
APPROXIMATE SATISFIABILITY AND EQUIVALENCE∗

ELDAR FISCHER† , FRÉDÉRIC MAGNIEZ‡ , AND MICHEL DE ROUGEMONT§

Abstract. Inspired by Property Testing, for every ε > 0 we relax the classical satisfiability
U |= F between a finite structure U of a class K and a formula F , to a notion of ε-satisfiability
U |=ε F , and relax the classical equivalence F1 ≡ F2 between two formulas F1 and F2 to ε-equivalence
F1 ≡ε F2. We consider strings and trees with the norm of the edit distance with moves, and show
that, unlike their exact counterparts, these approximate notions can be efficiently decided.

We use a statistical embedding of words (resp. trees) into `1, which generalizes the original Parikh
mapping, obtained by sampling O(f(ε)) finite samples of the words (resp. trees). We give a tester for
equality and membership in any regular language, in time independent of the size of the structure.
Using our geometrical embedding, we can also test the equivalence between two regular properties
over words, defined by regular expressions or Monadic Second Order formulas. Our equivalence tester
has polynomial time complexity in the size of the automaton (or regular expression), for any fixed ε,
whereas the exact version of the equivalence problem is PSPACE-complete. We also prove versions
of some of these results for trees, but with a worse time complexity.

Last, we extend the geometric embedding, and hence the testing algorithms, to infinite regular
languages and to context-free languages. For context-free languages, the equivalence tester has an
exponential time complexity for any fixed ε, whereas the exact version is not even decidable.

1. Introduction. Let K be a class of finite structures with a distance dist be-
tween structures. In the classical setting, satisfiability is the decision problem of
whether U |= F for a structure U ∈ K and a formula F , and equivalence is the deci-
sion problem of whether F1 ≡ F2, i.e. whether U |= F1 iff U |= F2 for all U ∈ K, for
two formulas F1 and F2. Equivalence is typically very hard to decide as a function of
the size of the formulas, and in some cases undecidable. For any ε > 0, two structures
are ε-close if their normalized distance is at most ε, and otherwise they are ε-far. We
introduce the notions U |=ε F and F1 ≡ε F2 based on Property Testing. Let U |=ε F
if there exists a U ′ ε-close to U such that U ′ |= F , and otherwise U 6|=ε F . Let
F1 ≡ε F2 if all but finitely many structures that satisfy U |= F1 satisfy also U |=ε F2,
and all but finitely many structures that satisfy U |= F2 satisfy also U |=ε F1.

An ε-tester for a property P defined by a formula F on K, is a randomized
algorithm which takes a finite structure U ∈ K of size n as input, and distinguishes
with high probability between U |= F and U 6|=ε F . A property P is testable if there
exists a randomized algorithm A such that, for every ε > 0 as input, A(ε) is an ε-
tester of P whose time complexity only depends on ε, i.e. it is independent of the size
n. An ε-equivalence tester for a logic L is an algorithm that can distinguish between
F1 ≡ F2 and F1 6≡ε F2, for any two formulas F1, F2 ∈ L.

We consider the class of strings and trees with a specific distance, and show that
these approximate notions can be efficiently distinguished for important properties.
These decision methods are robust, in the sense that they are adaptable to noisy
inputs.

Property testing of regular languages was first considered in [2] for the Hamming

∗ A preliminary version of this paper appeared in Proceedings of 21st IEEE Symposium on Logic
in Computer Science, pages 421–430, 2006. Supported in part by the French ANR Defis program
under contract ANR-08-EMER-012 (QRAC project), and the French ANR Sesur program under
contract ANR-07-SESU- 013 (VERAP project), and by Israel Science Foundation grants number
55/03 and 1101/06
†Faculty of Computer Science, Technion – Israel institute of technology, Haifa 32000, Israel.

eldar@cs.technion.ac.il
‡LRI, Univ Paris-Sud, CNRS; F-91405 Orsay, France. magniez@lri.fr
§LRI, Univ Paris 2; F-91405 Orsay, France. mdr@lri.fr

1

distance, and then extended to languages recognizable by bounded width read-once
branching programs [17], where the Hamming distance between two words is the
minimal number of character substitutions required to transform one word into the
other. The edit distance between two words (resp. trees) is the minimal number of
insertions, deletions and substitutions of a letter (resp. node) required to transform one
word (resp. tree) into the other. The edit distance with moves considers one additional
operation: Moving one arbitrary substring (resp. subtree) to another position in a
single step. Our results depend on this last specific distance and in particular do not
apply to the edit distance without moves.

We develop a statistical embedding of words into `1 that has similarities
with the Parikh mapping [18]. Based on this embedding, we develop an ε-tester
(Theorem 3.9) for the equality between two words whose complexity is |Σ|O(1/ε),
where |Σ| is the alphabet size. Our equality tester is also tolerant, that is it is not
only an ε-tester (which by itself would have been trivial to construct), but it also
accepts with high probability words that are ε2-close to each other. The notion of tol-
erance, initially present in self-testing, was firstly not considered in property testing.
Recently, coming back to this notion, a relation between tolerant property testing
and weak approximation was pointed out in [19]. Based on this observation and
our tolerant tester, we directly get an approximation algorithm for the normalized
edit distance with moves between two words (Corollary 3.10), whose complexity
is |Σ|O(1/ε). To our knowledge this is the first such approximation algorithm whose
complexity is independent of the size n.

Computing the edit distance with moves is NP-hard [22], but it was approximated
within an Õ(lnn) factor in only near linear time [10]. It has been used in [15] for
testing regular languages, where the tester is more efficient and simpler than the
one of [2], and can be generalized to tree regular languages. We note that the edit
distance without moves, whose value always lies between the Hamming distance (for
which there is a trivial tolerant tester) and the edit distance with moves (for which
we prove the existence of a tolerant tester), is in itself hard for tolerant testing [3].

We then extend our embedding to languages. This leads us to an approximate
geometrical description of regular languages by finite unions of polytopes, which is
robust (Theorem 4.9). Discretizing this representation gives us a new ε-tester
(Theorem 4.17) for regular languages whose query complexity is |Σ|O(1/ε) and whose

time complexity is 2|Σ|
O(1/ε)

. Whereas the complexity of previous testers for regular
languages depended exponentially on the number of states m of the corresponding
automaton (whether it is deterministic or non-deterministic), here the tester con-

struction requires time m|Σ|
O(1/ε)

, which is polynomial in m for a fixed ε. In addition,
the automaton here is only used in a preprocessing step to construct the tester, which
is independent of the size of the input.

Using again discretization, we construct an ε-equivalence tester (Theorem 4.18)
for nondeterministic finite automata in deterministic polynomial time, that is

m|Σ|
O(1/ε)

, where the exact decision version of this problem is PSPACE-complete
by [23]. We then extend this result to the ε-equivalence testing of Büchi automata
(Theorem 5.11) after generalizing our definitions to deal also with languages of infi-
nite words, and a deterministic exponential time algorithm for the ε-equivalence test-
ing of context-free grammars (Theorem 5.12), for which the exact decision version
is not even recursively computable. In particular our equivalence testers distinguish
whether MSO (Monadic second-order) formulas on strings are equivalent or not even
ε-equivalent. As exact model checking is not feasible in many settings, it would be

2

interesting to generalize this approach to other logics in the future.
Last we consider 2-ranked ordered trees, but our results generalize to any ranked

trees. When trees are interpreted as graphs, their edit distance with moves is very
related to the minimal number of edges one has to add or remove in order to get one
tree from the other. This distance was well investigated in the context of property
testing in bounded-degree graphs [12]. We define a compression of trees by a relabeling
of the tree. Basically, all small subtrees are removed and encoded into the labels of
their ancestor nodes. Such a compression removes a large fraction of the 2-degree
nodes, and can therefore be used to approximately encode any ranked tree T with
a word w(T). Since our `1-embedding of w(T) can be approximately sampled from
samples on T , some of our previous results on words can be extended to trees. Then
the tree isomorphism problem is testable (Theorem 6.8). This result is surprising
by itself since there is a negative result in the context of dense graphs [1]. Lastly
regular tree languages have an (ε4, O(ε))-tolerant tester (Theorem 6.9) whose query

complexity is (|Σ|+1)O(1/ε5) and time complexity is 2(|Σ|+1)O(1/ε5)

. Again, as opposed
to previous testers for tree regular languages [15], here the automaton is only used in
a preprocessing step to build the tester, in time exponential in the tree automaton
size for a fixed ε.

2. Preliminaries. Let K be a class of finite structures U , such as words or
trees. A property P is a subset of K. A formula F over K is defined in some logic
such as First-Order Logic or Monadic Second-Order Logic. We use here the logical
characterization of regular languages of words (resp. trees) as Monadic Second Order
Logic properties. We say that U ∈ K satisfies P , or U |= P , if U ∈ P . When P is
defined by a formula F , we extend this notation to F . Instead of properties, we may
speak of classes or languages, and in particular regular languages of words and trees.

2.1. Distances on Words and Trees. An elementary operation on a word w
is an insertion, a deletion or a substitution of a single letter, or the move of a whole
subword of w to another position. The edit distance with moves dist(w,w′) between
w and w′ is the minimal number of elementary operations performed on w to obtain
w′.

The above distance is extended to trees by generalizing the elementary operations.
An elementary operation (see Figure 2.1) on an unranked ordered tree T is either an
insertion or a deletion of a node [24], the substitution of a label, or the move of an
entire subtree [15]. More precisely, a move (u, v, i) moves in one step u (and the
corresponding subtree rooted at u) to be the i-th successor of v, shifting every j-th
successor of v for j ≥ i by one. As a consequence, the new parent of u is now v.
When trees are specified to be r-ranked, we will restrict ourselves only to insertions,
deletions and moves that maintain an r-ranked tree.

2.2. Approximate Satisfiability and Equivalence. We define the notion of
approximate satisfiability as in property testing [13]. Let K be a class of finite struc-
tures U with a distance measure dist between structures. Since property testing is an
approximate notion of verification for dense instances, or equivalently for normalized
distances, we first define a suitable notion of closeness for any distance dist. We say
that U,U ′ ∈ K are ε-close if their distance is at most ε ×M , where M is a normal-
ization factor, that is the maximum of dist(V, V ′) when V and V ′ range over K and
have respectively same sizes as U and U ′. We say that the two structures are ε-far
if they are not ε-close. For words and trees, M is set to be the maximal size of the
respective structures, since this is always on the order of the maximal distance.

3

σ

v

u
i j i−1 j+1

1 j−i+1

Insertion (u, ,v,i,j)

Move (u,v,2)v

u u

v

Fig. 2.1. Examples of elementary operations on trees.

Definition 2.1. Let P be a property on K. A structure U ∈ K ε-satisfies P , or
U |=ε P for short, if U is ε-close to some U ′ ∈ K such that U ′ |= P . When P is
defined by a formula F we extend this notation to F . Note that U 6|=ε P means that
U is ε-far from every U ′ such that U ′ |= P .

Definition 2.2 (Property Tester [13]). Let ε > 0. An ε-tester for a property
P ⊆ K is a randomized algorithm A such that, for any structure U ∈ K as input:
(1) If U |= P , then A accepts with probability at least 2/3;
(2) If U 6|=ε P , then A rejects with probability at least 2/3. If in addition the algorithm
is guaranteed to always accept if U ∈ P , then we call it a one-sided error ε-tester.
When (1) is amended as follows for some 0 < ε0 < ε:
(1’) If U |=ε0 P , then A accepts with probability at least 2/3;
then we say that the tester is a tolerant (ε0, ε)-tester [19]. Approximation algorithms
are related to tolerant testers [19]. Let α, β : R → R and f : K → R. An (α, β)-
approximation of f is a randomized algorithm that, for any input U ∈ K, outputs a
value z such that Pr[α(f(U)) ≤ z ≤ β(f(U))] ≥ 2/3.

A query to a structure U depends on the model for accessing the structure. For
a word w, a query is asking for the value of w[i] for some i. For a tree T , a query is
asking for the value of the label of v for some node v, and potentially for the index
of its parent and its j-th successor, for some j. We also assume that the algorithm
may query the input size. The query complexity is the number of queries made to
the structure. The time complexity is the usual definition, where we assume that
the following operations are performed in constant time: arithmetic operations, a
uniformly random choice of an integer from any finite range not larger than the input
size, and a query to the input.

Definition 2.3. A property P ⊆ K is testable, if there exists a randomized
algorithm A such that, for every real ε > 0 as input, A(ε) is an ε-tester of P , and the
query and time complexities of the algorithm A depend only on ε.

We extend these definitions to any formula F that defines P . We then introduce
the new notion of equivalence testing for two properties P1 and P2, and in particular
when the properties are definable by two formulas F1 and F2 over a logic L.

Definition 2.4. Let ε > 0. Let F1 and F2 be two formulas on K. Then F1 is
ε-equivalent to F2, or F1 ≡ε F2 for short, if all but finitely many structures U ∈ K
that satisfy U |= F1 satisfy also U |=ε F2, and all but finitely many structures U ∈ K
that satisfy U |= F2 satisfy also U |=ε F1.

Definition 2.5 (Equivalence tester). Let ε > 0. A (deterministic) ε-equivalence
tester for L is a (deterministic) algorithm A such that, given as input F1, F2 ∈ L:

4

(1) If F1 ≡ F2, then A accepts;
(2) If F1 6≡ε F2, then A rejects. The probabilistic version would require modifying
the above conditions to hold for A only with probability 2/3.

3. Words. We will define several statistics over words and study their robust-
ness [20, 21] and tolerance. Robustness means that far words have far statistics, and
tolerance means that close words have close statistics. Despite the difficulty of com-
puting the edit distance with moves, one can efficiently approximate the statistics of a
word. This will directly give us a tolerant tester and then an approximation algorithm
for the normalized edit distance with moves.

We will first study the robustness of our first statistics, the block statistics. Then
we will extend the robustness to the uniform statistics, which have the advantage of
being also tolerant. Last we will see how to use these statistics to efficiently decide
approximate satisfiability and equivalence.

3.1. Statistical Embeddings. Let k be an integer and ε = 1/k. For a word w
over a finite alphabet Σ, we will define and study statistics of subwords of k consecutive
letters of w for several probability distributions over the subwords. We will call Σk

the block alphabet, and its elements block letters. We will also denote by |w| the size
of w, by w[i] the i-th letter of w and by w[i . . . j] the subword w[i]w[i+ 1] · · ·w[j], for
i ≤ j.

In this section, w and w′ are two words of size n over Σ, such that k divides
n. We implicitly decompose any word w into consecutive subwords of size k, w =
w[1]bw[2]b · · ·w[εn]b, where w[i]b ∈ Σk is the i-th block letter of w. We then denote
by |w|b the number of block letters of w, namely |w|b = |w|/k. The block statistics

b-stat(w) ∈ RΣk is the statistics of the block letters of w, that is, for every u ∈ Σk,
the value b-stat(w)[u] is equal to the probability that we get w[j]b = u for a uniformly
random choice of j ∈ {1, . . . , n/k}.

The block distribution of w is the uniform distribution on the block letters
w[1]b, . . . , w[εn]b (with possible repetitions). Let X be the random vector of size
|Σ|k whose coordinates are 0 except the u-coordinate which is 1, for a randomly cho-
sen u according to the block distribution of w. The expectation of X then satisfies
E(X) = b-stat(w).

We want to construct statistics that are both robust and tolerant. Since the block
statistics will turn out to be non-robust, we therefore define other statistics using
variants of the block distribution. The uniform distribution u-stat(w) corresponds to
a uniform and random choice of a (consecutive) subword of size k of w. This is very
much related to the previous work of [8], where the subwords of length k were referred
to by the term “shingles”.

As an example, for binary words, k = 2 and respectively ε = 0.5, there are 4
possible subwords of length 2, which we take in lexicographic order. For the binary
word w = 000111, b-stat(w) = (1/3, 1/3, 0, 1/3), whereas u-stat(w) = (2/5, 1/5, 0, 2/5)
as there are 2 blocks 00, 1 block 01, no block 10 and 2 blocks 11 among the possible
5 blocks.

The block uniform distribution will serve as a link between the block and the
uniform distributions. To define the block uniform distribution bu-stat(w) we first

partition w into bigger consecutive blocks of size K, where K = b ε3n
8 ln(|Σ|)|Σ|2/ε c. To

simplify, we assume that k divides (K − k − 1), that n is divisible by K, and that

n = Ω((ln|Σ|)|Σ|2/ε
ε5). We call the new blocks the big blocks. Now bu-stat(w) is defined

by the following two-step procedure: First, in every big block choose uniformly a

5

random 0 ≤ t ≤ k− 1, and delete the first t letters and the last k− 1− t letters; then
take uniformly a random block letter in the remaining (non-consecutive) subword of
the original word.

In order to construct efficient algorithms based on these statistics, we need to
efficiently approximate them. For this, we state a more general result that implies
the approximability of our statistics. There are several methods which can be used
to obtain a Chernoff-Hoeffding type bound on vectors. In our simple case, the use of
a Chernoff-Hoeffding bound together with a direct union bound is polynomially tight
using an argument similar to the one of [4].

Lemma 3.1. Let f be a function from {1, . . . ,M} to RD, such that f(x) has
non-negative coordinates and has unit `1-norm, for every x. Let {Y1, . . . , YN} be
random variables over {1, . . . ,M} independently distributed according to the same

probabilistic distribution d. Then for every t > 0, Pr
[
|Ed(f(Y)) − 1

N

∑N
i=1 f(Yi)| ≥

D × t
]
≤ D × 2e−2Nt2 .

Proof. Let µ = Ed(f(Y)) and µ̂N = 1
N

∑N
i=1 f(Yi). For each u ∈ {1, . . . , D},

the i-th coordinate of µ and µ̂N satisfy Pr[|µ[u] − µ̂N [u]| ≥ t] ≤ 2e−2Nt2 , by the
Chernoff-Hoeffding bound for the random variables Xi = f(Yi)[u] which are between
0 and 1 and whose expectation is µ[u]. We conclude using a union bound.

As a corollary we can approximate both block and uniform statistics using a
number of samples independent of n. The variables Yi denote the position of the
selected block letters u of w, and Xi denote the corresponding vectors of size |Σ|k
whose u-coordinate is one and other coordinates are zero. Let stat denote either
b-stat or u-stat. Then we define ŝtatN (w)

def
= 1

N

∑
i=1,...,N Xi.

Corollary 3.2. There exists N ∈ O((ln|Σ|)|Σ|2/ε
ε3) for which Pr[|stat(w) −

ŝtatN (w)| ≥ ε] ≤ 1
3 , where stat denotes either b-stat or u-stat.

Proof. By definition, stat(w) = Ed(f(Y)) where f gives the stat vector of a
block, d is the uniform distribution over the relevant blocks in the w (e.g. the ones

starting at a multiple of k for the b-stat statistic), and ŝtatN (w) = 1
N

∑N
i=1 f(Yi).

From Lemma 3.1 where D = |Σ|1/ε and D × t = ε, i.e. t = ε/|Σ|1/ε, we conclude

that Pr[|stat(w) − ŝtatN (w)| ≥ ε] ≤ D × 2e−2Nt2 ≤ 1/3 if N ≥ c × lnD/t2 =
c× ln(|Σ|)|Σ|2/ε/ε for an appropriate global constant c.

3.2. Robustness and Tolerance. Note that b-stat(w) = b-stat(w′) iff w′ can
be obtained by a permutation of the block letters of w (since w and w′ have the same
size). We then say that w ≡b w′. This can be extended when the equality is only
approximate, by relating the distance between two words to the `1-distance of their
respective block statistics.

Lemma 3.3 (Robustness). dist(w,w′) ≤ (1
2 |b-stat(w)− b-stat(w′)|+ ε)× n.

Proof. If b-stat(w) = b-stat(w′), then the distance dist(w,w′) is at most εn as
we only need to move εn block letters. Otherwise, we will construct a word w′′

from w such that b-stat(w′′) = b-stat(w′), using at most n
2 |b-stat(w) − b-stat(w′)|

substitutions. Applying the triangle inequality and the previous case, we obtain the
desired result.

Choose sets X+ and X− satisfying the following. For every block letter α ∈ Σk

for which b-stat(w)[α] > b-stat(w′)[α], the set X+ contains exactly b-stat(w)[α] −
b-stat(w′)[α] indices i for which w[i]b = α. And for every block letter β ∈ Σk for which
b-stat(w′)[β] > b-stat(w)[β], the set X− contains exactly b-stat(w′)[β] − b-stat(w)[β]
indices j for which w′[j]b = β. Note that X+ and X− exist and have the same

6

cardinality, which is n
2k |b-stat(w)−b-stat(w′)|. Initially we let w′′ = w. While X+ 6= ∅

repeat the following: take any i ∈ X+ and j ∈ X−; replace in w′′ the letters of
w′′[i]b = w[i]b with those of w′[j]b (using at most k substitutions); remove i from X+

and j from X−. The resulting word w′′ satisfies the required conditions.

We now prove that u-stat is both robust and tolerant (sound), which leads to an
estimator of the distance for far away instances, whereas b-stat is only robust. For
instance, the words (01)n and (10)n are 1

2n -close, whereas for an even k their block
statistics are Ω(1)-far. The proof of the robustness of u-stat will use as an intermediate
step the robustness of the block uniform statistics bu-stat. For the tolerance of u-stat,
the proof is much simpler.

Lemma 3.4 (Tolerance). Let n = Ω(1
ε). If dist(w,w′) ≤ ε2n then |u-stat(w) −

u-stat(w′)| ≤ 6.1ε.

Proof. First, remember that there are n−k+1 contiguous subwords of size k in w.
Assume that dist(w,w′) = 1. In case of a simple edit operation (insertion, deletion,
substitution) on a letter, |u-stat(w)− u-stat(w′)| ≤ 2× k

n−k+1 . For a move operation,
if w = ABCD and w′ = ACBD where a subword B has been moved, there are three
border areas where we may choose a word of length k in w which does not exist in w′.
Conversely, there are similar borders in w′. For each border, there are k − 1 possible

subwords that intersect it, hence |u-stat(w)− u-stat(w′)| ≤ 2× 3(k−1)
n−k+1 .

This means that if dist(w,w′) ≤ ε2n and n = Ω(1
ε), then by repeated use of the

triangle inequality |u-stat(w′)− u-stat(w′)| ≤ ε2n× 6.1k
n = 6.1ε, since k = 1

ε .

We now show that the robustness for b-stat(w) implies the robustness for
bu-stat(w), which will then imply the robustness for u-stat(w). For a big block
Bi, where i = 1, . . . , nK , we denote by vi,ti the subword of Bi after deleting the
first ti letters and the last k − 1 − ti letters of Bi. Let v be the concatenations
of the words vi,ti . Then by the definition of bu-stat(w) we have bu-stat(w) =
K
n

∑n/K
i=1 Eti=0,...,k−1(b-stat(vi,ti)) = Ev(b-stat(v)).

Intuitively one would like to use this equation directly for extending the robustness
of b-stat to bu-stat. However, this will not work since one would need to use a triangle
inequality in the wrong direction. Instead we use a more elaborate proof based on a
Chernoff-Hoeffding bound argument.

Lemma 3.5. There exists a word v obtained from w after deleting O((ln|Σ|)|Σ|2/ε
ε4)

letters, so that |bu-stat(w)− b-stat(v)| ≤ ε
2 .

Proof. Fix a coordinate u ∈ Σk. For every i = 1, . . . , nK , let Xi be the random

variable Xi
def
= b-stat(vi,ti)[u], where ti is chosen uniformly in {0, . . . , k − 1}. We

denote by v the random word obtained from the concatenation of the words vi,ti .

Note that v is obtained from w after deleting (k − 1)× n
K = O((ln|Σ|)|Σ|2/ε

ε4) letters.

The variables (Xi)i are independent random variables such that 0 ≤ Xi ≤ 1 and
Ev(b-stat(v)[u]) = K

n

∑
i E(Xi) = bu-stat(w)[u]. By the Chernoff-Hoeffding bound we

then get that, for any t ≥ 0, Pr
[
|bu-stat(w)[u]− b-stat(v)[u]| ≥ t

]
≤ 2e−2(

n
K)t2 .

We repeat the same argument for every u-coordinate, and using a union bound,

we conclude that Pr
[
|bu-stat(w) − b-stat(v)| ≥ |Σ|k × t

]
≤ |Σ|k × 2e−2(

n
K)t2 . If we

set t = ε
2|Σ|k = 1

2k|Σ|k , and use the definition of K, we conclude that with non-

zero probability v is a word that satisfies the required property about the statistics,
completing the proof.

Combining the robustness of block statistics, the previous lemma, and the next
lemma, which easily relates bu-stat to u-stat, we get our robustness lemma.

7

The following simple result is well known and easy to check.

Proposition 3.6. Let A ⊆ B be two finite multisets and let µA, µB be their

respective uniform distributions. Then |µA − µB | = 2 |B|−|A||B| .

Lemma 3.7. |bu-stat(w)− u-stat(w)| ∈ O((ln|Σ|)|Σ|2/ε
ε4n).

Proof. The proof consists of proving that the underlying distributions are at `1-

distance at most O((ln|Σ|)|Σ|2/ε
ε4n). Then the definitions of the vectors u-stat and bu-stat

directly imply the result.

The uniform distribution consists of choosing uniformly at random a subword u of
w of length k, that is an integer z ∈ {1, 2, . . . , n−k−1}. The block uniform distribution
consists of choosing uniformly at random a big block, an integer 0 ≤ t ≤ k−1, and then
a subword u of length k at position i in the big block that satisfies (i−1) = t mod k.
In an equivalent way, the block uniform distribution is the uniform distribution over
all subwords of size k that are inside some big block.

The number of subwords of size k that cross boundaries of big blocks is (k− 1)×
(nK − 1). Therefore, using Proposition 3.6, the `1-distance between the distributions

is upper bounded by 2× (k − 1)(nK − 1)× 1
n−k ∈ O((ln|Σ|)|Σ|2/ε

ε4n).

Lemma 3.8 (Robustness). For any large enough n ∈ Ω((ln|Σ|)|Σ|2/ε
ε5), if

dist(w,w′) ≥ 5εn then |u-statk(w)− u-statk(w′)| ≥ 6.5ε.

Proof. We assume that n/((ln|Σ|)|Σ|2/ε
ε5) is large enough so that the O((ln|Σ|)|Σ|2/ε

ε4)

of Lemma 3.5 is upper bounded by εn
16 , and the O((ln|Σ|)|Σ|2/ε

ε4n) of Lemma 3.7 is upper
bounded by ε

8 .

Using Lemmas 3.5 and 3.7, we get subwords v and v′ that respectively come from
w and w′ after deleting at most εn

16 letters from each, so that |u-stat(w)− b-stat(v)| ≤
ε
2 + ε

8 and |u-stat(w′)− b-stat(v′)| ≤ ε
2 + ε

8 .

From the hypothesis on w and w′, and using the triangle inequality on dist,
we obtain that dist(v, v′) ≥ 5εn − εn

8 . Therefore, using Lemma 3.3, we get that
|b-stat(v) − b-stat(v′)| ≥ 8ε − ε

4 , which implies from the construction of v, v′ that
|u-stat(w)− u-stat(w′)| ≥ 8ε− ε

4 − 2(ε2 + ε
8) = 6.5ε.

Using the Tolerance and Robustness Lemmas, we can construct a one-sided error
tester for the equality of two words which is also (ε2, 5ε)-tolerant:

Uniform Tester(w,w′, ε):

Let N = Θ((ln|Σ|)|Σ|2/ε
ε3

), and k = 1
ε

Compute û-statN (w) and û-statN (w′) using the same N uniformly random indices in
{1, . . . , n− k + 1}
Accept if |û-statN (w)− û-statN (w′)| ≤ 6.25ε
Reject otherwise

Theorem 3.9. For any ε > 0, and two words w,w′ of the same size of order

Ω((ln|Σ|)|Σ|2/ε
ε5), the algorithm Uniform Tester(w,w′, ε):

(1) accepts if w = w′ with probability 1;
(2) accepts if w and w′ are ε2-close with probability at least 2/3;
(3) rejects if w and w′ are 5ε-far with probability at least 2/3.

Moreover its query and time complexities are in O((ln|Σ|)|Σ|2/ε
ε4).

Proof. If w = w′, then û-statN (w) = û-statN (w′) because we used the same indices
to calculate both, hence (1). If w and w′ are ε2-close, then |u-stat(w)− u-stat(w′)| ≤
6.1ε by Lemma 3.4, and Uniform Tester(w,w′, ε) accepts with probability at

8

least 2/3 using Corollary 3.2, hence (2). Finally, if w and w′ are 5ε-far, then
|u-stat(w)− u-stat(w′)| ≥ 6.5ε by Lemma 3.8, and Uniform Tester(w,w′, ε) rejects
with probability at least 2/3 using Corollary 3.2, hence (3).

From this (ε2, 5ε)-tolerant tester, one can derive an (ε2, 5ε)-approximation algo-
rithm of the distance following the approach of [19].

Corollary 3.10. There exists an (ε2, 5ε)-approximation algorithm for comput-
ing the normalized distance ε = dist(w,w′)/|w| between two words w,w′ of the same

size in Ω(ln(|Σ|/ε)|Σ|2/ε
ε4), with query and time complexities in O((ln(|Σ|/ε))|Σ|2/ε

ε4).

4. Languages. We want to use the notion of block statistics in order to effi-
ciently characterize a language. We choose this statistics vector for the sake of clarity
of the explanation since it is the simplest to manipulate. This work can be extended to
the uniform statistic, leading to tolerant testers following the more complex approach
in Subsection 4.5, which are more important.

Using the previous section, we can embed a word w into its block statistics

b-stat(w) ∈ R|Σ|1/ε . This characterization is approximately one-to-one (i.e. words
far from each other are embedded into far vectors) by Lemma 3.3 if the size of the
words is fixed.

This directly implies the following proposition which states the existence of a
tester for any computable language. However, this proposition does not upper bound
the required time complexity for constructing such a tester in a preprocessing stage.
The rest of the paper is devoted to studying time bounds for specific classes of lan-
guages.

Proposition 4.1. Every computable language L is ε-testable using a number of
queries that is independent of the input size n.

Proof. Given the input size n and setting k = d2/εe, we can calculate every word
u of length n in L, and write down b-statk(u). For the input word w we can then
1
2ε-approximate b-stat(w) by a vector b̂-stat(w) using Lemma 3.1, and then check

whether there is any word u as above for which | b-stat(u)− b̂-stat(w)| ≤ 1
2ε.

The above proposition is not only time inefficient, but it also does not allow to
move the computation to a preprocessing stage. The reason is that the block statistics
does not characterize words of different lengths, as b-stat(w0) = b-stat(wt0) for every
positive integer t, if w0 is any word whose size is a multiple of k.

This means that the set of block statistics b-stat(w) of all words w ∈ L is not

a good characterization of a general language L. For instance, the word w3×2s−1

0

is (1 − 1/k2s−1

)-far from the language {w2t

0 : t ≥ 1}, for every positive integer s.
Moreover, it is not hard to construct using the appropriate powers a language whose
testing algorithm requires arbitrarily intensive computations.

To construct a test that works for all n using only one preprocessing stage, one
might consider only block statistics of the “loops” of a language (as provided by an
appropriate pumping lemma). This makes sense when any word of a language can
be decomposed into loops up to a few remaining letters. Regular languages have
this property, and context-free languages also share it when any permutation between
block letters is allowed (see Section 5.2).

4.1. Geometrical Embedding of Regular Languages. We fix an automaton
A (possibly a non-deterministic one) over the alphabet Σ with a set of states Q of size
m, that recognizes the regular language L. We assume that A contains no ε-transitions
(transitions that consume no input letters).

9

A path of A for a word w of size n is a sequence of states π = (s1, s2, . . . , sn) such
that s1 is an initial state and (si, si+1) is a transition of A reading the symbol w[i].
We say that π is accepting when sn is an accepting state. When we do not precise
the word w, we will simply refer to an (accepting) path of A. The state of A on π
after reading u is s|u|, when u is a prefix of w.

Let q be a state in Q, and let v be a word over Σ. Then v is an A-loop on q if
there exist two words u,w over Σ and an accepting path π of A for uvw, such that the
state q of the automaton on π after reading u is identical to the state after reading
u and v. If there exists a state q, such that v is an A-loop on q, we will simply talk
about an A-loop.

Let k be a positive integer and set ε = 1
k . Since our embedding will be defined

using the block statistics, we will only consider words whose size is divisible by k.
This restriction is acceptable as any word of length n of L, for n large enough, is
close to such a word. In the general case, one can modify A such that A recognizes

the language of the words of L whose last (|w| − kb |w|k c) letters have been deleted,
preserving the size of A up to an additive constant in O(k).

A natural modification of A consists of defining a new automaton whose alphabet
is exactly the same as the support of the block statistics, namely the block alphabet
Σk. Define Ak, the k-th power of A, as the automaton over Σk with a set of states Q
such that the transitions of Ak are exactly all sequences of k consecutive transitions of
A. There is a natural embedding between words accepted by Ak and words of length
a multiple of k accepted by A.

Definition 4.2. A finite set {v1, v2, . . . , vl} of Ak-loops is Ak-compatible if all
the loops can occur on the same accepting path π of Ak, where each loop vi is a loop
on some state of π.

We will characterize L by the block statistics of its loops on the block alphabet.
The geometric embedding of L is the union of convex hulls of every compatible set of
loops.

Definition 4.3. Let H be the union of
Convex-Hull(b-stat(v1), b-stat(v2), . . . , b-stat(vt)) when v1, . . . , vt range over all
sets of Ak-compatible loops, for every t ≥ 0.

This definition is motivated by a standard result on finite automata: one can
rearrange any word of a regular language into a sequence of small compatible loops.
We formulate this fact in our context. Recall that |w|b denote the size of w in term of
block letters, and that w ≡k w′ if w′ can be obtained by a permutation of the block
letters of w.

Proposition 4.4. Let w ∈ L. Then w ≡k uv1v2 . . . vl, where |u|b < m and
|v1|b, . . . , |vl|b ≤ m and {v1, v2, . . . , vl} is an Ak-compatible set of Ak-loops.

Proof. Let π be an accepting path for w. The construction of the loops is perform
inductively starting with an empty collection of loops. Using the pigeonhole principle,
one can find in w a loop v on a state q of π, where |v|b ≤ m. We remove v from w and
collect it in our collection of loops. Remove also from π the subpath corresponding
to v. The argument is repeated until the remaining part of w has no more loops.

Let u be the resulting subword, let π0 be the resulting subpath, and let (vi)1≤i≤l
be the collected loops, for some l. From the pigeonhole principle, u has block-size less
than m. By construction u ∈ L since π0 is an accepting path for u. Moreover, π0 is
the witness that proves the Ak-compatibility of the collected loops (vi)1≤i≤l. Last we
conclude by observing that w ≡k uv1v2 . . . vl.

Let us now state Caratheodory’s theorem.

10

Theorem 4.5 (Caratheodory). In dimension d, any convex hull of N points
p1, . . . , pN can be decomposed into the union of convex hulls of (d + 1) points
pi1 , . . . , pid+1

(with some possible repetitions), where the union is over every possible
choice of these points from p1, . . . , pN . A consequence together with Caratheodory’s
theorem is that one can equivalently define H with the loop sizes and the number of
compatible loops being bounded. Even if this new characterization explicitly depends
on Ak (that is on A and ε), the set H only depends on L and ε as we explain later in
Proposition 4.11.

Proposition 4.6. H equals the union of
Convex-Hull(b-stat(v1), b-stat(v2), . . . , b-stat(vt)) when v1, . . . , vt range over Ak-
compatible loops such that |vi|b ≤ m and t = |Σ|1/ε + 1.

Proof. The inclusion ⊇ is straightforward.
For the ⊆ inclusion, we use Caratheodory’s theorem. Using the same argument

as in the proof of Proposition 4.4, we can overcome the length constraint. Indeed,
we use the fact that any loop v = vi of size |v|b > m can be decomposed (after a
possible reordering of the block letters) into v = u1u2, where u1 and u2 are loops that
are also compatible with the other loops vj . Repeating this argument inductively, we
first prove that the resulting set is the same also when we upper bound the loop sizes
by m. The number of possible loops is then finite. Then applying Caratheodory’s
theorem, we conclude the proof.

Another consequence of this proposition is that if a word w belongs to L, then
it has to satisfy approximately b-stat(w) ∈ H (Lemma 4.7 below). This can be
understood as an approximate Parikh classification of regular languages, whereas the
original, more involved, Parikh characterization was for context-free languages [18].
The converse is proved in Theorem 4.9.

As an example, let L = (0110)∗(11)∗ (and A be its smallest automaton), and k =
2. The Ak-loops of L are (0110)l and (11)l, for any l. These loops are Ak-compatible.
Let s1 = b-stat((0110)l) = (0, 1/2, 1/2, 0), s2 = b-stat((11)l) = (0, 0, 0, 1). Then
by definition, HL = Convex-Hull(s1, s2). Notice that s′2 = u-stat((11)l) = (0, 0, 0, 1)
is identical to s2, but that s′1 = u-stat((0110)l) = (l−1

4l−1 ,
l

4l−1 ,
l

4l−1 ,
l

4l−1) does not
converge to s1. Taking the limit of s′1 and s′2 with respect to l → ∞ we get that
Convex-Hull((1/4, 1/4, 1/4, 1/4), (0, 0, 0, 1)) is the corresponding polytope for u-stat.
We will get back to the polytops for u-stat when we deal with tolerant testing.

Lemma 4.7. For every w ∈ L there exists w′, so that 0 ≤ |w| − |w′| ≤ m
ε ,

dist(w,w′) ≤ m
ε , |b-stat(w)− b-stat(w′)| ≤ 2m

ε|w| , and b-stat(w′) ∈ H.
Proof. First, recall that the block statistics b-stat(w) is invariant under block

letter permutations. Moreover, if w′ is obtained from w by inserting or deleting one
block letter then |b-stat(w)− b-stat(w′)| ≤ 2

ε|w| .

Let w ∈ L. Applying Proposition 4.4, we can delete less than m block letters
from w so that the resulting word is a concatenation w′ ≡k u1u2 . . . ul, where the ui
are Ak-compatible Ak-loops. Since w′ is obtained from w using at most m deletions
of block letters, we have |b-stat(w)−b-stat(w′)| ≤ 2m

ε|w| . This concludes the proof since

b-stat(w′) ∈ H.
Lemma 4.8. For every X ∈ H and every n there exists w ∈ L, such that

0 ≤ |w| − n ≤ (|Σ|1/ε + 3) 2m
ε and |X − b-stat(w)| ≤ (|Σ|1/ε + 2) 3m

εn .

Proof. Let X ∈ H, that is X =
∑l
i=1 λi b-stat(vi), where l = |Σ|k + 1, |vi|b ≤ m,

0 ≤ λi ≤ 1,
∑
i λi = 1, and (vi)i are Ak-compatible loops. Fix any integer n. We

choose non-negative integers (ri)i=1,2,...,l that respectively approximate λi
εn
|vi|b , that

is satisfy 0 ≤ |ri − λi εn
|vi|b | ≤ 1, and such that 0 ≤

∑
i ri|vi|b − εn ≤ m. It is always

11

possible to satisfy this last condition due to the degree of freedom on the choices of
ri and the upper bound |vi|b ≤ m: We let j ≥ 0 be the minimum integer so that∑j
i=1dλi

εn
|vi|b e|vi|b +

∑l
i=j+1bλi

εn
|vi|b c|vi|b ≥ 0, and set ri = dλi εn

|vi|b e for i ≤ j and

ri = bλi εn
|vi|b c for i > j.

Define the word w′ = vr11 v
r2
2 . . . vrll . Then its block length is close to εn: 0 ≤

|w′|b − εn ≤ m. Moreover its block statistics satisfies

|b-stat(w′)−X|

=

∣∣∣∣∣∑
i

(
ri
|vi|b
|w′|b − λi

)
b-stat(vi)

∣∣∣∣∣ ≤∑
i

|ri |vi|b|w′|b − λi|

≤
∑
i

|ri |vi|b|w′|b − ri
|vi|b
εn |+

∑
i

|ri |vi|bεn − λi|

≤
∑
i

ri|vi|b × | 1
|w′|b −

1
εn |+

∑
i

m
εn

≤ (m+ εn)× (1
εn −

1
m+εn) + l mεn = m

εn + l mεn .

Using the Ak-compatibility of loops (vi)i, we can get a word of L from w′ by
inserting few block letters. More precisely, we can find words u1, u2, . . . , ul+1 over
Ak, an accepting path π of Ak for the concatenated word u = u1u2 . . . ul+1, and a
permutation σ over {1, 2, . . . , l}, such that vσ(i) is an Ak-loop on qi, where qi is the

state of Ak on π after reading u1u2 . . . ui, for i = 1, 2, . . . , l, We also assume without
lost of generality that each subword ui has size at most the number of states of A,
that is |ui|b ≤ m. Then w = u1v

rσ(1)
σ(1) u2v

rσ(2)
σ(2) . . . ulv

rσ(l)
σ(l) ul+1 ∈ L by construction.

Moreover 0 ≤ |w|b − |w′|b ≤ (l + 1)m, and |b-stat(w′) − b-stat(w)| ≤ 2(l+1)m
εn , so we

conclude.
Theorem 4.9. Let w ∈ Σn and X ∈ H be such that |b-stat(w)−X| ≤ δ. Then

dist(w,L) ≤
(
δ
2 +

(
1 +O(m|Σ|

1/ε

ε2n)
)
ε
)
n.

Proof. Let n = |w|. For simplicity, we assume that k divides n, otherwise we just
delete at most k − 1 letters from w so that the new length is divisible by k. From
Lemma 4.8, there exists a word w′ ∈ L, such that 0 ≤ |w′| − n ≤ (l + 2) 2m

ε and
|b-stat(w′)−X| ≤ (l+1)3m

εn , where l = 1+ |Σ|k. We again assume that k divides |w′|.
Assume that |w| = |w′|. Then, using Lemma 3.3, we get that dist(w,w′) ≤

(1
2 (δ + (l + 1) 3m

εn) + ε)n.
If w and w′ have different sizes, we artificially increment the size of w by adding

at most (l+ 2)2m block letters at the end of w (recall that adding a block letter adds
k to the word size). The deviation of its block statistics is then at most (l+2)2m× 2

εn ,
so we asymptotically get the same bound.

4.2. Automata Independency. We now show that the statistics of the Ak-
loops basically only depend on L and k. The loops in different automata for the same
language are related, using a definition that only depends on the language itself.

Definition 4.10. A word v over Σk is an (L, k)-loop if there exist two words
u,w over Σk such that uvtw ∈ L for every integer t.

Ak-loops and (L, k)-loops are nearly the same, and in particular share the same
statistics, according to the following result.

Proposition 4.11. Every Ak-loop is also an (L, k)-loop, and on the other hand
for every (L, k)-loop v there exists t ≥ 1 such that vt is an Ak-loop. In particular, the

12

set of statistics of loops of an automaton deciding the language L depends only on L
and k.

Proof. The first direction is clear. For the second direction, consider the family
of words (uvtw)t≥1 in L, and fix an accepting path π of Ak for uvmw. By a counting
argument, there exist 0 ≤ t < t′ ≤ m, such that the accepting path π reaches the
same state after both |uvt|b steps and |uvt′ |b steps. Hence vt

′−t is indeed an Ak-loop.

However, for our purpose we need to consider not only loops, but sets of compat-
ible loops. Here is the corresponding definition that depends on the language.

Definition 4.12. A finite set of (L, k)-loops {v1, . . . , vl} is (L, k)-compatible if
there exists a permutation σ : {1, . . . , l} → {1, . . . , l}, and words u0, u1, . . . , ul over
Σk, such that for every t1, . . . , tl we have u0v

t1
σ(1)u1v

t2
σ(2)u2 . . . ul−1v

tl
σ(l)ul ∈ L (note

that this in particular implies that v1, . . . , vl are (L, k)-loops).
Proposition 4.13. Every Ak-compatible set of Ak-loops is also an (L, k)-

compatible set of (L, k)-loops. On the other hand, for an (L, k)-compatible set
{v1, . . . , vl} of (L, k)-loops, there exist t1, . . . , tl ≥ 1 such that {vt11 , . . . , v

tl
l } is an

Ak-compatible set of Ak-loops. In particular, the geometric set H, constructed from
any automaton Ak deciding the language L, depends only on L and k.

Proof. The proof is similar to the proof of Proposition 4.11. Again the first
direction is clear. For the second direction, a counting argument is applied to every
loop vσ(i). Consider the family of words (u0v

t1
σ(1)u1v

t2
σ(2)u2 . . . ul−1v

tl
σ(l)ul)t1,t2,...,tl≥1

in L, and fix an accepting path π for u0v
m
σ(1)u1v

m
σ(2)u2 . . . ul−1v

m
σ(l)ul. Using the same

counting argument as in the proof of Proposition 4.11, we find integers 0 ≤ ti < t′i ≤ m
such that π reaches the same state after both reading u0v

m
σ(1)u1v

m
σ(2)u2 . . . ul−1v

ti
σ(i) and

reading u0v
m
σ(1)u1v

m
σ(2)u2 . . . ul−1v

t′i
σ(i). Hence the loops (v

t′i−ti
σ(i))i are Ak-compatible.

4.3. Construction of H. One of the remaining tasks is to efficiently construct
H for a given automaton A with m states. There are several obstacles. One of them
is to find an appropriate representation of H for deciding membership and inclusion
efficiently. Since we are only interested in an approximate version of these tasks, we
define, for a regular language, a simpler approximate representation Hε of H. We will
achieve this in constant space and polynomial time by discretization.

The set H is a subset of the unit ball of R|Σ|k for the `1-norm. Let us consider
the grid Gε = {0, ε

|Σ|k ,
2ε
|Σ|k , . . . , 1}

|Σ|k of the cube [0, 1]|Σ|
k

with step ε
|Σ|k .

Definition 4.14. Let Hε be the set of points of Gε that are at distance at most
ε
2 from H (for the `1-distance). Since |Gε| = (k|Σ|k + 1)|Σ|

k

= 2|Σ|
O(1/ε)

, then

|Hε| = 2|Σ|
O(1/ε)

. We then simply represent Hε by the brute force enumeration of its
elements.

Our goal is to prove that Hε can be constructed in polynomial time in the au-
tomaton size m. For this we will construct in polynomial time a polynomial-size set H
of tuples of vectors such that H =

⋃
S∈H Convex-Hull(S). One could try to enumerate

all Ak-loops of size at most m over Σk, but this is not efficient enough due to the
possible large number of loops, O(|Σ|km).

Instead of that, we enumerate block statistics of compatible loops using a standard
reduction to matrix multiplication over an appropriate algebra. The complexity of
the construction is then just polynomial in the number of possible corresponding

block statistics, which is
(m+|Σ|k
|Σ|k

)
= O(m|Σ|

k

), since block statistics of a word v of

size at most m over Σk basically correspond to a partition of a number bounded

13

by m into |Σ|k parts. We proceed recursively on the length t of paths between two
possible states of Ak, for t = 1, . . . ,m. Let Pt be an m ×m matrix where the entry
(i, j) is the set of block statistics corresponding to a path of length t between the
states i and j. Let us consider the algebra Dt of sets of distributions over Σk with
the operations ∪,�t, where �t is distributive over ∪ and defined for singletons by
{−→x } �t {−→y } = { 1

t+1
−→x + t

t+1
−→y }. If we denote by ◦t the matrix multiplication over

the algebra Dt, then the matrices Pt satisfy the following simple inductive equation,
where P1 is directly given by Ak (by setting each non-empty entry of P1 to be the set
of unit vectors corresponding to the block letters labeling the corresponding arcs in
Ak): Pt+1 = P1 ◦t Pt.

Lemma 4.15. Given A and ε, a set H of (|Σ|1/ε+1)-tuples of vectors can be com-

puted in time m|Σ|
O(1/ε)

such that |H| ≤ m|Σ|O(1/ε)

and H =
⋃
S∈H Convex-Hull(S).

Proof. We first compute as we explained above the matrices (Pt)t=1,...,m. At the
end of the process, the diagonals of those matrices contain the block statistics of all Ak-
loops of length at mostm. Then, a tuple of (|Σ|1/ε+1) loops is compatible if and only if
there exists an accepting path of the automaton which passes through all states of the
respective origins of the loops, a condition that can also be checked in polynomial time
by using matrix multiplication over the algebras Dt. Using Proposition 4.6, we know
that including in H the statistics of the corresponding compatible sets is sufficient.
The upper bounds on the size and the time complexity of the decomposition come

from the previous observation that at most O(m|Σ|
k

) block statistics are considered.

We now state that the construction of Hε in polynomial time in the automaton
size m.

Proposition 4.16. Given A and ε, the set Hε can be computed in time

m|Σ|
O(1/ε)

.
Proof. We can construct Hε by brute force enumeration of the elements of Gε.

First, construct the set of tuples of vectors H defined in Lemma 4.15. Consider one
by one the points X of Gε. Then, decide if X ∈ Hε by checking if X is at `1-distance
at most ε from Convex-Hull(S), where S is any tuple of vectors from H. Since the

size of Gε is 2|Σ|
O(1/ε)

and the size of H is at most m|Σ|
O(1/ε)

, the running time of the

above procedure is in m|Σ|
O(1/ε)

.

4.4. Property and Equivalence Testers. Theorem 4.17. For every real
ε > 0 and regular language L over a finite alphabet Σ, there exists an ε-tester T for L

whose query complexity is in O((ln|Σ|)|Σ|2/ε
ε4) and whose time complexity is in 2|Σ|

O(1/ε)

.
Moreover, given an automaton with m states which recognizes L, the tester T can be

constructed in time m|Σ|
O(1/ε)

.
Proof. We fix ε > 0, and an automaton A with m states that recognizes L. For

simplicity, we construct a 3ε-tester T for L. An ε-tester can be deduced from this by
replacing ε with ε/3.

Let w be a word given as input. We assume that |w|/(m|Σ|
1/ε

ε2) is large enough,
otherwise we just run the automaton on w.

The tester T has a preprocessing step followed by the testing step itself. Given A

and ε, the preprocessing step computes Hε in time m|Σ|
O(1/ε)

from Proposition 4.16.

Now the testing part consists of computing an estimation b̂-statN (w) of b-stat(w) as

in Corollary 3.2, where N = Θ((ln|Σ|)|Σ|2/ε
ε3), using O((ln|Σ|)|Σ|2/ε

ε4) queries to w. If

b̂-statN (w) is 2ε-close to Hε, then the tester accepts, and otherwise it rejects.

14

The time complexity of T is clear. Let us now study its correctness. By Corol-
lary 3.2, |u-stat(u) − û-statN (u)| ≤ ε with probability at least 2/3, and we assume
that this is the case in the analysis of T .

First, if w ∈ L, then by Lemma 4.7 b-statw is ε/10-close to H, and hence 6ε/10-

close to Hε. Then b̂-statN (w) is 1.6ε-close to Hε. Therefore T accepts w with proba-
bility at least 2/3.

Conversely, if w is 3ε-far from L, then by Theorem 4.9, b-stat(w) is 3.9ε-far from

H, and hence 3.4ε-far from Hε. Then b̂-statN (w) is then 2.4ε-far from Hε. Therefore
T rejects w with probability at least 2/3.

Theorem 4.18. There exists a deterministic algorithm T such that, for every
ε > 0 as input, T (ε) is an ε-equivalence tester for automata over a finite alphabet

Σ. Moreover the running time complexity of T is in m|Σ|
O(1/ε)

, where m is the input
automata size.

Proof. Fix ε > 0. We construct for simplicity a 2ε-equivalence tester, that
could be transformed into an ε-equivalence tester by replacing ε with ε/2. Given two
automata A and B, the algorithm simply computes the respective discrete approxi-
mations HA,ε and HB,ε of HA and HB , corresponding respectively to the automata
A and B. If they are equal, the tester accepts, and otherwise it rejects.

Let us study the correctness of T . Let LA (resp. LB) be the language recog-
nized by A (resp. B). If LA = LB , then their respective sets HA and HB are equal
by Proposition 4.13, and so their discrete approximations HA,ε and HB,ε are also
identical. Therefore the algorithm accepts.

Assume now that A and B are not 2ε-equivalent. For instance assume that LA is
not 2ε-contained in LB . Let (wn) be an infinite sequence of words that are in LA but

are 2ε-far from LB . We only consider just one word wn such that |wn| = Ω(m|Σ|
1/ε

ε2).
Then, from Lemma 4.7, b-stat(wn) is at most 0.25ε-far from HA and at most 0.75ε-far
from HA,ε. Now, by the contraposition of Theorem 4.9, since wn is 2ε-far from LB
we get that b-stat(wn) is at `1-distance at least (2 − 0.25)ε from HB and at least
1.25ε away from HB,ε. Therefore HA,ε and HB,ε are not identical and the algorithm
rejects.

4.5. Tolerant Testing. The tolerance and robustness of the uniform statistic
(Lemma 3.4 and Lemma 3.8) allow us to make the property testers as well as the
equivalence testers for nondeterministic automata (and their extensions) tolerant, if
instead of reducing the original automaton to its “block version”, we reduce it to its
“shingle version”. Recall that b-stat is not tolerant, but u-stat is.

We construct an automaton that recognizes a word w over Σk if and only if
it consists of all contiguous subwords of size k of some word u recognizable by the
original automaton. This can be done for most computational models discussed above,
and to illustrate this we sketch the construction for nondeterministic finite automata.
Let w = Shingle(u), where Shingle(u) is the word where all contiguous subwords of
u of size k are concatenated in order. For example if u = 00110 and k = 2, then
w = Shingle(u) = 00011110. Notice that b-stat(w) = u-stat(u).

Lemma 4.19. Given an automaton A with m states over Σ, it is possible to
construct an automaton A′ with l = m× |Σ|k−1 states over Σk in time polynomial in
l, where A′ accepts a word w if and only if there exists a word u accepted by A so that
w = Shingle(u).

Proof. Let the “memory automaton” M denote the following automaton con-
sisting of |Σ|k−1 states and with no accepting state: Each state of M is labeled by

15

a word from Σk−1. From a word a1, . . . , ak−1 the automaton has a transition to
a2, . . . , ak−1, b for every b ∈ Σ, which is labeled by a1, . . . , ak−1, b.

The automaton A′ consists of running in parallel the original automaton A and
the automaton M , so in effect the state set of A′ is the product of the state spaces
of M and A′. The initial states of A′ are the coupling of any state a1, . . . , ak−1 of M
with any state of A reachable from one of its original initial states by a path reading
the letter sequence a1, . . . , ak−1 from the input. The accepting states of A′ are all
couplings of a state of M with an accepting state of A.

For the transition function, there is a transition from a state s1 of A coupled with
a state a1, . . . , ak−1 of M , to a state s2 of A coupled with a state a2, . . . , ak−1, b of M ,
labeled by a1, . . . , ak−1, b, for every a1, . . . , ak−1 and b where the original automaton A
contained a transition from s1 to s2 labeled by b. Clearly A′ is the required automaton.

Let HA′ be the polytope associated with the automaton A′, as in the construction
of section 4.3. We can view this polytope as the polytope H for the u-stat statistic.

We can now present the tolerant membership and equivalence testers.
Theorem 4.20. For every real ε > 0 and regular language L over a finite

alphabet Σ, there exists an (ε2, 7ε)-tolerant tester T for L whose query complexity

is in O((ln|Σ|)|Σ|2/ε
ε4) and whose time complexity is in 2|Σ|

O(1/ε)

. Moreover, given an
automaton with m states which recognizes L, the tester T can be constructed in time

m|Σ|
O(1/ε)

.
Proof. For ε > 0 and an automaton A that recognizes L, the tolerant tester T for

L is similar to the ε-tester of Theorem 4.17.
We assume that |w|/(m|Σ|

1/ε

ε2) and |w|/((ln|Σ|)|Σ|2/ε
ε4) are both large enough, as

otherwise we just run the automaton on all words that are ε2-close to the input word
w.

The tester T estimates u-stat(u) with û-statN (u). If û-statN (u) is 7.75ε-close to
HA′,ε, the tester accepts, and otherwise it rejects. By Corollary 3.2, |u-stat(u) −
û-statN (u)| ≤ ε with probability at least 2/3, and we assume from now on that this
is the case in the analysis of T .

If dist(u, L) ≤ ε2n, then there exists u0 ∈ L such that u0 is ε2-close to u. There-
fore, by Lemma 3.4 |u-stat(u)− u-stat(u0)| ≤ 6.1ε, i.e. |b-stat(w)− b-stat(w0)| ≤ 6.1ε
for w = Shingle(u) and w0 = Shingle(u0). Moreover, by Lemma 4.7 b-stat(w) is
ε/10-close to HA′ , and hence 0.6ε-close to HA′,ε. Thus û-statN (u) is 7.7ε-close to
HA′,ε.

For the second direction, we argue by contraposition: If û-statN (u) is 7.8ε-close
to HA′,ε, then u-stat(u) is 8.3ε-close to HA′ , i.e. b-stat(w) is 7.8ε-close to HA′ for w =
Shingle(u). Moreover, by Lemma 4.8, there exists u0 ∈ L such that w0 = Shingle(u0)
satisfies |b-stat(w0) − b-stat(w)| ≤ ε/10 and |w| ≤ |w0| ≤ |w|(1 + ε2/100). Therefore
|u-stat(u0) − u-stat(u)| ≤ ε/10 and |u| ≤ |u0| ≤ |u|(1 + ε/100). By Lemma 3.8, if
u and u0 have same size then dist(u, u0) ≤ (8.4 × 5/6.5)εn ≤ 6.9εn. In the general
case, we first delete at most an ε/100 fraction of the letters from u0, which induces an
additional deviation in the uniform statistics that is upper bounded using Lemma 3.4
by ε/50. Hence u is 7ε-close to L.

Theorem 4.21. There exists a deterministic algorithm T such that, for every
ε > 0 as input, T (ε) is an (ε2, O(ε))-equivalence tester for automata over a finite

alphabet Σ. Moreover the running time complexity of T is in m|Σ|
O(1/ε)

, where m is
the input automata size.

Proof. We use the same proof of Theorem 4.18, only instead of calculating the

16

geometric embedding of the given automata A and B, we calculate the geometric
embedding of the shingle automata A′ and B′ derived from them for k = O(1/ε),
and accept if and only if these are O(ε)-close. The running time comes from the
discretization as in Theorem 4.18.

5. Generalizations.

5.1. Infinite Regular Languages. We now consider an application to infinite
words over a finite alphabet Σ. In this section, all words are infinite unless we explicitly
state otherwise. A Büchi automaton is simply a finite automaton A on which the
notion of acceptance has been modified as follows. For a word w ∈ Σω over Σ and a
corresponding (infinite) path in A, we denote by InfA(w) the set of states of A which
are reached infinitely many times by the path. We say that w is accepted by A if
there exists a path for w such that InfA(w) contains an accepting state of A. We say
that A recognizes the language of accepted infinite words. Such languages are called
ω-regular languages.

We could easily extend Theorem 4.17 to lasso words as in [9], but we prefer to
study in this section the general case of infinite words. Defining the distance over
infinite words requires to normalize the edit distance with moves. For every integer n,
we denote by w|n the prefix of w of size n. The distance between two words w,w′ is

defined as the superior limit dist(w,w′) = limn→∞ dist(w|n , w
′
|n)/n. Then the distance

of a word w to the language L is defined as dist(w,L) = infv∈L dist(w, v). Two words
w,w′ are ε-close if their distance is at most ε.

The block statistics b-stat(w) of w is the convex closure of the set of accumulation
points of the sequence (b-stat(w|n))n. It is either a one element set or an infinite
compact set. If w = uvω for two finite words u, v where the size of u is a multiple
of k, then b-stat(w) = b-stat(vω) is the one element set {b-stat(v′)} where v′ = vi is
such that its length is a multiple of k.

We now state some simple facts on infinite words that derive from concatenations
of finite words of bounded size.

Proposition 5.1. Let (wi)i be a sequence of words on Σ of globally bounded size,
and (δi)i be a sequence of reals converging to zero, such that b-stat(w1w2 · · ·wi) is in
a δi-neighborhood of a compact convex set C for every i. Let w be the infinite word
w1w2 · · · . Then w satisfies b-stat(w) ⊆ C.

Proof. Let c be the global bound on the size of the words, and let ε > 0 be any
real number. Also, for every l denote by il the largest integer such that w1w2 · · ·wil
does not contain more than l letters. Thus w|l can be constructed from w1w2 · · ·wil
by appending less than c letters.

Now assume that l1, l2, . . . are such that b-stat(w|li) converges. Let j1 be such
that all δj for j ≥ j1 are smaller than ε/2. Let j2 be such that for all j ≥ j2, both
lj ≥ 4ck/ε and ilj ≥ j1. Now for every word w|lj for j ≥ j2, its statistic is not more

than ε/2-away from that of w1w2 · · ·wilj , whose statistic is in turn not more than

ε/2 away from a point of C. Since C is compact and the existence of an appropriate
j2 was shown for every ε > 0, this means that the convergence point of the statistic
b-stat(w|li) indeed lies in C.

Proposition 5.2. Let (vi)i and (wi)i be two sequences of words on Σ of bounded
size, such that v1v2 · · · vi is ε-close to w1w2 · · ·wi for every i. Let v and w be respec-
tively the infinite words v1v2 · · · and w1w2 · · · . Then v is 2ε-close to w.

Proof. Let c be the global bound on the size of the words, and let ε′ > 2ε be a
real number. Also, denote by il the largest integer such that both w1w2 · · ·wil and

17

v1v2 · · · vil have no more than l characters. Note that either w|l can be constructed
from w1w2 · · ·wil by appending less than c characters, or the same holds for v|l and
v1v2 · · · vil (or both hold).

Now let l1 be such that for every l ≥ l1 we have l ≥ 2c/(ε′ − 2ε). For any l ≥ l1,
assume without loss of generality that w|l can be constructed from w1w2 · · ·wil by
appending less than c characters. Also v1v2 · · · vil can be constructed from w1w2 · · ·wil
by at most εl operations, and in particular its length is more than (1− ε)l − c (since
it cannot be smaller than that of w1w2 · · ·wil by more than εl). Thus v|l can be
constructed from v1v2 · · · vil by appending less than εl + c letters. Summing up we
have less than a total of 2(εl + c) operations to get from w|l to v|l , which total not
more than ε′l. Having proved the existence of l1 for every ε′ > 2ε, we are done.

We fix a Büchi automaton A with m states that recognizes a language L. By
adapting our geometric embedding for this distance, an equivalence tester for Büchi
automata follows similarly to the one constructed for regular languages over finite
words. In this tester, we modify the definition of H (Definition 4.3), by restricting
ourselves to the loops of (strongly) connected components of the accepting states of
Ak, and by distinguishing the convex hulls in H. Formally, H is a finite family of
convex hulls.

Definition 5.3. For every reachable strongly connected component C which
contains an accepting state q of Ak, let HC be the convex hull of the vector set
{b-stat(w) : w is a finite Ak-loop of C}. We denote by H̄ the family {HC : C ∈ C},
where C is the set of all connected components having an accepting state of Ak that
are reachable from an initial state, and after deleting sets which are contained in other
sets (i.e. if HC ⊆ HD then we only keep HD).

Note that the size of the family H̄ is at most the size of the automaton A, and
that we can restrict ourselves to the Ak-loops whose block sizes are at most the size of
A. Moreover, elements in H̄ are not counted with multiplicity since these will not be
useful for our purpose. As in Section 4.2, it can be observed that the construction is
independent from the automaton representation, but this requires proving some more
lemmas first. We define H̄ε similarly to Definition 4.14.

Definition 5.4. For every family H̄ = {HC : C ∈ C}, we define H̄ε = {HC,ε :
C ∈ C}, where HC,ε is the set of points of Gε that are at distance at most ε

2 from HC

(for the `1-distance).

Then H̄ε can again be computed efficiently as in Proposition 4.16.

Proposition 5.5. Let ε > 0. Given ε > 0 and a Büchi automaton A of size m,

the set H̄ε can be computed in time m|Σ|
O(1/ε)

.

Proof. As in the proof of Proposition 4.16, we construct H̄ε using Lemma 4.15.
The only difference is that the construction is done separately for every connected
component C of C. Since the number of connected components of Ak is at most m,
the construction time has the claimed order.

We now enumerate intermediate results from which the Equivalence Tester (The-
orem 5.11) will follow. We first state some lemmas about the classification by H̄. Due
to the nature of infinite languages, the one about the robustness of H̄ is more involved
and approximate.

Lemma 5.6. Let w ∈ L, and n be a number divisible by k. Then there exists
HC ∈ H̄, a finite word u0 and two infinite sequences of finite words v1, v2, . . . and
u1, u2, . . . such that

1. w = u0u1v1u2v2 · · · ;
2. v1, v2, . . . are Ak-loops within the same connected component C of Ak;

18

3. for every i > 0 the word sizes satisfy n ≤ k|ui| ≤ |vi| ≤ n(k + 1)m+1;
4. dist(w, v1v2 · · ·) ≤ 2ε and b-stat(v1v2 · · ·) ⊆ HC .

Proof. Consider an (infinite) accepting path π in Ak for w (as a block word).
Since this is an infinite walk on the finite directed graph of the automaton Ak, there
exists a connected component C such that all but at most a finite number of the
states in π are inside C. Let u0 be the subword of w corresponding to the positions
in which π has not yet converged inside C. Let w1 be such that w = u0w1.

We now construct ui, vi by induction. Assume that u1, . . . , ui−1 and v1, . . . , vi−1

were already constructed, and set wi such that w = u0u1v1u2v2 · · ·ui−1vi−1wi. Let
also πi denote the subsequence of π corresponding to the positions in wi. We now
look at the automaton states corresponding to πi[

n
k (k+1)], πi[

n
k (k+1)2], . . . , πi[

n
k (k+

1)m+1]. By the pigeon hole principle there exist 1 ≤ j1 < j2 ≤ m+1 such that πi[
n
k (k+

1)j1] = πi[
n
k (k + 1)j2]. We now set the subwords on Σk ui = wi[1 . . .

n
k (k + 1)j1 − 1]b

and vi = wi[
n
k (k+1)j1 . . . nk (k+1)j2−1]b. From this construction the first three items

in the assertion of the lemma hold.

Using Proposition 5.1, b-stat(v1v2 · · ·) ⊆ HC follows from the fact that
b-stat(vi) ∈ HC for every i (because vi is a loop in C) together with the exis-
tence of a constant upper bound on the length of all vi. Using Proposition 5.2,
dist(w, v1v2 · · ·) ≤ 2ε follows from k|ui| ≤ |vi| (and so u1v1u2v2 · · ·uivi is ε-close to
v1v2 · · · vi for every i) together with the constant upper bound on all |vi| (note also
that clearly dist(w1, u0w1) = 0). This concludes the proof of the fourth and remaining
assertion of the lemma.

We also need to know that in fact there are words “filling” the whole of H̄.

Lemma 5.7. If A is a Büchi automaton that recognizes L, and H̄ is its corre-
sponding family (as defined in definition 5.3), then for every HC ∈ H̄ there is a word
w ∈ L satisfying b-stat(w) = HC .

Proof. Let v1, . . . , vs be the words corresponding to all simple loops in the com-
ponent C of Ak, and let u be a word for which there is a path from an initial state of
Ak to the first state in the loops corresponding to v1. Furthermore, let ui be a word
for which there is a path from the first state of the loop of vi to the first state of the
loop of vi+1, where us leads on a path from the first state of the loop of vs to that of
v1.

Finally, set wi = (v1)(si+1)!u1(v2)(si+2)!u2 · · · (vs)(si+s)!us. Then the word
uw1w2 · · · satisfies the requirement.

Now we can prove that H̄ depends only on the language L and k (and not on the
specific automaton A).

Lemma 5.8. If A,B are two Büchi automata that recognize the same language,
then H̄A = H̄B.

Proof. To show H̄A ⊆ H̄B , let H ∈ H̄A. Using first Lemma 5.7, and then
using the resulting word with Lemma 5.6 for H̄B , we get that there is H ′ ∈ H̄B that
contains H. Going the other way around, there is H ′′ ∈ H̄A that contains H ′ and
hence also H. Since we removed containments from H̄A it follows that H ′′ = H and
hence H = H ′. Showing that H̄B ⊆ H̄A is done similarly.

The soundness of H̄A,ε will follow from the following straightforward variant on
the finite case.

Lemma 5.9. Let HC,ε ∈ H̄A,ε and l ≥ n = 10d(|Σ|1/ε + 2) 3m2

ε2 e. For every X in
HC,ε, there is a finite Ak-loop v in C such that 0 ≤ |v|−l ≤ εl and |X−b-stat(v)| ≤ ε.

Proof. Consider the language LC of the finite Ak-loops in C. This language is
clearly recognizable by an automaton of size at most m2 + 1. Applying Lemma 4.8

19

for LC for a vector X ′ ∈ HC which is ε/2-close to X ∈ HC,ε, we get a finite Ak-loop
v in C satisfying the assertions of the lemma.

Based on the above lemmas, we can state that H̄ is a robust characterization of
L.

Lemma 5.10. If A,B are two Büchi automata such that H̄A,ε = H̄B,ε, then
A ≡8ε B.

Proof. Set n = max{d(|Σ|1/ε + 2) 3m2

ε2 e, 4km}, where m is the maximum of the
sizes of A and B. In fact, we will prove that every word w ∈ LA (not just most words)
is 8ε-close to LB . The other direction is identical, and therefore we omit it.

Let w ∈ LA. Applying Lemma 5.6 (with the above n) we get a word w′ that is
2ε-close to w, and satisfying b-stat(w′) = b-stat(v1v2 · · ·) ⊆ HC . Also, all the loops
satisfy |vi| ≥ n, while still being of bounded size.

By hypothesis, there exists HD ∈ H̄B such that HC,ε = HD,ε. Therefore, by
Lemma 5.9, for every Ak-loop vi in C there exists a Bk-loop zi in D, such that
|b-stat(v)− b-stat(z)| ≤ ε and 0 ≤ |z| − n ≤ εn.

Now we construct w′′ ∈ LB together with an accepting path π of w′′ in B. First,
we let y0 be any finite word with a finite path π0 from an initial state of B to some
state in its connected component D. Now, for every i, assuming that we already
constructed y1, . . . , yi−1 and a path πi−1 for y0y1z2y2z2 · · · yi−1zi−1, we construct yi
and πi as follows. We look at the last state q reached by πi−1, and let yi be any word
of size at most 2m for which there is a path in B from q to the first state in a loop
corresponding to zi that also goes through some accepting state in D. We then let πi
be the continuation of πi−1 with the path for yi and the loop for zi.

Finally, we set w′′ = y0y1z1y2z2 · · · and π to be the limit of πi. Clearly π is an
accepting path in B for w′′. We finally show that w′′ is 8ε-close to w by showing that
dist(w′, w′′) ≤ 6ε and then using the triangle inequality. Now because of the nature
of block words and Lemma 5.9, we have dist(vi, zi) ≤ 2ε for every i > 0. Hence,
for every i we have dist(v1v2 · · · vi, y1z1y2z2 · · · yizi) ≤ 3ε (notice that in particular
k|yi| ≤ |zi|). Since the sizes of vi, yi and zi all have a global bound, this implies that
the distance of the infinite words w′ and w′′ is not more than 6ε using Proposition 5.2.
This concludes the proof.

Theorem 4.18 is then valid for nondeterministic Büchi automata, with H̄ taking
the place of H. Its proof is a direct consequence of the above lemmas.

Theorem 5.11. There exists a deterministic algorithm T such that, for every
ε > 0 as input, T (ε) is an ε-equivalence tester for Büchi automata over a finite

alphabet Σ. Moreover the running time complexity of T is in m|Σ|
O(1/ε)

, where m is
the input automata size.

Proof. Fix ε > 0. For simplicity an 8ε-tester is constructed. The tester is the
same as the one of Theorem 4.18, only here we check the two families of sets H̄A,ε
and H̄B,ε for equality.

Whenever the given automata A and B recognize the same language, the tester
accepts since we have H̄A = H̄B by Proposition 5.8, and therefore H̄Aε = H̄Bε . On
the other hand, if A and B are not even 8ε-equivalent, then the contraposition of
Lemma 5.10 shows that H̄Aε 6= H̄Bε , and therefore the tester rejects.

This result has a direct application for the Logic LTL, Linear Time Logic. A
classical construction associates a Büchi automaton to an LTL formula, whose size
can be exponential in the size of the formula. When exact model checking is infeasible,
we can still use our approximate equivalence tester with an arbitrarily small parameter
ε.

20

5.2. Context-Free Languages. We construct an exponential time equivalence
tester for context-free languages, given by their grammar or by their push-down au-
tomaton (the two representations are polynomially equivalent so we can switch back
and forth between them as convenient).

Theorem 5.12. There exists a deterministic algorithm T such that, for every
ε > 0 as input, T (ε) is an ε-equivalence tester for context-free grammars over a finite

alphabet Σ. Moreover, the running time complexity of T is exponential in m|Σ|
O(1/ε)

,
where m is the input grammars’ representation size.

By comparison, the exact decision problem of whether two context-free grammars
define the same language is not decidable. By the same methods, we can also construct
an exponential (preprocessing) time property tester that makes a polynomial number
of queries (note that over the Hamming distance norm, context-free languages are not
necessarily testable).

The proof uses the original Parikh theorem about the spectra of context-free lan-
guages, that provides a formula defining a semi-linear set on the letter counts of all
possible words. The exponential blow-up in the grammar size comes from this step.
From the spectrum one can calculate the set H that approximates the block-statistics
of all large enough words, and then construct an appropriate Hε. Equivalence testa-
bility for context-free grammars follows from comparing the constructed sets as in
Theorem 4.18 .

Before proceeding we note the following corollary for regular expressions with
squaring.

Corollary 5.13. There exists a deterministic algorithm T such that, for every
ε > 0 as input, T (ε) is an ε-equivalence tester for regular expressions with squaring

signs over a finite alphabet Σ whose running time is exponential in m|Σ|
O(1/ε)

, where
m is the input expression size.

Proof. We claim that regular expressions with squaring can be converted to
equivalent pushdown automata with a polynomially related size, over which we can
use the algorithm provided by Theorem 5.12. This conversion in fact follows the
standard conversion of a regular expression without squaring to a (non-pushdown)
nondeterministic automaton. The first difference is that before we read the input we
push down a unique symbol s down the stack (using an ε-transition), and in the end
we only accept if this symbol is indeed at the top of the stack. Apart from that, we
will only have stack operations while dealing with square signs, while all other regular
expression operators are treated exactly as in the standard conversion of a regular
expression.

The i-th square sign is converted to a corresponding state si that pushes down
the stack a specific symbol, with respect to i, unless this symbol was already at the
top of the stack. After pushing down the symbol, si makes an ε-transition to the
state corresponding to the beginning of the subexpression that is squared. When si
is reached with its unique symbol already at the top of the stack (which happens only
when it is reached again after repeating the part of the automaton corresponding to
the squared expression), it pops this symbol from the stack and makes an ε-transition
to the state corresponding to the expression element following the square sign.

Finally, it is not hard to see that in an accepting run of the automaton, whenever a
state related to a beginning of a squared subexpression is reached, the special state si
causes the automaton to go through the portion related to that subexpression exactly
twice before moving to the state corresponding to its end. Hence, the special states
have the same effect as the square signs in the translated expression.

21

Although regular expressions with squaring still recognize only regular languages,
their (exact) equivalence problem is EXPSPACE-complete by [16], so the exponential
time approximation algorithm given here can be considered as a slight improvement
over the exact decision setting. We now turn to the proof of Theorem 5.12.

We also note that a property tester can be constructed using the same ground-
work. Recall that under the usual Hamming distance, not all context free languages
are testable. The following tester will also serve us later when considering languages
of trees.

Theorem 5.14. For every real ε > 0 and context free language L over a finite

alphabet Σ, there exists an ε-tester T for L whose query complexity is in O((ln|Σ|)|Σ|2/ε
ε4)

and whose time complexity is in 2|Σ|
O(1/ε)

. Moreover, given a grammer of size m which

recognizes L, the tester T can be constructed in time exponential in m|Σ|
O(1/ε)

.
To construct an equivalence tester and a property tester we first lay some ground-

work, starting with normal forms.
Definition 5.15. A context free grammar with a start symbol S is said to be ε-

free if apart from possibly containing the rule S → ε (here ε denotes the empty word),
no production rule has the word ε or any word containing S in its right hand side.

A context free grammar is said to be in Chomsky Normal Form if apart from
possibly containing S → ε, all its production rules are each either into a single terminal
or into a word of exactly two nonterminals.

A context free grammar is said to be in Greibach Normal Form if apart from
possibly containing S → ε, all its production rules are into words consisting of one
terminal followed by any number of nonterminals.

It is well known that any context free gammar is equivalent to one in Chomsky
Normal Form of size polynomial in the size of the original grammar, and that this
transformation can be done in polynomial time (the standard transformation generally
works, only one needs to take care to eliminate productions to a single variable or to
the empty word only after eliminating productions to words of size larger than 2). A
similar result with respect to Greibach Normal Form was proven more recently in [7].

Lemma 5.16 ([7]). Every context-free grammar is equivalent to a grammar in
Greibach Normal Form, whose representation size is polynomial in that of the origi-
nal grammar. Furthermore, there exists an algorithm for this transformation taking
polynomial time.

The main theorem of [7] is formulated only for ε-free grammars, but a grammar
can be first made ε-free by transforming it to Chomsky Normal Form. The compu-
tation time bound is not explicitly mentioned in [7], but it follows immediately from
the proof there.

It is also well known how to convert context free grammars to nondeterministic
pushdown automata and the other way around with a polynomial blowup in the size.
For the Greibach Normal Form, the following simple observation is important.

Proposition 5.17. The standard conversion procedure of a grammar in Greibach
Normal Form into a nondeterministic pushdown automaton yields an automaton with-
out ε-transitions, i.e. a nondeterministic automaton for which every transition con-
sumes exactly one letter from the input string.

Using the above we can now efficiently move from the original grammar to a “block
grammar” that approximates the block-statistics of the original language, similarly
to the k-power construction that we used for regular languages.

Lemma 5.18. For every fixed k and terminal alphabet Σ, there exists a polyno-
mial time algorithm that converts a context-free grammar G over Σ to a context-free

22

grammar G′ over the terminal alphabet Σk, such that a word is recognizable by G if
and only if its block representation (where words whose length is not a multiple of k
are truncated to the nearest multiple) is recognizable by G′.

Proof. We first use Lemma 5.16 to move from G to an equivalent grammar
in Greibach Normal Form, and then use Proposition 5.17 to move to a pushdown
automaton A with no ε-transitions. Then we take the k’th power of A: We use the
same state space as A, but our transitions are those corresponding to sequences of k
transitions over Σ. If some of the resulting transitions consume more than one letter
off the stack, we add additional states and ε-transitions as necessary (we may also
need to make some states accepting to account for possible truncations of words whose
size is not a multiple of k). Finally, we move from this automaton to the equivalent
block grammar G′ (which by now is not necessarily in normal form). Each of the
above steps causes no more than a polynomial blowup in the representation size if k
is fixed, and so we are done.

Lemma 5.18 implies that if we have a way of comparing the spectra of the block
grammars corresponding to our two languages, that is comparing the possible block
letter counts of the words in the corresponding languages, then we can construct an
equivalence tester.

For this end we use the Parikh theorem [18], that provides a formula defining a
semi-linear set on the letter counts of all possible words, which we call the Parikh for-
mula. This formula is in fact a sequence of matrices A1, . . . , Ar and vectors b1, . . . , br,
where a vector w of nonnegative integers corresponds to the letter counts of a word
in the language if and only if there exists an index i and a vector u of nonnegative
integers such that w = Aiu+ bi.

It is not hard to see that from the matrices A1, . . . , Ar appearing in the Parikh
formula one can efficiently calculate the set H that approximates the block-statistics
of all large enough words, and then construct an appropriate Hε. A look at the
original proof in [18] already brings us half-way towards calculating these matrices.

Lemma 5.19 ([18]). The computation of the Parikh formula can be reduced (in
time polynomial in the required data size) to the computation of the letter counts of all
possible productions from a nonterminal character to a word which contains at most
one nonterminal character, whose heights are at most quadratic in the grammar size
(and so the word size is at most exponential in the grammar size).

The exponential running time of our equivalence tester is a result of the above
lemma requiring information concerning all letter counts of words of size exponential
in the grammar size. Providing this data can be done with an overhead that is only
polynomial in the maximum word size (where as before k and |Σ| are fixed), using a
successive relaxation method.

Lemma 5.20. Given a nonterminal A, all letter counts of all productions of A
into words of size up to l with no nonterminals can be calculated in time polynomial
in the grammar size and l (where the alphabet is fixed). Similarly we can calculate
all letter counts of all productions of A into words of size up to l containing a single
nonterminal B.

Proof. We provide here only the proof for finding the productions into words with
no nonterminals, as the proof for words with a single given nonterminal is an easy
extension. We first move the grammar to Chomsky Normal Form (which causes a
polynomial increase in the grammar size). Note that this transformation preserves
the original nonterminals (while it may add some new nonterminals), so we can do
this transition and still preserve the list of required words that are derivable from a

23

nonterminal A.
We maintain an array, that for every letter (nonterminal or terminal) provides

a list of possible letter counts of the words of terminals of size up to l that can be
produced. The maximum size of every such list is

(
l+h
h

)
= lO(h) where h = |Σ|k is

the number of possible terminals, and so (for fixed Σ and k) it is polynomial in l.
In the beginning, the list Lα for any terminal α contains a single vector which is ‘1’
on the coordinate corresponding to α and ‘0’ on all other coordinates, while for any
nonterminal A the initial list LA is empty. The lists for the terminal letters will not
change (and thus remain of size 1) all throughout the algorithm.

We now repeat the following procedure, as long as we can increase the size of any
of our lists: Given a production of the grammar, say “A → u”, u may either be a
single terminal α or a sequence of two nonterminals BC. In the first case, we just add
the vector assigned to Lα also to the list LA maintained for A. In the second case,
we look at the current lists for B and C, and for every pair of vectors v ∈ LB and
w ∈ LC we add w + v to LA, but only if the weight of w + v is no more than l. Note
that this step takes time that is at most quadratic in the maximum representation
size of a single list.

The above procedure must stop after at most a number of steps that is equal to the
number of nonterminals times the maximum size of a list, and so after a polynomial
number of steps we arrive at lists that can no longer be enlarged in the above manner.
It is not hard (and left to the reader) to see that all through the algorithm, no list
LA will contain vectors that are not in fact vectors of letter counts of a word possibly
produced from A. Also, every count of letters of a word of size up to l produced from
A will eventually make it into LA. Thus when the algorithm stops the lists indeed
contain the correct output.

With the above lemmas we can now finalize the proof of Theorem 5.12 as well as
Theorem 5.14.

Proof. [Proof of Theorem 5.12 and Theorem 5.14] To construct an equivalence
tester, for k = 1

ε , using Lemma 5.18 we construct the corresponding grammars A′

and B′ over Σk. Using Lemma 5.20 in conjunction with Lemma 5.19, we calculate
the Parikh formulae for the two grammars, from which we calculate HA,ε and HB,ε.
As before, we now accept if and only if these two sets are identical. The exponential
time comes from the fact that Lemma 5.19 requires us to use an exponential l in the
statement of Lemma 5.20.

To construct a property test for a grammer A, we first calculate HA,ε as above,
and then given a word w we approximate b-stat(w) using sampling and check it against
HA,ε as was done in the property tester for regular languages.

6. Trees. The purpose of this section is to extend our results to Σ-trees, i.e.
trees whose nodes have labels in some finite label alphabet Σ. This will be done by
defining an efficient word encoding of trees. Word encodings of trees are well studied.
A simple one is given by a Depth First Search from the root of the tree. Such a DFS
encoding maps tree regular languages to context free languages. We cannot directly
use such an encoding, since edit distance with moves on the resulting words does not
translate well to the edit distance with moves on trees. We proceed in two steps: We
first compress a tree T into another tree Tk where the number of 2-degree nodes has
been reduced, and then linearize Tk to obtain a word T ′ with labels. Samples on T ′

can be directly obtained from samples in T .
We consider 2-ranked labeled ordered trees, but our results can be extended to

any ranked trees. Recall that a 2-ranked tree is a tree with at most 2 successors, i.e.

24

every node has 0, 1 or 2 successors. The size of a tree is the number of its nodes,
which we will denote by n. The degree of a node is the number of its successors. Let
k be an integer and ε = 1/k.

We first define the k-compression of a tree T , denoted by Tk, which basically
consists of removing every node whose subtree has size < k, and encoding the removed
subtrees into the labels of their direct ancestor nodes. In a second step, we linearize
Tk with a few move operations and obtain a word w(T) which approximately encodes
T and such that u-stat(w(T)) can be approximately sampled from samples on T . The
two processes are illustrated in Figure 6.1. Then some of our previous results on
words can be extended to trees.

k

#

Word embedding

T

k−Compression

T w(T)

Fig. 6.1. Tree T in (a), its k-compression Tk in (b) and its linearization in (c).

6.1. Compression. Initial labels are called simple labels. We introduce new
labels to encode subtrees. A tree label is simply the encoding of a subtree from a
node. The labels of the tree encoded by a tree label have all to be simple. By
construction, the leaves of our compressed trees will all have tree labels. A mixed
label for a node v is an ordered pair (a, t) or (t, a), where a is a simple label (namely
the one of v before the compression) and t is a tree label (namely that encodes the
subtree from a successor of v). Notice that an internal node of a compressed tree
might have either a simple label or a mixed label. Moreover, an internal node with
a simple label has degree 1 or 2, whereas an internal node with a mixed label always
has degree 1. The size of a label is the size of the encoded subtrees: 1 for simple
labels, l for labels encoding trees with l nodes, and l + 1 for a mixed label (a, t) or
(t, a) where a is simple and t encodes a tree with l nodes.

Definition 6.1. A compressed tree is a tree T ′ whose leaves have tree labels,
internal nodes of degree 2 have simple labels, and all other nodes have either simple
or mixed labels.

We will say that a compressed tree T ′ encodes a tree T , if replacing the tree labels
of T ′ by the corresponding subtrees leads to the tree T .

More precisely, the k-tree alphabet, denoted Σ(k), is the set of any possible labels
that come from a k-compression, that is when tree labels encode trees of sizes between
k and 2k − 1. The smallest compressed subtree is of size k and the largest of size
2k − 1, a tree t with two subtrees of size k − 1 on each successor. Therefore |Σ(k)| ≤
(|Σ| + 1)O(k). The size of a Σ(k)-tree is the sum of the sizes of its labels, where the
size of a simple label is 1; the size of a tree label is the size of the encoded tree; and
the size of a mixed label is the sum of the sizes of its labels, that is 1 plus the size of
its tree label part.

We now define our compression explicitly.

25

Definition 6.2. Let T be a tree and k ≥ 1 be an integer. The k-compression Tk
of T is the compressed tree that encodes T , where the subtrees of size less than k have
been removed.

The new label of a node v of Tk can be computed using O(k) queries to T by
the following procedure Encode(T, v, k) that either computes the label of v on Tk,
or rejects v if it has been removed during the compression.

Encode(T, v, k)
If v is not the root of T , and the subtree from v in T has size < k (this can be checked

with k queries using DFS) then Reject

Let u1 and u2 be the successors of v (or u1 = u2 if v has only one successor)

If the subtrees from u1 and u2 in T have size < k then return the tree label of the

subtree of v in T

If no subtree from u1 and u2 in T has size < k then return the simple label of v

If only the subtree from u2 in T has size < k then return the pair of the simple label

of v followed by the tree label of the subtree from u2 in T

If only the subtree from u1 in T has size < k then return the pair of the tree label of

the subtree from u1 in T followed by the simple label of v

Our procedure ensures that the size of every label of Tk is less than 2k.

Proposition 6.3. When Encode(T, v, k) does not reject v, it outputs a label of
size at most 2k − 1.

Proposition 6.4. Let T be a tree and k ≥ 1 be an integer. Then Encode
satisfies the following for every node v ∈ T :

1. v ∈ Tk if and only if Encode(T, v, k) does not reject.
2. If v ∈ Tk, then its new label in Tk is given by the outcome of Encode(T, v, k).

The k-compression of a tree T is almost a word, as the number of remaining
2-degree nodes in Tk is small.

Lemma 6.5. Tk has at most εn 2-degree nodes.

Proof. Only nodes with simple labels can have degree 2 in Tk. To every 2-degree
node of Tk we will associate a distinct part of Tk of size at least k. Then the lemma
follows since Tk has at most size n.

The construction is bottom-up. We start with the tree T ′k = Tk, remove some
nodes and continue until there are no more 2-degree nodes with simple labels in T ′k. We
will maintain the following invariant of T ′k, which Tk initially satisfies by assumption:
(*): Every 2-degree node of T ′k with a simple label has two successors whose subtrees
in Tk have size at least k.

The iteration procedure is now described. Let v be a lowest node of T ′k with
degree 2 and a simple label. By Property (*), the node v has two successors u1 and
u2 whose subtrees in Tk have size ≥ k. We remove from T ′k the remaining subtree
of u1. Therefore v has now degree 1 in T ′k. Moreover, since the subtree from u2 is
still in T ′k, we guarantee that the new T ′k still satisfies Property (*). We can do this
transformation at most n/k times, and so there are at most εn nodes of degree 2 in
Tk.

6.2. Word Embedding. Lemma 6.5 implies that any tree T is 3ε-close to an-
other tree T ′, such that T ′k has no 2-degree nodes and is 2ε-close to Tk. The tree T ′

is inductively defined by the following procedure Linearize(T, k). For simplicity, the
construction of T ′k from Tk is described (see Figure 6.2). Let # be a new symbol.

26

σ

u2

v

u1

v

u2u1

Linearization of Tk

l : σ l : (, #)

Fig. 6.2. Linearization of Tk.

Linearize(T, k)
Let T ′ = T

While there exists a 2-degree node v in T ′k do

Let (u1, u2) be the two successors of v

Let l be the rightmost leaf of the subtree of u1 in T ′k
Move u2 to become the (unique) successor of the rightmost leaf l of the subtree of

u1 in T ′k
(perform the analogous move operation also on T)

Change the tree label σ of l to a mixed label (σ,#)

Return T ′

Note that we only mark the leaves where we move subtrees but not their ancestors.
One reason is that this would require too many types of markers. But the main reason
is that since testers can tolerate a small fraction of moves, this information is not
useful.

Using T ′k one can now define the word embedding of T .

Definition 6.6. Let T be a tree and k ≥ 1 be an integer. Let w(T) be the word
over the k-tree alphabet which enumerates the labels of T ′k from its root.

We will then use the uniform statistics of w(T) in order to apply the results of
previous sections on words. Since each letter of w(T) might encode a tree of size
up to O(1/ε) we need to apply an ε2-tester on words, so we can get an O(ε)-tester
on trees. The following procedure can approximate u-stat(w(T)) (with block-size k2)
with additive error ε2 by taking O(1/ε6) samples from Tk.

27

Statistics(T, k)
Take a random v in T until Encode(T, v, k) does not reject
Let i = 1 and u1 = v
Iterate k2 − 1 times

If ui has at least one successor in Tk then let v be the leftmost one
If ui has no successor then

Using a backtracking of depth k4 in T , search the first 2-degree node w in Tk

such that ui is on the left subtree of w
If the search fails then go back the beginning of the algorithm

Let i = i+ 1 and ui = w

Output the labels of u1u2 . . . uk2 using Encode(T, ·, k)

Lemma 6.7. Statistics(T, 1/ε) outputs a label drawn from a probabilistic distri-
bution which is at `1-distance at most ε2 from u-stat(w(T)) (with block-size 1/ε2).
Moreover, the expected query and time complexities of Statistics(T, 1/ε) are in
O(1/ε6).

Proof. Let B be the set of nodes such that the backtracking search fails in
Statistics(T, 1/ε), where the rightmost leaf of Tk has been removed. Let C be the
set of 2-degree nodes in Tk4 , whose size is at most ε4n by Lemma 6.5. We will prove
that B is not larger than C by constructing an injection from C to B. For any node
v ∈ C with left successor v1, let uv ∈ B be the rightmost leaf of v1. Conversely, for
any node u ∈ B, let vu ∈ C be the first node reached along a backtracking in Tk from
u to its root. Assuming that vu is well defined for any u ∈ B, it is clear that uvu = u.
Now, vu is well defined unless u is the right most leaf of Tk, which is not the case
by assumption. Thus by the existence of a left inverse, we deduce that the mapping
from C to B is indeed an injection.

Thus, because of the backtracking of depth k4, Statistics(T, 1/ε) samples all but
ε4n leaves of Tk. Therefore the fraction of missing subwords of w(T) is ε4 × k2 = ε2,
and we can conclude (using e.g. Proposition 3.6) the correctness of the algorithm. To
calculate its expected query complexity, first note that the number of queries in the
main loop is dominated by (k2 − 1)(k4 + 2) = O(k6). Note further that the expected
number of queries needed to complete the first step is constant (because T has at
most an ε fraction of nodes for which Encode(T, ·, k) will fail). Finally, there are at
most an ε4 fraction of nodes for which a depth k4 backtracking fails, and for each such
node v there are at most k2 nodes for which the main loop leads to failing on v, and
so also the expected number of times that the loop aborts and due to backtracking
failure is also a constant. Thus O(k6) is indeed the expected number of queries in the
entire algorithm.

First our equality tester for words can be applied to trees as an equality tester
since any elementary operation on w(T) corresponds to O(1) elementary operations
on T . Note that this tester is not tolerant in general, since the sizes of w(T) and
w(T ′) can be significantly different whereas T and T ′ are close.

Theorem 6.8. Tree equality is ε-testable with query and time complexities in
(|Σ|+ 1)O(1/ε5).

Then our regular language tester can also be extended since we also get that an
automaton on trees T of size m corresponds [11] to a push-down automaton on words
w(T) whose number of states and stack alphabet have both size m.

Theorem 6.9. For every real ε > 0 and 2-ranked regular tree language L over
a finite alphabet Σ, there exists an ε-tester for L whose query complexity is in (|Σ|+

28

1)O(1/ε5) and whose time complexity is in 2(|Σ|+1)O(1/ε5)

. Moreover, given a 2-ranked
tree automaton with m states that recognizes L, the tester can be constructed in time

exponential in m(|Σ|+1)O(1/ε5)

.

Proof. Let A be a tree automaton that recognizes L and let T be any tree. We
now define a push-down automaton B on any word w(T). Note that both A and B
are non deterministic. The push-down automaton B reads w(T) from right to left,
and evaluates w(T) as A on T bottom-up with a few modifications:

• B has the same set of states as A. Moreover, the initial and the accepting
states of B are the ones of A, but with the added condition that the stack of
B has to be empty when accepting. The stack alphabet is is also set to be
the set of states of A.

• When a simple label is read, one of the following steps is chosen non deter-
ministically.

– The automaton B evaluates the current label just as A. This corresponds
to a move to the predecessor.

– The automaton B evaluates the current label as A with a pair of suc-
cessors whose states are (in any order) the current state of B and the
symbol on its stack. Then the symbol of the stack is pulled. This cor-
responds to a branching between a previously evaluated branch of the
tree and the current one.

• When a tree label t is read, the automaton B modifies its state to a state
that A can reach after reading t. This corresponds to the evaluation of a
bounded-size subtree.

• When a mixed label (t,#) is read, the current state is pushed on the stack,
the state of B is set to any initial state, and t is read just as in the previous
step. This corresponds to the end of the evaluation of a branch, and the
exploration of a new branch.

• When a mixed label (t, a) (respectively (a, t)) is read, where a is not #,
the automaton B first computes a state q that A can reach after reading t
from initial states. Then B evaluates the current label just as A with a pair
of successors whose states are in q and the current state of B (respectively
the current state of B and q). This corresponds to a branching between a
bounded-size branch of the tree and the current one.

By construction, for any tree T ∈ L, there exists an accepting path in B for w(T).
Conversely, if w(T) is accepted by B then T is O(ε)-close to a tree in L.

The proof is then concluded by using the above construction together with
Lemma 6.7 and then using a tester for the context-free language. We use a tester
construction similar to that of Theorem 5.14, with the difference that we need a toler-
ant one which uses samples from (an approximation of) u-stat(w) instead of samples
from b-stat(w). Its construction is almost identical to that of Theorem 5.14, only
instead of taking a k power of the automaton corresponding to the Greibach normal
form, we take the corresponding automaton for k-shingles.

For the equivalence testing problem, there already exists a deterministic exponen-
tial time algorithm for the exact version of the problem, so it seems that our current
approach does not reduce the complexity. However, in the previous construction, if
L is a tree language such that the number of occurrences of # symbols in w(T) for
T ∈ L is constant, then the language of possible w(T) is regular. This is the case
for example for the binary encoding for regular unranked tree of constant depth. We
can then apply the equivalence tester for regular languages of words, and test the

29

equivalence between such classes of tree languages in polynomial time. The general
case remains an open problem.

7. Conclusion and Open Problems. Under the edit distance with moves, we
can not only efficiently test for regular languages, but can also approximately compare
whole languages, given by regular expressions or nondeterministic automata.

The approximate comparison notion, that of ε-equivalence testing, holds par-
ticular promise in view of the fact that exact equivalence of languages is usually a
computationally very hard problem to decide. For regular expressions for example
we need polynomial time for the approximate algorithm, as compared to polynomial
space for the exact problem.

Still, the edit distance with moves is a relatively weak norm. It would be in-
teresting to extend ε-equivalence testing of nondeterministic automata and regular
expressions to the stronger norm of the edit distance without moves. Also, it would
be interesting to get rid of the dependency of the degree of the polynomial time ex-
pression on ε, i.e. find an ε-equivalence tester whose running time has a globally
constant degree, and where only the coefficients depend on ε.

Moving to context free grammars, the exponential dependency of the running
time of the equivalence testing algorithm (as well as the property tester) is much
better than the undecidability of the exact problem (with regards to property testing,
one should note that under the Hamming distance as opposed to our norm, context
free grammars are generally not testable at all). Still, it may be the case that the
edit distance with moves allows even for an equivalence tester whose running time is
polynomial in the size of the grammars. It would be interesting to investigate this
further.

Finally, with regards to tree languages, where the edit distance with moves is a
very appealing and natural norm, we have just started to scratch the surface. It would
be interesting to see how far one can go there. In particular, it would be interesting to
see whether polynomial time equivalence testing of tree regular languages is feasible.

REFERENCES

[1] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs. Combi-
natorica, 20(4):451–476, 2000.

[2] N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages are testable with a
constant number of queries. SIAM J. Comp., 30(6):1842–1862, 2000.

[3] T. Batu, F. Ergün, J. Kilian, A. Magen, S. Raskhodnikova, R. Rubinfeld, and R. Sami. A
sublinear algorithm for weakly approximating edit distance. In Proc. STOC, pp. 316–324,
2003.

[4] T. Batu, L. Fortnow, R. Rubinfeld, W. Smith, and P. White. Testing that distributions are
close. In Proc. FOCS, pp. 259–269, 2000.

[5] M. Blum and S. Kannan. Designing programs that check their work. J. ACM, 42(1):269–291,
1995.

[6] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. J. Comp. Syst. Sci., 47(3):549–595, 1993.

[7] N. Blum and R. Koch. Greibach normal form transformation revisited. Information and
Computation, 150(1):112–118, 1999.

[8] A. Broder. On the resemblance and containment of documents. In Proc. Compression and
Complexity of Sequences, pages 21–30, 1997.

[9] H. Chockler and O. Kupferman. ω-regular languages are testable with a constant number of
queries. Theor. Comp. Sci., 329:71–92, 2002.

[10] G. Cormode and S. Muthukrishnan. The string edit distance matching problem with moves. In
Proc. SODA, pp. 667–676, 2002.

30

[11] J. Doner, Tree acceptors and some of their applications. Journal of Computer and System
Science, 4:406–451, 1970.

[12] O. Goldreich, and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica,
32(2):302–343, 2002.

[13] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. J. ACM, 45(4):653–750, 1998.

[14] W. Masek and M. Paterson. A faster algorithm for computing string edit distance. J. Comp.
Syst. Sci., 20(1):18–31, 1980.

[15] F. Magniez and M. de Rougemont. Property testing of regular tree languages. Algorithmica, to
appear. Downloadable at http://www.lri.fr/ magniez/PAPIERS/mr-algorithmica06.pdf

[16] A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions with squaring
requires exponential space. In Proc. FOCS, pp. 125–129, 1972.

[17] I. Newman. Testing membership in languages that have small width branching programs. SIAM
J. Comp., 3142(5):1557–1570, 2002.

[18] R. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966.
[19] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance approximation.

Journal of Computer and System Sciences,72(6):1012-1042 2006
[20] R. Rubinfeld. On the robustness of functional equations. SIAM J. Comp., 28(6):1972–1997,

1999.
[21] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to

program testing. SIAM J. Comp., 25(2):23–32, 1996.
[22] D. Shapira and J. Storer. Edit distance with move operations. In Proc. Symp. Combinatorial

Pattern Matching, pp. 85–98, 2002.
[23] L. Stockmeyer and A. Meyer. Word problems requiring exponential time. In Proc. STOC, pp.

1–9, 1973.
[24] K. C. Tai. The tree-to-tree correction problem. J. ACM, 26:422–433, 1979.

31

