction of the satisfiable equations of any system by a
random assignment. On the other hand, from hardness for any error ε = 1

σΩ(1)

which is polynomially small in the size σ of the field, one can obtain hardness
for a 2

σ
error by a simple amplification technique. We therefore abbreviate

gap-QS[D, σ] for the gap-QS problem where ε is fixed to be 2
σ
. Note that this

error probability is polynomially small in the size of the field, and therefore
exponentially small in the length, measured in bits, of each variable.

∗In fact there can be at most one field of any given cardinality, however we would like
to be able to look at gap-QS problems where the size can vary in some range. In that case
it makes sense to request that the actual field be given as part of the input.

8



Theorem 1 (main theorem). For every constant β < 1 there exists a con-
stants c2 > c1 > 0 such that gap-QS[O(1), σ] is NP-hard for σ in the range

2c1 logβ n ≤ σ ≤ 2c2 logβ n, where n is the number of equations in the system.

We actually prove Theorem 1 via a many-to-one reduction. Informally
speaking, this means that gap-QS[O(1), σ] is proven to be NP-complete.

Gap-QS[n, σ], where the number of variables in each equation is not bounded,
is proven to be NP-hard in [HPS93] for any σ that is polynomially bounded
in n, using simple linear codes:

Theorem 2 ([HPS93]). Let σ(n) be any positive poly-time computable func-
tion, and suppose that for some constant γ > 0, σ(n) = O(nγ). Then there
exist constants d2 > d1 > 0 such that Gap-QS[n, σ] is NP-hard for σ in the
range (σ(n))d1 ≤ σ ≤ (σ(n))d2.

This theorem is proven by a relatively simple reduction from the Cook-Levin
characterization of NP, so the entire difference between this characterization
of NP and the PCP characterization boils down to the constant bound on
the number of variables that each equation accesses.

Theorem 1 is proven by showing a reduction algorithm, taking as input a
system Ψ of n quadratic-equations and producing a new system Ψ′ where the
number of variables in each equation is bounded by a constant. The number
of variables in each equation is reduced while roughly preserving the fraction
of satisfiable equations. Specifically, if Ψ is completely satisfiable then Ψ′

is completely satisfiable as well; and if no more than a 2
|F| fraction of the

equations of Ψ can be satisfied then the same occurs for Ψ′.

2.1 LDFs and Domains

Let us set a notation for polynomial functions of low degree – an object used
extensively in this paper.

Definition 2 (LDF - low degree function). An [r, d]-LDF is a polynomial
function from Fd to F , of total-degree at most r.

The variables of the system Ψ′ that is generated by our reduction all range
over F (since Ψ′ is a system of quadratic equations over F). However, for
the exposition of the reduction algorithm and for the proof of correctness, it

9



is useful to consider certain subsets of these variables as separate domains.
The variables in each such domain are associated with the points of a vector
field Fd over F , and an assignment to the variables in the domain can thus
be viewed as a function f : Fd → F , as explained in the following definition.
Throughout our reduction, the domains are always disjoint, so in the final
system Ψ′ and also in all intermediate constructions, no variable can belong
to more than one domain at the same time.

Definition 3 (domain). A domain F is a set of variables ranging over F ,
that has one variable F [x] for every point x ∈ Fd, where d = d(F ) is called
the dimension of the domain. F is said to be assigned a function f : Fd → F
if for every x, the variable F [x] is assigned f(x).

Two more parameters are associated with each domain in addition to
the dimension – the lower-degree, denoted s(F ), and the upper-degree r(F )
(r(F ) will always be larger than s(F )).

Let us stress that the lower-degree and upper-degree parameters of do-
mains, as well as the whole partition of variables into domains, are only
figments of our proof and construction. In the final system Ψ′ the domain-
structure is discarded, and we are left with variables that range over F .
These variables can be assigned every value in F , and therefore a domain F
containing these variables can be assigned any function f : Fd(F ) → F .

However, in the proof we give special consideration to assignments of
domains which correspond to LDFs. In particular, it will be shown that if
the system Ψ′ generated by the reduction is satisfiable, there is a satisfying
assignment where every domain F is assigned an s(F )-degree LDF. In case Ψ
cannot be more than 2

|F| satisfiable, it should be proven that no assignment

can satisfy more than 2
|F| of the equations of Ψ′. However, we prove later

that it suffices to only show this for assignments where each domain F is
assigned an r(F )-degree LDF.

Definition 4 (assignment of a domain). The assignment f of a domain F
is said to be good, if f is an [s(F ), d(F )]-LDF, and it is said to be feasible
if f is an [r(F ), d(F )]-LDF. An assignment for a set of variables containing
one or more domains is said to be good (feasible) if the assignment to each
domain is good (feasible).

The reduction which transforms Ψ into Ψ′ goes through an intermediate
system Ψ1 where the number of variables in each equation is constant, but

10



which does not yet have the desired properties. In particular, Ψ1 might be
completely satisfiable even when there exists no assignment satisfying more
than a 2

|F| fraction of the equations of Ψ. However, Ψ1 behaves much better if
we restrict the set of assignments considered: On one hand if Ψ is completely
satisfiable then not only Ψ1 is completely satisfiable, but there exists a good
satisfying assignment for it. On the other hand, if Ψ is no more than 2

|F| -
satisfiable, then there is no good or even feasible assignment for Ψ1 satisfying
more than a 2

|F| fraction of its equations.

2.2 LDF-Readers

To transform Ψ1 into the final system Ψ′, we should prevent it from being
satisfiable by assignments where domains are not assigned LDFs. In fact
what we manage is a bit weaker (although it suffices). Consider an equation
ψ ∈ Ψ1 that has the variables F [x1], . . . , F [xk] in a domain F . To prevent it
from being satisfiable by unwanted assignments we use a mechanism called
an LDF-reader, which is plugged into ψ in place of these variables. The LDF-
reader ensures that ψ either reads evaluations at (x1, . . . , xk) of an LDF (even
if the assignment to F is not feasible) or it is not satisfied.

An LDF-reader evaluating the tuple of points (x1, . . . , xk) in a domain F
has two parts – the representation, and the set of local-readers which produce
the evaluations.

The representation. The representation is a set V that contains F and
maybe other variables and domains. The variables in V , including those
associated with domains in it, are called representation variables. The LDF-
reader uses the representation variables to produce evaluations. Every good
assignment f for F must be extensible to a good assignment for all the vari-
ables in V , called the encoding-assignment of f . When given the encoding-
assignment of a good LDF f , the LDF-reader will always return the evalua-
tions of f .

The local-readers

The evaluations at (x1, . . . , xk) are produced by a set of local-readers, where
each local-reader accesses only a constant number of representation variables

11



– this property is essential since the local-readers are plugged into Ψ1 to pro-
duce Ψ′ and the number of variables in each equation must remain constant.
Each local-reader may either produce evaluations, or it may reject if it finds
that the assignment is not an encoding-assignment.

Local-tests and evaluators. Each local-reader is a pair containing a local-
test – a conjunction of linear equations over representation variables, and a
tuple of k evaluators. Each evaluator is a linear-combination of representation
variables. A local-reader is said to accept an assignment for the representation
variables if the local-test is satisfied by it, and otherwise it is said to reject
it. For an assignment A which is an encoding-assignment of a good LDF f ,
it is required that all local-readers accept, and also that the i’th evaluator in
each local-reader evaluates to f(xi).

In case the representation variables are not given a correct encoding-
assignment, we would like the local-readers to always reject. This is not
possible to achieve, however, with local-readers that access a constant number
of representation variables, not even if we allow a small fraction of the local-
readers to falsely accept. It is in fact not even possible to ensure that local-
readers which do not reject return evaluations of a single LDF. What we can
achieve (and turns out to be enough), is that apart from a small fraction, the
local-readers either reject or return evaluations of one of a short list of LDFs.
This is the list of LDFs which are permissible with respect to the assignment
of F .

Definition 5 (permissible assignment). An [r(F ), d(F )]-LDF f is said to be
ρ-permissible with respect to an assignment of F if for at least a ρ-fraction
of the points x, F [x] is assigned f(x).

We show later that for a wide range of permissibility parameters ρ, the list
of permissible LDFs is bounded by O(ρ−1). Since the list is only determined
by the assignment to F and is independent of the rest of the representation
variables, it will be the same for all LDF-readers evaluating tuples in F . This
means that all equations that have variables in F will read evaluations that
are consistent with one of the LDFs on the relatively short list.

We now give the formal definition of the parameters of an LDF-reader.

Definition 6 ((ρ, ε)-LDF-reader). Let R be an LDF-reader evaluating a tuple
(x1, . . . , xk) in a domain F , and fix an assignment to its representation-

12



variables. A local-reader L is said to be ρ-erroneous if it accepts, and there
exists no ρ-permissible LDF f (with respect to the assignment of F ) such
that the i’th evaluator evaluates to f(xi) for all i.

R is said to be a (ρ, ε)-LDF-Reader, if for any assignment to the representation-
variables, the fraction of ρ-erroneous local-readers is at most ε.

3 Proof of the Main Theorem

In this section we prove Theorem 1. We show for any constant β < 1,
a polynomial time reduction from the problem Gap-QS[n, σ] with σ in the
range (σ(n))d1 ≤ σ ≤ (σ(n))d2 and where d1 and d2 are as in Theorem 2, to

the problem Gap-QS[O(1), σ] with σ in the range 2c1 logβ n ≤ σ ≤ 2c2 logβ n,
where c2 > c1 > 0 are some appropriate constants.

The reduction starts with a given system Ψ of n quadratic equations
over a field F of size 2d1 logβ n ≤ |F| ≤ 2d1 logβ n, with up to n variables
in each equation. It then generates, in time polynomial in n, a system Ψ′

over the same field with at most a constant number of variables in each
equation. Since the reduction is in polynomial time (and since the number of
equations in not decreased by the reduction), m is polynomially equivalent

to n, and therefore the size of the field satisfies 2c1 logβ m ≤ |F| ≤ 2c2 logβ m for
appropriate constants c2 > c1 > 0, as required by Theorem 1.

Ψ′ will have the completeness property, that is if the given system Ψ can
be completely satisfied then Ψ′ will be completely satisfiable as well; and
the soundness property – if Ψ is no more than 2

|F| -satisfiable (namely no

assignment can satisfy more than a 2
|F| fraction of its equations), then Ψ′ is

at most 2
|F| -satisfiable as well.

The reduction begins by transforming Ψ into a system Ψsc of quadratic-
equations where the number of variables in each equation is bounded by a
constant, and that has the desired properties only if the assignments for its
variables are restricted to being feasible. The transformation of Ψ into Ψsc is
done by a sum-check algorithm, whose properties are stated in the following
Lemma, proven in Section 5.

Lemma 3.1 (sum-check). There exists a polynomial-time algorithm as fol-
lows. It takes as input a system Ψ of n quadratic equations over a field F ,
|F| = 2logβ n, where there are up to n variables in each equation. Given Ψ, the

13



algorithm generates a system Ψsc of quadratic-equations over F where each
equation has a constant number of variables (some of which in domains), and
that has the following properties:

• Completeness: If Ψ is completely satisfiable then Ψsc is completely sat-
isfiable by a good assignment.

• Soundness: If Ψ is no more than 2
|F|-satisfiable then Ψsc cannot be more

than 2
|F|-satisfied by a feasible assignment.

Moreover, all the domains of Ψsc have the same dimension d = Θ(log1−β n),
lower-degree s, and upper-degree r, where s ≤ |F|c1 and r ≥ |F|c2 for some
global constants c1 < c2 < 1.

To transform Ψsc into Ψ′, the reduction generates LDF-readers and plugs
them into Ψsc as follows. For each equation ψ of Ψsc, that has the vari-
ables F (x1), . . . , F (xk) of a domain F , it generates an LDF-reader evaluat-
ing (x1, . . . , xk) in F . To plug the LDF-reader into ψ, many copies of ψ are
made, and one of the local-readers is plugged into each copy.

The local-tests are added in conjunction with each copy, and hence a
system of conjunctions is formed. In addition, some of the gap is lost when
the LDF-readers are plugged in – if Ψ is no more than 2

|F| -satisfiable, the
fraction of satisfiable conjunctions in the system obtained from Ψsc might be
somewhat higher. A simple amplification technique is hence applied to the
system of conjunctions to avoid that, and then each conjunction is replaced
by equations, obtaining Ψ′.

3.1 Generating the LDF-Readers

To generate LDF-readers we use a constructor algorithm, as defined below.

Definition 7 (constructor). A constructor is an algorithm that takes as in-
put a domain F and a k-tuple (x1, . . . , xk) of points in Fd(F ), where k is a
constant†. It generates an LDF-reader evaluating (x1, . . . , xk) in F , in time

polynomial in |F|d(F ). The number of variables appearing in each local-reader
must be bounded by a constant, and so should be the number of equations in

†By saying that k is constant, we mean that other parameters and properties of the
constructor may depend arbitrarily on k. In addition, any parameter of the constructor
that depends only on k is considered constant as well

14



the local-test of each local-reader. In addition, the number of local-readers
must only depend on the parameters of F .

Our reduction uses the Composition-Recursion constructor, whose prop-
erties are stated in the next lemma, to generate LDF-readers. Note that
the Composition-Recursion can only be applied to domains with restricted
dimension and degree parameters. These restrictions are needed to

The reduction uses a constructor that generates Composition-Recursion
LDF-readers. The existence of this constructor and the properties of the
LDF-readers it generates are stated in the next lemma, which is proven in
Section 4.

Lemma 3.2 (Composition-Recursion constructor). There exists a global con-
stant cg, 0 < cg ≤ 1/2, such that for every c1 < c2 < 1 and β < 1 the
following holds. There exist a constant c > 0, and an LDF-Reader construc-
tor for domains of dimension d = Θ(log1−β n), lower-degree s ≤ |F|c1, and
upper-degree r ≥ |F|c2 (the algorithm runs independently of s and r). The
LDF-readers generated by the algorithm are (ρ,O(ρc))-LDF-readers, for all
ρ’s which satisfy ρ > (r/|F|)cgd.

Before the LDF-readers are actually generated, we make some small technical
alterations to Ψsc as follows.

Uniformization. The number of variables in each equation of Ψsc is bounded
by some constant k. This implies that an equation in Ψsc may have variables
from up to k distinct domains, and that the number of variables it has from
each domain is bounded by k. Before generating LDF-readers, let us assume
for simplicity that each equation of Ψsc has variables from exactly k distinct
domains, and that it has exactly k variables from each domain. This requires
the reduction to add arbitrary variables to the equations, multiplied by zero
coefficients.

LDF-Reader generation. After the uniformization, the reduction gener-
ates the LDF-readers as described above – For each equation ψ of Ψsc, that
has the variables F (x1), . . . , F (xk) in a domain F , it generates an LDF-reader
evaluating (x1, . . . , xk) in F (this takes polynomial time in the size of Ψsc).
Note that since all domains in Ψsc have the same parameters (dimension d,
lower-degree s and upper-degree r, as stated in Lemma 3.1), the number of
local-readers in each LDF-reader is the same as well.

15



The representation variables of the LDF-readers are added to the variables
of the system, and the local-readers are plugged into the equations of Ψsc as
described below.

3.2 Plugging LDF-Readers In

For each equation ψ ∈ Ψsc there are now k associated LDF-readers – one
for each domain it has variables from. The first step in plugging the LDF-
readers into Ψsc is to replace each such equation ψ by its representation
set Eψ, containing conjunctions of quadratic equations that are obtained by
plugging local-readers into ψ. Eψ represents ψ in the sense that an assignment
satisfying a large enough fraction of the conjunctions in Eψ implies a satisfying
assignment for ψ, as shown in the proof of Claim 3.3 below.

Generating Eψ. Let ψ ∈ Ψsc be an equation that has variables from the
domains F1, . . . , Fk. For each j, let us denote the variables of ψ in Fj by
Fj[x

j
1], . . . , Fj[x

j
k]. ψ is therefore associated with k LDF-readers R1, . . . ,Rk,

where Rj evaluates the tuple (xj1, . . . , x
j
k) in Fj. The reduction generates

one conjunction in Eψ for each choice of k local-readers L1, . . . , Lk, where
Lj ∈ Rj. The first equation in each such conjunction, denoted ψ′, is the
quadratic equation obtained from ψ by replacing each variable of the form
Fj[x

j
i ] with the i’th evaluator of Lj (it evaluates xji in Fj). ψ

′ is then put in
conjunction with the local-tests of the local-readers L1, . . . , Lk.

The system Ψ2. Note that the number of conjunctions in Eψ is the same

for every ψ ∈ Ψsc – it is |R|k, where |R| denotes the number of local-readers
in each of the LDF-readers we have generated. We set Ψ2 to be the union of
all the sets Eψ. Since the number of variables in each local-reader is constant,
the number of variables in each conjunction of Ψ2 is bounded by a constant
as well. The system of conjunctions Ψ2 obviously retains the completeness
property of Ψsc. As the next claim shows, it also retains some of its soundness
property, even with respect to assignments which are not necessarily feasible.

Claim 3.3. There exists a constant α, 0 < α < 1, such that Ψ2 has the
following properties:

• Completeness: If Ψ is completely satisfiable, then Ψ2 is completely
satisfiable as well.

16



• Weakened Soundness: If Ψ is at most 2/|F|-satisfiable, then Ψ2 is at
most |F|−α-satisfiable (by any assignment).

To prove the claim we need the following proposition, showing that there
cannot be many permissible LDFs for a domain – this implies that most
local-readers in an LDF-reader will either reject or return the evaluation of
one of a short list of permissible LDFs. This proposition appears in Section 4
as Claim 4.9, and is proven there.

Proposition 3.4. Let F be a domain, and let ρ >
(
r(F )
|F|

)cg
d(F ) where cg

is the same constant as in Lemma 3.2. Then for any assignment to F there
can be at most 2ρ−1 ρ-permissible LDFs in all.

Proof of Claim 3.3:

Completeness. If Ψ is satisfiable, then there is a good assignment satisfy-
ing Ψsc. For each of the constructed LDF-readers, extend the assignment to
its representation using the encoding-assignment of the associated domain.
The extended assignment satisfies Ψ2: A conjunction in Ψ2 contains local-
tests, which are all satisfied by encoding-assignments, and an equation ψ′. ψ′

was generated from an equation ψ ∈ Ψsc by replacing variables with evalua-
tors. But for encoding-assignments, the evaluators and the replaced variables
have the same values. Hence since ψ is satisfied, ψ′ is satisfied as well.

Weakened soundness. Fix an assignment A for Ψ2, and let γ be the
fraction of conjunctions it satisfies. For an appropriate α, we will show that
if γ > |F|−α then there exists a feasible assignment for Ψsc satisfying more
than a 2

|F| fraction of its equation. This implies that Ψ is more than 2
|F| -

satisfiable – a contradiction.
We denote a

.
=(1− c2)cg/k, where c2 is the global constant mentioned in

the Sum-Check Lemma (Lemma 3.1). Letting ρ
.
=|F|−a, it follows by the

choice of a that ρ > (r/|F|)cgd. Therefore by Lemma 3.2 we have that the
LDF-readers have parameters (ρ, ε), where ε = O(ρc) and c is as mentioned
in the lemma.

An equation ψ ∈ Ψsc such that the fraction of satisfied conjunctions in
Eψ is higher than kε, is said to be potentially satisfiable. Since the sets Eψ
are all of the same size, it follows that the fraction of potentially satisfiable
equations is at least γ − kε.

17



Consider a potentially satisfiable equation ψ. Eψ was generated from ψ
by plugging in k LDF-readers R1, . . . ,Rk, evaluating tuples in k domains
F1, . . . , Fk respectively. A conjunction in Eψ is defined by choosing a local-
reader Lj out of each LDF-reader Rj. For every j, the fraction of con-
junctions in Eψ where Lj is ρ-erroneous is bounded by ε, as implied by the
parameters of the LDF-readers, and hence the fraction of conjunctions where
any of the readers are erroneous is bounded by kε.

It follows that there exists a satisfied conjunction in Eψ in which no local-
reader is erroneous, namely the evaluator of each local-reader Lj gives the
evaluations of a ρ-permissible LDF fj with respect to the assignment of
Fj. Hence if each domain Fj were re-assigned the function fj, ψ would be
satisfied.

So far we have shown that the potentially satisfiable equations, which
make at least a γ − kε fraction of the equations ψ ∈ Ψsc, can be satisfied
by re-assigning the domains with ρ-permissible LDFs. For each domain F in
Ψsc, choose a random ρ-permissible LDF, or the zero LDF if no such LDF
exists, and re-assign it to F . We have obtained a feasible assignment for Ψsc.
We compute the chance of a potentially satisfiable equation to be satisfied
by the new assignment.

There are at most O(ρ−1) ρ-permissible LDFs for each domain by Propo-
sition 3.4, and each equation has variables from k domains. Hence the prob-
ability of a potentially satisfiable equation in Ψsc to be actually satisfied by
the re-assignment is at least Ω(ρk). It follows that the expected fraction of
satisfied equations in Ψsc is Ω(ρk(γ − kε)), and hence at least one of the re-
assignments achieves this fraction of satisfaction. We have thus shown that
there exists a feasible assignment for Ψsc satisfying an Ω(ρk(γ−kε)) fraction
of its equations.

We now choose a constant α so that 0 < α < min {1− ka , ac} (note that
such an α exists). If γ > |F|−α, then

ρk(γ − kε) = |F|−ak(γ −O(F−ac)) À 2

|F|

hence there exists a feasible assignment for Ψsc satisfying more than a 2
|F|

fraction of its equations.

18



3.3 Gap Amplification

The reduction now amplifies the soundness of Ψ2 by joining conjunctions
together into larger conjunctions, generating Ψ3. The soundness of Ψ3 is even
stronger than needed, but it still has conjunctions rather than equations. The
next subsection describes how conjunctions may be replaced by equations
with only a small cost in the soundness, thus completing the reduction.

The system Ψ3. Denote N
.
=d1/αe, where α is the constant mentioned in

Claim 3.3. The reduction generates Ψ3 by taking the conjunction of every
ordered N -tuple of (not necessarily distinct) conjunctions from Ψ2, that is

Ψ3 = {
N∧
i=1

χi : ∀ i χi ∈ Ψ2 }

Note that it takes polynomial time in |F|N , and hence in n, to generate
Ψ3. Since each conjunction in Ψ3 is composed of a constant number of
conjunctions from Ψ2, the number of variables as well as the number of
equations in each such conjunction is bounded by a constant. The next
claim states the completeness and soundness properties of Ψ3.

Claim 3.5. Ψ3 has the following properties:

• Completeness: If Ψ is completely satisfiable, then Ψ3 is completely sat-
isfiable as well.

• Soundness: If Ψ is at most 2/|F|-satisfiable, then Ψ3 is at most 1/|F|-
satisfiable.

The claim follows easily from Claim 3.3 and from the construction of Ψ3.

3.4 From Conjunctions to Equations

Ψ3 is a system of conjunctions where, as mentioned above, the number of
equations in each conjunction is bounded by a constant. We would like
the reduction to transform it from a system of conjunctions into the final
system Ψ′ of quadratic-equations, but first we make sure that the number of
equations in all the conjunctions of Ψ3 is the same. To do so the reduction
adds equations of the form 0 = 0 where necessary.

19



The system Ψ′. To transform Ψ3 into Ψ′, the reduction replaces each
conjunction in Ψ3 with the set of all linear-combinations over its equations
(equations can be added or multiplied by a scalar, so the notion of a linear-
combination of equations is well defined). Since the number of equations in
each conjunction is constant the blow-up is polynomial in |F|, and hence in
n.

Since the number of variables in each conjunction of Ψ3 is bounded by a
constant, the number of variables in each equation of Ψ′ is constant as well.
In order to complete the proof of Theorem 1, it is left to show that Ψ′ has
the soundness and completeness properties. This follows immediately from
Claim 3.5 together with the next proposition.

Proposition 3.6 (conjunction representation). Let Ψa be a system of con-
junctions of equations over F , where the number of equations in each con-
junction is the same. Let Ψb be the system obtained from Ψa by replacing
every conjunction χ ∈ Ψa by all linear combinations over F of its equations
(with multiplicities, if the same equation occurs more than once). Then

• If Ψa is completely satisfied by a certain assignment, then the same
assignment will satisfy Ψb as well.

• If Ψa is at most γ-satisfiable then Ψb is at most (γ+ 1/|F|)-satisfiable.

Proof. The first property is obvious from the definition of Ψb. To prove the
second property, fix an assignment for the variables of Ψa and Ψb. Then it
satisfies at most a γ fraction of the conjunctions in Ψa. For each conjunction χ
in Ψa denote by ω(χ) the fraction of equations replacing χ that are satisfied
in Ψb. Since each conjunction of Ψa is replaced by the same number of
equations, the fraction of satisfied equations in Ψb is the average of ω(χ)
over all the conjunctions χ ∈ Ψa.

For a satisfied conjunction χ, ω(χ) = 1, and it is easy to observe that
ω(χ) = 1/|F| for any unsatisfied conjunction χ. Since satisfied conjunctions
make at most a γ fraction of the conjunctions in Ψa, we conclude that the
fraction of satisfied equations in Ψb is no more than γ + 1/|F|, as required.

20



4 The Composition-Recursion Constructor

This section contains the proof of the Composition-Recursion Constructor
Lemma (Lemma 3.2), showing the constructor for Composition-Recursion
LDF-readers, CR’s for short. As a first step, we show a constructor for
restricted LDF-readers, where some of the domains in the representation are
considered active. These LDF-readers have good parameters only in the case
where active domains are given feasible assignments. By a composition of
several such LDF-readers we then get a CR.

Definition 8 (restricted LDF-readers.). A restricted LDF-reader R is an
LDF-reader where some of the domains in the representation are considered
active. The dimension, and the upper and lower degree parameters of all
active domains must be the same. These parameters are called the active
dimension, active upper-degree and active lower-degree of R, and are denoted
by d?(R), r?(R), and s?(R) respectively.

A local-reader L in R may have variables from at most one active domain,
which is called the active domain of L and is denoted by Dom?(L).

Parameters of restricted LDF-readers. We measure the parameters
of restricted LDF-readers only with respect to feasible assignments: An as-
signment for the representation of a restricted LDF-reader R is said to be
active-feasible if the assignment of every active domain is feasible (unlike in
the case of equation-systems, we do not require the assignment of all domains
to be feasible). R is hence said to be a restricted (ρ, ε)-LDF-Reader if for
any active-feasible assignment, the fraction of ρ-erroneous local-readers is at
most ε. Note that in an encoding-assignment, all domains must still be given
a good assignment.

Outline of this section. The next subsection shows a constructor for
restricted LDF-readers (the definition of a constructor generalizes naturally
for restricted LDF-readers), called Subspace-vs.-Point LDF-readers, SP’s for
short. These restricted LDF-readers are based upon the Plane-vs-Plane LDF-
readers of [RS97]. The representation of an SP evaluating a tuple in a domain
F contains, apart from F itself, only active domains, which have the same
degree-parameters as F but a constant dimension parameter. Therefore,
informally speaking, an SP LDF-reader uses constant-dimensional LDFs to
represent an LDF over a space of higher dimension, and using evaluations

21



of these constant-dimensional LDFs it produces consistent evaluations of the
original LDF.

In Subsection 4.4 it is shown how the constant-dimensional active do-
mains of an SP,R, can be replaced by active domains that have non-constant
dimension, but greatly decreased degree parameters. This allows the com-
position of other SP’s over R, as described in Subsection 4.5, to evaluate
tuples in the replaced active domains. Subsection 4.6 shows how an iterative
application of this procedure yields the Composition-Recursion LDF-reader
(which is not restricted) and Subsection 4.7 proves its properties, thus com-
pleting the proof of Lemma 3.2.

4.1 Subspace-vs.-Point LDF-Readers

In this subsection we show the SP constructor – a constructor that generates
Subspace-vs.-Point restricted LDF-readers. The representation of an SP that
evaluates a k-tuple in a domain F contains, in addition to F , active domains
with the same degree parameters as F but of dimension k+ 2. Each domain
is associated with a (k+2)-dimensional subspace U in Fd(F ); in an encoding-
assignment each of them is assigned the restriction to U of the LDF assigned
to F . Before we go into the description of the constructor, let us state its
properties in the following lemma.

Lemma 4.1 (Subspace-vs.-Point LDF-reader). There exists a constructor
that given a domain F and a k-tuple of points in Fd(F ), generates a restricted
LDF-reader R as follows. The active domains of R have the same upper
and lower-degree parameters as F , and their dimension parameter equals
k+2. Moreover, R will have parameters (ρ,O(ρ1/3)) for all ρ’s which satisfy
ρ > (r(F )/|F|)cgd(F ), where 0 < cg ≤ 1/2 is a global constant‡.

The Subspace-vs.-Point constructor

We now describe how the SP constructor generates an LDF-reader R, given
a domain F and a k-tuple (x1, . . . , xk) of points in Fd(F ). The SP constructor
is used later as a procedure of the CR constructor, however in proving the
parameters of the CR constructor we only rely on the properties that are
stated in Lemma 4.1. Without loss of generality, throughout the construction

‡This is the same constant as in Lemma 3.2, and in all other places where cg appears

22



it is assumed that d(F ) ≥ k+ 2 – it is easy to adapt the construction for the
case d(F ) < k + 2.

The representation. Other than F itself, the representation only includes
active domains, with upper-degree r(F ), lower-degree s(F ), and dimension
k+2. The constructor first picks any (k−1)-dimensional affine subspace U0 ⊆
Fd(F ) which contains all the points xi of the tuple (if the xi’s are in general
position, there exists exactly one such subspace). Denote by SubSp(R) the
set of (k + 2)-dimensional affine subspaces U ⊆ Fd(F ) which contain U0.
One active domain DU is then constructed for every affine subspace U ∈
SubSp(R).

Identification functions. A good assignment A to F assigns to it an
[s(F ), d(F )]-LDF f . In the encoding-assignment, the assignment to each
domain DU represents the restriction of f to U . In order to represent f |U as
an LDF over Fk+2 the constructor chooses for each domain DU an arbitrary
linear isomorphism φ

U
: U → Fk+2, called the identification function of U ,

that identifies each point y ∈ U with the point φ
U
(y) in Fk+2.

Encoding-assignments. Let A be a good assignment for F , assigning to
it a [s(F ), d(F )]-degree LDF f . The encoding-assignment for A extends it by
assigning to each domain DU the LDF f ◦(φ

U

−1). Composing the assignment
of DU with φ

U
therefore gives f |U . Since φ

U
is linear, DU is assigned an s(F )-

degree LDF, and hence the encoding-assignment of A is a good assignment.

Local-readers. The SP constructor generates one local-reader for each do-
main DU and point y ∈ U . Its active domain is DU , its local-test is the single
linear equation DU [φ

U
(y)] = F [y], and for every 1 ≤ i ≤ k its i’th evaluator

is the term DU [φ
U
(xi)].

To get a better understanding of the structure of local-readers, fix an active-
feasible assignment A for the representation variables, and consider a local-
reader associated with a domain DU and a point y. The LDF assigned to DU

represents an r(F )-degree LDF g
U

over U , defined by g
U
(x)

.
=A(DU [φ

U
(x)])

(this is the composition of the LDF assigned to DU with φ
U
). The local-test

therefore compares g
U
(y) with the assignment of F [y], and the i’th evaluator

returns g
U
(xi).

23



If A is the encoding-assignment of an LDF f , then F [y] is assigned f(y),
and g

U
is the restriction of f to U . The local-test is hence satisfied in that

case, and the values g
U
(xi) returned by the evaluators are in fact the values

of f at the points xi.

The SP constructor works.

It is easy to verify that the SP constructor indeed falls under the definition of
a constructor. To verify the parameters of SP LDF-readers (which would con-
clude the proof of Lemma 4.1) consider an SP LDF-reader R, that evaluates
a k-tuple (x1, . . . , xk) in a domain F , and fix an active-feasible assignment
A for its representation. As explained above, A determines an r(F )-degree
LDF g

U
over every affine subspace U ∈ SubSp(R).

The local-test of the local-reader determined by an affine subspace U ∈
SubSp(R) and a point y ∈ U verifies that g

U
(y) = A(F [y]), and its eval-

uators return the values of g
U

at the points x1, . . . , xk. The local-reader is
ρ-erroneous if the local-test is satisfied, yet the values g

U
(x1), . . . , gU

(xk) are
not the evaluation of any ρ-permissible LDF (with respect to the assignment
of F ) at x1, . . . , xk. The next lemma bounds the fraction of erroneous local-
readers, thus proving that R has the parameters required in Lemma 4.1.

Lemma 4.2 (SP parameters). For some global constant 0 < cg ≤ 1/2, and
for all ρ’s which satisfy ρ > (r(F )/|F|)cgd(F ), the following holds.

Let U be a random affine subspace in SubSp(R), and y be a random
point in U (this determines a random local-reader). Let Err be the event
that g

U
(y) = A(F [y]), yet g

U
(x1), . . . , gU

(xk) are not the evaluation of any
ρ-permissible LDF (with respect to the assignment of F ) at x1, . . . , xk. Then
Pr[Err] = O(ρ1/3).

In fact we show an stronger statement than the above lemma. We bound
by O(ρ1/3) the probability that g

U
agrees with the assignment of F at y, yet

g
U

is not the restriction to U of any ρ-permissible LDF (it is easy to observe
that this implies Lemma 4.2).

4.2 Subspace-vs.-Point Parameters

The proof of Lemma 4.2 is based on a lemma from [RS97] where a slightly
different setting is discussed. While we are interested in the case where
an LDF is associated with every (k + 2)-dimensional subspace in a certain

24



set SubSp(R), the [RS97]-Lemma deals with the case where each plane (2-
dimensional affine subspace) is associated with an LDF defined over it.

Definition 9 (plane-assignment). Suppose that every plane P in Fd(F ) is
associated with an r(F )-degree LDF g

P
over P . The correspondence P → g

P

is called a plane-assignment. An LDF g
P

is called the plane-LDF assigned
to P .

Another difference is that the [RS97]-Lemma discusses a different kind
of permissibility, measured with respect to the plane-assignment instead of
with respect to the assignment of F .

Definition 10 (planewise-permissibility). Let (P → g
P
) be a

plane-assignment. An r(F )-degree LDF f over Fd(F ) is said to be ρ-planewise-
permissible if for at least a ρ-fraction of the planes P , g

P
= f |P .

A plane-LDF g
P

is said to be ρ-planewise-permissible if it is the restriction
to P of a ρ-planewise-permissible LDF f over Fd(F ).

We now state the discussed lemma from [RS97]. It shows that planewise-
permissibility can be tested by comparing the plane-LDFs assigned to two
line-intersecting planes. If the plane-LDFs agree on the line then with high
probability they are both planewise-permissible.

Lemma 4.3 ([RS97]). There exists a global constant 0 < cg ≤ 1/2, such that
for any ρ > (r(F )/|F|)cgd(F ) the following holds.

Fix a plane-assignment (P → g
P
). Let ` be a random line in Fd(F ) and

let P1 and P2 be two random, independently chosen planes that contain `.
Denote by Err the event that the plane-LDF assigned to P1 agrees on ` with
the plane-LDF assigned to P2, yet they are not both ρ-planewise-permissible.
Then Pr[Err] = O(ρ).

Starting from Lemma 4.3, we gradually approach Lemma 4.2 by a se-
quence of technical claims: Claim 4.4 shows Lemma 4.3 to hold even if two
plane-LDFs are compared on a point rather than a line. Claim 4.5 deals with
the case where a plane-LDF is compared against the assignment of F at a
certain point, rather than against another plane-LDF. Claim 4.7 goes from
planewise-permissibility to permissibility, showing that a random plane-LDF
g

P
that agrees with the assignment of F at a random point on P is with high

probability the restriction to P of a ρ-permissible LDF. Finally Claim 4.11
completes the proof of Lemma 4.2 by showing that the same holds for LDFs

25



g
U

associated with a random subspace U ∈ SubSp(R), instead of plane-
LDFs.

Claim 4.4. Fix a plane assignment (P → g
P
), and suppose ρ satisfies the

requirements of Lemma 4.3. Let y be a random point in Fd(F ), let ` be a
random line containing it, and let P1 and P2 be random independently chosen
planes that contain `. Denote by Err the event that the plane-LDF assigned
to P1 agrees on y with the plane-LDF assigned to P2, yet they are not both
ρ-planewise-permissible. Then Pr[Err] = O(ρ).

Proof. First note that y can be considered to be a random point on a ran-
domly chosen line ` in Fd(F ), instead of the other way around.

The only case where Err occurs yet the event from Lemma 4.3 does
not, is when the restrictions to ` of the plane-LDFs of P1 and P2 differ, yet
they agree on y. Since the restrictions to ` are r(F )-degree LDFs, if they
differ then the probability of agreement on the random point y is at most
r(F )/|F| ≤ ρ. Hence by Lemma 4.3, Pr[Err] ≤ ρ+O(ρ) = O(ρ).

The next step is to compare a plane-LDF to the assignment of F [y] for some
point y on it, instead of to the value at y of another plane-LDF .

Claim 4.5. Fix a plane assignment (P → g
P
), and suppose ρ satisfies the

requirements of Lemma 4.3. Let P be a random plane and y be a random
point on P . Denote by Err the event that g

P
(y) = A(F [y]), yet g

P
is not

ρ-planewise-permissible. Then Pr[Err] = O(ρ1/2).

Proof. To be able to apply Claim 4.4, we redefine y and P , and introduce
new random variables as follows. Let y be a random point in Fd(F ), ` be a
random line containing y, and P and P ′ be random independently chosen
planes that contain ` (note that to obtain the claim it is enough to prove a
bound on Pr[Err] in these settings). Let Err2 be the event that g

P
and g

P ′

agree on y yet they are not both ρ-planewise-permissible. Claim 4.4 implies
that the probability of Err2 is bounded by O(ρ).

To use the bound we have for Err2 we first show that for every fixed line `0
and point y0 ∈ `0,

Pr[Err|` = `0, y = y0] ≤ (Pr[Err2|` = `0, y = y0])
1/2 (1)

26



Let Err′ be the event that g
P ′

(y) = A(F [y]) yet g
P ′

is not ρ-planewise-
permissible (it is similar to Err, only for P ′ instead of P ). Obviously

Pr[Err2|` = `0, y = y0] ≥ Pr[Err ∧ Err′|` = `0, y = y0]

because the event on the left-hand side contains the one on the right-hand
side. Since P and P ′ are independently chosen given `0, we have

Pr[Err ∧ Err′|` = `0, y = y0] = Pr[Err|` = `0, y = y0] · Pr[Err′|` = `0, y = y0]

= (Pr[Err|` = `0, y = y0])
2

which together with the above inequality implies Equation 1.

One may discard the conditioning in Equation 1, obtaining

Pr[Err] ≤ Pr[Err2]
1/2

using the law of complete probability and the concavity of the square-root
function. Since the probability of Err2 is bounded by O(ρ), this obtains the
claim.

Our next step is to convert the statement of Claim 4.5 from planewise-
permissibility to permissibility in the usual sense. This requires the following
bound on the number of planewise-permissible LDFs.

Claim 4.6. Fix a plane assignment (P → g
P
), and suppose ρ satisfies the

requirements of Lemma 4.3. Then the number of ρ-planewise-permissible
LDFs is less than 2ρ−1.

Proof. The proof is similar to that of Claim 4.9 below.

We can now prove the analogue of Claim 4.5 for permissibility in the usual
sense.

Claim 4.7. Fix a plane assignment (P → g
P
), and suppose ρ satisfies the

requirements of Lemma 4.3. Let P be a random plane and y be a random
point on P . Denote by Err the event that g

P
(y) = A(F [y]), yet there is no ρ-

permissible LDF f (with respect to the assignment of F ), such that g
P

= f |P .
Then Pr[Err] = O(ρ1/3).

27



Proof. We separate Err into two events, and bound the probability of each
by O(ρ1/3): Let Err1 be the event where Err occurs and in addition g

P
is

not ρ2/3-planewise-permissible; and let Err2 be the event where Err occurs
and in addition g

P
is ρ2/3-planewise-permissible.

By applying Claim 4.5 using ρ2/3 instead of ρ, we obtain that the proba-
bility of Err1 is bounded by O(ρ1/3) as required (since ρ > (r(F )/|F|)cgd(F )
as required in Lemma 4.3, ρ2/3 satisfies this requirement as well).

It is left to bound the probability of Err2. By definition it occurs only
when g

P
(y) = A(F [y]) and there exists a ρ2/3-planewise-permissible LDF f

which is not ρ-permissible, such that g
P

= f |P . For an LDF f over Fd(F ),
denote by Err3(f) the event where g

P
(y) = A(F [y]) and g

P
= f |P (note

that this implies f(y) = A(F [y])). Then the probability of Err2 is bounded
by the sum of Pr[Err3(f)] over all ρ2/3-planewise-permissible LDFs f which
are not ρ-permissible.

Let us bound the probability of Err3(f) for such an LDF f . Since f is
not ρ-permissible the probability that it satisfies f(y) = A[F (y)] is bounded
by ρ, because y is a uniformly random point in Fd(F ). The probability of
Err3(f) is therefore bounded by ρ as well. Since f should be ρ2/3-planewise-
permissible, there can be at most 2ρ−2/3 such f ’s by Claim 4.6, and therefore
a bound of 2ρ−2/3ρ = O(ρ1/3) is obtained for the probability of Err2.

Note that the statement of Claim 4.7 is similar to what we wish to es-
tablish (see the remark following Lemma 4.2), only for planes rather than
(k+ 2)-dimensional subspaces in SubSp(R). Claim 4.11 proves that by con-
sidering a random plane P , y ∈ P ⊆ U , in addition to the random subspace
U and the random point y ∈ U . Claim 4.7 can be applied to P to obtain
Claim 4.11, but for it to be applicable it should be shown that when a random
subspace U ∈ SubSp(R) is chosen , and then a random plane P contained in
U , and then a point y ∈ P , P and y are almost uniformly distributed. This
is shown in the following claim.

Claim 4.8. Let U be a random subspace in SubSp(R), and let P be a random
plane contained in U and y a random point in P . The distribution of P and
y is almost uniform, that is if P lns denotes the set of planes in Fd(F ) then∑

P0∈Plns

|Pr(P = P0)− |P lns|−1| ≤ O(|F|−1)

28



and ∑
y0∈Fd(F )

|Pr(y = y0)− |F|−d(F )| ≤ O(|F|−1)

Proof. We begin by proving the second inequality. Observe that since all the
subspaces in SubSp(R) contain U0 the probability of the random point y in

U to yield a specific point in U0 is higher than |F|−d(F ), the probability of a
uniformly random point. Also, the probability of y to yield a point outside
of U0 is smaller than |F|−d(F ). Hence∑

y0∈Fd(F )

|Pr[y = y0]− |F|−d(F )|

=
∑
y0∈U0

(Pr[y = y0]− |F|−d(F )) +
∑

y0∈Fd(F )\U0

(|F|−d(F ) − Pr[y = y0])

= 2
∑
y0∈U0

(Pr[y = y0]− |F|−d(F )) (since probabilities sum up to 1)

< 2 Pr[y ∈ U0] = 2|U0|/|U | = 2|F|−3 = O(|F|−1) ,

thus obtaining the second inequality. The proof of the first inequality uses
similar arguments, however it is more tedious. We therefore only sketch it
here.

Two main observations are needed to prove the first inequality. First,
one needs to observe that if three random points y1, y2, y3 are independently
chosen within U , then their joint distribution is within statistical distance
O(|F|−1) from the distribution of three points chosen independently from
Fd(F ). This follows by applying the argument used to prove the second
inequality three consecutive times. At each application, U is conditioned
on containing the affine space generated by U0 and the previously selected
points.

The second observation, which is an easy exercise, is that the distribution
of the affine span of three independently chosen points in Fd(F ), is within
statistical distance O(|F|−1) from the distribution of a random plane in P lns.
Together with the first observation we obtain the desired inequality.

Before we move to the final claim, we need the following two bounds.
Claim 4.9, which appears in Section 3 as Proposition 3.4, bounds number of
ρ-permissible LDFs. Claim 4.10 bounds the fraction of planes on which two
distinct LDFs may agree.

29



Claim 4.9. Suppose ρ satisfies the requirements of Lemma 4.3. Then there
are less than 2/ρ ρ-permissible LDFs.

Proof. Assume for the sake of contradiction that there exists a set Per con-
taining 2/ρ distinct ρ-permissible LDFs. For each LDF f ∈ Per denote by
U(f) the set of points y ∈ Fd(F ) such that f is the only LDF in Per satisfying
f(y) = A(F [y]).

Each LDF f ∈ Per is ρ-permissible, hence it agrees with A(F ) on at least
a ρ-fraction of the points. We bound from above the fraction of points for
which it also agrees with other LDFs in Per. Any other LDF in Per agrees
with f on at most an r(F )

|F| fraction of the points, so overall f may agree

with other LDFs in Per on at most a 2r(F )
ρ|F| fraction of the points. From the

assumption ρ >
(
r(F )
|F|

)cg
d(F ) it follows in particular that ρ2 > 4r(F )/|F|

(recall that cg < 1/2 and that we assume d(F ) ≥ k + 2 > 2), and therefore
2r(F )
ρ|F| <

1
2
ρ.

f thus agrees with A(F ) on at least ρ of the points, and on less than a 1
2
ρ

fraction of the points it agrees with other LDFs in Per. It follows that for
every f ∈Per, U(f) contains more than a 1

2
ρ fraction of the points. Since

the sets U(f) are disjoint, it follows that the fraction of all points contained
in any of the U(f)’s is greater than 1

2
ρ · |Per| ≥ 1. This is a contradiction.

Claim 4.10. For any t > 0, two distinct [r, t]-LDFs must disagree on all but
at most an r/|F| fraction of their possible restrictions to planes.

Proof. Let f and g be two distinct r-degree LDFs over F t, and let P be
a random plane in F t. We are to evaluate the probability that f |P equals
g|P . Let y be a random point on P . y is uniformly distributed in F t, and
therefore it produces a disagreement with probability at least 1− r

|F| (this is

a well known property of LDFs). Since y can produce a disagreement only
in the case that there is a disagreement over P , it implies that there is a
disagreement over P with probability at least 1− r

|F| .

The following claim directly implies Lemma 4.2.

Claim 4.11. Suppose ρ satisfies the requirements of Lemma 4.3. Let U be
a random affine subspace in SubSp(R), and y be a random point in U . Let
Err be the event that g

U
(y) = A(F [y]), yet there is no ρ-permissible LDF

(with respect to the assignment of F ) whose restriction to U gives g
U
. Then

Pr[Err] = O(ρ1/3).

30



Proof. Let P be a random plane contained in the random subspace U . With-
out loss of generality, we may assume that y is a random point in P .

We define two events Err1 and Err2 such that Err1∪Err2 contains Err,
and bound the probability of each by O(ρ1/3). Let Err1 be the event that
g

U
(y) = A(F [y]), yet there is no ρ-permissible LDF f that agrees with g

U
on

P , namely f |P = g
U
|P . Let Err2 be the event that there is no ρ-permissible

LDF whose restriction to U gives g
U
, yet there exists such an LDF that

agrees with g
U

on P . Obviously Err ⊆ Err1 ∪ Err2.

Bounding Pr[Err2]. For a ρ-permissible LDF f , let Err3(f) be the event
that f |U 6= g

U
, yet f |P = g

U
|P . Err2 is contained in the union of the events

Err3(f) over all ρ-permissible LDFs f . For a ρ-permissible LDF f ,

Pr[Err3(f)|U = V ] ≤ r(F )/|F|

for every fixed subspace V ∈ SubSp(R), by applying Claim 4.10 to V . It
follows that Pr[Err3(f)] is bounded by r(F )/|F| as well. Since there are less
than 2/ρ ρ-permissible LDFs in all, we obtain that

Pr[Err2] <
2r(F )

ρ|F|
< ρ

(the last inequality follows easily from the restriction on ρ).

Bounding Pr[Err1]. We change the distribution of U , P and y, by letting
P be a random plane in Fd(F ), U be a random space in SubSp(R) that
contains P , and y be a random point in P . By Claim 4.8, the statistical
distance between the new distribution of P , which is uniform, and the original
distribution is O(|F|−1). Under both the original and the new distributions,
the distribution of U and y conditioned on P being a fixed plane P0 are
the same – U is a random space in SubSp(R) that contains P0 and y is a
random point in P0. It follows that the statistical distance between the new
joint distribution of U , P and y, and the original distribution is bounded by
O(|F|−1). It is hence enough to bound the probability of Err1 according to
the new distribution.

Let g
P

.
=g

U
|P be considered as a random plane-assignment for the (ran-

dom) plane P . The definition of Err1 can hence be articulated as the
event that g

P
(y) = A(F [y]), yet there is no ρ-permissible LDF f such

31



that g
P

= f |P . Claim 4.7 naturally extends to the case where the plane-
assignments is random as long as the assignment to F is not random, hence
it implies that Pr[Err2] = O(ρ1/3) (note that P is a uniformly random plane
and y is a random point in P ).

4.3 Overview of the CR-Constructor

Let us give an overview of the CR (Composition-Recursion) constructor.
Given a domain and a tuple, the CR constructor generates a constant-length
sequence of restricted LDF-readers that ends with the final, unrestricted, CR
LDF-reader. Each transformation of an LDF-reader R in the sequence into
the next (except for the final one) has the same two steps as follows.

Extension. In the first step, an extension-procedure is applied to each ac-
tive domain of R, replacing it by a domain with greatly reduced degree pa-
rameters in the price of an increased dimension parameter. The active degree
and dimension parameters of R are thus changed, but its other properties
are maintained.

Composition. The second step is the application of the composition proce-
dure, which incorporates new LDF-readers into R. First, it generates several
new LDF-readers using the SP constructor (actually, any constructor with
properties as in Lemma 4.1 will do), applying it to different active domains
and tuples. The domains generated in the process then become active in-
stead of the old active domains. These new active domains are of constant
dimension, and because of the extension step their degree parameters are
greatly reduced with respect to the active domains of R. Finally the newly
generated local-readers are plugged into the local-readers of R, generating
the next LDF-reader in the sequence.

We proceed as follows. First, in the next subsection, we give a formal
definition of an extension and show the two extension-procedures used by the
CR constructor. In Subsection 4.5 we describe the composition procedure
and prove its properties. In Subsection 4.6 we describe the CR constructor
and then we prove its correctness in Subsection 4.7.

32



4.4 Extensions

An extension of a domain F is a domain G which contains the variables of
F : Each variable F [x] is endowed with another name G[φ(x)]. The function
φ : Fd(F ) → Fd(G) is called the gluing of F to G. The extension must preserve
good and feasible assignments as follows.

Definition 11 (extension). Let F be a domain, and let G be a domain that
contains the variables of F . G is called an extension of F if the following
properties hold:

• Extension Property: Any good assignment A for F can be extended to a
good assignment for G, called the encoding-assignment or the encoding
LDF of A.

• Restriction Property: The restriction to F of any feasible assignment
for G is a feasible assignment for F .

The point about extensions is that they allow the representation of an
LDF assigned to a domain F by an encoding LDF with different properties.
We can hence replace the active domains of a restricted (ρ, ε)-LDF-reader
R by their extensions and obtain a restricted (ρ, ε)-LDF-reader where the
active degree parameters are different, usually considerably smaller.

Proposition 4.12 (extension). Let R be a restricted (ρ, ε)-LDF-reader, eval-
uating a tuple in a domain F . Suppose that for each active domain G of R,
e(G) is an extension of G, and that all extensions have the same parameters.
Then the LDF-reader R′ obtained from R by just declaring these extensions
as the active domains of R′ is a restricted (ρ, ε)-LDF-reader.

Proof. It is given that all the active domains ofR′ have the same parameters.
To show that R′ is a valid restricted LDF-reader we define an encoding-
assignment of R′ , for every good assignment to F .

Given a good assignment for F , let A be its encoding-assignment with re-
spect to R. For each active domain G of R, assign the encoding-assignment
of A(G) to its extension e(G). This obtains a good assignment for the rep-
resentation of R′ , and since the assignments to the variables of R are not
changed all local-tests are satisfied and all local-readers return evaluations
consistent with the assignment of F .

The fact that R′ has parameters (ρ, ε) follows easily from the restriction
property of each extension e(G), which implies that the restriction of an

33



active-feasible assignment for R′ yields an active-feasible assignment for R.

Extension-procedures. An extension-procedure is an algorithm which
given a domain F , generates an extension G of F . The running time of the
algorithm must be polynomial in |F|d(G). We next show the two extension-
procedures used by the CR constructor – the power-substitution and the lin-
earization extension-procedures. In the sequence of restricted LDF-readers
that is generated by the CR constructor (see the overview above), the power-
substitution extension-procedure is used in the generation of all restricted
LDF-readers but the last. The last restricted LDF-reader is generated us-
ing the linearization extension-procedure, and thus has active domains with
lower-degree and upper-degree 1. The final, unrestricted, CR LDF-reader
is obtained by replacing each such domain with variables that represent the
coefficients of a linear function.

Given a domain F , the power-substitution extension-procedure constructs
an extensionG with greatly reduced degree parameters in the price of increas-
ing the dimension parameter. The linearization extension-procedure, when
applied to a domain F , yields a domainG with lower-degree and upper-degree
1. The dimension of G is, however, exponential in the degree parameters of
F , hence the linearization is applied by the CR constructor only after very
small active degree parameters are achieved.

Gap consumption. Recall that if G is an extension of a domain F , then
for every good assignment to F there must be a good assignment for G
which extends it. This may (and in fact does, in all cases discussed herein)
impose a lower-bound on the lower-degree of G. Similarly, the restriction
property of extensions yields an upper-bound on the upper-degree of G. In
the case of the power-substitution extension-procedure, this forces the gap
between the upper and lower-degrees of G to be smaller than for F . That
is, if G is the extension of a domain F obtained by the power-substitution
extension-procedure, then r(G)/s(G) < r(F )/s(F ).

Since the CR constructor applies the power-substitution extension-procedure
several times as described in the overview, if it is applied to a domain F
where the gap between the upper-degree and lower-degree is not large enough
(see Lemma 3.2), domains are eventually created where the upper-degree is
smaller than the lower-degree. Since the linearization extension-procedure

34



is not applicable to such domains, the CR constructor would not be able to
construct an LDF-reader for F .

The power-substitution extension-procedure

We begin by stating the properties of the power-substitution extension-
procedure. For simplicity, we omit floor and ceiling signs where they are
not essential.

Proposition 4.13 (power-substitution). There exists an
extension-procedure, called power-substitution, which given a domain F and
a parameter b > 1, generates an extension G of F with the following param-
eters: For t

.
=
⌈
logb(s(F ) + 1)

⌉
,

• d(G) = d(F )t

• s(G) = d(F )t(b− 1)

• r(G) = r(F )/bt−1
(
≥ r(F )/s(F )

)
The procedure is based on the idea that by replacing powers of variables

in an LDF f with new auxiliary variables, the degree of f may be decreased
dramatically. For example, we fix an LDF over one variable f(u1) = u12

1 +u25
1

(the handling of multi-variate LDFs is very similar), and show an encoding
LDF g over three variables.

g is obtained from f by substituting powers of u1 with new variables.
Informally speaking, if v0 is considered as representing u1, v1 is considered
as representing u3

1, and v2 – as representing u9
1, then u12

1 = v1v2, and u25
1 =

v0v
2
1v

2
2 (note that we used the base 3 representation of 12 and 25). Replacing

these terms in f obtains an LDF g(v0, v1, v2) = v1v2+v0v
2
1v

2
2 of degree 5 rather

than 25. g encodes and extends f in the sense that g(u1, u
3
1, u

9
1) = f(u1) for

every u1 ∈ F .

For a domain G, obtained from a domain F using the power-substitution
extension-procedure with parameter b, an LDF f of degree s(F ) assigned to
F is encoded by an LDF g over Fd(G) as follows. g is obtained from f by
taking an auxiliary variable for each power of the form ub

e

i of a variable ui
of f . Any other power uji of ui can then be replaced by a monomial over
the new variables of degree at most b − 1 in each variable, using the base-b
representation of j.

35



Proof of Proposition 4.13: We begin by describing the power-substitution
extension-procedure and then prove that it has the required properties.

The procedure. Given a domain F and a parameter b, the procedure first
generates a domain G with parameters as stated in the proposition. It then
generates a gluing function φ : Fd(F ) → Fd(G) as follows:
For every x = (u1, . . . , ud(F )) ∈ Fd(F ), φ(x) is defined to be

(u1, u
b
1, u

b2

1 , . . . , u
bt−1

1 , u2, u
b
2, u

b2

2 , . . . , u
bt−1

2 , . . . , ud(F ), . . . , u
bt−1

d(F )) ∈ Fd(G)

Finally, each variable of the form G[φ(x)] is discarded, and the name G[φ(x)]
is endowed to the variable F [x] (which now has more than one name).

It is clear that the above procedure generates a domain G with the re-
quired parameters, in time polynomial in |F|d(G). It remains to show that G
is indeed an extension of F , namely that it has the extension and restriction
properties.

Extension property. Suppose F is assigned an [s(F ), d(F )]-LDF f (namely
a good assignment). We now show its encoding LDF g – it should be an
[s(G), d(G)]-LDF satisfying g ◦φ = f , so that when assigned to G it does not
conflict with F . First, let f(u1, . . . , ud(F )) be written as a polynomial for-
mula P over the variables u1, . . . , ud(F ). P is transformed into a polynomial
formula P ′ over the variables

v(1,0), v(1,1), .., v(1,t−1), v(2,0), v(2,1), .., v(2,t−1), . . . , v(d(F ),0), .., v(d(F ),t−1)

by replacing each term uji in P with a monomial m(i,j) over v(i,0), .., v(i,t−1):

Since the term uji appears in P we gather that j ≤ s(F ), and hence its
representation as a number in base b has at most t digits. Let et−1, . . . , e1, e0
be the base b representation of j, and let

m(i,j)
.
=(v(i,0))

e0(v(i,1))
e1 . . . (v(i,t−1))

et−1

Replacing each term uji in P with the monomial m(i,j) we obtain P ′, and
then we define g by

g(v(i,0), . . . , v(d(F ),t−1))
.
=P ′(v(i,0), . . . , v(d(F ),t−1))

36



Since each monomial m(i,j) is of degree at most t(b− 1), it easily follows
that g is an [s(G), d(G)]-LDF. Considering m(i,j) as a function over Fd(G), it

is also easy to see that for all (u1, . . . , ud(F )), (m(i,j) ◦φ)(u1, . . . , ud(F )) = uji .
It follows that g ◦ φ = f , and hence g is indeed an encoding-LDF.

Restriction property. Suppose G is given a feasible assignment, namely
it is assigned an [r(G), d(G)]-LDF g. The restriction of the assignment to F
is hence an LDF f over Fd(F ), given by f = g ◦ φ. The degree of f is at
most deg(f) = deg(g) deg(φ) = r(G)bt−1 = r(F ). The restriction is hence a
feasible assignment for F , as required.

The linearization extension-procedure

The linearization extension-procedure is very similar to the power-substitution
procedure. The idea is to encode an LDF f by a linear LDF, replacing every
monomial by a new auxiliary variable (recall that in the power-substitution,
auxiliary variables where only introduced for some powers of variables in f).
Since many auxiliary variables are used, the dimension increases dramati-
cally.

Proposition 4.14 (linearization). There exists an extension-procedure called
linearization, which given a domain F with s(F ) ≤ r(F ), generates an ex-
tension G with the following parameters: For t

.
=
(
s(F )+d(F )

d(F )

)
,

• d(G) = t

• s(G) = 1

• r(G) = 1

Proof. We begin by describing the linearization extension-procedure, and
then prove that it has the required properties.

The procedure. Given a domain F , the procedure first generates a do-
main G with parameters as stated above. To generate the gluing function,
the procedure picks an arbitrary enumeration m1, . . . ,mt of the monomial
functions of degree at most s(F ) over Fd(F ) (note that there are exactly t
such monomials). The gluing function φ : Fd(F ) → Fd(G) is then defined by

∀ x ∈ Fd(F ) φ(x)
.
=(m1(x), . . . ,mt(x))

37



Having defined the gluing function, F and G are then “glued” in the usual
way – each variable of the form G[φ(x)] is discarded, and the name G[φ(x)]
is endowed to the variable F [x] (which now has more than one name).

The procedure clearly generates a domain G with the required param-
eters, in time polynomial in |F|d(G). It remains to verify that G has the
extension and restriction properties.

Extension property. Suppose F is assigned an [s(F ), d(F )]-LDF f , and
let us construct its encoding LDF – a linear LDF over Fd(G) satisfying g◦φ =
f . First, one can write f as a linear-combination of the monomial functions
of degree at most s(F ):

f =
t∑
i=1

γimi

g is then defined by

∀ (v1, . . . , vt) ∈ Fd(G) g(v1, . . . , vt)
.
=

t∑
i=1

γivi

It is clear that g ◦ φ = f , as desired.

Restriction property. Suppose G is given a feasible assignment, namely
it is assigned a linear LDF g. The restriction of the assignment to F is the
LDF f = g ◦ φ. Since φ is of degree s(F ) and g is linear, the degree of f is
at most s(F ) ≤ r(F ), as required.

4.5 The Composition Procedure

We now turn to describe the composition procedure of the CR constructor
algorithm. It takes as input a restricted LDF-reader R, and generates a
restricted LDF-reader R′ with the same active degree parameters, but where
the dimension of the active domains is constant.

Suppose an LDF-reader R is given, which evaluates a tuple (u1, . . . , uk) in a
domain F . The composition procedure has two main steps: First it generates
new LDF-readers using the SP constructor as a sub-procedure, and then it
incorporates them into R.

38



Uniformization. Recall that each local-reader L of R has variables from
only one active domain, Dom?(L). Before applying the main two steps, it is
convenient to make sure that all local-readers L in R have the same number
of active variables, namely variables from Dom?(L). Denoting the maxi-
mal number of active variables in a local-reader of R by t, the composition
procedure adds arbitrary variables to local-readers so that all have t active
variables (the variables may be added anywhere in the local-reader, with zero
coefficients).

Generating new LDF-readers. For each local-reader L in R, the proce-
dure now generates an LDF-reader denoted RL as follows. If G is the active
domain of L and G[x1], . . . , G[xt] are its active variables, then RL is gener-
ated by calling the SP constructor (see Lemma 4.1) with parameters G and
(x1, . . . , xt).

Domain incorporation. The composition procedure now incorporates the
domains of the new LDF-readers into R: The newly generated domains are
added to the representation. The active domains of R cease to be active
– the active domains of R′ are the active domains of the newly generated
LDF-readers.

Local-reader incorporation. In an active-feasible assignment for R′ , the
active variables of R-local-readers L are no longer promised to be assigned
the evaluation of a single feasible LDF over Dom?(L). These variables are
therefore replaced by the evaluators of local-readers of RL, which supposedly
return evaluations of one of the (not many) permissible LDFs over Dom?(L).

For each pair of local-readers, L of R and M from RL, the composition
procedure generates a local-reader of R′ , denoted by L ◦M , as follows. Let
G denote the active domain of L, and let G[x1], . . . , G[xt] denote its active
variables. To obtain L ◦M each variable G[xi] in the evaluator or the local-
test of L is replaced by the i’th evaluator of M , and then the local-test of M
is added in conjunction to the local-test of L (where the G[xi]’s have been
replaced).

Properties of the composition procedure

We now analyze the properties of the composition procedure that are impor-
tant for its application by the CR constructor – the time it takes, and the

39



properties and parameters of the LDF-readers it generates. In the analysis
we assume that the composition procedure is applied to LDF-readers where
the the number of variables in each local-reader and the number of conjunc-
tions in each local-test is bounded by a constant, since the CR constructor
indeed applies it to such LDF-readers. Notice that under this assumption
it is clear that the composition procedure generates LDF-readers where the
number of variables in each local-reader and the number of conjunctions in
each local-test is also bounded by a (different) constant.

Time. When applied to an LDF-reader R, the composition procedure ap-
plies the SP constructor several times. Each call to the SP constructor takes
time polynomial in |F|d?(R), according to the definition of a constructor (note
that this is polynomial the number of variables in each of the active domains
of R). Since the number of calls to the SP constructor equals the number
of local-readers in R, it follows that overall the composition procedure takes
time polynomial in the size of R.

Encoding-assignments. When the composition procedure is applied to
an LDF-reader R that evaluates a tuple (x1, . . . , xk) in a domain F , the
resulting structure R′ has representation-variables and local-readers. To be
a valid LDF-reader, we show that for every good assignment A for F there is
an encoding-assignment with respect to R′ : First extend A to an encoding-
assignment A′ forR. In particular A′ assigns a good assignment to the active
domain Dom?(L) of each local-reader L in R. Then extend the assignment
of each active domain Dom?(L) to an encoding-assignment with respect to
RL. This obtains an assignment for all the variables of R′ . It is easy to
verify that it is an encoding-assignment of A with respect to R′ .

Parameters of R′. Given an LDF-reader R, the composition procedure
generates an LDF-reader R′ . The parameters of R′ can be computed from
the parameters of R according to the following composition lemma.

Lemma 4.15 (composition). Let R be a restricted (ρ, ε)-LDF-reader where
ε3/4 > (r?(R)/|F|)cgd?(R). Then the restricted LDF-reader R′, generated
from R by the composition procedure, has parameters (ρ,O(ε1/4)).

Before the formal proof is given, we describe its main ideas. There are two
types of ρ-erroneous local-readers L ◦M . One is where M is ε3/4-erroneous

40



– this happens for at most an O(ε1/4) fraction of the local-readers since the
RL’s are (ε3/4, O(ε1/4))-LDF-readers.

In case M is not erroneous, its evaluators yield evaluations of an ε3/4-
permissible LDF f with respect to the assignment of Dom?(L). L◦M is thus
ρ-erroneous if and only if L remains ρ-erroneous when Dom?(L) is assigned
the feasible LDF f . Since for any active-feasible assignment for R at most
an ε-fraction of its local-readers may be ρ-erroneous, and since the number
of ε3/4-permissible LDFs for every domain is less than 2ε−3/4, a counting
argument implies that the fraction of local-readers L ◦M where M is not
erroneous is bounded by 2ε−3/4 · ε = O(ε1/4).

Proof of Lemma 4.15:
Fix an active-feasible assignment A′ for the representation of R′ and

a parameter ρ′
.
=ε3/4, and let us divide the ρ-erroneous local-readers of R′

into two sets according to ρ′ – the peripheral-erroneous local-readers are the
local-readers L ◦M where M is ρ′-erroneous as a local-reader of RL, and the
core-erroneous are those where M is not ρ′-erroneous. We bound the fraction
of both types of local-readers by O(ε1/4).

Peripheral-erroneous local-readers. Since ρ′ > (r?(R)/|F|)cgd?(R),
Lemma 4.1 implies that every LDF-reader RL generated by the composi-
tion procedure has parameters (ρ′, O((ρ′)1/3)), so the fraction of ρ′-erroneous
local-readers in it is O((ρ′)1/3) = O(ε1/4). Hence for every local-reader L of
R, the fraction of peripheral-erroneous local-readers among local-readers of
the form L ◦M is O(ε1/4), and therefore the overall fraction of peripheral-
erroneous local-readers in R′ is bounded by O(ε1/4) as desired.

We move to bound the fraction of core-erroneous local-readers. We first show
that in such a local-reader L ◦M , L has to be erroneous as a local-reader of
R with respect to a certain class of assignments, as explained below.

The assignments A(G, g) for R. For an active domain G of R and an
[r(G), d(G)]-LDF g, we define a class A(G, g) of assignments for R, based on
A′. The elements of A(G, g) are the assignments for R that assign g to G,
and that are equal to A′ on all domains of R which are not active. Active
domains of R other than G may be assigned arbitrarily. A local-reader L
of R with Dom?(L) = G, may be either ρ-erroneous with respect to all
assignments in A(G, g), or with respect to none, because the assignments in

41



A(G, g) are all equal on the variables of L (recall that L cannot have variables
from active domains other than G).

Consider a local-reader L◦M that is core-erroneous. The evaluators of M
yield values consistent with an LDF g, which is ρ′-permissible with respect
to the assignment of G

.
=Dom?(L). It follows that as a local-reader of R, L is

ρ-erroneous with respect to the assignments in A(G, g) – these assignments
yield the same values for the variables of G as the evaluators of M , and give
the same values as A′ to all the other variables of L.

Core-erroneous local-readers. Let G be an active domain of R. Denote
by α(G, g) the fraction among R-local-readers, of local-readers whose active
domain is G and which are ρ-erroneous with respect to the assignments in
A(G, g). Denote by α(G) the maximum over all α(G, g).

Let A be the assignment obtained from A′ by assigning to each active
domain G of R an LDF g such that α(G, g) is maximized. Then for every
G, the fraction of R-local-readers whose active domain is G, and which
are ρ-erroneous with respect to A is α(G). The parameters of R imply
that the total fraction of ρ-erroneous local-readers is bounded by ε, hence∑

G α(G) ≤ ε.

For an active domain G of R we denote by γ(G) the fraction of local-
readers L in R whose active domain is G, and for which there exists a local-
reader M in RL where L ◦M is core-erroneous. We have seen that for an
R-local-reader L to be accounted in γ(G), it must be ρ-erroneous with respect
to the assignments in A(G, g), for some ρ′-permissible g. γ(G) is therefore
bounded by the sum

∑
α(G, g) taken over all permissible LDFs g, and so

by α(G) times the number of ρ′-permissible LDFs. By Proposition 3.4 the
number of ρ′-permissible LDFs is less than 2/ρ′, hence γ(G) < (2/ρ′)α(G),
and we obtain that∑

G

γ(G) < (2/ρ′)
∑
G

α(G) ≤ 2ε/ρ′ = 2ε1/4

Namely the fraction of R-local-readers L for which there exists a core-
erroneous local-reader L ◦M is bounded by O(ε1/4).

We show that this also bounds the total fraction of core-erroneous local-
readers: Note that there is the same number of local-readers in every LDF-
reader of the form RL – this follows from the definition of a constructor,

42



together with the fact that all active domains of R have the same degree
parameters. Hence for each local-reader L of R there is the same number
of local-readers of the form L ◦M in R′ . A simple counting-argument now
shows that the fraction of core-erroneous local-readers is also bounded by
O(ε1/4), as desired.

4.6 The CR Constructor

It is now the time to describe the actual CR constructor, proving the Composition-
Recursion Constructor Lemma (Lemma 3.2). Let F be a domain, and let
(x1, . . . , xk) be a k-tuple of points in Fd(F ) (where, as in Lemma 3.2, k is a
constant). We assume, under the notation as specified in Lemma 3.2, that
d(F ) = O(log1−β n), s(F ) ≤ |F|c1 , and r(F ) ≥ |F|c2 . For simplicity we
reset s(F ) and r(F ) so that the latter inequalities hold as equalities – note
that a (ρ, ε)-LDF-reader with respect to the new degree parameters remains
a (ρ, ε)-LDF-reader if s(F ) is reduced and r(F ) is increased to their original
values.

The CR constructor generates an (unrestricted) LDF-reader R evalu-
ating (x1, . . . , xk) in F . First, it generates a sequence R0, . . . ,RK , where
K = O( 1

1−β ) is a constant that will be chosen later, of restricted LDF-
readers. The transformation of each Ri into Ri+1 is accomplished in two
steps. At first a restricted LDF-reader R′

i is generated by applications of
an extension-procedure to the active domains of Ri, as described in the ex-
tension proposition (Proposition 4.12). The degree parameters of R′

i are
decreased with respect to Ri but the dimension is increased. Ri+1 is then
generated by applying the composition procedure to R′

i, thus the degree
parameters remains the same while the active dimension parameter becomes
constant. Finally RK has a constant active dimension and both of its active
degree parameters are 1, hence in a good or active-feasible assignment each
active domain of RK is assigned a constant-dimensional linear function. The
final unrestricted LDF-reader is obtained by replacing each active domain
of RK by a constant number of variables that represent the coefficients of a
linear function over it.

We now fully describe the generation of the sequence R0, . . . ,RK , and the
transformation of RK into R. We then show that the CR constructor has
the properties required by Lemma 3.2.

43



Generating R0. To generate the first restricted LDF-reader, R0, the CR
constructor applies the SP constructor to the domain F and the tuple (x1, . . . , xk).

Generating R1, . . . ,RK−1. From R0 the CR constructor continues to it-
eratively generate restricted LDF-readers as follows. Having generated Ri,
the constructor transforms it into a restricted LDF-reader R′

i by applying
the power-substitution extension-procedure to each active domain of Ri with
parameter

b = max { (s?(Ri) + 1)1/ log1−β n , 2 }

and taking these extensions to be the active domains of R′
i. The constructor

then generates Ri+1 by applying the composition procedure to R′
i. The CR

constructor iteratively generates LDF-readers as described above until finally
an LDF-reader RK−1 is generated such that(

s?(RK−1) + d?(RK−1)

d?(RK−1)

)
≤ log1−β n

As proven below, this occurs for a constant K.

Generating RK. The transformation of RK−1 into RK is carried simi-
larly to the previous transformations described above, only that R′

K−1 is
generated using the linearization extension-procedure instead of the power-
substitution extension-procedure. Note that for the linearization extension-
procedure to be applicable the active lower-degree parameter of RK−1 must
not be greater than its active upper-degree. We show below that this indeed
holds.

Generating R. The constructor now transforms RK into the final CR
LDF-reader. Having used the linearization extension-procedure to produce
R′

K−1, we gather that the active lower-degree of RK (which equals that
of R′

K−1) is 1. Its active dimension, d
.
=d?(RK), is constant since RK is

generated by the composition procedure. A good assignment to an active
domain G of RK is thus a linear LDF f , that can be represented using a
constant number of coefficient γi by

∀ (u1, . . . , ud) ∈ Fd g(u1, . . . , ud)
.
=

d∑
i=1

γiui

44



The CR constructor adds d variables to the representation, G1, . . . , Gd,
for each active domainG ofRK , to represent the coefficients γ1, . . . , γd above.
It then goes over all the local-readers and replaces every term G[(u1, . . . , ud)],
where G is an active-LDF, by

∑d
i=1Giui. It is now possible to deactivate or

even remove the active domains altogether (their variables no longer appear
anywhere), thus completing the generation of R.

4.7 The CR Constructor Works

Below it is proven that the CR constructor above has the properties stated
in Lemma 3.2. We show that it stops after a constant number of iterations
as stated above, and that it takes polynomial time. It is then shown that
although each transformation of Ri into Ri+1 consumes some of the lower-
degree to upper-degree gap, the active upper-degree of RK−1 is not smaller
than the active lower-degree (hence linearization extension-procedure is cor-
rectly used by the CR constructor). We conclude by showing that for an ap-
propriate constant c > 0, the constructor generates (ρ,O(ρc))-LDF-readers
for all ρ’s such that ρ > (r/|F|)cgd.

First of all observe that as noted in the description of the properties of the
composition procedure, for every constant i both the number of variables and
the number of conjunctions in each local-reader are bounded by a constant.

The number of iterations is constant.

It should be shown that for some constant K = O( 1
1−β ), the parameters of

the (K − 1)’th element in the sequence R0,R1, . . . of LDF-readers satisfy(
s?(RK−1) + d?(RK−1)

d?(RK−1)

)
≤ log1−β n (2)

To see this we examine the parameters of the LDF-readers in the sequence.

Parameters of the Ri’s. Consider an LDF-readerRi in the sequence, and
assume s?(Ri)+1 > 2log1−β n. The power-substitution extension-procedure is

applied to its active domains using the parameter b = (s?(Ri) + 1)1/ log1−β n,
hence the parameter t used within the extension-procedure is t = log1−β n
(see Proposition 4.13). Since the active dimension of Ri is constant, Propo-
sition 4.13 implies that

s?(Ri+1) = s?(R′
i) = d?(Ri)t(b− 1) = polylog(n)s?(Ri)

1/log1−β n (3)

45



As R0 is generated by the SP constructor, its active lower-degree pa-
rameter equals s(F ), so s?(R0) = |F|c1 = 2Θ(logβ n). By inductively using
Equation 3 one easily sees that as long as β − i(1− β) > 0,

s?(Ri) = 2Θ(logβ−i(1−β) n) (4)

(the poly-logarithmic factor is absorbed in the exponent).

Parameters of Rio. Fix io
.
=
⌈
β/(1− β)

⌉
, and note that it is constant (it

depends only on β, which remains constant throughout the proof). We have

1− β ≥ β − (io − 1)(1− β) > 0

hence by Equation 4,

s?(Rio−1) = 2Θ(logβ−(io−1)(1−β) n)

R′
io−1 is generated by applying the extension-procedure with parameter

b = max {
(
2Θ(logβ−io(1−β) n)

)
, 2 } = O(1)

since β − io(1 − β) ≤ 0. The parameter t used is poly-logarithmic in n,
specifically t = O(logβ−(io−1)(1−β) n) ≤ O(log1−β n). It hence follows from
Proposition 4.13 that s?(Rio) = s?(R′

io−1) is poly-logarithmic in n.

Parameters of Rio+1. The power-substitution extension-procedure is ap-
plied with parameter b = 2 to generate R′

io from Rio . Since s?(Rio) is poly-
logarithmic, t is poly-log-logarithmic in n, and therefore s?(R′

io) = s?(Rio+1)
is also poly-log-logarithmic in n. Since d?(Rio+1) is constant, it follows that(

s?(Rio+1) + d?(Rio+1)

d?(Rio+1)

)
≤ log1−β n (5)

Setting K
.
=io + 2, we have that K = O(1/(1− β)) is constant and that

Inequality 2 clearly holds for RK−1 = Rio+1.

46



The lower – upper-degree gap remains.

Going from RK−1 to R′
K−1, the CR constructor applies the linearization

extension-procedure to each active domain of RK−1. This procedure is only
applicable to domains where the lower-degree is not greater than the upper-
degree, hence we must show that s?(RK−1) ≤ r?(RK−1).

Let us compute how s?(Ri+1)/r?(Ri+1) behaves with respect to s?(Ri)/r?(Ri)
for 0 ≤ i < K − 1. Let bi denote the b-parameter with which the power-
substitution extension-procedure is applied to the active domains of Ri to
obtainR′

i, and let ti denote the associated t-parameter. According to Propo-
sition 4.13,

s?(Ri+1)

r?(Ri+1)
=
s?(R′

i)

r?(R′
i)
≤ s?(Ri) · d?(Ri)ti(bi − 1)

r?(Ri)
= O

(
s?(Ri)

r?(Ri)
· tibi

)
hence the ratio between the active lower-degree and the active upper-degree
is consumed by a factor of up to O(tibi) in the transition from Ri to Ri+1.

Let us bound tibi. By the choice of the parameters bi it follows that
ti ≤ log1−β n for all i. According to the above computations of s?(Ri), for
1 ≤ i < K − 3

bi = (s?(Ri) + 1)1/ log1−β n =
(
2Θ(logβ−i(1−β) n)

)1/ log1−β n

= 2Θ(logβ−(i+1)(1−β) n) = 2O(logβ−(1−β) n)

and therefore tibi = 2O(logβ−(1−β) n). For i = K − 3 or i = K − 2, bi = O(1) so
in these cases tibi is poly-logarithmic in n.

The initial lower-degree upper-degree fraction is s?(R0)/r?(R0) = |F|c1−c2 =

2−Θ(logβ n). This fraction is consumed in each of the constant number of itera-
tions by either 2O(logβ−(1−β) n) or a poly-logarithm, hence s?(RK−1)/r?(RK−1) =

2−Θ(logβ n) and in particular s?(RK−1) < r?(RK−1), as desired.

The CR constructor takes polynomial time

We need to show that the CR constructor takes polynomial time in |F|d(F ).
Since

|F|d(F ) =
(
2logβ n

)Θ(log1−β n)

= nΘ(1)

this is equivalent to showing that it takes polynomial time in n. The proof
is by showing that the generation of each LDF-reader Ri in the sequence
R0,R′

0,R1,R′
1, . . . ,RK takes polynomial time in n and in the size of the

47



predecessor of Ri (clearly the time it takes to generate the final LDF-reader
from RK is polynomial in the size of RK). This implies that the CR con-
structor indeed takes polynomial time.

Generating R0. The CR constructor generates R0 using the SP construc-
tor, which does take time polynomial in |F|d(F ).

Generating Ri for 0 < i ≤ K. The CR constructor generates Ri by ap-
plying the composition procedure to R′

i−1. As mentioned in Subsection 4.5,
this takes polynomial time in the size of R′

i−1.

Generating R′
i for i < K − 1. The CR constructor generates R′

i by ap-
plying the power-substitution extension-procedure to all active domains of
Ri. The time it takes is bounded by the size of Ri times the time needed for
each application of the extension-procedure. By the definition of extension-
procedures, each such application takes polynomial time in |F|d?(R′i). Ac-
cording to Proposition 4.13, d?(R′

i) = d?(Ri)ti = O(ti) ≤ O(log1−β n) where

ti is as denoted in the degree-gap computation, hence |F|d?(R′i) = nO(1).
Therefore each application of the extension procedure takes polynomial time
in n, as needed.

Generating R′
K−1. The difference between the generation of RK and that

of the other R′
i’s, is that the linearization extension-procedures is applied to

each active domain instead of the power-substitution extension-procedure.
Each such application still takes polynomial time in |F|d?(RK−1) but here
d?(RK−1) is calculated according to Proposition 4.14,

d?(RK−1) =

(
s?(RK−1) + d?(RK−1)

d?(RK−1)

)
≤ log1−β n

|F|d?(RK−1) is therefore still polynomial.

(ρ, ε)-parameters of the CR constructor.

We now show that R has parameters (ρ,O(ρ4−K/3)) for all ρ’s that satisfy
ρ > (r/|F|)cgd. We first prove by induction that for all i, Ri is a restricted

48



(ρ,O(ρ4−i/3))-LDF-reader: For R0 it follows directly from Lemma 4.1. As-
sume now that Ri−1 is a restricted (ρ,O(ρ4−i+1/3))-LDF-reader. The ex-
tension proposition (Proposition 4.12) implies that R′

i−1 has the same pa-
rameters. Since Ri is generated from R′

i−1 by the composition procedure,
Lemma 4.15 yields that Ri is a restricted (ρ,O(ρ4−i/3))-LDF-reader, as de-
sired (the O notation here is justified since we only make a constant number
of steps in the induction). Note that the requirement over ε in Lemma 4.15
holds here, since we apply it with ε3/4 = O(ρ4−i

) ≥ ρ > (r/|F|)cgd.

By the above induction,RK is a restricted (ρ,O(ρc))-LDF-reader for c
.
=4−K/3.

To show that R has the same parameters, we define for each assignment A
of R an active-feasible assignment A′ for RK , such that an RK-local-reader
is ρ-erroneous with respect to A′ if and only if the R-local-reader generated
from it is ρ-erroneous with respect to A. This would imply that R has the
same (ρ, ε) parameters as RK .

A′ differs from A only on active domains of RK – for an active domain
G and a variable G[(u1, . . . , ud)] in it we define

A′(G[(u1, . . . , ud)] )
.
=

d∑
i=1

A(Gi)ui

where the Gi’s are the new variables added in the generation of the final CR
constructor. A′ assigns to each active domain G a linear LDF represented
by the assignment of the Gi’s, and is hence active-feasible. It is clear from
the construction of R that a local-reader of RK is ρ-erroneous with respect
to A′ if and only if the R-local-reader obtained from it is ρ-erroneous with
respect to A.

5 The Sum-Check

In this section we prove the Sum-Check Lemma, Lemma 3.1. A reduction
algorithm is shown that given a system Ψ of n quadratic-equations, where
there are up to n variables in each equation, generates a system Ψsc whose
variables belong to domains, and where every equation accesses only a con-
stant number of variables. The reduction of Ψ into Ψsc is gap-preserving in
the sense that if Ψ is completely satisfiable then Ψsc can be completely satis-
fiable by a good assignment to its domains; and if there is no assignment for
Ψ that satisfies more than a 2

|F| fraction of its equations, then no feasible

49



assignment for Ψsc can satisfy more than a 2
|F| fraction of its equations as

well.
The reduction begins with the given system Ψ0

.
=Ψ, and puts it through a

constant number (O( 1
1−β ) ) of transformations, obtaining a sequence Ψ0,Ψ1, . . . ,Ψl

of equation-systems. The final system Ψsc is generated by a small alteration
of Ψl. The intermediate systems Ψi share a similar structure and are hence
called restricted equation-systems, as defined below. However, the number of
variables in their equations decreases from up to n in Ψ0, to a constant in
Ψl.

We continue as follows. The next subsection defines the structure of a
restricted equation-system. The transformation of each restricted equation-
system Ψi into Ψi+1 (the transformation of Ψ0 into Ψ1 is an exception) is per-
formed by an algorithm that is described in Subsection 5.2. This algorithm is
used for the transformation of each intermediate system into the next, but it
uses a different representation-procedure each time. Subsection 5.3 describes
the properties of the different representation-procedures used, and of the al-
gorithm which transforms Ψ0 into Ψ1. The complete reduction of Ψ into Ψsc

is finally described in Subsection 5.4.
The next subsections are dedicated to proving the correctness of the re-

duction (Subsection 5.5), and to the description and correctness proofs of the
product-check and the representation-procedures used (Subsections 5.6, 5.7,
5.8, and 5.9).

5.1 Restricted Equation-Systems

All the systems Ψi, i = 1, 2, . . . , l, in the sequence generated by the reduc-
tion algorithm have a similar structure. The following is an exact definition
thereof.

Definition 12 (restricted equation-systems). A restricted equation-system
Ψ, is a quadratic equation-system where some domains are considered active.
The dimension, and the upper and lower-degree parameters of the active do-
mains must all be the same. These parameters are called the active dimen-
sion, active upper-degree and active lower-degree of Ψ, and are denoted by
d?(Ψ), r?(Ψ) and s?(Ψ) respectively.

Each equation ψ ∈ Ψ is written in the form “ψ? = ψc”. ψ? is called the
active part of ψ and ψc is called the core of ψ. While ψc may contain any

50



variable of Ψ and can have quadratic as well as linear terms, ψ? contains
only linear terms and the variables in it must all be from one active domain,
called the active domain of ψ and denoted by Dom?(ψ). The variables that
appear in ψ? are called the active variables of ψ.

The equations in all intermediate equation-systems will have only a con-
stant number of variables in their core – all other variables appear in the
active part of the equations. It is hence useful to denote the number of
variables in the core of an equation and the number of active variables by
different names.

Definition 13 (active and core-dependency). Let Ψ be a restricted equation-
system. The active-dependency of an equation ψ ∈ Ψ, denoted by D?(ψ), is
defined as the number of variables in ψ?. The core-dependency of ψ, Dc(ψ),
is defined as the number of variables in ψc. The active-dependency of Ψ,
denoted by D?(Ψ), is the maximum of D?(ψ) over all equations ψ ∈ Ψ. The
core-dependency of Ψ is denoted Dc(Ψ), and is defined similarly.

As mentioned above, the core-dependency parameters of all the restricted
equation-systems in the sequence Ψ1, . . . ,Ψl are constants. The active-dependency
parameter is decreased gradually until it becomes constant in Ψl. The total
number of variables in an equation of Ψl is therefore constant, as required
by Lemma 3.1 (this property is preserved in the final transition from Ψl to
Ψsc).

5.2 The Main Transformation-Scheme

The transformation of each restricted equation-system Ψi into the next is
done by substituting each equation ψ of Ψi by a “representation” contain-
ing several new equations. The transformations of Ψi into Ψi+1 where i =
1, . . . , l − 1 are in fact of a more specific structure, and are carried out by
the system-representation algorithm. An important part of this algorithm is
the application of a representation-procedure to each equation in the system
(a different representation-procedure is used for different transformations).
We now define a representation-procedure, and then describe the system-
representation algorithm.

51



Representation-procedures

A representation-procedure is an algorithm that is applied to an equation ψ
and produces a set Eψ of conjunctions of equations, and a new domain de-
noted by Dom?(Eψ) (the new conjunctions may have variables from Dom?(Eψ)).
The conjunctions of Eψ represent ψ in the sense that they are only satisfied
by extensions to Dom?(Eψ), of assignments that also satisfy ψ – feasible as-
signments which do not satisfy ψ will satisfy almost none of the conjunctions
in Eψ.

For i = 1, . . . , l, Ψi+1 is obtained from Ψi by applying a representation-
procedure to each equation ψ ∈ Ψi, generating a system Ψ′

i of conjunctions
which is the union of the sets {Eψ}ψ∈Ψi

. Ψi+1 is then generated by replacing
the conjunctions with equations as in Proposition 3.6. If the representation-
procedure generates conjunctions with a small number of variables, then the
dependency parameter of Ψi+1 will be smaller than that of Ψi (eventually
the dependency is constant). Also, the active-domains of Ψi+1 are set to
be the new domains generated by the representation-procedure, and hence
the active parameters of Ψi+1 are changed. Actually the reduction generates
domains with different parameters, contrary to a requirement in Lemma 3.1.
This is rectified by applying a simple technical method at the end of the
reduction, that makes all the domains uniform.

An [s, d]-representation-procedure. An [s, d]-representation-procedure
is an algorithm A that receives as input an equation ψ in a restricted
equation-system Ψ, and generates a set Eψ of conjunctions of quadratic-
equations that “represent” ψ. It also generates a new domain denoted
Dom?(Eψ) – the conjunctions in Eψ may have variables from Dom?(Eψ) in
addition to any variables of Ψ. For a conjunction χ ∈ Eψ we define the
active domain of χ to be Dom?(χ)

.
=Dom?(Eψ). The variables of χ that are

associated with Dom?(χ) are called the active variables of χ.
The parameters r(Dom?(ψ)), s and d determine the parameters of the

new domain, namely Dom?(Eψ) must satisfy r(Dom?(Eψ)) = r(Dom?(ψ)),
s(Dom?(Eψ)) = s, and d(Dom?(Eψ)) = d. The running time of A should be

polynomial in |F|d = |Dom?(Eψ)| and the size of ψ.

Extension and restriction properties. For the conjunctions in Eψ to
properly represent ψ, it is required that A has the following extension and
restriction properties:

52



• Extension Property: For every good assignmentA for Ψ that satisfies ψ
there should be an s-degree LDF such that if it is assigned to Dom?(Eψ),
all the conjunctions in Eψ are satisfied.

• Restriction Property: If a feasible assignment for Ψ and for Dom?(Eψ)

satisfies at least an |F|−1/2 fraction of the conjunctions in Eψ, then ψ
is satisfied as well.

Uniformity. It is required that the parameters s and d be functions of Ψ
alone, so that the parameters of Dom?(Eψ) are the same for all equations
ψ ∈ Ψ to which A is applied. The number of conjunctions in Eψ should
also be independent of ψ (and be a function of Ψ alone). The number of
equations in each conjunction of Eψ should all be the same, and they must
be independent of ψ as well. In addition we require that the number of
equations in each conjunction is bounded by O(d).

Conjunction-structure. The conjunctions of Eψ should have the following
structure. ψc may appear at most once in at most one equation of each
conjunction χ ∈ Eψ. Except for the terms in this copy of ψc, all terms must
be linear and the number of terms not associated with the domain Dom?(Eψ)
must be bounded by a constant (that is, a number which is independent of
ψ and Ψ).

The system-representation algorithm.

Let us now describe how a restricted equation-system Ψi is transformed into
Ψi+1 using a representation-procedure A.

1. First, A is applied to every equation ψ ∈ Ψi.

2. A system Ψ′
i of conjunctions is constructed by taking the union of the

sets {Eψ}ψ∈Ψi
. Note that the number of equations in each conjunction

of Ψ′
i is the same, and that each equation of Ψi results in the same

number of conjunctions in Ψ′
i.

3. Ψi+1 is generated by replacing each conjunction χ ∈ Ψ′
i by all linear-

combinations of its equations (with multiplicities, if the same equation
occurs more than once). The active domain of each equation is set to
be the same as that of the conjunction from which it originated. The

53



active variables of such an equation are thus the same as the active
variables of the originating conjunction.

4. For each equation ξ ∈ Ψi+1, ξ? and ξc are defined as follows. The
variables associated with Dom?(ξ) are moved to the left-hand side of
the equation, and the other variables to the right-hand side (it follows
from the properties of A that variables associated with Dom?(ξ) only
appear in linear terms). The left-hand side of ξ is then defined to be
the active part ξ? of ξ, and the right-hand side is set to be its core, ξc.

Let us examine some of the properties of the system-representation algorithm.

The parameters of Ψi+1. Since the upper-degree parameter of the do-
mains produced by the representation-procedure A are the same as the
active upper-degree of Ψi, we have r?(Ψi+1) = r?(Ψi). If A is an [s, d]-
representation-procedure, then the active domains of Ψi+1 will all have lower-
degree s and dimension d, hence s?(Ψi+1) = s and d?(Ψi+1) = d.

Time. The system-representation algorithm takes polynomial time in the
size of Ψi and |F|d?(Ψi+1). Especially note that step 3 is applicable in poly-

nomial time in |F|d?(Ψi+1) and in the size of Ψi – the uniformity property
requires that the number of equations in each conjunction be bounded by
O(d?(Ψi+1)), hence the number of equations produced for each conjunction

is |F|O(d?(Ψi+1)).

Core-dependency. Note that the core-dependency of Ψi+1 is larger by at
most a constant than that of Ψi. Consider an equation ψ′ ∈ Ψi+1 whose origin
is an equation ψ ∈ Ψi. It has the variables of ψc, and at most a constant
number of variables not associated with Dom?(Eψ). The other variables are
associated with Dom?(Eψ), and are hence active, so the core-dependency of
ψ′ is larger by only a constant than that of ψ.

The gap. The extension and restriction properties of the representation-
procedure A that is used by the system-representation algorithm, ensure that
the fraction of satisfiable equations in Ψi with respect to good or feasible
assignments is close to the satisfiable fraction in Ψi+1. Here is a precise
definition of this property.

54



Definition 14 (gap-preserving algorithm). An algorithm that transforms a
given equation-system Ψi into an equation-system Ψi+1 is said to be gap-
preserving if it has the following properties:

• Completeness: If Ψi can be completely satisfied by a good assignment
then so can Ψi+1.

• Soundness: If a feasible assignment for Ψi+1 can satisfy a γ-fraction of
its equations, then there exists a feasible assignment for Ψi satisfying
at least a γ −O(|F|−1/2) fraction of its equations.

Note that even in a gap-preserving algorithm, the gap is actually con-
sumed by an O(|F|−1/2) fraction. The reduction deals with this by applying
a simple gap amplification technique in the transformation from the system
Ψl into the final system Ψsc.

Proposition 5.1. The system-representation algorithm is gap-preserving.

Proof. Assume that the system-representation algorithm is applied to a re-
stricted equation-system Ψi using a representation-procedure A, and outputs
Ψi+1.

The completeness property is implied from the extension property of A
as follows. Suppose Ψi is satisfied by an assignment A. According to the
extension property, A can be extended to assign for each ψ an s(Dom?(Eψ))
degree LDF to Dom?(Eψ) such that the conjunctions in Eψ are satisfied. The
system of conjunctions Ψ′

i, generated by the system-representation algorithm,
is hence satisfied by this extended assignment, and therefore Ψi+1 is satisfied
as well by Proposition 3.6.

Let us now prove the soundness property. Assume that Ψi+1 is γ-satisfiable
by a feasible assignment A. Then by Proposition 3.6, Ψ′

i is at least γ−|F|−1

satisfied by A. Recall that the number of conjunctions in the set Eψ is the

same for every ψ ∈ Ψi. Hence for at least a γ − 2|F|−1/2 fraction of the

sets Eψ, a |F|−1/2 fraction of the conjunctions are satisfied: Otherwise the

fraction of satisfied conjunctions in Ψi+1 would be less than γ − 2|F|−1/2 +

(1− γ + 2|F|−1/2)|F|−1/2 < γ − |F|−1.

By the restriction property of A, it follows that at least a γ − 2|F|−1/2

fraction of the equations in Ψi are satisfied byA. The proof is thus completed,
noting that the restriction of A to the variables of Ψi is feasible.

55



5.3 The Representation-Procedures

We now state the properties of the representation-procedures that are utilized
in reducing Ψ to Ψsc. Only the properties that are needed for the reduction
are discussed – the actual representation-procedures and the proofs of their
stated properties appear later.

Product-check.

The product-check algorithm is actually not a representation-procedure. Its
properties are stated here since it is applied to Ψ0 to produce Ψ1. The
generated system Ψ1 is a restricted equation-system with just one domain,
which is an active domain. Another important property of Ψ1 is that its
equation are condensed, as defined below. This property is necessary since the
arithmetization representation-procedure is applied to Ψ1 to obtain Ψ2, and
it can only be applied to systems with condensed equations. A more detailed
explanation of the use of condensed equations appears in Subsection 5.7,
which describes the arithmetization representation-procedure.

The principal cube of a domain. To define the principal cube we assume
that for each non-negative number s < |F| an arbitrary subset Hs of F is
fixed, of size s + 1. The principal cube of a domain F is defined to be the

subset
(
Hs(F )

)d(F ) ⊆ Fd(F ).

Definition 15 (condensed equations). Let ψ be an equation or a conjunc-
tion with an active domain F , in a restricted equation-system. ψ is said to
be condensed if all of its active variables are associated with points in the
principal cube of F . A restricted equation-system where all of its equations
are condensed is called condensed.

Lemma 5.2 (product-check). Let Ψ be a system of n quadratic equations
over F , where there are at most n variables in each equation. There ex-
ists a gap-preserving polynomial time algorithm that given such a system,
constructs a restricted equation-system Ψ∗ that has the following properties:

• Dc(Ψ∗) is bounded by a constant.

• Ψ∗ has exactly one domain F which is the active domain of all of its
equations. The parameters of F , that also determine the active degree

56



and dimension parameters of Ψ∗, are r(F ) = |F|1/4, s(F ) = |F|1/8,
and d(F ) = Θ(log1−β n).

• The equations in Ψ∗ are all condensed.

Arithmetization.

The arithmetization representation-procedure uses a technique from [BFL91]
to generate systems with a reduced active-dependency parameter. Given a
condensed equation ψ, it produces a representation Eψ where the number of
active variables in each conjunction is a function of the degree and dimen-
sion parameters of Dom?(ψ). If these parameters are small enough, then
the active-dependency is decreased. Note that the degree and dimension
parameters themselves are not decreased, hence an iterative application of
the arithmetization representation-procedure would not further reduce the
dependency.

Lemma 5.3 (arithmetization). Let Ψ be a restricted equation-system satisfy-

ing s?(Ψ)d?(Ψ) + r?(Ψ) < |F|1/2 and s?(Ψ) > 2, and where all the equations
are condensed.

There exists a [2d?(Ψ)s?(Ψ) , d?(Ψ) + 1]-representation-procedure called
arithmetization, applicable to the equations of such systems, that generates
conjunctions with at most 2d?(Ψ) · s?(Ψ) active variables.

Curve-extension.

When applied to equations with a small active-dependency parameter, the
curve-extension representation-procedure generates domains with small de-
gree and dimension parameters. The active dependency is not reduced (in
fact it increases somewhat), but then the system-representation algorithm
is applied to the resulting system using the arithmetization representation-
procedure, and the decrease in the degree and dimension parameters is uti-
lized to reduce the active dependency as well. By applying the system-
representation algorithm using the curve-extension and the arithmetization
representation-procedures alternately, the reduction gradually reduces the
active-dependency, the active degree and the dimension parameters of the
intermediate systems.

Lemma 5.4 (curve-extension). Let Ψ be a restricted equation-system such

that s?(Ψ)D?(Ψ) and r?(Ψ)D?(Ψ) are smaller than |F|1/2. There exists

57



an [s, d]-representation-procedure called curve-extension, applicable to the
equations of such systems, for

d
.
= min

{
d?(Ψ), log2

(
s?(Ψ) ·D?(Ψ)

)}
and s

.
=d ·max

{(
s?(Ψ) ·D?(Ψ)

) 1
d?(Ψ) , 2

}
that generates only condensed conjunctions.

Linearization.

Applying the system-representation algorithm using the linearization representation-
procedure obtains a system with constant active-dependency, as desired.
However it is applicable in polynomial time only to systems where the ac-
tive degree and dimension parameters are very small (the running time of a
representation-procedure is polynomial in the size of the newly generated do-
mains, which may become very large in the case of linearization). Hence the
reduction generates a sequence of intermediate equation-systems where the
active parameters are gradually reduced, until they finally become suitable
for the linearization representation-procedure to be applied.

Lemma 5.5 (linearization). Let Ψ be a system such that r?(Ψ)D?(Ψ) and

s?(Ψ)D?(Ψ) are smaller than (|F|1/2)/2.
There exists a [1, s?(Ψ)D?(Ψ)]-representation-procedure called lineariza-

tion and is applicable to such systems, that generates conjunctions with at
most 4 active variables.

Note that as mentioned above, for the linearization representation-procedure
to be applicable within the reduction, s?(Ψ)D?(Ψ) should be in fact consid-

erably smaller than the above bound of |F|1/2.

5.4 The Reduction Algorithm of Ψ Into Ψsc

We now state the reduction algorithm that transforms Ψ into Ψsc, as claimed
by Lemma 3.1. This algorithm is mostly a concatenation of the algorithms
that were discussed above. Starting with Ψ = Ψ0, the reduction algorithm
applies the product-check algorithm to obtain Ψ1, and from there it continues
to use the system-representation algorithm, applying it a constant ( O( 1

1−β ) )

58



number of times with different representation-procedures. This yields a se-
quence of equation-systems Ψ2, . . . ,Ψl. Ψsc is then obtained from Ψl by a
simple transformation.

We next give the sequence of transformations and representation-procedures
used to obtain Ψl from Ψ0, and then describe how Ψsc is obtained from Ψl.
In Subsection 5.5 it is shown that this reduction takes polynomial time in n,
and that the generated system Ψsc has the desired properties. Subsection 5.5
also shows that although each representation-procedures is applicable only
to systems with certain parameters, the reduction algorithm does use them
correctly.

The sequence of systems.

First, the reduction applies the product-check algorithm to Ψ0 and obtains
Ψ1. The next 2β

1−β systems§, Ψ2, . . . ,Ψ 2β
1−β

+1 are generated, by applying

the system-representation algorithm with the arithmetization and the curve-
extension representation-procedures alternately (the arithmetization is used
first). The system-representation algorithm is then applied once more to
Ψ 2β

1−β
+1 using the arithmetization representation-procedure, and then finally

it is applied once again using the linearization representation-procedure. The
outcome is Ψl, where l

.
= 2β

1−β + 3. Apart from a simple transformation that is
described shortly below, Ψl is the outcome of the reduction.

Properties of Ψl.

Before we describe how Ψl is transformed into Ψsc, let us overview its main
properties.

Constant dependency. Ψl has the desired dependency parameter, namely
a constant. Since it is generated using the linearization representation-
procedure, it follows from Lemma 5.5 that its active-dependency parameter
is constant. As for the core-dependency, Ψ1 is generated using the product-
check algorithm and therefore by Lemma 5.2 its core-dependency is constant.
Since the other systems in the sequence Ψ2, . . . ,Ψl, are generated using the
system-representation algorithm, the core-dependency increases only by a

§For simplicity of exposition, we assume here that β/(1− β) is an integer.

59



constant throughout the sequence (recall that the sequence is of constant
length).

Completeness, and soundness. Since each of the intermediate transfor-
mations that were applied so far are gap-preserving, it follows immediately
that the transformation from Ψ = Ψ0 into Ψl is gap preserving as well. Hence
Ψl has the following properties:

• Completeness: If Ψ can be completely satisfied by a good assignment
then so can Ψl.

• Weakened Soundness: If Ψ is no more than 2
|F| -satisfiable then Ψl can-

not be more than O(|F|−1/2)-satisfied by a feasible assignment.

From Ψl to Ψsc.

Ψl fails to comply with two requirements of Lemma 3.1: The parameters of its
domains are not all the same, and it has only a weakened soundness property,
which is less than what is required in Lemma 3.1. The reduction hence
transforms Ψl into Ψsc in two steps. First it resets the degree and dimension
parameters of its domains without changing any of the other properties, and
then it applies a simple technique to amplify the soundness property.

Parameter uniformization. First note that the upper-degree parameter
is the same for all the domains of Ψl since Ψ1 has only one domain, and
the representation-procedures generate domains with the same upper-degree
as the active domain of the equation to which they are applied. Denote
this upper-degree by r(Ψsc), and fix s(Ψsc) to be the maximum over all
lower-degrees of domains in Ψl, and d(Ψsc) to be the maximum over all the
dimension parameters. As shown in Subsection 5.5, s(Ψsc) is smaller than
r(Ψsc).

The reduction replaces each domain F of Ψl by a new domain F ′ with
r(F ′) = r(Ψsc), s(F

′) = s(Ψsc) and d(F ′) = d(Ψsc). Each variable F [x]
which appears in an equation of Ψl is then replaced by the variable F ′[x′],
where x′ is obtained from x by padding it with the appropriate number of
zeros (in case the dimension parameter of F ′ is larger than that of F ).

Note that the completeness and weakened soundness properties of Ψl are not
affected by the uniformization step. Resetting the lower-degree parameter

60



maintains the completeness property since the lower-degree parameters may
only be increased, and it has no effect on the soundness. The dimension
enlargement also preserves the completeness property, as an LDF that was
assigned to a domain before the change of dimension extends naturally to
the larger domain maintaining the same degree, and thus a satisfying assign-
ment can be translated through the uniformization step. Similarly, a feasible
assignment to a domain with an enlarged dimension translates to a feasible
assignment to the original domain by restriction, thus preserving the val-
ues of the variables appearing in the equations, and therefore the weakened
soundness property is also maintained.

Soundness amplification. To amplify the soundness of Ψl the reduction
first generates all conjunctions of three (not necessarily distinct) equations
from Ψl. It then replaces each such conjunction with the set of all linear-
combinations over its equations. The set of equations of Ψsc is thus

{
3∑
i=1

λiψi : ∀ i λi ∈ F , ψi ∈ Ψl}

Completeness and soundness for Ψsc. Since it is simple to observe that
the completeness property is maintained by the soundness amplification step,
let us verify that Ψsc has the soundness property. Assume then that Ψ is
no more than 2/|F|-satisfiable. As mentioned above, a feasible assignment

for Ψl cannot satisfy more than an O(|F|−1/2) < |F|−1/3 fraction of its equa-
tions, and this remains true when the domain-parameters of Ψl are reset.
The fraction of conjunctions of three equations that can be satisfied by a

feasible assignment is hence less than (|F|−1/3)
3

= 1/|F|. It then follows
from Proposition 3.6 that Ψsc cannot be more than 2/|F|-satisfiable by a
feasible assignment (Proposition 3.6 discusses general assignments but it is
easily extendible to feasible assignments).

5.5 The Reduction Works

Based on the stated properties of the representation-procedures, we now
verify that the reduction algorithm described above is applicable, and that
the generated system Ψsc has the required parameters. The completeness and
soundness properties of Ψsc have already been verified. From the properties

61



of Ψl and the construction of Ψsc it is obvious that the number of variables
in the equations of Ψsc is bounded by a constant and that the parameters of
its domains are all the same.

We now compute the active parameters of all the intermediate systems
Ψ1, . . . ,Ψl, and at the same time verify that all representation-procedures
are correctly used by the reduction. The computation will also imply that
the parameters of the domains of Ψsc are as required by Lemma 3.1, and
that the reduction takes polynomial time. For simplicity, we use O and Θ
notations in the computation, where any function that depends solely on β
is regarded as constant.

The active parameters of the intermediate systems

As mentioned above the domains of Ψsc, as well as the domains in all the
intermediate systems, all have the same upper-degree parameter, namely
r(Ψsc). It also equals the active upper-degree of Ψ1, hence r(Ψsc) = |F|1/4.
Let us consider the other parameters of the intermediate systems.

The parameters of Ψ1. Ψ1 is generated from Ψ0 using the product-check
algorithm (see Lemma 5.2), hence it has the parameters

• s?(Ψ1) = |F|1/8

• d?(Ψ1) = Θ(log1−β n)

The parameters of Ψ2. Ψ2 is obtained from Ψ1 using the arithmetization
representation-procedure. Note that the parameters of Ψ1 are such that the
arithmetization representation-procedure is applicable. The parameters of
Ψ2, as follows from the arithmetization lemma, are

• s?(Ψ2) = 2d?(Ψ1)s?(Ψ1) = Θ(|F|1/8 log1−β n) = 2Θ(logβ n)

• D?(Ψ2) = 2d?(Ψ1)s?(Ψ1) = Θ(|F|1/8 log1−β n) = 2Θ(logβ n)

• d?(Ψ2) = d?(Ψ1) + 1 = Θ(log1−β n)

The active parameters of Ψ3,Ψ4, . . . ,Ψl−5 (recall that l − 5 = 2β
1−β − 2) are

given by the following proposition.

62



Proposition 5.6. For i such that 3 ≤ 2i− 1 ≤ l − 6, the active parameters
of Ψ2i−1 (generated using the curve-extension representation-procedure) are

• s?(Ψ2i−1) = 2Θ(logβ−i(1−β) n)

• d?(Ψ2i−1) = Θ(log1−β n)

and for i such that 4 ≤ 2i ≤ l − 5, the parameters of Ψ2i (that is generated
using the arithmetization representation-procedure) are

• s?(Ψ2i) = 2Θ(logβ−i(1−β) n)

• D?(Ψ2i) = 2Θ(logβ−i(1−β) n)

• d?(Ψ2i) = Θ(log1−β n)

Proof. The proposition is obtained by induction over i, calculating the pa-
rameters of an equation-system according to the parameters of the previous
system and the properties of the appropriate representation-procedure. We
omit the calculation.

Note that the systems Ψ2i have parameters such that the curve-extension
representation-procedure is applicable, and that the arithmetization representation-
procedure is applicable for the Ψ2i−1 systems, hence the sequence of trans-
formation is valid up to and including Ψl−5. From the computations be-
low it is also implied that the representation-procedure used for generating
Ψl−4, . . . ,Ψl are also applicable.

Parameters of Ψl−4. Setting 2i = l − 5 = 2( β
1−β )− 2 in the above propo-

sition we obtain that s?(Ψl−5) = D?(Ψl−5) = 2Θ(log1−β n), and that d? =
Θ(log1−β n). Hence according to the Curve-Extension Lemma (Lemma 5.4),

• s?(Ψl−4) = Θ(log1−β n) ·Θ(1) = Θ(log1−β n)

• d?(Ψl−4) = Θ(log1−β n)

63



Parameters of Ψl−3. The active parameters of this system, that is ob-
tained using the arithmetization representation-procedure, are

• s?(Ψl−3) = Θ(log2(1−β) n)

• D?(Ψl−3) = Θ(log2(1−β) n)

• d?(Ψl−3) = Θ(log1−β n)

Parameters of Ψl−2. The system Ψl−2, generated using the curve-extension
representation-procedure, has parameters

• s?(Ψl−2) = Θ(log log n)

• d?(Ψl−2) = Θ(log log n)

Parameters of Ψl−1. This system, obtained via the arithmetization representation-
procedure, is the last before the linearization representation-procedure is ap-
plied. Its parameters are

• s?(Ψl−1) = Θ(log log2 n)

• D?(Ψl−1) = Θ(log log2 n)

• d?(Ψl−1) = Θ(log log n)

Parameters of Ψl. Ψl−1 obviously satisfies the conditions of the Lineariza-
tion Lemma (Lemma 5.5). According to the lemma, the parameters of Ψl

are

• s?(Ψl) = 1

• D?(Ψl) ≤ 4

• d?(Ψl) = Θ(log log4 n)

The parameters of Ψsc. By the above computations it is possible to de-
duce the parameters of the domains of Ψsc. Noting that s?(Ψ2) is the high-
est active low-degree parameter of all intermediate systems it follows that
s(Ψsc) = s?(Ψ2) = Θ(|F|1/8 log1−β n). Since r(Ψsc) = |F|1/4, it follows that
the requirements over s and r in Lemma 3.1 hold. The above computations
also imply that the active dimension of all intermediate systems is bounded
by O(log1−β n), and hence d(Ψsc) = Θ(log1−β n) as required.

64



Polynomial time. Since Ψsc was shown to satisfy all the requirements of
Lemma 3.1, it is only left to verify that it is obtained from Ψ0 in polynomial
time. Ψ1 is obtained in polynomial time, as stated in lemma 5.2. The
other intermediate systems Ψ2, . . . ,Ψl, are obtained by applying the system-
representation algorithm. As stated in Subsection 5.2, an application of the
system-representation algorithm to a system Ψi−1 takes polynomial time in
the size of Ψi−1 and in |F|d?(Ψi).

According to the computations above d?(Ψi) = O(log1−β n) for all i, so

|F|d?(Ψi) is polynomial in n. By induction it is therefore easy to verify that
all intermediate systems are produced in polynomial time in n. The trans-
formation of Ψl into Ψsc obviously takes polynomial time in the size of Ψl,
so the entire reduction takes polynomial time in n.

5.6 The Product-Check Lemma

In this subsection we prove the product-check lemma. We show an algorithm
that transforms a given quadratic-equation system into a restricted equation-
system with one domain, which has a relatively small (with respect to the
size of the field) dimension parameter.

The product-check algorithm actually disposes of all the variables of Ψ,
substituting them by the variables of the new domain F . Each variable of Ψ
and each product of two such variables is replaced by a variables of the form
F [x] that represent it. This is done so that for every assignment of Ψ there
is a good assignment to F , where the value of each variable F [x] is equal to
the value of the corresponding term in Ψ.

However, not every feasible assignment to F indeed represents an assign-
ment of Ψ. Consider two variables of Ψ that are represented by F [x1] and
F [x2] in F . There is no guarantee that the value of the variable F [x] that
represents their product is indeed the product of the values of F [x1] and
F [x2]. Each equation of Ψ is hence replicated several times in Ψ∗, where a
“product-test” is added in conjunction to each copy to verify the correctness
of the assignment.

The product-check algorithm

Setting parameters and generating F . Let h
.
=|F|1/9, and let d

.
=dlogh(n+ 1)e

(note that d = O(log1−β n) ). The procedure constructs a new domain F

65



with lower-degree parameter s(F ) = |F|1/8, upper-degree r(F ) = |F|1/4, and
dimension d(F ) = 2d.

Representing terms. The procedure chooses H ⊆ Hs(F ) ⊆ F to be an
arbitrary set of size h. It then selects an arbitrary injection v → xv, associ-
ating every variable of Ψ with a point in Hd ⊆ Fd (such an injection exists).
The procedure chooses another distinct point xI ∈ Hd to represent the value
1. Writing points in F2d as pairs (x1, x2) of points in Fd, each variable v of
Ψ is represented in Ψ∗ by F [(xv, xI)], and the product of two variables u, v
is represented by F [(xu, xv)].

Generating conjunctions. The procedure replaces each equation ψ of Ψ
by a set Eψ of conjunctions as follows. Given ψ, it produces one conjunction
in Eψ for every point (x1, x2) ∈ F2d, consisting of the following equations:

1. ψ itself, where every product u · v is replaced by F [(xu, xv)] and every
variable v in a linear term is replaced by F [(xv, xI)].

2. The product-test equation F [(x1, xI)] · F [(x2, xI)] = F [(x1, x2)].

3. The equation F [(xI , xI)] = 1, which verifies that xI indeed represents
the value 1.

From conjunctions to equations. Let Ψ′ denote the system of conjunc-
tions, containing the union of all the sets Eψ where ψ ∈ Ψ. The system Ψ∗ is
generated from Ψ′ by replacing each conjunction with all linear combinations
of its equations, as described in Proposition 3.6. For every χ ∈ Ψ∗ we set
Dom?(χ) to be F .

Observing the construction of the conjunctions and of Ψ∗, one notes that
there is at most one quadratic term in each equation χ ∈ Ψ∗, and at most one
more variable in each equation that is associated with a point outside H2d.
These terms (the quadratic term and the additional variable), and also the
constant term of each equation χ are moved, if they exist, to the right-hand
side of ψ and are set to be the core of ψ. The other terms are moved to the
left-hand side, which is set to be the active part of ψ. The active variables
of ψ are therefore all associated with points in H2d.

66



Proof of correctness

It is easy to observe that the product-check algorithm indeed takes polyno-
mial time. The generated system Ψ∗ has one domain F , with parameters as
stated by Lemma 5.2, and its core dependency is bounded by the constant
3 as required. Since the active variables of equations in Ψ∗ are all associ-

ated with points in H2d ⊆
(
Hs(F )

)d(F )
, namely with points in the principal

cube of F , we have that they are all condensed. It is left to show that the
product-check algorithm is gap-preserving.

Completeness. Suppose Ψ is satisfiable by a good assignment A. We
show a good assignment A′ for F which represents it, namely that

• A′(F [(xI , xI)]) = 1, and for every variable v of Ψ, A′(F [(xv, xI)]) =
A(v).

• F [(x1, xI)] · F [(x2, xI)] = F [(x1, x2)] for every x1, x2 ∈ Fd.

It is easy to observe that an assignment A′ with the above properties will
satisfy Ψ∗.

We define an LDF f : Fd → F and then use it to define A′. For points
xv ∈ Hd associated with a variable v of Ψ we set f(xv)

.
=A(v), and we

also set f(xI)
.
=1. For points x ∈ Hd not associated with variables, we

arbitrarily set f(x)
.
=0. We extend f over Fd by the unique extension to

an LDF of degree h − 1 in each variable. The total degree of f is there-
fore (h − 1)d = O(|F|1/9 log n). A′ will assign to F the LDF g, defined by
g(x1, x2)

.
=f(x1)f(x2). This is a good assignment since g is of total-degree

O(|F|1/9 log n) < |F|1/8 (the inequality is true for large-enough n). The other
stated properties of A′ are easy to verify.

Soundness. The next proposition is the first step in proving the soundness
property. It shows that in order for Ψ∗ to be |F|−5/8-satisfiable by a feasible
assignment A′, A′ must be consistent with an assignment A for Ψ. After
proving the proposition we show that in that case A must satisfy almost the
same (up to F−1) fraction of the equations in Ψ as A′ does for Ψ∗.

Proposition 5.7. Let A′ be an assignment of an r(F )-degree LDF g to F .

If it satisfies at least an |F|−5/8 fraction of the equations in Ψ∗, then there is
an assignment A for Ψ such that for every variable v of Ψ, A(v) = g(xv, xI),
and for every two variables u, v of Ψ A(u)A(v) = g(xu, xv).

67



Proof. Consider an assignment A′ as above, that assigns an LDF g to F
and satisfies at least a |F|−5/8 fraction of the equations of Ψ∗. We define an
[r(F ), d]-LDF f by f(x)

.
=g(x, xI), and set an assignment A for every variable

v of Ψ by A(v)
.
=f(xv) (hence the first stated property of A holds).

By Proposition 3.6, if A′ satisfies more than an |F|−5/8 fraction of the

equations of Ψ∗, then it satisfies an Ω(|F|−5/8) fraction of the conjunctions
in Ψ′. Then, for at least one of the equations ψ ∈ Ψ, the fraction of satisfied

conjunctions in Eψ is at least Ω(|F|−5/8). By observing the product-test in

each conjunction of Eψ, we obtain that for an Ω(|F|−5/8) fraction of the points
(x1, x2) ∈ F2d,

f(x1)f(x2) = A′(F [(x1, xI)])A′(F [(x2, xI)]) = A′(F [(x1, x2)]) = g(x1, x2)
(6)

In both sides of the equation we have LDFs of degree at most 2r(F ) =

O(|F|1/4). Different LDFs of such parameters may only agree on anO(|F|1/4/|F|) =

O(|F|−3/4) fraction of the points, however the LDFs in Equation 6 agree on

an Ω(|F|−5/8) fraction and are hence equal. We therefore have

∀ (x1, x2) ∈ F2d g(x1, x2) = f(x1)f(x2)

and specifically

∀ v, u A(u)A(v) = f(xu)f(xv) = g(xu, xv)

as required.

We now return to the soundness proof of the product-check procedure.
Assume that Ψ∗ is γ-satisfiable by a feasible assignment A′, and let us show
an assignment A satisfying a γ − O(|F|−1/2) fraction of the equations in

Ψ. We may assume that γ > |F|−1/2 (otherwise there is nothing to show),
and hence there exists an assignment A for Ψ that corresponds to A′ as in
Proposition 5.7.

The fraction of conjunctions in Ψ′ that are satisfied by A′ is, by Propo-
sition 3.6, at least γ − |F|−1. Hence for the same fraction of equations ψ of
Ψ, there is at least one conjunction χ ∈ Eψ which is satisfied by A′. One
of the equations in such a conjunction χ is a copy of ψ where certain terms
are replaced. According to Proposition 5.7 the replaced terms have the same
value as the replacing terms, and therefore ψ is satisfied by A. This implies
that at least a γ − |F|−1 > γ − |F|−1/2 fraction of the equations of Ψ′ are
satisfied by A.

68



5.7 The Arithmetization Representation-Procedure

In this subsection we show the arithmetization representation-procedure.
When applied to an equation ψ whose active LDF has small degree and di-
mension parameters, this procedure produces a representation Eψ with small
active-dependency. In essence, the arithmetization representation-procedure
utilizes the sum-check technique, from previous PCP proofs (see [BFL91]).

We describe the running of the arithmetization representation-procedure over
a given condensed equation ψ in a restricted equation-system Ψ. For short-
ness we denote E

.
=Dom?(ψ), r

.
=r(E), s

.
=s(E), and d

.
=d(E).

Outline of the algorithm. The equation ψ has the form ψ? = ψc. Since
ψ is condensed, ψ? can be written as a sum

ψ? :
∑
y∈Hs

d

κ(y)E[y]

where κ : Hs
d → F is a coefficient function. The assignment of the do-

main F
.
=Dom?(Eψ), that is generated by the arithmetization representation-

procedure, encodes the summands in ψ? and also many of the partial sums.
If the assignment of F is a correct encoding then it is possible to evaluate ψ?
by accessing only a few variables of F , since their values are evaluations of
large partial sums of ψ?.

Each conjunction of Eψ tests whether the assignment of F is a correct
encoding, and assuming that the encoding is indeed correct, verifies that ψ
holds. This is accomplished by accessing only a small number of variables
of F . To satisfy more than an |F|−1/2 fraction of the conjunctions in Eψ the
assignment of F must encode the summands in the active part of ψ correctly,
and also ψ must be satisfied.

The assignment for F that correctly encodes the summands of ψ is called
the sum-check LDF, and is defined below. Values of the sum-check LDF at
some points are evaluations of certain partial sums of ψ?, and values of the
sum-check LDF at other points are used in testing the correctness of the
encoding. It is necessary to define how the assignment of F should encode
the summands in ψ? before the construction of Eψ can be understood, so we
first describe the sum-check LDF and only then continue to the construction.

69



The sum-check LDF

We define the sum-check LDF of ψ with respect to a given good assignmentA
for E. First, we extend κ to an LDF of degree ds over Fd – such an extension
exists and is computable in polynomial time in |F|d < |F |, and hence it is
possible to compute the extension within the representation-procedure. We
now define d LDFs that encode different partial sums of ψ?. The sum-check
LDF is constructed from these LDFs below.

Definition 16 (the sum-check tree). For k = 1, 2, . . . , d, we define a func-
tion gk : Fk → F by

∀x ∈ Fk gk(x)
.
=

∑
y∈Hs

(d−k)

κ(x, y)A(E[x, y])

where “x, y” means the concatenation of the vector x and the vector y. The
sequence g1, . . . , gd is called the sum-check tree with respect to A(E).

For an x ∈ Hs
k the value of gk(x) is a partial sum of ψ?. The value of gd

at a point x ∈ Fd is just κ(x)A(E[x]), and hence gd is an LDF of degree at
most ds + s = (d + 1)s. It follows from the above definition that the other
gk’s have degree at most (d+ 1)s as well.

The LDFs g1, . . . , gd form a tree of partial sums in the following sense. Con-
sider a tree of depth d, where every non-leaf node has |F| offsprings, and
every node of depth k > 0 is labeled by a point evaluation of gk. We label
the root by

∑
y∈Hs

d κ(y)A(E[y]), which is the evaluation of ψ?. The root has
an offspring labeled by g1(z), for each z ∈ F . Note that for z ∈ Hs, g1(z)
is a partial sum of ψ?, and in fact the root-label is the sum of labels of its
offsprings that are assigned g1(z) for z ∈ Hs.

For a non-leaf node that has been labeled gk(x), we label one of its off-
springs by gk+1(x, z) for every z ∈ F . From the definition of the gk’s it
follows that for every k < d and x ∈ Fk,

gk(x) =
∑
z∈Hs

gk+1(x, z) (7)

Hence the label of each node labeled gk(x) in the tree is the sum of labels of
its s+ 1 offsprings that are assigned gk+1(x, z) for z ∈ Hs.

70



The sum-check LDF. We now incorporate all the LDFs g1, . . . , gk into a
single LDF of degree at most (d+ 1)s+ d ≤ 2ds, called the sum-check LDF.
For this purpose, let Hd−1 = {a1, . . . , ad} be an arbitrary subset of size d in
F . The sum-check LDF, denoted by f , will satisfy

f(ak, x1, . . . , xk, 0, . . . , 0) = gk(x1, . . . , xk) (8)

for every 1 ≤ k ≤ d, and every x = (x1, . . . , xk) ∈ Fk. There exists such an
f – for example it can be defined by

f(x0, x1, . . . , xd)
.
=

d∑
k=1

(∏
i 6=k

x0 − ai
ak − ai

)
· gk(x1, .., xk)

Properties of the sum-check LDF. From Equation 8 and the discussion
above it follows that the sum-check LDF has the following properties:

•
∑

z∈Hs
f [(a1, z, 0, . . . , 0)] is the evaluation of ψ?, as follows from the

explanation after Definition 16.

• For k = 1, 2, . . . , (d− 1) and every (x1, . . . , xk) ∈ Fk

f [(ak, x1, . . . , xk, 0, . . . , 0)] =
∑
z∈Hs

f [(ak+1, x1, . . . , xk, z, 0, . . . , 0)]

as follows from Equation 7.

• For every (x1, . . . , xd) ∈ Fd,

f [(ad, x1, . . . , xd)] = κ(x1, . . . , xd)A(E[x1, . . . , xd])

as follows from the explanation after Definition 16.

The arithmetization representation-procedure

We now give the details of the arithmetization representation procedure. At
first the representation-procedure produces a new domain F = Dom?(Eψ)
with parameters as stated in Lemma 5.3, namely r(F ) = r, s(F ) = 2ds
and d(F ) = d + 1. The procedure generates conjunctions that can only be
satisfied if F is assigned the sum-check f . For each x = (x1, . . . , xd) ∈ Fd

the procedure generates one conjunction, denoted by χ[x], consisting of the
following d+ 1 equations:

71



• The root equation: ∑
z∈Hs

F [a1, z, 0, . . . , 0] = ψc

• The d− 1 path equations for k = 1, 2, . . . , (d− 1):

F [ak, x1, . . . , xk, 0, . . . , 0] =
∑
z∈Hz

F [ak+1, x1, . . . , xk, z, 0, . . . , 0]

• The leaf equation:

F [ad, x1, . . . , xd] = κ(x1, . . . , xd)E[x1, . . . , xd]

Proof of correctness

Let us show that the arithmetization representation-procedure has the re-
quired properties. It is easy to verify that it runs in polynomial time, and
that it generates a domain F = Dom?(ψ) with parameters as required. As for
the number of active variables in each conjunction, there are s+ 1 variables
associated with F in the root equation, s + 2 variables in each of the d − 1
path equations, and one variable in the leaf equation. The total number is
therefore s + 1 + (d − 1)(s + 2) + 1 = ds + 2d ≤ 2ds as required. It is left
only to verify the extension and restriction properties.

Extension. Let A be a good assignment for the variables of Ψ. Extend A
to F by assigning the sum-check LDF f to it (f is of degree less than s(F )).
From the properties of f stated above, it easily follows that if ψ is satisfied
by A then all the conjunctions of Eψ are also satisfied by the extension of A.

Restriction. Let A be a feasible assignment for the variables of Ψ and for
F , and assume that at least an |F|−1/2 fraction of the conjunctions in Eψ are
satisfied. We define the sum-check tree g1, . . . , gd and the sum-check LDF
f with respect to the assignment of E, as in Definition 16 and Equation 8
above. Since now the degree of the LDF assigned to E may be up to r,
the degree of the gk’s can be up to sd + r < |F|1/2. We claim that F must
be assigned f , at least at the points that matter, as stated in the following
claim.

72



Claim 5.8 (sum-check). Suppose that at least an |F|−1/2 fraction of the
conjunctions in Eψ are satisfied by a feasible assignment. Then for every k,
1 ≤ k ≤ d, and every x = (x1, . . . , xk) ∈ Fk,

A(F [ak, x1, . . . , xk, 0, . . . , 0]) = gk(x1, . . . , xk)

Before proving the claim we show how it implies the restriction property.
Note that the root equation is common to all the conjunctions in Eψ, and
hence it must be satisfied. So together with the claim we have that the
evaluation of ψc equals

∑
z∈Hs

f(a1, z, 0, . . . , 0), which by the properties of
the sum-check LDF equals the evaluation of ψ?. Therefore ψ is satisfied, as
required.

Proof of the sum-check claim. For every k, 1 ≤ k ≤ d, we define an
[r, k]-degree LDF g′k by

g′k(x1, . . . , xk)
.
=A(F [ak, x1, . . . , xk, 0, . . . , 0])

For the sake of contradiction, assume that g′k 6= gk for some k, and choose
k to be the highest for which this inequality holds. We distinguish between
two cases for k:

• k = d: At least an |F|−1/2 fraction of the conjunctions of Eψ are sat-
isfied, and therefore at least the same fraction of the leaf equations
are satisfied. So for at least an |F|−1/2 fraction of the points x ∈ Fd,
g′d(x) = A(F [ad, x]) = κ(x)A(E[x]) = gd(x). But according to our
assumption g′d 6= gd and therefore their evaluations can not be equal on

more than an sd+r
|F| < |F|−1/2 fraction of the points, a contradiction.

• 1 ≤ k < d: At least an |F|−1/2 fraction of the conjunctions of Eψ are
satisfied, and therefore in at least the same fraction of them the k’th
path equation is satisfied. It follows that for at least an |F|−1/2 fraction
of the points x = (x1, . . . , xk) ∈ Fk,

g′k(x) = A(F [ak, x1, . . . , xk, 0, . . . , 0]) =

=
∑
z∈Hs

A(F [ak+1, x1, . . . , xk, z, 0, . . . , 0]) =

=
∑
z∈Hs

g′k+1(x1, . . . , xk, z)

73



By the maximality of k we have that g′k+1 = gk+1, hence for at least an

|F|−1/2 fraction of the points x,

g′k(x) =
∑
z∈Hs

gk+1(x1, . . . , xk, z) = gk(x) (by Equation 7)

This is a contradiction to our assumption that g′k 6= gk, since they are
both of degree at most sd+r and therefore our assumption implies that
they can be equal on at most an sd+r

|F| < |F|−1/2 fraction of the points.

5.8 The Curve-Extension Representation-Procedure

In this subsection we show the curve-extension representation-procedure. If
it is applied to an equation with a small enough active-dependency, then
the new generated domain has a small active lower-degree parameter, and
for equations with even smaller active-dependency the active dimension pa-
rameter becomes small as well. The conjunctions that are generated by the
procedure are all condensed.

Let us describe the running of the curve-extension representation-procedure
over a given equation ψ. For shortness we denote E

.
=Dom?(ψ), r

.
=r(E),

s
.
=s(E), d

.
=d(E), and D

.
=D?(ψ).

The principle of the algorithm. Denote the active variables of ψ by
E[x1], . . . , E[xD]. We define below a polynomial vector function of small de-
gree Γ : F → Fd, that goes through the points x1, . . . , xD. The assignment of
the domain F

.
=Dom?(Eψ), generated by the curve-extension representation-

procedure, encodes the restriction of the assignment of E to the points of the
curve Γ.

Variables in F associated with certain points in its principal cube have,
in a correct encoding, the values of the assignment of E at certain points on
Γ. The values at other points on Γ can be computed by interpolation over
these variables of F , making use of the fact that Γ has a small degree, and
hence restricting the assignment of E to its points yields an LDF of small
degree as well. The conjunctions of Eψ use the variables of F to evaluate ψ?
and verify that ψ is satisfied, and they also test whether F is indeed given a
correct encoding.

74



The curve-extension algorithm

At first the representation-procedure produces a new domain F = Dom?(Eψ)
with parameters as stated in Lemma 5.4, that is

r(F ) = r, d(F ) = min {d, log2(sD)}, and s(F ) = d(F )·max
{(
s ·D

)1/d
, 2
}

Each element of Eψ will be a conjunction of two condensed equations. One
is an equation ψ′, derived from ψ by replacing each of its active variables
with a variable of F that “encodes” it. The other equation is taken from
a set of equations called a curve-verifier. These equations are not satisfied
unless the assignment of F is a correct encoding. Before the construction of
these equations, we define the curve Γ and describe how the assignment of
F encodes the restriction of the assignment of E to the points of Γ.

Definition 17 (the curve Γ). Let HsD−1 be an arbitrary subset of F of size
sD, and denote its elements by a1, . . . , asD. Γ : F → Fd is defined to be the
(D − 1)-degree polynomial vector function satisfying

∀ 1 ≤ i ≤ D Γ(ai) = xi

where E[x1], . . . , E[xD] are the active variables of ψ. Γ can clearly be com-
puted in polynomial-time.

Associating points with a1, . . . , asD. Let
(
Hs(F )

)d(F )
be the principal

cube of F . The procedure chooses an arbitrary subset H ⊆ Hs(F ) of size

s(F )/d(F ) = max
{(
s ·D

)1/d
, 2
}
, and associates to each point ai in HsD−1 a

distinct point yi in Hd(F ) (note that Hd(F ) is a subset of the principal cube
of F and that it contains at least sD points). Each of the variables F [yi] will
encode the value of E[Γ(ai)]. The active variables of the conjunctions in Eψ
will all be of the form F [yi], so the conjunctions of Eψ are condensed. It is
important to note that any assignment to the variables F [yi] can be extended
by interpolation to a good assignment for F , as is shown below.

Generating the curve-verifier. Suppose E is assigned an LDF g. Then
a correct encoding assigns to F [yi] the value of g at Γ(ai). Since Γ is of
degree at most D − 1, if g is of degree s then g ◦ Γ is of degree less than
sD − 1. The value of g at any point on the curve Γ can hence be evaluated
by interpolation over its values at Γ(a1), . . . ,Γ(asD) or, if F is assigned a

75



correct encoding, by interpolation over the variables F [y1], . . . , F [ysD]. This
is stated precisely in the following claim.

Claim 5.9 (curve-interpolation). Let s and D be such that sD < |F|. Then
there exists a polynomial (in |F|) algorithm that receives as input a point
x ∈ F and outputs a coefficient function κx : {a1, . . . , asD} → F with the
following property: Every function f ′ : {a1, . . . , asD} → F has a unique
extension to an [sD − 1, 1]-LDF f over F , and f satisfies

∀x ∈ F f(x) =
sD∑
i=1

κx(ai)f
′(ai)

The curve-verifier will have one equation χ[x] for each point x ∈ F .
χ[x] verifies that the interpolation over F [y1], . . . , F [ysD] using the κx from
Claim 5.9 yields the value of E[Γ(x)], as it should if F is assigned the encoding
of a good assignment to E:

χ[x] :
sD∑
i=1

κx(ai)F [yi] = E[Γ(x)]

The next claim shows that the curve-verifier equations cannot be satisfied
unless F is indeed assigned a correct encoding.

Claim 5.10. Let A be a feasible assignment for E and F . Let f be the
[sD − 1, 1]-LDF defined by f(x) =

∑sD
i=1 κx(ai)A(F [yi]), as in Claim 5.9.

Then either A(E) ◦ Γ = f , in which case all of the curve-verifier equations

are satisfied, or less than an |F|−1/2 fraction of the curve-verifier equations
are satisfied.

Proof. Note that an equation χ[x] of the curve-verifier is satisfied if and only
if E[Γ(x)] is assigned f(x). It is thus obvious that these equations will all be
satisfied if A(E) ◦ Γ = f . If this is not the case, then A(E) ◦ Γ and f are

in particular two different [rD, 1]-LDFs. Since rD < |F|1/2 it follows that

their evaluations differ on all but less than an |F|1/2/|F| ≤ |F|−1/2 fraction

of the points. Hence if A(E) ◦ Γ 6= f , then less than an |F|−1/2 fraction of
the curve-verifier equations can be satisfied.

76



Generating ψ′. The procedure generates an equation ψ′ by replacing each
active variable E[xi] in ψ? with the variable F [yi]. If F is assigned a correct
encoding then ψ′ simulates ψ, as stated in the following claim.

Claim 5.11. Let A be an assignment for Ψ and for F . Let f be the [sD −
1, 1]-degree LDF defined by f(x) =

∑sD
i=1 κx(ai)A(F [yi]), as in Claim 5.9,

and assume that A(E) ◦ Γ = f . In that case ψ is satisfied by A if and only
if ψ′ is satisfied by it.

Proof. According to the definition of Γ, Γ(ai) = xi for i = 1, . . . , D. Hence
it follows from the assumption that A(E[xi]) = A(E[Γ(ai)]) = f(ai) for
every i, 1 ≤ i ≤ D. But according to Claim 5.9 f(ai) = A(F [yi]) for every i.
Therefore the assignment of every active variable E[xi] equals the assignment
of F [yi]. The claim immediately follows.

Generating Eψ. The set Eψ is composed of all the conjunctions of ψ′ and
an equation χ[x] of the curve-verifier.

Proof of correctness

The domain F that is generated by the curve-extension representation-procedure
has the parameters required by Lemma 5.4, and the conjunctions of Eψ are all
condensed. It is also easy to verify that the curve-extension representation-
procedure takes polynomial time in the size of ψ and in |F |. To complete the
proof of Lemma 5.4 it remains to show that Eψ has the extension and restric-
tion properties. The other properties required of a representation-procedure
are obvious.

• Extension: Let A be a good assignment for the variables of Ψ that sat-
isfies ψ. We extend A by assigning an s(F )-degree LDF to F such that
all the conjunctions of Eψ are satisfied. The LDF g, to be assigned to
F , is defined as follows. First, let g(yi)

.
=A(E[Γ(ai)]) for i = 1, . . . , sD.

Since all the yi’s are contained in Hd(F ), there exists an extension of g
to an LDF over Fd(F ) of degree at most s(F )/d(F ) in each variable.
The total degree of this g is hence at most s(F ). We assign g to F .
Then A(F [yi]) = A(E[Γ(ai)]) for every i, and so Claim 5.11 implies
that ψ′ is satisfied.

77



Let f be the [sD−1, 1]-LDF defined by f
.
=A(E)◦Γ. Then by Claim 5.9,

∀x ∈ F f(x) =
sD∑
i=1

κx(ai)f(ai) =
sD∑
i=1

κx(ai)A(E[Γ(ai)])

=
sD∑
i=1

κx(ai)A(F [yi])

where the coefficients κx(ai) are as in Claim 5.9. It hence follows that
the curve-verifier equations are all satisfied by the extended A. Since
Eψ consists of conjunctions of ψ′ and equations of the curve-verifier, we
have that all of its conjunctions are satisfied.

• Restriction: Let A be a feasible assignment for the variables of Ψ and
for F , and assume that at least an |F|−1/2 fraction of the conjunctions
in Eψ are satisfied by A. Since ψ′ appears in every conjunction of

Eψ, ψ′ is satisfied, and at least an |F|−1/2 fraction of the curve-verifier
equations are satisfied as well.

Define an (sD − 1)-degree LDF f by

∀x ∈ F f(x)
.
=

sD∑
i=1

κx(ai)A(F [yi])

where the coefficients κx(ai) are as in Claim 5.9. It follows from
Claim 5.10 that A(E) ◦ Γ = f . Since ψ′ is satisfied, it then follows
from Claim 5.11 that ψ is satisfied as well, thereby proving the restric-
tion property.

5.9 The Linearization Representation-Procedure

In this subsection we show the Linearization representation-procedure. It is
the final representation-procedure used in the sequence of transformations,
resulting in a system of a constant active-dependency parameter.

The linearization representation-procedure is similar to the curve-extension.
When applied to an equation ψ, it uses the newly generated domain to en-
code the restriction of the assignment of Dom?(ψ) to a curve that contains
the active variables of ψ. The curve-extension representation-procedure en-
coded directly the assignment at only some points of the curve; to obtain

78



other evaluations it applied interpolation by computing an appropriate linear-
combinations over the encoded values.

The linearization representation-procedure applies a method of [ALM+92],
using the newly generated domain to encode all linear-combinations of these
values. Hence each curve-verifier equation requires just one active variable of
the new domain. Also, since the active part of ψ is a linear-combination of
variables associated with points on the curve, ψ? can also be evaluated using
one access to the new domain.

The linearization representation-procedure

We now describe the linearization representation-procedure. We fix the nota-
tions E

.
=Dom?(ψ), r

.
=r(E), s

.
=s(E), d

.
=d(E), and D

.
=D?(ψ). The lineariza-

tion representation-procedure first generates a new domain F with parame-
ters as stated in Lemma 5.5, that is

r(F ) = r, s(F ) = 1, and d(F ) = sD

In each conjunction in Eψ there will be an equation ψ′, that is derived by
replacing the active part of ψ with a variable of F that encodes it. An-
other equation in each conjunction is taken from a set of equations called
a linearization-verifier, that are not satisfied unless F is assigned a homo-
geneous linear-LDF. As in the curve-extension representation-procedure, the
last equation in each conjunction is taken from a set called the curve-verifier,
whose equations are not satisfied unless the assignment of F is a correct en-
coding.

Generation of the linearization-verifier. The linearization-verifier has
one equation χ[y, t] for every y ∈ Fd(F ) and t ∈ F :

χ[y, t] : tF [y] = F [ty]

The equations of the linearization-verifier are not satisfied unless F is as-
signed a linear homogeneous LDF. To prove it we need the following obser-
vation.

Claim 5.12. Let f be an [r(F ), d(F )]-LDF which is not linear homogeneous.
For every point y ∈ F sD we define an [r(F ), 1]-LDF φy by

∀ t ∈ F φy(t)
.
=f(ty)

79



Then φy is linear homogeneous for less than an (|F|−1/2)/2 fraction of the
points y.

Proof. If f is linear but not homogeneous then obviously none of the φy’s
are homogeneous, so we assume that m

.
= deg(f) > 1. Then f can be written

as a sum f = f1 + f2 where f1 is a homogeneous¶ function of degree m, and
deg(f2) < m. Then φy(t) = f1(y)t

m + f2(ty). The second term in this sum is
of degree less than m as an LDF over t. The first term is an LDF of degree
exactly m in t (and in particular it is not linear), unless f1(y) = 0.

It follows that φy is not linear (and in particular not linear-homogeneous)

unless f1(y) = 0, which occurs for at most an m
|F| ≤

r(F )
|F| ≤ |F|−1/2/2 fraction

of the points y, as we needed to show.

The next claim shows that the linearization-verifier equations are indeed
satisfied only if F is assigned a linear-homogeneous function.

Claim 5.13. Let A be a feasible assignment for F . Then less than an |F|−1/2

fraction of the linearization-verifier equations are satisfied unless F is as-
signed a linear-homogeneous function, in which case all of the equations are
satisfied.

Proof. It is clear that the linearization-verifier equations are all satisfied in
the case that F is assigned a linear-homogeneous function. We therefore
suppose that A(F ) is not linear homogeneous, and prove that less than an

|F|−1/2 fraction of the equations are satisfied. Define for every y ∈ Fd(F ) the
[r(F ), 1]-LDF φy as in the proof of Claim 5.12:

∀ t ∈ F φy(t)
.
=A(F [ty])

As proven there, φy is linear-homogeneous for less than an (|F|−1/2)/2 frac-
tion of the points y.

Consider a point y for which φy is not linear-homogeneous. Since tA(F [y])
is linear-homogeneous as a function of t, tA(F [y]) 6= A(F [ty]) for all but

at most an r(F )
|F| ≤ (|F|−1/2)/2 fraction of the t’s, and hence at most an

(|F|−1/2)/2 fraction of the equations χ[y, t] are satisfied.

We have shown that for at least a 1 − (|F|−1/2)/2 fraction of the y’s φy
is not linear-homogeneous, and that for such y’s χ[y, t] is satisfied for less

than an (|F|−1/2)/2 fraction of the t’s. It follows that less than an |F|−1/2

fraction of the equations are satisfied, as we needed to show.

¶f is homogeneous of degree m iff f(ty) = tmf(y) for every y and t.

80



The curve Γ. Write the active part of ψ as

ψ? :
D∑
i=1

αiE[xi] (9)

As in the curve-extension representation-procedure, we define a curve Γ : F → Fd

which goes through the points associated with the active variables of ψ.

Definition 18 (the curve of ψ). Let HsD−1 = {a1, . . . , asD} be an arbitrary
subset of F . Define Γ : F → Fd to be the vector of (D−1)-degree polynomial
functions satisfying

∀ 1 ≤ i ≤ D Γ(ai) = xi

Given an assignment A for E, the assignment of F is used as an encoding
of A(E) ◦ Γ. Unlike in the curve-extension representation-procedure, the
correct encoding here is a linear-homogeneous LDF.

The encoding. The procedure generates a curve-verifier, whose equations
are only satisfied if the assignment of F is the correct encoding ofA(E)◦Γ. To
define what the correct encoding is, suppose E is assigned an s-degree LDF
g. The LDF g ◦ Γ : F → F , which is to be encoded by the assignment of F ,
has degree at most sD− 1. Its encoding is the following linear-homogeneous
LDF, Lg:

∀ (y1, . . . , ysD) ∈ F sD Lg(y1, . . . , ysD)
.
=

sD∑
i=1

yig(Γ(ai)) (10)

The next claim shows how g ◦ Γ can be reconstructed, given Lg.

Claim 5.14 (linearizing-interpolation). Let g be an [s, d]-LDF, and for i =
1, . . . , sD, let γi be the [sD − 1, 1]-LDF satisfying γi(ai) = 1 and γi(aj) = 0
for every j 6= i.

Then the polynomial vector function γ̂ = (γ1, . . . , γsD) satisfies Lg ◦ γ̂ =
g ◦ Γ, where Lg is as defined in Equation 10.

Proof. Lg is linear, hence Lg ◦ γ̂ is of degree at most sD− 1. Since it follows
from the definition of Lg that Lg ◦ γ̂(ai) = g(Γ(ai)) for i = 1, . . . , sD, we
obtain that Lg ◦ γ̂ = g ◦Γ (also recall that g ◦Γ is of degree at most sD− 1).

81



Generating the curve-verifier. It follows from Claim 5.14 that if an
assignment A assigns a good LDF to E and assigns its encoding to F , then
A(F [γ̂(x)]) = A(E[Γ(x)]) for every x ∈ F . To verify that F is assigned a
correct encoding, the representation-procedure generates one equation χ[x]
in the curve-verifier for every x ∈ F as follows:

χ[x] : F [γ̂(x)] = E[Γ(x)]

where the vector-function γ̂ is as defined in Claim 5.14.

The following claim shows that indeed the curve-verifier equations are not
satisfied unless the assignment for F is a correct encoding, in the sense that
A(F ) ◦ γ̂ = A(E) ◦ Γ. It is assumed that F is assigned a linear LDF, since
otherwise the linearization-verifier equations cannot be satisfied.

Claim 5.15. Let A be a feasible assignment for E and F , assigning a linear
homogeneous LDF to F . Then less than an |F|−1/2 fraction of the curve-
verifier equations are satisfied unless A(F ) ◦ γ̂ = A(E) ◦Γ. In the latter case
all of the curve-verifier equations are satisfied, and moreover,

∀ (y1, . . . , ysD) ∈ F sD A(F [y1, . . . , ysD])
.
=

sD∑
i=1

yiA(E[Γ(ai)]) (11)

Proof. Assume that at least an |F|−1/2 fraction of the equations χ[x] are

satisfied. This means that A(F [γ̂(x)]) = A(E[Γ(x)]) for at least an |F|−1/2

fraction of the x’s. Since A(F ) ◦ γ̂ is an LDF of degree at most sD − 1 <

|F|−1/2 and A(E) ◦ Γ is an LDF of degree at most r(D − 1) < |F|−1/2, this
implies that A(F ) ◦ γ̂ = A(E) ◦ Γ.

In this case it follows that A(F [γ̂(x)]) = A(E[Γ(x)]) for every x ∈ F ,
and hence the equation χ[x] is satisfied. In addition, since in particular
A(F [γ̂(ai)]) = A(E[Γ(ai)]) for every ai, i = 1, . . . , sD, one obtains from the
definitions of Γ and γ that Equation 11 holds for all unit vectors. By the
linearity of the assignment for F , it follows that Equation 11 holds for all
points.

Generating ψ′. The procedure now generates the equation ψ′ from ψ by re-
placing its active part by just one variable. Specifically, ψ′ is obtained from ψ
by removing ψ? and replacing it by F [y∗], where y∗

.
=(α1, α2, . . . , αD, 0, 0, . . . , 0),

82



and the αi’s are the coefficients that appear in the active part of ψ (see Equa-
tion 9). The rational behind this replacement is explained by the following
immediate claim.

Claim 5.16. Let A be an assignment for E and F which satisfies Equation 11
in Claim 5.15. Then the value of A(F [y∗]) is the same as the evaluation of
ψ?.

Generating Eψ. The linearization representation-procedure constructs the
set of conjunctions Eψ as follows. For each triplet (x, y, t) where x, t ∈ F and
y ∈ Fd(F ), Eψ will have the conjunction of ψ′, the curve-verifier equation
χ[x], and the linearization-verifier equation χ[y, t].

Correctness of the algorithm.

The domain F that is generated by the linearization representation-procedure
has the required parameters, and it is easy to verify that the running time is
polynomial in |F |. To complete the proof of Lemma 5.5 let us show that Eψ
has the extension and restriction properties, as the other required properties
are obvious.

• Extension: Let A be a good assignment for the variables of Ψ, that
satisfies ψ. Let g be the [s, d]-LDF assigned to E, and extend A to F
by assigning Lg to it. We need to show that the extended A satisfies the
conjunctions of Eψ. According to the construction, it is enough to show
that ψ′ is satisfied and that the curve-verifier and linearization-verifier
equations are satisfied as well.

Since A(F ) = Lg is a linear-homogeneous LDF, the linearization-
verifier equations are satisfied by Claim 5.13. Also, g is an s-degree
LDF, so by Claim 5.14

A(F ) ◦ γ̂ = Lg ◦ γ̂ = g ◦ Γ = A(E) ◦ Γ .

From Claim 5.15 we thus have that all of the curve-verifier equations
are satisfied. Moreover, Claim 5.15 also implies that Equation 11 is
satisfied, from which, by Claim 5.16, it follows that the evaluations of
ψ? and of F [y∗] are equal. Since ψ is satisfied, and ψ′ differs from ψ
only in the substitution of ψ? by F [y∗], we obtain that ψ′ is satisfied as
well.

83



• Restriction: Let A be a feasible assignment for the variables of Ψ and
for F . We assume that these assignments satisfy at least an |F|−1/2

fraction of the conjunctions in Eψ. This implies that ψ′ is satisfied,

and that at least an |F|−1/2 fraction of the curve-verifier equations

are satisfied, as well as an |F|−1/2 fraction of the linearization-verifier
equations. Let us prove that ψ is satisfied.

Since at least an |F|−1/2 fraction of the linearization-verifier are satis-
fied, we gather from Claim 5.13 that F is assigned a linear-homogeneous
LDF. Now Claim 5.15 implies that Equation 11 holds, and therefore by
Claim 5.16, ψ? has the same evaluation as F [y∗]. Since ψ′ is satisfied,
this implies that ψ is satisfied as well.

References

[ABMP98] M. Alekhnovich, S. Buss, S. Moran, and T. Pitassi. Minimum
propositional proof length is NP-hard to linearly approximate.
Manuscript, 1998.

[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy.
Proof verification and intractability of approximation problems.
In Proc. 33rd IEEE Symp. on Foundations of Computer Science,
pages 13–22, 1992.

[AS92] S. Arora and S. Safra. Probabilistic checking of proofs: A new
characterization of NP. In Proc. 33rd IEEE Symp. on Founda-
tions of Computer Science, pages 2–13, 1992.

[AS97] Sanjeev Arora and Madhu Sudan. Improved low degree testing
and its applications. In Proceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing, pages 485–495, El
Paso, Texas, 4–6 May 1997.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic expo-
nential time has two-prover interactive protocols. Computational
Complexity, 1:3–40, 1991.

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient
multi-prover interactive proofs with applications to approxima-

84



tion problems. In Proc. 25th ACM Symp. on Theory of Comput-
ing, pages 113–131, 1993.

[DFK+] I. Dinur, E. Fischer, G. Kindler, R. Raz, and S. Safra. PCP
characterizations of NP: Towards a polynomially-small error-
probability.

[DS98] I. Dinur and S. Safra. Monotone-minimum-satisfying assignment
is NP-hard for almost polynomial factors. Manuscript, 1998.

[HPS93] J. H̊astad, R. Phillips, and S. Safra. A well-characterized ap-
proximation problem. Information Processing Letters, 47:301–
305, 1993.

[LY94] Carsten Lund and Mihalis Yannakakis. On the hardness of
approximating minimization problems. Journal of the ACM,
41(5):960–981, 1994.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM Journal on Com-
puting, 27(3):763–803, June 1998.

[RS97] R. Raz and S. Safra. A sub-constant error-probability low-degree
test, and a sub-constant error-probability PCP characterization
of NP. In Proc. 29th ACM Symp. on Theory of Computing, pages
475–484, 1997.

85


	Introduction
	Organization of the paper

	Preliminaries
	LDFs and Domains
	LDF-Readers
	The local-readers


	Proof of the Main Theorem
	Generating the LDF-Readers
	Plugging LDF-Readers In
	Gap Amplification
	From Conjunctions to Equations

	The Composition-Recursion Constructor
	Subspace-vs.-Point LDF-Readers
	The Subspace-vs.-Point constructor
	The SP constructor works.

	Subspace-vs.-Point Parameters
	Overview of the CR-Constructor
	Extensions
	The power-substitution extension-procedure
	The linearization extension-procedure

	The Composition Procedure
	Properties of the composition procedure

	The CR Constructor
	The CR Constructor Works
	The number of iterations is constant.
	The lower -- upper-degree gap remains.
	The CR constructor takes polynomial time
	( ,)-parameters of the CR constructor.


	The Sum-Check
	Restricted Equation-Systems
	The Main Transformation-Scheme
	Representation-procedures
	The system-representation algorithm.

	The Representation-Procedures
	Product-check.
	Arithmetization.
	Curve-extension.
	Linearization.

	The Reduction Algorithm of  Into sc
	The sequence of systems.
	Properties of l.
	From l to sc.

	The Reduction Works
	The active parameters of the intermediate systems

	The Product-Check Lemma
	The product-check algorithm
	Proof of correctness

	The Arithmetization Representation-Procedure
	The sum-check LDF
	The arithmetization representation-procedure
	Proof of correctness

	The Curve-Extension Representation-Procedure
	The curve-extension algorithm
	Proof of correctness

	The Linearization Representation-Procedure
	The linearization representation-procedure
	Correctness of the algorithm.



