
Approximate Hypergraph Partitioning and Applications∗

Eldar Fischer† Arie Matsliah‡ Asaf Shapira§

Abstract

Szemerédi’s regularity lemma is a cornerstone result in extremal combinatorics. It (roughly)
asserts that any dense graph is composed of a finite number of pseudorandom graphs. The
regularity lemma has found many applications in theoretical computer science and thus a lot of
attention was given to designing algorithmic versions of this lemma. Our main results in this
paper are the following:

• We introduce a new approach to the problem of constructing regular partitions of graphs,
which results in a surprisingly simple O(n) time algorithmic version of the regularity lemma,
thus improving over the previous O(n2) time algorithms. Furthermore, unlike all the previ-
ous approaches for this problem [3, 10, 14, 15, 21], which only guaranteed to find tower-size
partitions, our algorithm will find a small regular partition, if one exists in the graph.

• For any constant r ≥ 3 we give an O(n) time randomized algorithm for constructing regular
partitions of r-uniform hypergraphs, thus improving the previous O(n2r−1) time (determin-
istic) algorithms [8, 15].

The above results are obtained as an application of an efficient algorithm for approximating
partition problems of hypergraphs which we obtain here.

• Given a (directed) hypergraph with bounded edge arities, a set of constraints on the set
sizes and densities of a possible partition of its vertex set, and an approximation parameter,
we provide in O(n) time a partition approximating the constraints if a partition satisfying
them exists. We can also test in O(1) time for the existence of such a partition given the
approximation parameter.

This algorithm extends the result of Goldreich, Goldwasser and Ron for graph partition prob-
lems [16], and encompasses more recent hypergraph related results such as the maximal constraint
satisfaction approximation of [5].

∗A preliminary version of this paper appeared in Proc. of the 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS) 2007, 579-589.
†Faculty of Computer Science, Technion – Israel institute of technology, Technion City, Haifa 32000, Israel. Email:

eldar@cs.technion.ac.il. Research supported in part by an ISF grant number 1011/06.
‡CWI, Amsterdam. Email: ariem@cwi.nl.
§Georgia Institute of Technology. Email: asafico@math.gatech.edu. Research supported by NSF grant DMS-

0901355.

1



1 Introduction and General Background

1.1 Background on Szemerédi’s regularity lemma

The regularity lemma of Szemerédi [26] is one of the most important results in graph theory. It
guarantees that any dense graph can be partitioned into a bounded number of bipartite graphs that
are “pseudorandom”. In other words, the lemma guarantees that every graph has an ε-approximation
of constant descriptive size. This fact is very useful in many applications since dealing with random-
like graphs is much easier than dealing with arbitrary graphs. It is far from surprising that a lemma
that supplies an approximation of constant size for arbitrarily large graphs will also have algorithmic
applications. The original proof of the regularity lemma was nonconstructive, in the sense that it did
not supply an efficient polynomial-time algorithm for obtaining a regular partition of the graph. The
first polynomial-time algorithm for constructing such a partition of a graph was obtained by Alon et
al. [2]. Additional algorithmic versions of the lemma were later obtained in [3, 10, 14, 15, 21]. For a
comprehensive survey of the applications of the lemma, the interested reader is referred to [22].

Before stating the regularity lemma we need some basic notation. For two nonempty disjoint
vertex sets A and B of a graph G, we define E(A,B) to be the set of edges of G between A and
B. The edge density of the pair is defined by d(A,B) = |E(A,B)|/(|A||B|). We use the notation
a = b ± c as a shorthand for b − c ≤ a ≤ b + c. The original notion of regularity, to which we refer
to as subset regularity, is defined as follows.

Definition 1.1 (ε-subset-regular pair) A pair (A,B) is ε-subset-regular if for every A′ ⊆ A and
B′ ⊆ B satisfying |A′| ≥ ε|A| and |B′| ≥ ε|B|, we have d(A′, B′) = d(A,B)± ε.

Note that a random bipartite graph with a positive edge density is o(1)-subset-regular with high
probability. Thus, the smaller ε is, the more “random”-like an ε-subset-regular pair is.

A partition V1, . . . , Vk of the vertex set of a graph is called an equipartition if |Vi| and |Vj | differ
by no more than 1 for all 1 ≤ i < j ≤ k (so in particular every Vi has one of two possible sizes).
The order of an equipartition denotes the number of partition classes (k above). An equipartition
V1, . . . , Vk of the vertex set of a graph is called ε-subset-regular if all but at most ε

(
k
2

)
of the pairs

(Vi, Vj) are ε-subset-regular. Szemerédi’s regularity lemma can be formulated as follows.

Lemma 1.2 ([26]) For every ε > 0 there exists T = T1.2(ε), such that any graph with n ≥ 1/ε
vertices has an ε-subset-regular equipartition of order k̂, where 1/ε ≤ k̂ ≤ T .

We now define an equivalent notion of regularity. Given (A,B), we denote by dC4(A,B) the
density of C4 instances (cycles of size 4) between A and B, namely, the number of copies of C4 whose
vertices alternate between A and B, divided by their possible maximum number

(|A|
2

)(|B|
2

)
. 1

Definition 1.3 (ε-locally-regular pair and partition) A pair (A,B) of vertex sets is ε-locally-
regular if dC4(A,B) = (d(A,B))4 ± ε.

An equipartition V1, . . . , Vk of the vertex set of a graph is called ε-locally-regular if all but at most
ε
(
k
2

)
of the pairs (Vi, Vj) are ε-locally-regular.

1When counting the number of C4 instances between A and B we only consider the edges connecting A and B.
Therefore, 0 ≤ dC4(A,B) ≤ 1.

2



In the sequel we will refer to local regularity simply as regularity whenever there is no ambiguity
in the context. The main observation about this definition is that an εO(1)-regular pair is also ε-
subset-regular, and the other direction similarly holds. This was first proved in [2]. Our algorithm
will center on finding partitions in which the pairs conform to local regularity.

The proof of the regularity lemma is fairly simple. One starts with any partition of the vertices
of the input graph into k = 1/ε sets V1, . . . , Vk. If this partition is ε-regular then we are done.
Otherwise, there are many pairs (Vi, Vj) which are not ε-regular. For any such pair Vi, Vj , there
are thus2 two subsets Ui ⊆ Vi and Uj ⊆ Vj such that d(Ui, Uj) 6= d(Vi, Vj) ± ε. One then shows
how to use the collection of pairs (Ui, Uj) in order to refine the partition V1, . . . , Vk into a new
partition V1, . . . , Vk′ in such a way that a certain potential function increases by at least ε5. Since
this potential function is bounded from above by 1 this process must terminate after 1/ε5 steps. The
only nonconstructive part of this proofs is the task of finding the pairs (Ui, Uj). Therefore, the most
natural way to obtain an algorithmic version of the regularity lemma is to find a polynomial-time
algorithm for solving this problem. Indeed, all the previous algorithmic versions of the regularity
lemma [3, 10, 14, 15, 21] used this scheme; they only differed in the details on how one finds the
pairs (Ui, Uj). The first polynomial-time algorithm given by Alon et. al [2] was based on Boolean
matrix multiplication. The algorithm of Frieze and Kannan [14] used singular value decomposition.
The algorithm of Alon and Naor was based on an approximation algorithm for the cut-norm [3].
Finally, the algorithm of Kohayakawa, Rödl and Thoma [21] was based on performing random walks
on expanders, being the first to obtain a running time of O(n2).

As is well known, the main drawback of the regularity lemma is that the bounds that the
lemma guarantees have an enormous dependence on ε. More precisely, denote the tower function by

Tower(i) = 2Tower(i−1) = 2
···

2
}
i
. Then the bounds on T1.2(ε) are given by Tower(1/ε5). Furthermore,

Gowers [17] proved that these bounds are not far from the truth (in the qualitative sense), as he
constructed a graph that has no ε-regular partition of size less than Tower(1/ε1/16).

All previous algorithmic versions of the regularity lemma had two drawbacks due to their shared
principles. First, since they reprove the regularity lemma algorithmically, they could only be guaran-
teed to find the worst-case regular partition. By the result of Gowers [17] mentioned above, this worst
case partition can be of size Tower(1/ε). Therefore, even if the graph has a small regular partition
these algorithms are only guaranteed to return a partition of size Tower(1/ε). Second, although the
regularity lemma is approximative in nature, these algorithms traditionally read the entire graph to
provide the partition, making their running time equal to Ω(n2) or worse for a fixed ε.

1.2 A new approach for the constructive regularity lemma

In this paper we take a completely different approach to the problem of constructing a regular
partition. Instead of algorithmically proving the lemma, we take the lemma “for granted” and
design an algorithm for checking if a graph has a regular partition with a certain number of classes.
Thus, our algorithm will find a small partition in the graph if one exists, as opposed to all previous
algorithms, which can only guarantee to find the worst case partition of size Tower(1/ε). Our second
improvement over the previous O(n2) algorithms is that the running time of our algorithm is O(n)
for any fixed ε. Additionally, even the hidden constants in the O(n) running time will only depend
on the size of the smallest regular partition. Note that this running time is sublinear in the size of

2By the equivalence between the two notions of regularity we have defined above.

3



the input (which is O(n2)), and is optimal as it is linear in the output size – just “writing down” a
partition of the vertices takes O(n) time.

Theorem 1 (Main Result) There is a randomized algorithm, that given ε > 0 and an n vertex
graph G, that has a ε/2-regular partition of order k̂ ≥ 1/ε, 3 produces with high probability an ε-
regular partition of G of order k, where 1/ε ≤ k ≤ k̂. The expected running time of the algorithm
is

n · poly(k̂) + 22poly(k̂)
. (1)

Additionally, if only the densities of the regular partition rather than the partition itself need to be

produced, then this can be done in time 22poly(k̂)
.

We stress that in Theorem 1, the algorithm does not receive the number k̂ as part of the input.
Also, the hidden constants in the running time are absolute and do not depend on ε or k̂, and
correspondingly there is no unconditional tower-type dependence on ε as in the previous algorithms.
As it turns out, a simple inspection of the proof we provide can show that the constant 1

2 in the
regularity parameter can be replaced by any constant smaller than 1; we just use the constant 1

2 for

maintaining the simplicity of the presentation. Although the algorithm does not know k̂ in advance,
its running time does depend, in a good sense, on k̂. That is, if k̂ is small then the running time of
the algorithm will also be small, compared to the unconditional tower-type dependence on ε of the
previous algorithms.

An interesting aspect of our new algorithmic version of graph regularity is that it is obtained as
a simple application of a general hypergraph partitioning algorithm which we construct in this paper.
This aspect of the paper is discussed in the next subsection.

1.2.1 Hypergraph regularity

Similarly to graphs, (weak) subset regularity for r-tuples of vertex sets in r-uniform hypergraph is
defined as not admitting large subsets U1 ⊆ V1, . . . , Ur ⊆ Vr so that the edge densities of V1, . . . , Vr
and U1, . . . , Ur differ greatly. Regular partitions of hypergraphs are then defined in an analogous
manner to that of graphs.

Our main technical tool of hypergraph partitioning is also useful in finding (weakly) regular
partitions of r-uniform hypergraphs, when combined with some ideas similar to [12]. For any fixed
r and ε, we design an O(n) time (randomized) algorithm for finding an ε-regular partition of an r-
uniform hypergraph. In this case the improvement in the running time is more substantial compared
to the previous algorithms, whose running time was O(n2r−1). However, as opposed to the graph
case, in this case our algorithm is not guaranteed to find small partitions if they exist.

1.3 Hypergraph partition problems

Graph partition problems are some of the most well studied problems both in graph theory and
in computer science. Standard examples of partition problems include k-colorability, Max-Clique
and Max-Cut. Most of these problems are computationally hard even to approximate, but it was

3The reason for the requirement that k̂ ≥ 1/ε is that the same requirement is needed in Lemma 1.2. For the same
reason we return a partition of size k ≥ 1/ε.

4



observed in the 90’s [6, 11] that many of these partition problems have good approximations when
the input graph is dense. The main tool that we develop in this paper is an efficient O(n) algorithm
for partitioning hypergraphs, with an accompanying O(1)-query test for the existence of a partition
with given parameters.

Our framework for studying hypergraph partition problems generalizes the framework of graph
partition problems that was introduced by Goldreich, Goldwasser and Ron [16]. Let us briefly discuss
the graph partitioning algorithm of [16]. A graph partition instance Ψ is composed of an integer
k specifying the number of sets in the required partition V1, . . . , Vk of the graph’s vertex set, and
intervals specifying the allowed ranges for the number of vertices in every Vi and the number of edges
between every Vi and Vj for i ≤ j. For instance, 2-colorability can be expressed by a simple partition
instance, where k = 2, the (trivial) constraints on the sizes of V1 and V2 are 0 ≤ |V1|, |V2| ≤ n, and
the constraints on the edges are |E(V1)| = |E(V2)| = 0 and 0 ≤ |E(V1, V2)| ≤

(
n
2

)
.

Goldreich, Goldwasser and Ron [16] showed that for any partition instance Ψ with k parts, and

for any positive ε, there is an (2(k/ε)O(k)
+ (k/ε)O(k)n)-time algorithm that produces a partition of an

input graph that is ε-close to satisfying Ψ, assuming that a satisfying partition exists (the distance is
measured by the differences between the actual edge densities and the required ones). Note that one
can formulate many problems, such as k-colorability, Max-Cut and Max-Clique, in this framework
of partition instances. Therefore, the algorithm of [16], which we will henceforth refer to as the GGR
algorithm, implies4 for example that there is an (2O(1/ε3)+O(n/ε2))-time algorithm that approximates
the size of the maximum cut of a graph to within an additive error of εn2. It also implies that for
any ε > 0 there is an (2O(1/ε3) +O(n/ε2))-time algorithm that, given a graph G, either reports that
G is not 3-colorable, or 3-colors the vertices of G in such a way that all but at most εn2 of the edges
are properly colored.

The second main result of [16] was a property testing algorithm for Ψ. For any partition problem
Ψ as above, it provided a randomized algorithm making only (k/ε)O(k) many queries to the input
graph (where each query takes a pair u, v of vertices and answers whether (u, v) is an edge in

the graph), and running in time 2(k/ε)O(k)
, which distinguishes with probability 2

3 between graphs
satisfying Ψ and graphs that are ε-far from satisfying Ψ. Thus the result of [16] implies that for
any fixed Ψ and ε > 0 one can distinguish in constant time5 between graphs satisfying a partition
instance and graphs that are far from satisfying it.

Here we extend the main results of [16] to the case of hypergraphs by showing that there is a
randomized algorithm for the general hypergraph partition problem. For any fixed Ψ and ε > 0, the
running time of our algorithm is O(n) (where n is the number of vertices, making this sublinear) and
it has the following property: Given an input hypergraph H, which satisfies the partition problem,
the algorithm produces a partition of H that is “close” to satisfying it. In the case that no such
partition of H exists, the algorithm rejects the input. We also obtain a property testing algorithm
for such problems, making only poly(1/ε) many queries and running in constant time, to distinguish
with probability 2

3 hypergraphs satisfying Ψ from hypergraphs that are ε-far from Ψ.

4To be precise, the exact bounds we quote for Max-Cut and 3-colorability follow from a more specialized argument
given in [16] and not directly from the general GGR algorithm. See [16] for more details.

5More accurately, it does so in constant time plus the time required to make a constant number of queries.

5



1.3.1 Prior work on hypergraph partition algorithms

Algorithms similar to the hypergraph partition algorithm that we obtain here have been considered
in some earlier papers. Most notably, Frieze and Kannan [13] and Andersson and Engebretsen [5]
obtained partition algorithms for some partition problems of k-uniform hypergraphs as well as testing
algorithms for such properties.

Their results differ in some ways from ours. First, while our algorithm can handle hypergraphs
with edges of different arities (sizes), the algorithms of [13, 5] can handle (as stated) only hypergraphs
with edges of a one arity. As we explain in Section 3, being able to simultaneously handle edges
of different arities is crucial to obtaining the algorithm stated in Theorem 1. Also, our algorithm
is more general in the properties it handles. The algorithm of [5] comes close, handling maximum
constraint satisfaction problems, however our algorithm also handles properties not definable by a
maximum of densities. In the proof we will highlight the part that allows this added generality.

Another difference is that for any fixed r, if all edges in the input are of size at most r, then the
running time of our algorithm (stated in Theorem 2) is O(n). The running time of the partition
algorithm of [5] is O(nr). In [13] it is mentioned (see the end of subsection 2.2 in [13]) that their
constant time testing algorithms can be turned into explicit partitions in time that is linear in
the size of the input, which is also Θ(nr). Having a partition algorithm with O(n) running time
is crucial to us since we apply this algorithm to obtain the O(n) time algorithmic version of the
graph regularity lemma (stated in Theorem 1) as well as the O(n) time algorithmic version of the
hypergraph regularity lemma (see Section 4). However in itself the running time difference could
possibly be bridged by importing some arguments from our proof into the proofs of [5] or [13] rather
than proving the entire result from scratch.

1.4 Organization

The rest of the paper is organized as follows. In Section 2 we explicitly define the hypergraph partition
problems we consider here, and state the hypergraph partition algorithm we obtain. In Section 3
we prove Theorem 1 by reducing the task of finding a regular partition of a graph to the task of
finding an appropriate partition of a hypergraph. In Section 4 we obtain an algorithmic version of
the regularity lemma for r-uniform hypergraphs. In Section 5 we give an overview of the proof of the
hypergraph partition algorithm, and in Section 6 we give the full details of this algorithm. Section
7 contains some concluding remarks and open problems.

2 The Hypergraph Partition Algorithm

We now formally define the hypergraph problem that we will study in this paper.

2.1 General notation

We use [k] to denote the set {1, . . . , k}, and use a = b±c as a shorthand for b−c ≤ a ≤ b+c. For two
(multivariate) functions f, g :

∏k
i=1Di → R+, we say that f = O(g) if there exist constants c, d > 0

such that for all x1 ∈ D1, . . . , xk ∈ Dk we have f(x1, . . . , xk) ≤ c · g(x1, . . . , xk) + d. Similarly we
write f = poly(g) is there exist constants c, d > 0 such that f(x1, . . . , xk) ≤ (g(x1, . . . , xk))

c + d for
all x1, . . . , xk, and write f = exp(g) if there exist constants for which f(x1, . . . , xk) ≤ 2(g(x1,...,xk))c+d

6



for all x1, . . . , xk. We also use the shorthand f = poly(g1, . . . , gl) for f = poly(
∏l
i=1 gi). In the

following we make no attempt to optimize the coefficients involved, only the function types.

2.2 Hypergraphs

We consider directed hypergraphs H = (V,E1, E2, . . . , Es) with n vertices and s directed edge sets.
Every edge set Ei ⊆ V ri is a set of ordered ri-tuples6 (ordered sets with possible repetitions) over
V . That is, for every edge set Ei(H) we think of any of the edges e ∈ Ei as a length ri sequence of
members of V (H). We say that a hypergraph H is of type (s, r1, . . . , rs) if it has exactly s edge sets
E1, . . . , Es, and for each i ∈ [s], the set Ei contains edges of size exactly ri. Note that the usual notion
of a directed graph corresponds to hypergraphs of type (1, 2). For an ri-tuple e = (v1, . . . , vri) ∈ Ei
we say that vj is in the jth place of e (or is simply the jth vertex of e). We also set r = maxi{ri}.

For the algorithms that we develop here, we generalize the usual edge queries used in the dense
graph model of [16] as follows. Given a hypergraph H = (V,E1, . . . , Es) of type (s, r1, . . . , rs), an
edge oracle for H is a function Q : [s] × V ≤r → {0, 1} such that Q(i, v1, . . . , vri) = 1 if and only if
(v1, . . . , vri) ∈ Ei.

When analysing our testing algorithm we assume throughout that a uniformly random choice of
a vertex v ∈ V , as well as an edge query, can all be done in constant time.

2.3 The partition property

Let H be a hypergraph of type (s, r1, . . . , rs) and let Π = {V Π
1 , . . . , V

Π
k } be a partition of V (H). Let

us introduce a notation for counting the number of edges of Ei(H) with a specific placement of their
vertices within the partition classes of Π (remember that the edges are ordered). For every i ∈ [s] we
denote by Φi the set of all possible mappings φ : [ri]→ [k]. We think of every φ ∈ Φi as mapping the
vertices of an ri-tuple to the components of Π. We denote by EΠ

i,φ ⊆ Ei the following set of ri-tuples:

EΠ
i,φ = {(v1, . . . , vri) ∈ Ei : ∀j ∈ [ri], vj ∈ V Π

φ(j)}

For example, let G = (V,E) be a hypergraph of type (1, 2), that is a usual directed graph. For
some partition Π = {V Π

1 , V
Π

2 } of V and the identity function φ : [2]→ [2], φ(i) , i, the set EΠ
1,φ ⊆ E

contains all edges (u, v) ∈ E directed from u ∈ V Π
1 to v ∈ V Π

2 .
We now introduce a notion that generalizes the partition instances that were discussed in [16] in

the context of graphs.

Definition 2.1 (Density tensors) A density tensor of order k and type (s, r1, . . . , rs) is a se-
quence ψ =

〈
〈ρj〉j∈[k], 〈µi,φ〉i∈[s],φ∈Φi

〉
of reals (between 0 and 1), specifying the presumed normal-

ized sizes of |V Π
i | and |EΠ

i,φ| of a k-wise partition of a hypergraph of type (s, r1, . . . , rs) (whenever
k and (s, r1, . . . , rs) are clear from the context, we call ψ simply a density tensor). In particu-
lar, given a partition Π = {V Π

1 , V
Π

2 , . . . , V
Π
k } of a hypergraph H, we set ψΠ to be the density ten-

sor
〈
〈ρΠ
j 〉j∈[k], 〈µΠ

i,φ〉i∈[s],φ∈Φi

〉
with the property that for all j, ρΠ

j = 1
n · |V

Π
j | and for all i and φ,

µΠ
i,φ = 1

nri · |E
Π
i,φ|.

6The readers with a background in Logic would recognize these as arity ri relations.

7



Definition 2.2 (Partition properties induced by density tensors) For a fixed hypergraph H
of type (s, r1, . . . , rs), a set Ψ of density tensors (of order k and type (s, r1, . . . , rs)) defines a property
of V (H)’s k-wise partitions as follows. We say that a partition Π of V (H) (exactly) satisfies Ψ if
there exists a density tensor ψ =

〈
〈ρj〉j∈[k], 〈µi,φ〉i∈[s],φ∈Φi

〉
∈ Ψ, such that ψ and the density tensor

ψΠ of Π are equal. Namely, Π satisfies Ψ if there is ψ =
〈
〈ρj〉j∈[k], 〈µi,φ〉i∈[s],φ∈Φi

〉
∈ Ψ such that

• for all j ∈ [k], ρΠ
j = ρj

• for all i ∈ [s] and φ ∈ Φi, µΠ
i,φ = µi,φ.

We extend this notion of satisfying partitions (and equivalence between density tensors) in two ways
as follows.

Definition 2.3 (being ε-tightly satisfying/equal) A partition Π ε-tightly satisfies Ψ if there is
ψ =

〈
〈ρj〉j∈[k], 〈µi,φ〉i∈[s],φ∈Φi

〉
∈ Ψ such that

• for all j ∈ [k], ρΠ
j = ρj

• for all i ∈ [s] and φ ∈ Φi, µΠ
i,φ = µi,φ ± ε.

In this case ψΠ is ε-tightly equal to ψ.

Definition 2.4 (being ε-loosely satisfying/equal) A partition Π ε-loosely satisfies Ψ if there is
ψ =

〈
〈ρj〉j∈[k], 〈µi,φ〉i∈[s],φ∈Φi

〉
∈ Ψ such that

• for all j ∈ [k], ρΠ
j = ρj ± ε

• for all i ∈ [s] and φ ∈ Φi, µΠ
i,φ = µi,φ ± ε.

Here ψΠ is ε-loosely equal to ψ.

By extension (and with a slight abuse of notation), we say that the hypergraph H itself satisfies
the property Ψ if there exists a partition Π of H’s vertices that satisfies Ψ, and similarly we say
that H itself ε-tightly (respectively ε-loosely) satisfies the property Ψ if there exists a partition of H’s
vertices that ε-tightly (respectively ε-loosely) satisfies the property Ψ. In addition, we may consider
a specific density tensor ψ as a singleton set Ψ = {ψ}, and accordingly as a property of partitions.

Usually the sets Ψ of density tensors will not be given explicitly (as a set), but by some compact
representation. For example, let us define a set Ψ2COL of density tensors corresponding to bipartite
graphs. Ψ2COL is of order k = 2 and type (s = 1, r1 = 2), and it contains all density tensors
ψ =

〈
〈ρj〉j∈[2], 〈µφ〉φ:[2]→[2]

〉
that satisfy:

• 0 ≤ ρ1, ρ2 ≤ 1;

• 0 ≤ µφ ≤ 1 if φ is injective, and µφ = 0 otherwise.

Clearly Ψ contains infinitely many density tensors, but it has a very small representation. In addition,
it is easy to see that given a density tensor ψ and ε > 0, computing whether ψ is equal to some
ψ′ ∈ Ψ, or is ε-tightly or ε-loosely equal to one, can be done efficiently. We will always make these
computational assumptions on the representations of the considered sets Ψ, as formalized next.

8



Definition 2.5 Given a set Ψ of density tensors of order k and type (s, r1, . . . , rs), we say that Ψ

is checkable for proximity in time t = t
(
s, k, r , maxi{ri}

)
, or shortly TC(Ψ) = t, if there exists an

algorithm that for any density tensor ψ and any ε > 0 decides in time at most t whether the tensor
ψ is ε-loosely equal to some ψT ∈ Ψ, and if so, the algorithm outputs that tensor ψT .

We say that a family of sets T = {Ψk,(s,r1,...,rs)} is efficiently checkable for proximity if there
exists a polynomial t = t(x, y) such that for every Ψk,(s,r1,...,rs) ∈ T of order k and type (s, r1, . . . , rs),
both the representation of Ψk,(s,r1,...,rs) and TC(Ψk,(s,r1,...,rs)) are bounded by t(s, kr).

Note that the sets Ψ resulting from upper and lower bound constraints as in [16] are indeed
efficiently checkable for proximity. For instance, given a density tensor ψ =

〈
〈ρj〉j∈[k], 〈µi,φ〉i∈[s],φ∈Φi

〉
,

one can verify in time O(k + s · kr) whether ψ is ε-loosely equal to some tensor in Ψ by going over
the k + s · kr values of the parameters of ψ, and checking if all of these values satisfy the lower and
upper bounds within the allowed deviation of ε. This will be also the case in our context. From now
on, we will only consider (even if not explicitly mentioned) sets of density tensors that are efficiently
checkable for proximity.

We are now ready to state the theorem about the hypergraph partitioning algorithm that we
develop in this paper.

Theorem 2 (Hypergraph Partitioning Algorithm) For every k ∈ N, hypergraph type (s, r1, . . . , rs)
(with r = max{ri}) and set Ψ of density tensors of order k and type (s, r1, . . . , rs) (taken from a
family T efficiently checkable for proximity), there exists a randomized algorithm A taking as inputs
a hypergraph H of type (s, r1, . . . , rs) and two parameters ε, δ > 0 such that

• the algorithm A either outputs a k-wise partition of V (H), or declares “No Partition”;

• if H satisfies Ψ then with probability at least 1− δ the algorithm A outputs a partition of V (H)
that ε-tightly satisfies Ψ;

• the algorithm A outputs a partition of V (H) that does not ε-tightly satisfies Ψ with probability
at most δ. In particular, if H does not ε-tightly satisfy Ψ, then the algorithm declares “No
Partition” with probability at least 1− δ.

The running time of A is bounded by

log2(1/δ) · exp
((r

ε

)O(s·r·kr) )
+ n · poly(kr, s, 1/ε) .

Let us now discuss the property testing variant of Theorem 2. To this end, we define one
additional measure of closeness to the property Ψ. Let H = (V,E1, . . . Es) and H ′ = (V,E′1, . . . E

′
s)

be two hypergraphs of type (s, r1, . . . , rs), over the same vertex set V . Let ∆(Ei, E
′
i) denote the

size of the symmetric difference between Ei and E′i. The distance between H and H ′ is defined as
dist(H,H ′) = 1

s

∑
i∈[s] ∆(Ei, E

′
i)/n

ri . The distance of a hypergraph H from the property Ψ is defined

as dist(H,Ψ) = minH′{dist(H,H ′) : H ′ satisfies Ψ}. For ε > 0 we say that H is ε-far from satisfying
the property Ψ when dist(H,Ψ) > ε, and otherwise, H is ε-close to Ψ. The testing algorithm follows
immediately from the following.

9



Theorem 3 (Testing Version of Theorem 2) For every k ∈ N, hypergraph type (s, r1, . . . , rs)
(with r = max{ri}) and set Ψ of density tensors of order k and type (s, r1, . . . , rs) (taken from a
family T efficiently checkable for proximity), there exists a randomized algorithm AT taking as inputs
two parameters ε, δ > 0 and an oracle access to a hypergraph H of type (s, r1, . . . , rs), such that

• if H satisfies Ψ then with probability at least 1 − δ the algorithm AT outputs Accept, and in
addition provides a density tensor ψT ∈ Ψ such that ψT is ε-tightly satisfied by H;

• if H does not even ε-tightly satisfy the property Ψ then with probability at least 1 − δ the
algorithm AT outputs Reject.

The query complexity of AT is bounded by log2(1
δ ) · poly(kr, s, 1/ε), and its running time is bounded

by log2(1
δ ) · exp

(
( rε )

O(s·r·kr)
)

.

The algorithm above can be used as a testing algorithm in the traditional sense due to the
following trivial observation.

Claim 2.6 Any hypergraph that ε/kr-tightly satisfies a partition property Ψ is also ε-close to satis-
fying it.

Observe that the GGR algorithm [16] follows from the special case of Theorem 2 for r = 2 and
s = 1 in the statement of the theorem. Similarly, the property testing algorithm of [16] follows from
a special case of Theorem 3.

3 Algorithmic Version for Graph Regularity

We start with an overview of the proof of Theorem 1. As we have previously mentioned, the main
idea is that instead of trying to “algorithmically reprove” the regularity lemma as in all the previous
approaches, we take Lemma 1.2 for a fact and just try to find the smallest regular partition that
the graph has. Starting from k = 1/ε we try to find a regular partition of G of order k, and if none
exists we move to k + 1. Lemma 1.2 guarantees that we will eventually find a regular partition. To
implement the above approach, we need an algorithm that will produce a regular partition of G of
order k if one exists, and will not output any partition if none exists. Here is how we can use the
algorithm stated in Theorem 2 to obtain such an algorithm.

A key difference between a partition instance in the sense of [16] and a regular partition is that in
a partition instance we only care about the density of each pair (Vi, Vj), while in a regular partition
we care about the distribution of the edges between Vi and Vj given in terms of a sort of a second
moment condition, that of Definition 1.3. The framework of the graph partition problems of [16] thus
cannot by itself provide a check for regularity. However, as we show below, a hypergraph partition
theorem such as Theorem 2 is very useful for checking the regularity condition of Definition 1.3.

Given a graph G let us implicitly construct a hypergraph H = H(G) on the vertex set V (H) =
V (G), that contains the 2-edges of G as well as ordered 4-edges corresponding to the 4-cycles of
G. This is not an undirected hypergraph (and also not uniform), so we need at least some of the
additional generality provided in Theorem 2. Suppose that G has an ε-regular partition V1, . . . , Vk.
Then, for any pair (Vi, Vj) which is ε-regular, Definition 1.3 says that there is a real d such that

10



d = d(Vi, Vj) and the number of 4-cycles spanned by (Vi, Vj) is (d4 ± ε)
(|Vi|

2

)(|Vj |
2

)
. Hence, the same

partition V1, . . . , Vk when considered on H, would have the property that if (Vi, Vj) is regular (in G)
with density d, then the density of 4-edges in H connecting a pair of vertices from Vi with a pair of
vertices from Vj is d4 ± ε.

Therefore, our algorithm for constructing a regular partition of G simply looks for a partition of
H into k sets V1, . . . , Vk such that most pairs (Vi, Vj) have the property that the density of 4-edges
connecting them is close to (d(Vi, Vj))

4. Note here another reason for needing the added generality
of Theorem 2, as this property is not expressible in terms of individual density constraints alone.

By the above discussion we know that if a graph G has an ε-regular partition then H satisfies
the partition instance. One should be careful at this point, as Theorem 2 only guarantees that if
the hypergraph satisfies the partition instance then the algorithm will return a possibly different
partition that is close (in the sense of Definition 2.3) to satisfying the partition instance. However,
asserting that a partition of H that is close to satisfying the above partition instance is in fact regular
with slightly worse parameters turns out to be an easy claim.

We finally note that the above explanation describes the method of designing an algorithm whose
running time is as stated with high probability and not in expectation. To maintain a low expected
running time, without knowing the value of k̂ (which may be very large), we need one final trick: As
we go and try higher and higher values of k, we go back and try again the lower values, to get another
chance at small partitions that may have been missed during their initial try. Thus we execute the
more costly iterations with sufficiently small probability relative to their cost.

3.1 Proof of Theorem 1

We first formally describe the construction, through which we reduce the problem of finding a regular
partition of a graph G to the problem of finding a partition of a hypergraph H = H(G) satisfying
certain density conditions. Given a graph G let us define the following hypergraph H = H(G).

Definition 3.1 For a graph G, the hypergraph H = H(G) has the same vertex set as G, and two
sets of edges, a set E of 2-edges and a set C of (ordered) 4-edges. E(H) is made identical to E(G)
(if we insist on the ordered edge setting of Theorem 2, then for every {u, v} ∈ E(G) we have both
(u, v) and (v, u) in H). We set C to include all sequences (u1, u2, u3, u4) that form a 4-cycle in that
order in G.

We note that also C has symmetries due to redundancy, as for example (u1, u2, u3, u4) ∈ C if and
only if (u2, u3, u4, u1) ∈ C. If we want to keep a hypergraph-like structure without redundancy, then
we should define E(H) as a set of unordered pairs (just like E(G)) and C(H) as a set of unordered
pairs of unordered pairs, where the cycle (u1, u2, u3, u4) would be represented by the pair of pairs
{{u1, u3}, {u2, u4}}. This is the representation that we adopt from now on (moving back to the fully
ordered representation would just entail adding a constant coefficient in Definition 3.2 below).

Let us note that while discussing regular partitions, we measure the density of edges and C4

copies between sets Vi, Vj relative to the size of Vi and Vj , see for example Definitions 1.1 and 1.3.
On the other hand, when discussing the partition problems related to Theorem 2, we considered the
density of edges relative to the number of vertices in the entire graph. In order to keep the following
discussion aligned with the definitions of Subsection 2.3, let us use the convention of Theorem 2 of
considering densities relative to the number of vertices in the entire graph. Therefore, in our density

11



tensors we set µ(i, j) as the number of edges in E(H) between Vi and Vj divided by n2 and set
µC4(i, j) as the number of directed edges in C(H) consisting of a pair from Vi and a pair from Vj ,
divided by n4. Our hypergraph partition property is now defined as the following.

Definition 3.2 Let Ψ(k, ε) denote the set of density tensors for partitions (V1, . . . , Vk) which are
equipartitions, where in addition for at least a 1 − ε fraction of the pairs 1 ≤ i < j ≤ k we have
µC4(i, j) = 1

4k
4µ4(i, j)± ε

4k4 .

It is not hard to see that the above sets Ψ are efficiently checkable for proximity as per Definition
2.5, matching the implicit assumption in Theorem 2 and Theorem 3.

We claim that a partition satisfying Ψ over H indeed satisfies the (local) regularity condition
over G. For simplicity, we ignore additive O( kn) factors all throughout the following (remember that
in our application k does not depend on n).

Claim 3.3 Given a graph G, let H = H(G) be the hypergraph defined above. Then, a partition of
V (G) into sets V1, . . . , Vk is ε-regular if and only if the same partition of V (H) satisfies Ψ(k, ε). Also,
if a partition of V (H) ε

16k4 -tightly satisfies Ψ(k, 1
2ε) then the same partition of V (G) is ε-regular.

Proof: For two disjoint vertex sets W1,W2, Let us define by E(W1,W2) the set of edges of E(H)
from W1 to W2, and by C4(W1,W2) the set of 4-edges of C(H) of type {{u1, u2}, {v1, v2}} with
u1, u2 ∈ Vi and v1, v2 ∈ Vj . It is now not hard to see that (up to O( kn) additive factors) we have

d(Vi, Vj) =
|E(Vi,Vj)|

(n/k)2 = k2µ(i, j), and similarly dC4(Vi, Vj) =
|C(Vi,Vj)|

(n/k2 )
2 = 4k4µC4(i, j). Now, the ε-

regularity condition of Definition 1.3 requires that dC4(Vi, Vj) = d(Vi, Vj)
4 ± ε. By the above this is

equivalent to the condition µC4(i, j) = 1
4k

4µ4(i, j)± ε
4k4 , as needed.

As for the second assertion of the lemma, note that Ψ(k, 1
2ε) requires that for all but at most

1
2ε
(
k
2

)
of the pairs (Vi, Vj) we have µC4(i, j) = 1

4k
4µ4(i, j) ± ε

8k4 . If a partition ε
16k4 -tightly satisfies

this condition, it means that for all these pairs (Vi, Vj) we have µC4(i, j) = 1
4k

4µ4(i, j)± ε
4k4 , which

means by the above discussion that this partition is ε-regular.

The algorithm: We only prove the version that provides the actual partition, as proving the
version that provides densities in constant running time is almost word-for-word identical, only
instead of Theorem 2 one would use Theorem 3 respectively. We start by describing a version of the
algorithm that will run in the stated time with high probability (say, 3/4) rather than in expectation.
We will later add one more idea that will give the required bound on the expectation. Given a graph
G and a parameter ε > 0, our goal is to produce an ε-regular partition of G of size at least 1/ε
and at most k̂, assuming that G has a 1

2ε-regular partition of size at most k̂ (remember that the

algorithm does not receive k̂ as part of the input). Starting from k = 1/ε, we execute the hypergraph
partitioning algorithm on the hypergraph H = H(G) that was described at the beginning of this
section with the partition instance Ψ(k, 1

2ε), with success probability δk (that will be specified later)
and with approximation parameter ε

16k4 . Note that each call to the algorithm of Theorem 2 is done
with a different value of k. Let us name the step where we call the partition algorithm with partition
instance Ψ(k, 1

2ε) the kth iteration of the algorithm.
A crucial point here is that we do not explicitly construct H as that may require time Θ(n4).

Rather, whenever the hypergraph partition algorithm of Theorem 2 asks whether a pair of vertices

12



{v1, v2} is connected to another pair of vertices {u1, u2} (by C), we just answer by inspecting the
four corresponding edges of G (in constant time). If for some integer k the hypergraph partition
algorithm returns a partition of V (H), then we return the same partition for V (G). Otherwise, we
move to the next integer k + 1. If we reached k = T1.2(1

2ε) = Tower(poly(1/ε)) we stop and return
“fail”.7

Correctness: Let us now prove the correctness of the algorithm. As above we denote by δk the
error probability with which we apply the partition algorithm of Theorem 2 at the kth iteration.
Remember that the algorithm does not know k̂ in advance, and it may be the case that k̂ is as large
as Tower(1/ε) (due to the lower bound of Gowers [17]). Therefore, one way to resolve this is to
take each δk to be 1/Tower(1/ε). However, that would mean that the running time of the partition
algorithm would be Tower(1/ε) even if k̂ is small (as the running time depends on δk).

A more economic way around this problem is to take δk = 1
4 · 2

−k. This way the probability of
making an error when considering all possible values of k is bounded by

∑∞
k=1

1
4 ·2
−k ≤ 1

4 . Note that
this in particular means that with high probability we will not return a partition of G that does not
ε

16k4 -tightly satisfy Ψ(k, 1
2ε). Combined with the second assertion of Claim 3.3 we get that with high

probability the algorithm returns only partitions that are ε-regular.
We thus only have to show that if G has a 1

2ε-regular partition of size k̂, then the algorithm

will find an ε-regular partition of G of size at most k̂. Suppose then that G has such a partition of
size k̂. We show that with high probability the algorithm will find such a partition during the k̂th

iteration (of course it may be the case that it will find a smaller partition during one of the previous
iterations). Let H = H(G) be the hypergraph defined above. By Claim 3.3 we know that as G
has a 1

2ε-regular partition of size k̂, this H satisfies Ψ(k̂, 1
2ε). Therefore, with probability at least

1− δk̂ ≥ 3/4, the partition algorithm will return a partition of H that ε
16k̂4

-tightly satisfies Ψ(k̂, 1
2ε).

By the second assertion of Claim 3.3 we know that such a partition is ε-regular.

Running time with high probability: Let us bound the running time of the algorithm. Since
with high probability the hypergraph partition algorithm will generate an ε-regular partition of G
when reaching the k̂th iteration (or earlier), we get that with high probability the algorithm will
terminate after at most k̂ iterations. When executing the algorithm of Theorem 2 on Ψ(k̂, 1

2ε) we
need to set s = 1, r = 4, δ = δk = 1

4 · 2
−k. The number of partitions is k while the proximity

parameter should be ε
16k4 ≥ 1

16k5 (remember that we start with k = 1/ε). It follows from Theorem
2 that the running time of the hypergraph partition algorithm in the kth iteration is8

22O(k5)
+ n · poly(k).

As the running time of k iterations is clearly dominated by the running time of the kth one, we get
that with probability at least 3

4 both the answer will be correct and the running time will be bounded

by 22O(k̂5)
+ n · poly(k̂).

7The choice of the maximum k is because by Lemma 1.2 we know that any graph has a 1
2
ε-regular partition of size

at most T1.2( 1
2
ε). Therefore, if we reached that value of k then we know that we made an error along the way.

8Note that the running time we get from Theorem 2 is actually O(22O(k4 log k)

+ n · poly(k)) but for the rest of the
analysis we opted for the simpler (somewhat larger) bound.

13



Bounding the expected running time: The version of the algorithm described above runs in

time 22O(k̂5)
+n ·poly(k̂) with high probability, but this is not its expectation. The reason is that the

error of not finding one small existing regular partition could be very costly, as it could be followed
with many iterations of searching in vain for higher values of k (remember that the larger k is,
the more costly it is to execute the algorithm of Theorem 2). Suppose then that we partition the
execution of the algorithm into phases, where in the kth phase we execute the algorithm described

above from the first iteration till iteration k, only now we use δk = 2−2b·k
6

for all k iterations, with
b a constant to be chosen.

The modified algorithm clearly has a larger probability of outputting the required regular par-

tition and a smaller probability of returning a wrong partition (because 2−2b·k
6

≤ 1
4 · 2

−k). Let us
compute the expected running time, which we bound using

∑∞
k=m pk · tk where pk is the probability

of the algorithm performing the kth phase, and tk is the “cost” of the kth phase, that is the running
time of that phase. Similarly to what we have discussed above, the time it takes to execute the

iterations 1, . . . , k of the original algorithm, even with the new δk, is bounded by 22O(k5)
+n ·poly(k).

The contribution of the first k̂ phases is clearly dominated by this expression for k = k̂.
Now, let us focus on pk for some k > k̂. Suppose that the graph has a 1

2ε-regular partition of size

k̂. To reach phase k for some k > k̂, the algorithm must have in particular failed the attempt made
in phase k− 1 to find a partition of size k̂. Remember that the failure probability of that attempt is

at most δk−1. Therefore, the probability of reaching phase k is at most δk−1 = 2−2b·(k−1)6

. Hence, the
total time expectancy for this algorithm (where we set b to be a large enough constant) is bounded
by

∞∑
k=1/ε

pk · tk =

∞∑
k=1/ε

pk · (22O(k5)
+ n · poly(k))

= 22O(k̂5)
+ n · poly(k̂) +

∞∑
k=k̂+1

2−2b·(k−1)6 · (22O(k5)
+ n · poly(k))

= 22O(k̂5)
+ n · poly(k̂) +O(n)

= 22O(k̂5)
+ n · poly(k̂) .

4 Regular Partitions of Hypergraphs

As we have mentioned earlier we can also use our hypergraph partitioning algorithm to devise an
algorithmic version of the regularity lemma for r-uniform hypergraphs9. Just like the algorithms for
graph regularity have many applications for graph problems, the algorithms for hypergraph regularity
have applications for hypergraph problems.

Hypergraph regularity has more than one version. The version we investigate here is the one
discussed e.g. in [15] (the “vertex partition” version), which is not strong enough for some applications
such as proving Szemerédi’s Theorem on r-term arithmetic progressions [25], but still has many

9A hypergraph H = (V,E) is r-uniform if all its edges have exactly r distinct vertices of V . These edges are
unordered, that is, they are just subsets of V (H) of size r. Hence a simple graph is just a 2-uniform hypergraph.

14



applications. For example, it was used in [15] in order to obtain additive approximations for all
Max-SNP problems. This regularity is defined in an analog manner to the definition of ε-subset-
regularity for graphs. The following is a quick rundown of the relevant definitions.

Definition 4.1 For an r-uniform hypergraph H and an r-tuple (U1, . . . , Ur) of vertex sets of H, the
edge density d(U1, . . . , Ur) is defined by the number of edges with one vertex from every Ui, divided
by
∏r
i=1 |Ui|. An r-tuple (U1, . . . , Ur) as above is called ε-regular, if every r-tuple U ′1, . . . , U

′
r such

that U ′i ⊆ Ui and |U ′i | ≥ ε|Ui| satisfies d(U ′1, . . . , U
′
r) = d(U1, . . . , Ur)± ε.

Finally, an equipartition V1, . . . , Vk of the vertices of H is called ε-regular if for all but at most an
ε fraction of the possible r-tuples 1 ≤ i1 < i2 < · · · < ir ≤ k, we have that (Vi1 , . . . , Vir) is ε-regular.

As is the case for graphs, an ε-regular partition of an r-uniform hypergraph into a bounded
number of sets always exists. However, obtaining an algorithmic version of the hypergraph version
of the regularity lemma turns out to be more involved than the graph case, and in particular here
we can no longer guarantee to find a small regular partition if one exists.

Theorem 4 For any fixed r and ε > 0, there exists an O(n) time probabilistic algorithm that finds
an ε-regular partition of an r-uniform hypergraph with n vertices. Moreover, if we only want to find
the densities of an ε-regular partition, then there exists an algorithm obtaining them in constant time.

The improvement over previous results that comes from the linearity of the algorithm in its
output becomes more apparent here: While the previous algorithms (see, for example, [8, 15]) for
constructing a regular partition of an r-uniform hypergraph have running time O(n2r−1) (note that
this is close to being quadratic in the input size), our algorithm has running time O(n) for any r. Like
the previous algorithms, and unlike the algorithm given in Theorem 1, the algorithm in Theorem 4
still has a tower-type dependence on ε.

Unlike the algorithm for graph regularity from the previous section that directly finds a regular
partition, the algorithm of Theorem 4 makes use of some aspects of the iterative procedure for
proving the existence of a regular partition, which repeatedly refines a partition of the hypergraph
until a regular one is obtained. A direct implementation of such a procedure would suffer from
NP-Completeness issues, and even if this is resolved in the style of previous works it would still take
at least Ω(nr) time as all deterministic algorithms have to (and in the previous works this actually
takes longer). The crux of our proof is to apply an idea from [12] along with Theorem 2 in order to
implement (an aspect of) the iterative procedure in time O(n).

4.1 Proof sketch for Theorem 4

The main result in [12] required a way to quickly find the densities of a regular partition of a
graph.10 While the full result there does not seem immediately translatable to our current body
on knowledge on hypergraphs, the part about finding a regular partition is indeed translatable to a
proof of Theorem 4. In the following we describe how to adapt the appropriate arguments from [12]
to hypergraph regularity.

10In fact, in [12] a partition conforming to a strengthened notion of regularity was used.

15



Equipartitions and the index function: In all that follows, we consider an r-uniform simple
and unordered hypergraph H with a vertex set V , and we assume throughout that |V | is large enough
as a function of the other parameters (for a smaller |V |, we can just do an exhaustive search). An
equipartition V1, . . . , Vk of the vertex set V is defined as before. The main tool in proving regularity
is the following numeric function, that in some sense measures how much the densities of the r-tuples
in the partition vary.

Definition 4.2 Recall that for an r-tuple of vertex sets (W1, . . . ,Wr) of an r-uniform hypergraph
G, we define the density d(W1, . . . ,Wr) of the r-tuple as the number of edges with one vertex from
every Wi, divided by

∏r
j=1 |Wj |.

For an equipartition A = (V1, . . . , Vk) of an r-uniform hypergraph G into l sets, its index ind(A)
is defined as k−r

∑
1≤i1<i2<···<ir≤k(d(Vi1 , . . . , Vir))

2.

The index of any equipartition is clearly always between 0 and 1. One immediate but useful
observation is the continuity of the index function with respect to the densities.

Claim 4.3 If an equipartition A = (V1, . . . , Vk) of G and an equipartition A′ = (V ′1 , . . . , V
′
k) of G′

satisfy |d(Vi1 , . . . , Vir) − d(V ′i1 , . . . , V
′
ir

)| ≤ ε for all 1 ≤ i1 < i2 < · · · < ir ≤ k, then the respective
indexes satisfy |ind(A)− ind(A′)| ≤ 4ε.

The proof of this claim follows directly from the definitions of density and index.

Robustness, finality, and regularity: The main technical observation of Szemerédi in [26] is
that non-regular partitions can be refined in a way that substantially increases their index, while
(because the index is bounded by 1) there must be partitions which cannot be refined that way. This
observation carries to hypergraphs. Let us state this formally.

Definition 4.4 A refinement of an equipartition A = (V1, . . . , Vk) is an equipartition B = (W1, . . . ,Wl)
such that every set Wj is fully contained in some Vij .

Given δ > 0 and a function f : N → N , we say that an equipartition A = (V1, . . . , Vk) is (δ, f)-
robust if there exists no refinement B = (W1, . . . ,Wl) for which k ≤ l ≤ f(k) and ind(B) ≥ ind(A)+δ.
The equipartition A = (V1, . . . , Vk) is called (δ, f)-final if there exists no B = (W1, . . . ,Wl) as above
regardless of whether it is a refinement of A or not.

It is immediate to see that any (δ, f)-final partition is also (δ, f)-robust. We work with the
definition of a final partition because it is somewhat easier to handle in the framework of Theorem
2. By using the fact that the index is always bounded between 0 and 1, it is not hard to see the
following.

Claim 4.5 For every δ > 0, t and f : N → N there exists a computable function T = T4.5(δ, f, t),
such that every graph G with n > T vertices has an equipartition A = (V1, . . . , Vk) with t ≤ k ≤ T
which is (δ, f)-final.

The main technical step in [26] is using the “defect form” of the Cauchy-Schwartz inequality to
derive a connection between robustness and regularity. The proof is based on refining the equiparti-
tion according to the algebra generated by the regularity counter examples for the irregular r-tuples,
and works almost word for word for hypergraphs. We will not reproduce it in this version as it has
been proved in several previous papers, see e.g. [7] and [8].

16



Lemma 4.6 For every r and ε there exist computable functions δ = δ4.6(r, ε) and f(k) = f
(r,ε)
4.6 (k)

so that any equipartition of an r-uniform hypergraph that is (δ, f)-robust is also ε-regular.

The above lemma immediately suggests a way to generate a regular partition. Starting from an
arbitrary partition, we can repeatedly refine the partition until a regular one is obtained. Indeed,
that is the main idea in the original proofs of Szemerédi’s theorem in graphs and hypergraph. The
first problem with implementing this strategy algorithmically is that it is not clear how to efficiently
detect if an r-tuple is not regular. This problem, however, can be overcome (see e.g. [2] and [8]). The
more relevant problem to our investigation here is that just calculating edge counts for a partition of
the hypergraph already takes time Θ(nr), and our goal is an O(n) time algorithm. As we explain in
the sequel, if we are looking for a partition satisfying a somewhat stronger condition than regularity,
then one such partition can be produced in O(n).

Finding a regular partition: The proof of Theorem 4 now manifests itself as checking a sequence
of density tensor sets that each describes a partition into k sets which is (δ, f)-final for the parameters
we obtain from Lemma 4.6. However, finality (or robustness) by itself cannot be described by a set
of density tensors. What we can do is test for density tensors which conform to a possible value of
the index function, and then try to verify that an equipartition is final by testing for finer partitions
with somewhat higher indexes and rejecting our equipartition if they exist. Claim 4.3 allows us to
use our approximate algorithms, while ensuring that the “negation” procedure will also work (i.e.
that for an equipartition that is not final we will indeed detect this).

For an integer k and 0 ≤ α ≤ 1, we let Ψ(k,α) be the set of all density tensors of possible
equipartitions into k sets whose index is at least α. It is easy to verify that the sets Ψ(k,α) are
efficiently checkable (as per Definition 2.5), since comparing indices can be trivially done even in

linear time. We set δ = δ4.6(r, ε) and f(k) = f
(r,ε)
4.6 (k), and now for every 1/ε ≤ k ≤ f(T4.5(1

3δ, f, 1/ε))
and every α ∈ {0, 1

6δ,
2
6δ, . . . , 1} we run either the algorithm of Theorem 2 or the algorithm of

Theorem 3 (depending on whether we want to find the actual partition or just the densities) on
Ψ(k,α), with approximation parameter 1

24k
−rδ, and with success probability sufficient to ensure that

with probability at least 2
3 none of the iterations provides an erroneous answer.11

We are now interested in finding k0 and α0 = `
6δ for which we received a positive answer for

Ψ(k0,α0) and received a negative answer for all Ψ(k,α0+2δ/3) for k0 ≤ k ≤ f(k0). To conclude the
proof, it is enough to convince ourselves that the following observations hold assuming that none of
our iterations has provided an erroneous answer.

• For every k we can approximate the maximum index of an equipartition into k parts up to
an error of 1

6δ. The lower bound follows directly from our procedure, while the upper bound
follows from Claim 4.3

• A k0 as above is obtained. This is because the k′ for which there is a (1
3δ, f)-final partition into

k′ sets (which exists by Claim 4.5) will in particular be detected due to the first item above
(this does not mean that we will necessarily obtain k0 = k′).

11The additional k−r factor in the approximation parameter is because of the difference in the normalization between
the definition of the density tensors in Ψ and the normalization of the density measure d(W1, . . . ,Wr).

17



• For the k0 that is obtained, the corresponding witnessing equipartition is (δ, f)-final and hence
ε-regular. This is again due to the bounds of the first item above on the error in our index
estimates.

The last two items above imply that we can then (by extracting the required data about the partition
witnessing a maximum index for k0) find our regular partition.

5 Overview of the proof of Theorem 2 and Theorem 3

Before going to the formal proof of Theorem 2 and Theorem 3 we briefly describe the general idea
of how it is done.

The algorithm (claimed in Theorem 2) that we develop in the proof can be divided into three
stages as follows.

Stage 1 (running time independent of n) This is the most crucial stage, in which the algorithm

generates a sequence of exp
( (

r
ε

)O(s·r·kr)
)
k-way partitions of V (H), such that if H satisfies

Ψ then with high probability at least one of these partitions will ε-tightly satisfy Ψ. In fact,
the partitions are not explicitly written down (this would take Ω(n) time), but rather partition
oracles are generated. Every partition oracle specifies the conditions that a given vertex of
H must satisfy in order to be mapped to a certain component of the corresponding partition.
Roughly speaking, for every vertex v ∈ V (H) the partition oracle specifies a procedure, which
essentially consists of checking the various degrees of v within some small subset U ⊆ V (H),
and given the outcome of this procedure it specifies which of the k components should contain
v. A more detailed outline of Stage 1 is provided below in Section 5.1.

Stage 2 (running time independent of n) The second part is fairly simple – it takes the se-
quence of partition oracles generated in Stage 1 and checks if one of them induces a partition
that ε-tightly satisfies Ψ. This is done by sampling and approximating the densities in a
straightforward manner. The probability of error while checking each partition is sufficiently
low, so that with high probability a good partition will be detected if and only if the sequence
from Stage 1 contained one.

Stage 3 (running time linear in n) The third stage is now trivial. It takes the partition oracle
(if found) from Stage 2 and computes the final partition by evaluating it on every v ∈ V (H).
Notice that this part is not needed for the testing version of the algorithm (Theorem 3).

The main part of the proof deals with showing that if the hypergraph H satisfies Ψ, then with
high probability the sequence of partition oracles from Stage 1 will contain an oracle that induces
an ε-tightly satisfying partition. Intuitively, this is done by showing that there is an ε-net of k-way
partitions of V (H) (with distance corresponding to Definition 2.3) of size independent of n. In fact,
Stage 1 takes neither n nor H as input, but just k and the type (s, r1, . . . , rs). Nevertheless, to make
the arguments concrete, throughout the proof we will always refer to the input hypergraph H. In
the following subsection we give a more detailed outline of Stage 1. Stage 2 is formalized in Lemma
6.4 and its proof is given in Section 6.4.2.

18



5.1 Outline of Stage 1

The outermost layer in the analysis of Stage 1 borrows from the proof of [16] for graph partitions.
Assuming that the hypergraph H admits a partition Π = {V1, . . . , Vk} of the vertices which satisfies
Ψ, we generate the partition oracles as follows. First we split V into ` = O(1/ε) parts Y 1, Y 2, . . . , Y `

of equal size. Then, for every part Y i, a sample set U ⊂ V \ Y i is chosen at random with the
hope of obtaining sufficiently many vertices from every Vj . Assume for now that we know the
intersection of U with Π, i.e. the partition ΠU = {U ∩ V1, . . . , U ∩ Vk}. Then we try to reconstruct
Π from its intersection with U as follows. First, the vertices in Y i are clustered into a finite number
of clusters, according to their degrees in the various components of ΠU (the degree of v is the
number of hyperedges in which v participates, counted separately for all sets of edges and all possible
configurations with respect to ΠU ). Intuitively, each cluster groups together the vertices that look
similar with respect to U and ΠU . Assume in addition that for every cluster C ⊂ Y i of similar
vertices we also know their approximate distribution in the components of Π, i.e. we know some

approximate β̄ = {β1, . . . , βk}, where for every j, βj ≈ |C∩Vj ||C| . Then we can partition every cluster

of Y i into the k components in a way that preserves the normalized intersection sizes, according to
the corresponding β̄.

Since we do not know ΠU , the projection of Π on U , we simply try every possible partition of U .
Similarly for the second assumption, since we do not know the vector β̄ of intersection sizes for each
cluster, we try all possible vectors up to some allowed deviation. For every such combination of ΠU

and β̄ we get a different partial partition oracle, only for the vertices in Y i. Finally, the sequence
of complete partition oracles for V (H) will consist of all possible combinations of the partial oracles
for the subsets Y 1, Y 2, . . . , Y `. The crucial part is showing that if a satisfying Π as above exists,
then one of these partition oracles induces a partition that loosely satisfies Ψ. We then show (see
Lemma 6.3 and its proof in Section 6.4.1) that a loosely satisfying partition can be easily converted
to a tightly satisfying one, with slightly worse parameters.

The intuition behind the correctness of this approach is based on the following central observation.
Suppose that C ⊂ V is a small enough set (say, |C| = εn/100) containing vertices that have similar
degrees in the various Vi’s. Assume that Π′ = {V ′1 , . . . , V ′k} is a new partition of V that is constructed
from Π by redistributing the vertices of C arbitrarily, so long as the component sizes are almost
preserved (i.e. for all i, |V ′i ∩C| ≈ |Vi ∩C|). Then the densities of the partition Π′ are similar to the
densities of Π. We should also note that, like in [16], it is not possible to classify all vertices of V at
once while maintaining a small approximation error, so we first arbitrarily split V into Y 1, . . . , Y l

and then classify the vertices of each Y i separately, according to a different sample set U i.
Although the overall strategy in Stage 1 of the algorithm is similar to the GGR algorithm, there

are several differences between our analysis and the original one in [16]. There are many ways in
which an edge with r vertices can intersect the k vertex sets, complicating the procedure of classifying
the vertices according to the edges they have with the sets of the partition. This reflects on which
statistics we keep track of, and also on how we obtain an approximation thereof. Also, Theorem 2
can use a general set of density tensors, rather than intervals of allowed densities as in the GGR
algorithm [16] (for the special case of graphs, the original GGR algorithm actually can be naturally
extended to include general density tensor sets). This extension of the GGR formalism allows us to
use the algorithm more easily and efficiently in our applications.

19



6 The proof of Theorem 2 and Theorem 3

We restate here Theorem 2 and Theorem 3, and then move to their proofs. We remind that we make
no attempt here to optimize constants and coefficients, but only the function types, e.g. polynomial
versus exponential (See however Comment 6.9 below for a sketch of some optimizations tailored for
special cases such as hypergraph colorability).

Theorem 2 (Hypergraph Partitioning Algorithm) For every k ∈ N, hypergraph type (s, r1, . . . , rs)
(with r = max{ri}) and set Ψ of density tensors of order k and type (s, r1, . . . , rs) (taken from a
family T efficiently checkable for proximity), there exists a randomized algorithm A taking as inputs
a hypergraph H of type (s, r1, . . . , rs) and two parameters ε, δ > 0 such that

• the algorithm A either outputs a k-wise partition of V (H), or declares “No Partition”;

• if H satisfies Ψ then with probability at least 1− δ the algorithm A outputs a partition of V (H)
that ε-tightly satisfies Ψ;

• the algorithm A outputs a partition of V (H) that does not ε-tightly satisfies Ψ with probability
at most δ. In particular, if H does not ε-tightly satisfy Ψ, then the algorithm declares “No
Partition” with probability at least 1− δ.

The running time of A is bounded by

log2(1/δ) · exp
((r

ε

)O(s·r·kr) )
+ n · poly(kr, s, 1/ε) .

Theorem 3 (Testing Version of Theorem 2) For every k ∈ N, hypergraph type (s, r1, . . . , rs)
(with r = max{ri}) and set Ψ of density tensors of order k and type (s, r1, . . . , rs) (taken from a
family T efficiently checkable for proximity), there exists a randomized algorithm AT taking as inputs
two parameters ε, δ > 0 and an oracle access to a hypergraph H of type (s, r1, . . . , rs), such that

• if H satisfies Ψ then with probability at least 1 − δ the algorithm AT outputs Accept, and in
addition provides a density tensor ψT ∈ Ψ such that ψT is ε-tightly satisfied by H;

• if H does not even ε-tightly satisfy the property Ψ then with probability at least 1 − δ the
algorithm AT outputs Reject.

The query complexity of AT is bounded by log2(1
δ ) · poly(kr, s, 1/ε), and its running time is bounded

by log2(1
δ ) · exp

(
( rε )

O(s·r·kr)
)

.

6.1 Proof of Theorem 2 and Theorem 3

First we define the notion of partitioning oracles, and state the central lemma that implies the proof
of Theorem 2 and Theorem 3.

Definition 6.1 A (q, c) k-wise partition oracle is a randomized algorithm, making edge queries to a
hypergraph H and computing a mapping π : V (H)→ [k] such that:

20



• for any v ∈ V (H), the query complexity of computing π(v) is bounded by O(q)

• for any v ∈ V (H), the time complexity of computing π(v) is bounded by O(c)

For a subset Y ⊂ V (H), we define partial (q, c) k-wise partition oracles π : Y → [k] similarly.
Given a sequence {πi}mi=1 of m (q, c) k-wise partition oracles, we say that the sequence {πi}mi=1 has

shared query complexity f , if for every v ∈ V (H) computing the m values π1(v), π2(v), . . . , πm(v) ∈
[k] requires at most f queries to H in total. Naturally f ≥ q.

Now we are ready to state the main lemma required for the proof of Theorems 2 and 3.

Lemma 6.2 For every k ∈ N and hypergraph type (s, r1, . . . , rs) (with r = max{ri}) there exists
a randomized algorithm AR that on input ε > 0 generates a sequence of length m of (f, f) k-wise
partition oracles {πi}mi=1 such that:

• m = m6.2(ε, s, r, k) = exp
(
ε−O(s·r·kr)

)
and f = f6.2(ε, s, r, k) = poly(kr, s, 1/ε);

• the shared query complexity of {πi}mi=1 is f ;

• for any hypergraph H of type (s, r1, . . . , rs) and any set Ψ of density tensors of order k and type
(s, r1, . . . , rs), if H satisfies Ψ then with probability at least 1

2 one or more of the m partition
oracles generated by AR induces a partition of V (H) which ε-loosely satisfies Ψ.

The running time of the algorithm AR is bounded by O(m).

Note that the algorithm AR does not depend on any specific H or Ψ at all. It only depends on
the general parameters (s, r1, . . . , rs, ε, k) of the problem. Informally, the partition oracles generated
by AR will be constructed as follows (although the output of AR does not depend on any specific
hypergraph, for simplicity we refer to H as the hypergraph in mind).

• (representation) every partition oracle π will be associated with some small subset U ⊂ V (H)
of H’s vertices, a partition ΠU of U into k components, and a vector β̄. The set U will be
usually shared among the partition oracles within a sequence.

• (query complexity) for every vertex v ∈ V (H), some subset of edges within U ∪ {v} will be
queried. As we mentioned above, in case of sequences of partition oracles the set U will be
shared, and hence the shared query complexity of the considered sequences will be small (when
U is small).

• (operation) every vertex v ∈ V (H) is classified according to the outcomes of the queries in the
previous stage and the partition ΠU . Then it is mapped to some j ∈ [k] at random, according
to the vector β̄ which is interpreted as a set of distributions (one distribution for each possible
classification of v).

Before proving Lemma 6.2, we state two additional lemmas and through them prove Theorem 2
and Theorem 3.

Lemma 6.3 Let H be a hypergraph and let Ψ be a set of density tensors (both of type (s, r1, . . . , rs)).
For every ε > 0, if H ε′-loosely satisfies Ψ, where ε′ , ε

2r , then H also ε-tightly satisfies Ψ.

21



Lemma 6.4 Let Ψ be a set of density tensors that is checkable for proximity in time TC(Ψ), and
let {πi}mi=1 be a sequence of m (q, c) k-wise partition oracles with shared query complexity f . There
is a randomized algorithm AS that on input 0 < δ, ε < 1 and an oracle access to a hypergraph H of
type (s, r1, . . . , rs) does the following.

• If one of the partition oracles πi defines a partition Πi of V (H) that ε/2-loosely satisfies the
property Ψ, then with probability at least 1− δ

2 the algorithm AS outputs i and a density tensor
ψ ∈ Ψ which is ε-loosely equal to ψΠi – the true density tensor of Πi.

• If for every πi the induced partition Πi does not even ε-loosely satisfies Ψ, then the algorithm
AS outputs False with probability at least 1− δ

2 .

Furthermore, the query complexity of AS is bounded by

O

(
(r · f + s) · (1

ε
)2 · log(

m · skr

δ
)

)
and the time complexity of AS is bounded by

O

(
m · c · (r · f + s) · (1

ε
)2 · log(

m · skr

δ
)

)
+m · TC(Ψ)

We proceed with proving Theorem 2 and Theorem 3, and postpone the prof of Lemma 6.3 and
Lemma 6.4 to Subsection 6.4.1 and Subsection 6.4.2 respectively.

Proof of Theorem 2

First we apply Lemma 6.2 with accuracy parameter ε′ = ε
4r , repeating it 2 log(1/δ) independent times,

and thus we obtain m′ = m · 2 log(1/δ) partition oracles with shared query complexity 2 log(1/δ) · f ,
where we know that if H satisfies Ψ, then with probability at least 1 − 1

2δ at least one of the m′

partition oracles induces a partition which ε′-loosely satisfies Ψ. Then we can apply the algorithm
from Lemma 6.4 on all m′ partitions and write down a 2ε′-loosely satisfying partition if we find one,
and output “No Partition” otherwise. In case we found a 2ε′-loosely satisfying partition oracle π,
we partition all vertices of H in time O(n · f). Then we modify the resulting partition by making
a minimal number of vertex moves according to Lemma 6.3 (see its proof below), so if one of the
oracles indeed 2ε′-loosely satisfies Ψ then with probability 1− δ/2 Lemma 6.4 detected it and hence
its corresponding modified partition ε-tightly satisfies Ψ. As a conclusion, the time complexity of
algorithm A is bounded by

O
(
m′ ·

[
f2

6.2 ·
( 1

ε′

)2
· log

(m′skr
δ

)
· r · s+ TC(Ψ)

]
+ n · f6.2

)
=

exp
(

(r/ε)O(s·r·kr)
)
· log2(1/δ) + n · poly(kr, s, 1/ε)

and the probability of success is at least 1− δ, matching the assertions of Theorem 2.

22



Proof of Theorem 3

First we apply Lemma 6.2 with ε′ = ε
4r , repeating it 2 log(1/δ) independent times and obtaining

m′ = m·2 log(1/δ) partition oracles with shared query complexity 2 log(1/δ)·f , where with probability
at least 1 − 1

2δ, at least one of them induces an ε′-loosely satisfying partition in the case that H
satisfies Ψ. Then we can apply the algorithm from Lemma 6.4 on all m′ partitions and output the
density tensor ψ ∈ Ψ if we received one from algorithm AS . Observe that by Lemma 6.3, the density
tensor ψ (in the case that the algorithm AS did not err) is ε-tightly satisfied by H. Hence the total
probability of success is at least 1− δ. The time complexity of algorithm AT is bounded by

exp
(

(r/ε)O(s·r·kr)
)
· log2(1/δ)

and its query complexity is bounded by

poly(kr, s, 1/ε) · log2(1/δ)

matching the assertions of Theorem 3.

6.2 Proof of Lemma 6.2

Comment 6.5 As we mentioned in Section 5, although the sequence of partition oracles generated
by AR does not depend on any specific hypergraph or density tensor, it will be convenient to refer to
some fixed H and Ψ throughout the proof. The reason for this is that in the proof we mostly argue
about the partition oracles themselves (rather than the algorithm AR), whose outputs depend on the
hypergraph in mind.

In order to maintain a small approximation error, the partition oracles generated by algorithm AR

are going to classify the vertices of H incrementally, by first splitting V (H) into sets Y 1, Y 2, . . . , Y 8/ε

and then partitioning every set Y i separately. Therefore, we first state a technical lemma related to
the partial partitioning algorithm for each Y i, and using it we prove Lemma 6.2.

Lemma 6.6 For every k ∈ N and hypergraph type (s, r1, . . . , rs) (with r = max{ri}) there exists a
randomized algorithm A1/ε that on input 0 < α < ε < 1 and n ∈ N generates a sequence of m̂ partial

(f, f) k-wise partition oracles {πi : [ ε8n]→ [k]}m̂i=1 such that:

• m̂ = m̂6.6(ε, s, k, r) = exp
(
ε−O(s·r·kr)

)
and f = f6.6(ε, s, k, r) = poly(kr, s, 1/ε);

• the shared query complexity of {πi}m̂i=1 is f ;

• for any Ψ of order k and type (s, r1, . . . , rs), any hypergraph H of order n and type (s, r1, . . . , rs)
having a partition Π = {V1, . . . , Vk} that α-loosely satisfies Ψ, and any subset Y ⊂ V (H) of
size ε

8n, with probability 1 − ε
16 at least one of the m̂ partition oracles induces a partition

ΠU = {Y1, . . . , Yk} such that combining it with the original partition Π gives a partition Π̂ =

{V̂1, . . . , V̂k} (where for every i, V̂i = ((Vi \ Y ) ∪ Yi)), which (α+ ε2

8 )-loosely satisfies Ψ.

Furthermore, the running time of A1/ε is bounded by O(m̂).

Supposing that we have such a partial partitioning algorithm A1/ε, we show how to construct the
main partitioning algorithm AR from Lemma 6.2.

23



Proof (of Lemma 6.2). Assume that H has a partition Π that satisfies the property Ψ. First
we arbitrarily split V into l = 8/ε equal-sized sets {Y 1, . . . , Y l}. Then we execute for every Y i the
partial partitioning algorithm A1/ε, and write down the m̂ partition oracles of each Y i. Recall that
the partial partitioning algorithm A1/ε does not require knowledge of the existing partition Π. Using

these m̂ · l partial partition oracles {(π1
1, . . . , π

1
m̂), . . . , (πl1, . . . , π

l
m̂)} we construct a set of m̂l complete

partition oracles for V by going over all possible combinations. Namely, we combine every possible
sequence π1

i1
, π2
i2
, . . . , πlil of l partial oracles into a complete oracle, that partitions all of H’s vertices

into k components. We claim that with probability at least 1
2 , one of these m̂l complete partition

oracles induces a partition that ε-loosely satisfies Ψ.
Assume that we start with an implicit partition Π0 = {V 0

1 , . . . , V
0
k } of H that satisfies the

property Ψ, or equivalently α-loosely satisfies Ψ for α = 0. Since every execution of A1/ε fails with

probability at most ε
16 = 1

2l , with probability at least 1/2 we have a sequence of l “correct” partial
partition oracles that admits the following construction. To construct the correct complete partition
oracle, we take the first “correct” induced partition ΠY 1 = {Y 1

1 , . . . , Y
1
k } of Y 1, and build (implicitly)

a new complete partition Π1 = {V 1
1 , . . . , V

1
k }, where V 1

i = (V 0
i \ Y 1) ∪ Y 1

i , and where we now know

(by Lemma 6.6) that Π1 is a partition that α + ε2

8 = ε2

8 -loosely satisfies Ψ. Now we continue with
a “correct” induced partition of Y 2 with respect to Π1, and build a complete partition Π2 that
2 · ε28 -loosely satisfies Ψ and so on. Eventually, with probability 1/2, there is a “right” sequence of
the induced partial partitions ΠY i , from which we get a complete partition Πl which (due to the

triangle inequality) 8
ε ·

ε2

8 = ε-loosely satisfies Ψ as required. Moreover, the way that the partitions
are constructed is such that for this to work (by trying out all combinations of the provided partition
oracles of Y 1, . . . , Y l) we require no knowledge on Π at all, apart from that it exists.

6.3 Algorithm A1/ε - Proof of Lemma 6.6

6.3.1 Overview

The main idea behind the partial partitioning algorithm is the following. Let Π = {V1, . . . , Vk} be
the (unknown) partition which loosely satisfies the property Ψ, and let Ỹ be some small enough set
of vertices. We refer to the type of an edge e = (v1, . . . , vri) as its configuration with respect to Π, i.e.
the number of vertices that it has in every component, and their positions in e. If almost all vertices
in Ỹ participate in the same number of edges of any type (with respect to V1 \ Ỹ , . . . , Vk \ Ỹ ), then
we can redistribute Ỹ in any way, as long as the component sizes are almost preserved, and still get
a partition Π′ which is almost as good as Π.

Once we convinced ourselves that this is true, we can think of a somewhat larger set Y ⊂ V , and
its own partition {Y1, . . . , Yc} where in every Yi (similarly to the set Ỹ above) almost all vertices
are “similar” (note that this partition of Y is not related to the main partition Π, and the partition
size c depends among other things on the level of accuracy in our notion of “almost”). Now, if
we redistribute each Yi in a way that preserves the component sizes in Π, then still (after the c
redistributions) we get a partition which approximately satisfies the property Ψ.

In the following section we define the notion of “almost similar vertices” more precisely, and show
how to cluster a given set in a way that groups almost similar vertices together.

24



6.3.2 Clustering vertices

Let Y 0 ⊂ V be a fixed set of vertices and let Π = {V1, . . . , Vk} be some partition of V . Denote
by {W1, . . . ,Wk} the partition that Π induces on V \ Y 0, i.e. {V1 \ Y 0, . . . , Vk \ Y 0}. Our aim in
this section is to cluster every vertex v ∈ Y 0 according to its relative density scheme with respect
to {W1, . . . ,Wk}. Referring to our discussion above, we are going to group the “similar” vertices
together. The clustering procedure is described precisely below, but first we start with some defini-
tions.

We denote by Φp
i the restriction of Φi to the domain [ri] \ {p}. Namely, Φp

i is the set of all
mappings from [ri] \ {p} to [k]. Fix an edge set Ei, an index p ∈ [ri], a vertex v ∈ Y 0 and a mapping
φ ∈ Φp

i . Let Γpi,φ(v) denote the set{
(v1, . . . , vri) ∈ Ei :

(
∀j∈[ri]\{p} vj ∈Wφ(j)

)
∧
(
vp = v

)}
Intuitively, for every extension φ′ ∈ Φi of φ, the size of Γpi,φ(v) measures how the density µπi,φ′ is
affected when putting the vertex v in the set Vφ′(p). Since we are interested in the normalized
densities of such edges, we define

γpi,φ(v) =
|Γpi,φ(v)|
nri−1

Let γ(v) = 〈γpi,φ(v)〉i∈[s],p∈[ri],φ∈Φpi
denote the density scheme of the vertex v considering all possible

edge sets, places and mappings with respect to the partition {W1, . . . ,Wk}. This density scheme
encodes all information on v that we will use in the following (going back to our previous discussion,
“similar” vertices are the vertices that have “similar” density schemes). Now we build an auxiliary
set of quantitative density schemes. First let Qε = {0, ε32 ,

2ε
32 , . . . , 1} be the set of integer multiples

of ε
32 in [0, 1]. Then the set of possible clusters is defined as

A = {ᾱ = 〈αpi,φ〉i∈[s],p∈[ri],φ∈Φpi
: ∀i∈[s],p∈[ri],φ∈Φpi

αpi,φ ∈ Qε}

In this set of (1
ε )
O(kr·s·r) clusters (recall that r is the maximal arity of the edge sets) we group together

the vertices that have approximately (up to ε
16) the same density schemes. The precise clustering of

a vertex v ∈ Y 0 is performed as follows. We say that the density scheme γ(v) of v is close to the
cluster ᾱ ∈ A if for every i, φ, p we have γpi,φ(v) = αpi,φ ± ε/32. Note that one density scheme γ(v)
can be close to multiple clusters. The final clustering will be based on sampled approximate density
schemes of H’s vertices (rather than the real ones), and all we will require is that almost every vertex
v goes to a cluster that is close to γ(v).

In the following we show that redistributing vertices from the same cluster cannot change the
resulting edge densities from those of the initial partition of V by much.

6.3.3 Redistributing vertices from the same cluster

Let Π = {V1, . . . , Vk} be any fixed partition of V , and let Y 0 ⊂ V be a set of at most ε
8n vertices.

As above, denote by {W1, . . . ,Wk} the partition induced by Π on V \ Y 0. Let Y 0,ᾱ be a subset of
Y 0 such that all but at most ξ|Y 0,ᾱ| vertices v ∈ Y 0,ᾱ are close to the same cluster ᾱ with respect
to the partition {W1, . . . ,Wk}. This means that there is a density scheme ᾱ = 〈αpi,φ〉i∈[s],p∈[ri],φ∈Φpi

such that for all but at most ξ|Y 0,ᾱ| vertices v ∈ Y 0,ᾱ we have ∀i∈[s],p∈[ri],φ∈Φpi
γpi,φ(v) = αpi,φ± ε/32.

25



We claim that if the vertices of such a Y 0,ᾱ are redistributed over the k components of Π in a way
that approximately preserves the number of vertices in every component, then the edge densities
(according to any index i and mapping φ ∈ Φi) remain almost the same as before the redistribution
of Y 0,ᾱ. Formally:

Claim 6.7 Let (Y 0,ᾱ
1 , . . . , Y 0,ᾱ

k ) be any partition of Y 0,ᾱ that for each 1 ≤ j ≤ k satisfies ||Vj ∩
Y 0,ᾱ| − |Y 0,ᾱ

j || < η|Y 0,ᾱ|, and let Π̂ = {V̂1, . . . , V̂k} = {W1 ∪Y 0,ᾱ
1 , . . . ,Wk ∪Y 0,ᾱ

k } be the redistributed
partition of V . Then the following holds.

• ∀i∈[k], ||Vj | − |V̂j || < η|Y 0,ᾱ|

• ∀i∈[s],φ∈Φi,
∣∣∣|EΠ

i,φ| − |EΠ̂
i,φ|
∣∣∣ ≤ ( 3ε

16 + ξ + η)|Y 0,ᾱ|nri−1

Proof. The first inequality follows form the definition of the sets V̂j and fact that ||Vj ∩ Y 0,ᾱ| −
|Y 0,ᾱ
j || < η|Y 0,ᾱ| for each 1 ≤ j ≤ k, so we move to the second one. Fix i and φ. We call an edge e

relevant with respect to Π, i and φ if e ∈ EΠ
i,φ. Our purpose is to show that for all i and φ, the size

of EΠ
i,φ is close to the size of EΠ̂

i,φ. The amount of relevant edges which have no vertices in Y 0,ᾱ at
all is preserved. We partition the rest of the relevant edges into two types:

I1 = {e ∈ (EΠ
i,φ ∪ EΠ̂

i,φ) : |e ∩ Y 0,ᾱ| = 1}

I≥2 = {e ∈ (EΠ
i,φ ∪ EΠ̂

i,φ) : |e ∩ Y 0,ᾱ| ≥ 2}

Clearly the size of I≥2 is bounded by |Y 0,ᾱ|2nri−2 ≤ ε
8 |Y

0,ᾱ|nri−1. As for I1, its influence on the
change in the density may be caused by one of the following.

• At most ξ|Y 0,ᾱ| vertices that do not reside in the same cluster as the others. These vertices
can participate in at most ξ|Y 0,ᾱ|nri−1 relevant edges.

• The difference between the vertices that reside in the same cluster. This can change the number
of relevant edges by at most ε

16 |Y
0,ᾱ|nri−1.

• The difference in the sizes of the components before and after the redistribution. Since these
differences are bounded by η|Y 0,ᾱ|, the change in the number of crossing edges due to them is
at most η|Y 0,ᾱ|nri−1.

Summing up, the difference in the number of relevant edges before and after the redistribution is at
most ( 3ε

16 + ξ + η)|Y 0,ᾱ|nri−1.

6.3.4 Redistributing general sets of vertices

Until now we referred to sets Y 0,ᾱ in which almost all vertices are similar. Now we turn to the case
where we need to redistribute an arbitrary set Y 0 of size at most ε

8n (let the Vj ’s, Wj ’s and the V̂j ’s
denote the sets of the above partitions with respect to Y 0). Assume for now that we have an oracle
that provides us the following information:

(i) A clustering {Y 0,ᾱ1 , . . . , Y 0,ᾱc} of Y 0, such that all but at most an ε/16 fraction of the vertices
in Y 0 are assigned to a close cluster with respect to {W1, . . . ,Wk}

26



(ii) For every Y 0,ᾱi and Vj , the approximate normalized size of |Y 0,ᾱi ∩Vj |. Namely, for each Y 0,ᾱi

and Vj define ζᾱij , |Y 0,ᾱi∩Vj |
|Y 0,ᾱi | as the true intersection size. Then the oracle provides a sequence

(βᾱij )i∈[c],j∈[k] of reals such that

k∑
j=1

c∑
i=1

(
|ζᾱij − β

ᾱi
j | · |Y

0,ᾱi |
)
<
ε

4
· |Y 0|

Denoting by ξh the fraction of vertices in every Y 0,ᾱh that are not close to the cluster ᾱh, we have∑
h ξh|Y 0,ᾱh | ≤ ε

16 |Y
0|, and denoting by ηh the sum

∑k
j=1 |ζ

ᾱh
j −β

ᾱh
j | we have

∑
h ηh|Y 0,ᾱh | ≤ ε

4 |Y
0|.

Then, after any redistribution of the vertices of each Y 0,ᾱh according to the sequence (βᾱij )i∈[c],j∈[k],
from (ii) we have:

∀j∈[k] : ||Vj | − |V̂j || <
ε

4
|Y 0| ≤ ε2

32
n

and according to (i), by Claim 6.7 we have:

∀i∈[s],φ∈Φi :
∣∣∣|EΠ

i,φ| − |EΠ̂
i,φ|
∣∣∣ ≤∑

h

(
3ε

16
+ ξh + ηh)|Y 0,ᾱh |nri−1 ≤ ε

2
|Y 0|nri−1 ≤ ε2

16
nri

In terms of density tensors, we have: ∀j∈[k] : |ρΠ
j − ρΠ̂

j | ≤ ε2

32 and ∀i∈[s],φ∈Φi : |µΠ
i,φ − µΠ̂

i,φ| ≤
ε2

16 .
The only thing left is to describe how to simulate the oracles for (i) and (ii) above. As for the

second item (ii), we can just provide corresponding partitions for all possible sets of intersection
sizes as follows. Let

B =
{
β̄ = (βᾱ1 , . . . , β

ᾱ
k )ᾱ∈A : (βᾱj ∈ {0,

ε

32
,

2ε

32
, . . . , 1}) ∧ (

∑
j

βᾱj = 1)
}
.

The size of B is bounded from above by (32/ε)k·|A| = exp
(
ε−O(s·r·kr)

)
. For every possible β̄ ∈ B,

we partition the vertices of every Y 0,ᾱ into the k components according to the distribution defined
by (βᾱ1 , . . . , β

ᾱ
k ), i.e. when queried about a vertex v ∈ Y 0,ᾱ we put it into Vj with probability βᾱj ,

for every j ∈ [k]. Observe that there exists β̄ = (βᾱ1 , . . . , β
ᾱ
k )ᾱ∈A ∈ B which approximates the

true intersection values (ζᾱ1 , . . . , ζ
ᾱ
k )ᾱ∈A even closer than needed, and then for n = ω(s · kr), with

probability 1−o(1), redistributing according to this vector β̄ will make the intersection sizes as close
as required. Note that this avoids having to know the actual sizes of the intersections of Y 0,ᾱ with
the components V1, . . . , Vk while constructing a partial partition oracle for the vertices in Y 0.

For the first item (i), we are going to choose a random set U of vertices in V \Y 0, and approximate
the clusters of the vertices in Y 0 according to their density schemes with respect to the partition
of U induced by Π. Once again, since we do not know the partition Π, we shall try all possible
partitions of U as follows. Let U ∈ (V \ Y 0) be a set of size T . We denote by PU the set of all
possible k-way partitions of U , namely PU = {ΠU : ΠU is a k-way partition of U}. Note that the
size of PU is at most kT . We are going to partition the set U according to each one of the partitions
in PU , and clearly one of them is the correct one, which is the one that is induced by the initial
partition Π = {V1, . . . , Vk}. The following lemma states that sampling from a small set U gives a
good approximation of the clusters for most of the vertices in Y 0.

27



Lemma 6.8 There is a (deterministic) algorithm that given subsets Y 0 ⊂ V of size ε
8n, and U ⊂

V \Y 0 of size at most r · t = r · 216

ε2
log l·s·r·kr

ε , outputs a sequence of krt · |B| = exp
(
ε−O(s·r·kr)

)
partial

k-wise partition oracles {πi : Y 0 → [k]}k
rt·|B|
i=1 with shared query complexity s · t such that

• the partition oracles query only edges contained in U ∪ Y 0;

• if U is chosen at random (by choosing r · t vertices uniformly at random, possibly with repeti-
tions), then for any partition Π = {V1, . . . , Vk} of V , with probability at least 1 − 1

2l over the
choice of U at least one of the partition oracles clusters the vertices of Y 0 so that all but at
most ε

16 |Y
0| of them are clustered correctly with respect to Π and A.

6.3.5 Estimating the clusters by sampling – Proof of Lemma 6.8

Let Π = {V1, . . . , Vk} (as we mentioned above, we first assume here that the underlying partition of
the vertices is known), let {W1, . . . ,Wk} = {V1 \ Y 0, . . . , Vk \ Y 0}, and let us fix a vertex v ∈ Y 0, an
edge set Ei, i ∈ [s], a position p ∈ [ri] and a mapping φ ∈ Φp

i . We are going to estimate the value
of γpi,φ(v) by sampling random sets of vertices from V , and calculating the fraction of the relevant
edges within the chosen random subsets and our fixed vertex v. Recall that

γpi,φ(v) ,
1

nri−1

∣∣∣{(v1, . . . , vri) ∈ Ei :
(
∀j∈[ri]\{p} vj ∈Wφ(j)

)
∧
(
vp = v

)}∣∣∣
We should now note the following: If we choose uniformly, independently and with repetition a

sequence of ri − 1 vertices v1, . . . , vp−1, vp+1, . . . , vri , and denote by F the event that for every i 6= p
between 1 and ri we have vi ∈ Wφ(i) and in addition (v1, . . . , vp−1, v, vp+1, . . . , vri) ∈ Ei, then the

probability of F is exactly γpi,φ(v). Now, we would like to repeat this step t = 216

ε2
log l·s·r·kr

ε times

independently, and compute γ̂pi,φ(v), which is the fraction of the number of times where the event F
occurred (later we will show what to do here without prior knowedge of W1, . . . ,Wk). Applying the
additive Chernoff bound we have

Pr
[
|γ̂pi,φ(v)− γpi,φ(v)| > ε

32

]
< 2 · exp(−2(

ε

32
)2t) <

ε

32 · l · s · r · kr

To be able to classify v completely by our oracle, we first choose uniformly and indepen-
dently (with repetitions, although those would clearly occur with probability o(1)) a sequence
U = {w1, . . . w(r−1)t} of (r − 1)t vertices. For a requested vertex v, we can for every i ∈ [s],
p ∈ [ri] and φ ∈ Φp

i compute the estimation γ̂pi,φ(v) by dividing U into subsequences of length ri − 1
and using the first t of them in the estimation procedure above. By the union bound, the probability
for a given v that there exists any i, p and φ for which the deviation is more than ε

32 is bounded by
ε

32l . Hence, by the Markov inequality, with probability at least 1 − 1
2l the sequence U is such that

for all vertices v ∈ Y 0 but at most an ε/16 fraction of them, we would get γ̂pi,φ(v) = γpi,φ(v)± ε
32 for

all i, p and φ. We also note that the number of input queries that we need in order to produce the
classification of v is clearly bounded by t · s · r · kr

Now, we still have to deal with the problem of not knowing W1, . . . ,Wk. We do know which
vertices are not in any Wi at all (because we know Y 0 which is given by the algorithm and is not
dependent on the input hypergraph), so we can classify those vertices from U which are not in those
sets. For the other vertices, we have no choice but to construct appropriate oracles for any possibility

28



of partitioning them into k sets, as one of those partitions would be the correct one conforming to
W1, . . . ,Wk. Here it is important that U is chosen only once, and then reused for all our oracles in
all of their oracle queries.

Comment 6.9 In all our treatment, we made no attempt to optimize the dependency functions
themselves but only to optimize the function types. However, there are properties for which the
requirements on the density tensor ψΠ are rather sparse, allowing us to ignore some of the values
γpi,φ(v) in the density scheme for a vertex v. Doing this decreases substantially the number of clusters
in the classification, leading to a much decreased time and query complexity.

Before we continue, this is a good place to sketch how this can be done for the particular property
that we use for proving Theorem 1. The property Ψ used in its proof (see Section 3) concerns
hypergraphs with 4-edges, but these are always with two vertices in one set Vi and the other two
vertices in one other Vj. Therefore, we only need to consider values γp2,φ(v) where the function φ
has a range of size 2. Along with some additional care taken in the proof itself, we believe that it is
possible to replace k̂5 in the estimates there with k̂2+o(1).

6.4 The last missing details of the proof

6.4.1 Proof of Lemma 6.3

In this section we show that any partition Π, which ε′ = ε
2r -loosely satisfies Ψ, can be turned into a

partition which ε-tightly satisfies Ψ by correcting the number of vertices in each component, where
the correction is done by moving around a minimal number of vertices according to an appropriate
density tensor in Ψ. The idea behind this observation is that a partition which ε′-loosely satisfies
Ψ can be corrected (by definition) by moving vertices in a way that every Vj either gains up to ε′n
vertices or loses up to ε′n vertices (but not both). Now we show that as a consequence of such moves
the difference in the measured edge densities before and after the correction are small enough.

Formally, let Π be a partition which ε′-loosely satisfies Ψ, let ψΠ be the density tensor of Π and
let ψ ∈ Ψ be the density tensor which is ε′-loosely equal to ψΠ. By definition,

• for all j ∈ [k], ρΠ
j = ρj ± ε′

• for all i ∈ [s] and φ ∈ Φi, µΠ
i,φ = µi,φ ± ε′

Let Π̂ be the corrected partition, which results from the following process: Let S be a temporary set
of vertices, which is initially empty. For each j ∈ [k] such that ρΠ

j > ρj , we take |V Π
j |− ρj ·n vertices

from component V Π
j of Π, and put them into the set S. Then, for each j ∈ [k] such that ρΠ

j < ρj ,

we move ρj · n− |V Π
j | vertices from S to the component Vj .

We are going to prove that the partition Π̂ ε-tightly satisfies ψ. Recall that by definition of being
ε-tightly satisfying, we need to show that:

• for all j ∈ [k], ρΠ̂
j = ρj

• for all i ∈ [s] and φ ∈ Φi, µΠ̂
i,φ = µi,φ ± ε

The first item holds by the definition of Π̂, so we just need to prove the second one. Let us fix i ∈ [s]

and φ ∈ Φi and prove that µΠ̂
i,φ = µi,φ ± ε.

29



Let jh = φ(h) for all h ∈ [ri], and let Vj1 , Vj2 , . . . , Vjri be the set (with possible repetitions)

of components of Π that participate in the edges from |EΠ
i,φ|. Observe that any vertex v ∈ Vjh can

participate in the h’th place of at most nri−1 edges of |EΠ
i,φ|. On the other hand, the number of vertices

that were added or removed from each Vjh is at most ε′n. Therefore,
∣∣∣|EΠ̂

i,φ|− |EΠ
i,φ|
∣∣∣ ≤ ε′ · ri ·nri , and

consequently, µΠ̂
i,φ = µΠ

i,φ ± ε/2. Combining it with µΠ
i,φ = µi,φ ± ε

2r we conclude that µΠ̂
i,φ = µi,φ ± ε

as required.

6.4.2 Testing proximity to Ψ – Proof of Lemma 6.4

Lemma 6.4 (restated) Let Ψ be a set of density tensors that is checkable for proximity in time
TC(Ψ), and let {πi}mi=1 be a sequence of m (q, c) k-wise partition oracles with shared query complexity
f . There is a randomized algorithm AS that on input 0 < δ, ε < 1 and an oracle access to a hypergraph
H of type (s, r1, . . . , rs) does the following.

• If one of the partition oracles πi defines a partition Πi of V (H) that ε/2-loosely satisfies the
property Ψ, then with probability at least 1− δ

2 the algorithm AS outputs i and a density tensor
ψ ∈ Ψ which is ε-loosely equal to ψΠi – the true density tensor of Πi.

• If for every πi the induced partition Πi does not even ε-loosely satisfy Ψ, then the algorithm
AS outputs False with probability at least 1− δ

2 .

Furthermore, the query complexity of AS is bounded by

O

(
(r · f + s) · (1

ε
)2 · log(

m · skr

δ
)

)
and the time complexity of AS is bounded by

O

(
m · c · (r · f + s) · (1

ε
)2 · log(

m · skr

δ
)

)
+m · TC(Ψ)

Proof. The main idea is straightforward. Fix one of the partition oracles π, and let Π denote the
partition induced by it. Our algorithm will estimate the following measures by sampling:

• for all j ∈ [k], we compute a value ρSj that estimates the normalized size of the component Vj
in the partition Π.

• for every i ∈ [s] and φ ∈ Φi, we compute a value µSi,φ that estimates the corresponding hyperedge
density.

In the next step, we check these estimated values as follows. Let ψS denote the density tensor
corresponding to the estimated values above. If ψS is 3

4ε-loosely equal to some tensor ψ ∈ Ψ, then
we output that ψ (recall that finding such ψ takes O(TC(Ψ)) time). Otherwise, we move to the next
partition oracle from the sequence {πi}mi=1. If we did not find any 3

4ε-loosely satisfying partition,
then we output False.

We now define and analyze the estimation procedure formally. First we choose a sequence Tv

(with possible repetitions) of t = (4
ε )

2 · log
(

4m·(skr+k)
δ

)
vertices uniformly at random, and we choose

an additional sequence Te of r · t vertices in a similar fashion. Next we make the following queries
and write down their results.

30



• For every partition oracle π and every vertex v ∈ Tv ∪ Te we compute π(v). This requires
O(r · t · f) queries.

• For every i ∈ [s] we split the first ri · t vertices of Te into t consequent ri-tuples {τh =
(vh1 , . . . , v

h
ri)}

t
h=1, and for every tuple τh = (vh1 , . . . , v

h
ri) we check if (vh1 , . . . , v

h
ri) ∈ Ei. This

requires O(t · s) queries.

Summing up, the total number of queries we make is bounded by

O
(
t · (r · f + s)

)
= O

(
(r · f + s) · (1

ε
)2 · log(

m · skr

δ
)

)
Now, once we made all required queries, for every partition oracle π we perform the following.

• For every j ∈ [k] we set

ρSj =
1

t
|{v ∈ Tv : π(v) = j}|

• For every i ∈ [s] and φ ∈ Φi, we set

µSi,φ =
1

t

∣∣∣{τh = (vh1 , . . . , v
h
ri) :

(
(vh1 , . . . , v

h
ri) ∈ Ei

)
∧
(
∀j∈[ri]π(vj) = φ(j)

)}∣∣∣
For each j ∈ [k], let Fj denote the event |ρSj − ρΠ

j | ≥ ε/4. Similarly, for every i ∈ [s] and φ ∈ Φi, let

Fi,φ denote the event |µSi,φ − µΠ
i,φ| ≥ ε/4. Observe that if with probability 1− δ

2 none of these “bad”
events occur for any one of the partition oracles π, then algorithm AS satisfies the assertions of the
lemma. We concentrate on a somewhat simpler case (which implies this one by the union bound),
where we want to bound the probability for one specific π and one specific event F of this type by

δ
2m(skr+k) .

Note that for every v ∈ Tv and j ∈ [k], Pr[π(v) = j] = ρΠ
j . Similarly, for every ri-tuple

τh = (vh1 , . . . , v
h
ri) from Te, i ∈ [s] and φ ∈ Φi,

Pr
[(

(vh1 , . . . , v
h
ri) ∈ Ei

)
∧
(
∀j∈[ri]π(vj) = φ(j)

)]
= µΠ

i,φ

Since the vertices in Tv and Te were chosen independently at random, we can apply Chernoff’s
inequality to bound the probability of the event F .

Pr[F ] ≤ 2 · exp(−2 · (ε/4)2 · t) ≤ δ

2m · (s · kr + k)

as required.
Since the comparison operations of AS consume negligible running time, its time complexity is

bounded by m times the query complexity, plus m times the time required for checking proximity to
Ψ. So in total, the time complexity of AS is bounded by

O

(
m · c · (r · f + s) ·

(
(
1

ε
)2 · log(

m · skr

δ
)
))

+m · TC(Ψ)

31



7 Concluding Remarks and Open Problems

Strong hypergraph regularity: Very recently, a lot of attention was given to obtaining hyper-
graph regularity lemmas [17, 23, 24, 27] that are strong enough to reprove Szemerédi’s number-
theoretic theorem [25] and to prove combinatorial deletion results. As it turns out, in these lemmas
one needs to consider not only partitions of the vertices of the graph, but also partitions of pairs
of vertices, triples of vertices and so on. Furthermore, one needs to consider various requirements
on the interactions between the partitions of different arities concerning their densities and beyond
(e.g. on the count of certain small substructures). See for example [19] for an algorithmic version of
a strong regularity lemma for 3-uniform hypergraphs.

We believe that we can extend our main result about vertex partitions to partitions of pairs
and beyond, but (regrettably) we currently cannot use them to give algorithmic versions of the
new variants of the regularity lemma discussed above. The main reason is that our “control” of
the interactions between partitions of different arities (i.e. the density restriction types that we
can check for) is not strong enough to match the one typically required for a strong hypergraph
regularity lemma. It would be very interesting to obtain a generalization of Theorem 2 that will be
strong enough to yield algorithmic versions of the results of [17, 23, 24, 27].

Improving the output for hypergraph regularity: While we can apply Theorem 2 in a simple
way to obtain an algorithmic version of the regularity lemma for graphs (given in Theorem 1), the
generalization for hypergraphs (Theorem 4) is more complicated, and has worse output guarantees
as it will generally not find small regular partitions if they exist. It would be interesting to see if
one can prove a variant of Theorem 4 similar in nature to Theorem 1, perhaps by formulating and
proving an adequate notion of “local regularity” first.

Acknowledgments

We are grateful to Vojtech Rödl for answering numerous questions on hypergraph regularity, and to
Artur Czumaj for helpful discussions. We also thank Ilan Newman for his collaboration at an early
stage of this work. This work started out from discussions during a DIMACS Workshop12, and we
would like to thank the organizers for providing us with this opportunity.

References

[1] N. Alon, W. F. de la Vega, R. Kannan and M. Karpinski, Random sampling and approximation
of MAX-CSP problems, Proc. of the 34 ACM STOC, ACM Press (2002), 232-239. Also: JCSS
67 (2003), 212-243.

[2] N. Alon, R. A. Duke, H. Lefmann, V. Rödl and R. Yuster, The algorithmic aspects of the
regularity lemma, J. of Algorithms 16 (1994), 80-109.

[3] N. Alon and A. Naor, Approximating the cut-norm via Grothendieck’s inequality, SIAM J. on
Computing 35 (2006), 787-803.

12Properties of large graphs: From combinatorics to statistical physics and back, organized by L. Lovász and B. Su-
dakov, 16.10.06–21.6.06, Rutgers University, New Brunswick NJ, USA.

32



[4] N. Alon and J. H. Spencer, The Probabilistic Method, Second Edition, Wiley, New York,
2000.

[5] G. Andersson and L. Engebretsen, Property testers for dense constraint satisfaction programs
on finite domains, Random Structures and Algorithms 21 (2002), 14-32.

[6] S. Arora, D. R. Karger and M. Karpinski, Polynomial time approximation schemes for dense
instances of NP-Hard problems, J. Comput. Syst. Sci. 58 (1999), 193-210.

[7] F.R.K. Chung, Regularity lemmas for hypergraphs and quasi-randomness, Random Structures
and Algorithms, 2 (1991), 241-252.

[8] A. Czygrinow and V. Rödl, An algorithmic regularity lemma for hypergraphs, SIAM Journal
on Computing, 30 (2000), 1041-1066.

[9] R. Diestel, Graph Theory, Third Edition, Springer-Verlag, 2005.

[10] R. Duke, H. Lefman and V. Rödl, A fast approximation algorithm for computing the frequencies
of subgraphs in a given graph, SIAM J. on Computing 24 (1995) 598-620.

[11] W. Fernandez de la Vega, Max-Cut has a randomized approximation scheme in dense graphs,
Random Struct. Algorithms 8 (1996), 187-198.

[12] E. Fischer and I. Newman, Testing versus estimation of graph properties, SIAM J. on Comput-
ing, 37 (2007), 482-501.

[13] A. Frieze and R. Kannan, Quick approximation to matrices and applications, Combinatorica 19
(1999), 175-220.

[14] A. Frieze and R. Kannan, A simple algorithm for constructing Szemerédi’s regularity partition,
Electr. J. Comb. 6: (1999).

[15] A. Frieze and R. Kannan, The regularity lemma and approximation schemes for dense problems,
Proc. of FOCS 1996, 12-20.

[16] O. Goldreich, S. Goldwasser and D. Ron, Property testing and its connection to learning and
approximation, JACM 45(4): 653-750 (1998).

[17] T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, GAFA 7 (1997),
322-337.

[18] T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, manuscript,
2006.

[19] P. Haxell, B. Nagle and V. Rödl, An algorithmic version of the hypergraph regularity method,
Proc of FOCS 2005, 439-448.

[20] Y. Kohayakawa, V. Rödl and J. Skokan, Hypergraphs, quasi-randomness, and conditions for
regularity, J. of Combinatorial Theory A, 97 (2002), 307-352.

33



[21] Y. Kohayakawa, V. Rödl and L. Thoma, An optimal algorithm for checking regularity, SIAM
J. on Computing 32 (2003), no. 5, 1210-1235.

[22] J. Komlós and M. Simonovits, Szemerédi’s regularity lemma and its applications in graph theory.
In: Combinatorics, Paul Erdős is Eighty, Vol II (D. Miklós, V. T. Sós, T. Szönyi eds.), János
Bolyai Math. Soc., Budapest (1996), 295–352.

[23] B. Nagle, V. Rödl and M. Schacht, The counting lemma for regular k-uniform hypergraphs,
Random Structures and Algorithms 28 (2006), 113-179.

[24] V. Rödl and J. Skokan, Regularity lemma for k-uniform hypergraphs, Random Structures and
Algorithms 25 (2004), 1-42.

[25] E. Szemerédi, Integer sets containing no k elements in arithmetic progression, Acta Arith. 27
(1975), 299-345.

[26] E. Szemerédi, Regular partitions of graphs, In: Proc. Colloque Inter. CNRS (J. C. Bermond,
J. C. Fournier, M. Las Vergnas and D. Sotteau, eds.), 1978, 399–401.

[27] T. Tao, A variant of the hypergraph removal lemma, J. Combin. Theory, Ser. A 113 (2006),
1257-1280.

34


