
On the Query Complexity of Testing Orientations

for being Eulerian∗

Eldar Fischer † Oded Lachish ‡ Arie Matsliah §

Ilan Newman ¶ Orly Yahalom ‖

Abstract

We consider testing directed graphs for being Eulerian in the orientation model introduced in
[15]. Despite the local nature of the property of being Eulerian, it turns out to be significantly
harder for testing than other properties studied in the orientation model. We show a non-
constant lower bound on the query complexity of 2-sided tests and a linear lower bound on the
query complexity of 1-sided tests for this property. On the positive side, we give several 1-sided
and 2-sided tests, including a sub-linear query complexity 2-sided test for general graphs. For
special classes of graphs, including bounded-degree graphs and expander graphs, we provide
improved results. In particular, we give a 2-sided test with constant query complexity for dense
graphs, as well as for expander graphs with a constant expansion parameter.

1 Introduction

Property Testing deals with the following relaxation of decision problems: Given a property P, an
input structure S and ε > 0, distinguish between the case where S satisfies P and the case where
S is ε-far from satisfying P. Roughly speaking, an input S is said to be ε-far from satisfying a
property P if more than an ε-fraction of its values must be modified in order to make it satisfy
the property. Algorithms which distinguish with high probability between the two cases are called
property testers or simply testers for P. Furthermore, a tester for P is said to be 1-sided if it
never rejects an input that satisfies P. Otherwise, the tester is called 2-sided. We say that a tester
is adaptive if some of the choices of the locations for which the input is queried may depend on
the returned values (answers) of previous queries. Otherwise, the tester is called non-adaptive.
Property Testing normally deals with problems involving a very large input or a costly retrieval
procedure. Thus, the number of queries of input values, rather than the computation time, is
considered to be the most expensive resource.
∗A preliminary version appeared in the proceedings of the 12th RANDOM and 11th APPROX (2008).
†Computer Science Department, Technion – Israel Institute of Technology, Haifa 32000, Israel.

Email: eldar@cs.technion.ac.il. Research supported in part by an ERC-2007-StG grant number 202405-2 and
by an ISF grant number 1101/06.
‡Centre for Discrete Mathematics and its Applications (DIMAP), Warwick, UK. Email: oded@dcs.warwick.ac.uk.
§Centrum voor Wiskunde en Informatica (CWI), Amsterdam, Holland, E-mail: ariem@cwi.nl
¶Computer Science Department, Haifa University, Haifa 31905, Israel. Email: ilan@cs.haifa.ac.il. Research

supported in part by an ISF grant number 1101/06.
‖Department of Software Engineering, ORT Braude College, P.O. Box 78, Karmiel, 21982, Israel. Email:

oyahalom@braude.ac.il.

1

Property Testing has been a very active field of research since it was initiated by Blum, Luby and
Rubinfeld [5]. The general definition of Property Testing was formulated by Rubinfeld and Sudan
[25], who were interested mainly in testing algebraic properties. The study of Property Testing for
combinatorial objects, and mainly for labelled graphs, began in the seminal paper of Goldreich,
Goldwasser and Ron [12]. They introduced the dense graph model, where the graph is assumed to
be represented by an adjacency matrix, and the distance function is computed accordingly. For
comprehensive surveys on Property Testing see [24, 8].

The dense graph model is in a sense too lenient, since for n-vertex graphs, the distance function
allows adding and removing o(n2) edges, regardless of the number of actual edges in the graph.
Thus, many interesting properties, such as connectivity in undirected or directed graphs, are triv-
ially testable in this model, as all the graphs are close to satisfying the property. In recent years,
researchers have studied several alternative models for graph testing, including the bounded-degree
graph model of [13], in which a sparse representation of sparse graphs is considered, and the general
density model (also called the mixed model) of [21] and [17]. In these models, the distance function
allows edge insertions and deletions whose number is at most a fraction of the number of the edges
in the original graph.

Property Testing of directed graphs has also been studied in the context of the above models
[1, 3]. Here we continue the study of testing properties of directed graphs in the orientation model,
which started in [15] and followed in [14] and [7]. In this model, an underlying undirected graph
G = (V,E) is given in advance, and the actual input is an orientation

−→
G of G, in which every edge

in E has a direction. Our testers may access the input using edge queries. That is, every query
concerns an edge e ∈ E, and the answer to the query is the direction of e in

−→
G . An orientation−→

G of G is called ε-close to a property P if it can be made to satisfy P by inverting at most an
ε-fraction of the edges of G, and otherwise

−→
G is said to be ε-far from P.

Note that the distance function in the orientation model naturally depends on the size of the
underlying graph and is independent of representation details. Moreover, the testing algorithm may
strongly depend on the structure of the underlying graph. The model is strict in that the distance
function allows only edge inversions, but no edge insertions or deletions. On the other hand, we
assume that our algorithms have a full knowledge of the underlying graph, whose size is roughly
the same as the input size. Viewing the underlying graph as a parameter that the testing algorithm
receives in advance, we say that the orientation model is an example of a massively parameterized
model. Other examples that can be thought of as massively parameterized models appear in [20],
where the property is represented by a known bounded-width branching program, in [9], where the
input is a vertex-coloring of a known graph, and in other works.

In this paper we consider the property of being Eulerian, which was presented in [14] as one of
the natural orientation properties whose query complexity was still unknown. A directed graph

−→
G

is called Eulerian if for every vertex v in the graph, the in-degree of v is equal to its out-degree
(in addition, it is common to define Eulerian graphs as connected, but as we explain later, our
algorithms and proofs work equally well whether we require connectivity or not). An undirected
graph G has an Eulerian orientation

−→
G if and only if all the degrees of G are even. Such an

undirected graph is called Eulerian also. Throughout the paper we assume that our underlying
undirected graph G is Eulerian.

Eulerian graphs and Eulerian orientations have attracted researchers since the dawn of graph
theory in 1736, when Leonard Euler published his solution for the famous “Königsberg bridge

2

problem”. Throughout the years, Eulerian graphs have been the subject of extensive research (e.g.
[23, 18, 26, 19, 6, 2]; see [10, 11] for an extensive survey). Aside from their appealing theoretic
characteristics, Eulerian graphs have been studied in the context of networking [16] and genetics [22].

Testing for being Eulerian in the orientation model is equivalent to the following problem. We
have a known network (a communication network, a transportation system or a piping system)
where every edge can transport a unit of “flow” in both directions. Our goal is to know whether
the network is “balanced”, or far from being balanced, where being balanced means that the number
of flows entering every node in the network is equal to the number of flows exiting it (so there is
no “accumulation” in the nodes). To examine the network, we detect the flow direction in selected
individual edges, which is deemed to be the expensive operation.

The main difficulty in testing orientations for being Eulerian arises from the fact that an orien-
tation might have a small number of unbalanced vertices, and each of them with a small imbalance,
and yet be far from being Eulerian. This is since trying to balance an unbalanced vertex by invert-
ing some of its incident edges may violate the balance of its balanced neighbors. Thus, we must
continue to invert edges along a directed path between a vertex with a positive imbalance and a
vertex with a negative imbalance. We call such a path a correction path. A main component of
our work is giving upper bounds for the length of the correction paths. In this context we note
the work of Babai [2], who studied the ratio between the diameter of Eulerian digraphs and the
diameter of their underlying undirected graphs. While he gave an upper bound for this ratio for
vertex-transitive graphs, he showed an infinite family of undirected graphs with diameter 2 which
have an Eulerian orientation with diameter Ω(n1/3).

Our upper bounds are based on three “generic” tests, one 1-sided test and two 2-sided tests.
Instead of receiving ε as a parameter, the generic tests receive a parameter p, which stands for the
number of required correction paths in an orientation that is far from being Eulerian. We hence
call these tests p-tests. We later derive ε-tests from the p-tests by proving two lower bounds for
p. The first one gives an efficient test for dense graphs and the second one gives an efficient test
for expander graphs. Finally, we show how to use variations of the expander tests for obtaining a
1-sided test and a 2-sided test for general graphs, using a decomposition (“chopping”) procedure
into subgraphs that are roughly expanders. The 2-sided test that we obtain this way has a sub-
linear query complexity for every graph. Unfortunately, our chopping procedure is adaptive and
has an exponential computational time in |E|. All of our other algorithms are non-adaptive and
their computational complexity is of the same order as their query complexity.

On the negative side, we provide several lower bounds. We show that any 1-sided test for
being Eulerian must use Ω(m) queries for some graphs. For bounded-degree graphs, we use the
toroidal grid to prove non-constant 1-sided and 2-sided lower bounds. These bounds are noteworthy,
as bounded-degree graphs have a constant size witness for not being Eulerian, namely the edges
incident with one unbalanced vertex. In contrast, the st-connectivity property, whose witness
must include a cut in the graph, is testable with a constant number of queries in the orientation
model [7]. In other testing models there are known super-constant lower bounds also for properties
which have constant-size witness, e.g., [4] prove a linear lower bound for testing whether a truth
assignment satisfies a known 3CNF formula. However, most of these bounds are for properties that
have stronger expressive power than that of being Eulerian.

Tables 1 and 2 summarize our upper and lower bounds, respectively. Here and throughout the
paper, we set n = |V | and m = |E|, let ∆ be the maximum vertex-degree in G, and set d

def= m/n.
The tilde notation hides polylogarithmic factors.

3

Table 1: Upper bounds

Result 1-sided tests 2-sided tests

Graphs with large d O
(

∆m
ε2d2

)
min

{
Õ
(

m3

ε6d6

)
, Õ
(√

∆m
ε2d2

)}
α-expanders

O
(

∆log(1/ε)
αε

)
min

{
Õ

((
log(1/ε)

αε

)3
)

, Õ
(√

∆ log(1/ε)
αε

)}
General graphs

(adaptive)
O
(

(∆m log m)2/3

ε4/3

)
min

{
Õ
(

∆1/3m2/3

ε4/3

)
, Õ
(

∆3/16m3/4

ε5/4

)}

Table 2: Lower bounds

Result 1-sided tests 2-sided tests

General graphs Ω(m) —

Bounded-degree graphs, non-adaptive tests Ω(m1/4) Ω
(√

log m
log log m

)
Bounded-degree graphs, adaptive tests Ω(log m) Ω(log log m)

The rest of the paper is organized as follows. Section 2 includes general definitions and lemmas
to be used in the sequel. In Section 3 we provide a simple 1-sided lower bound for general graphs.
Section 4 is dedicated to our three p-tests, which distinguish between Eulerian orientations and
orientations with many correction paths. In Section 5 we give a lower bound on the number of
correction paths as a function of the average degree in the graph, and derive our tests for graphs
with high average degree. In Section 6 we give such a bound and tests for expander graphs. Section
7 considers testing subgraphs that we call “lame” expanders, providing results for them that are
similar to those obtained for expanders, and are used in the sequel. Section 8 presents our most
general tests, which use the results of Section 7. Section 9 gives our lower bound for bounded-degree
graphs. Finally, Section 10 summarizes the still open questions.

2 Preliminaries

Throughout the paper, we assume a fixed and known underlying graph G = (V,E) which is Eulerian,
that is, for every v ∈ V , the degree deg(v) of v is even.

Given an orientation
−→
G = (V,

−→
E) and a vertex v ∈ V , let indeg−→

G
(v) denote the in-degree of v

with respect to
−→
G and let outdeg−→

G
(v) denote the out-degree of v with respect to

−→
G . We define the

imbalance of v in
−→
G as ib−→

G
(v) def= outdeg−→

G
(v) − indeg−→

G
(v). In the following, we sometimes omit

the subscript
−→
G whenever it is obvious from the context. We say that a vertex v ∈ V is a spring

in
−→
G if ib−→

G
(v) > 0. We say that v is a drain in

−→
G if ib−→

G
(v) < 0. If ib−→

G
(v) = 0 then we say that v

4

is balanced in
−→
G . We say that

−→
G is Eulerian if all its vertices are balanced. Since all the vertices

of G are of even degree, there always exists some Eulerian orientation
−→
G of G.

We note that it is common to require connectivity from an Eulerian undirected graph and strong
connectivity from a directed Eulerian graph. However, all our algorithms and proofs work also for
the case where our underlying graph G is not connected. Furthermore, it is easy to see that if G is
connected, then every Eulerian orientation

−→
G of G is strongly connected. Thus, if we are interested

in testing whether
−→
G is strongly connected, in addition to having balanced vertices, we simply add

to our tests a phase which checks the underlying graph G and rejects if it is not connected. We
henceforth ignore the connectivity criterion.

We next observe that testing whether
−→
G is Eulerian is trivial for ε ≥ 1

2 .

Observation 2.1 Every orientation
−→
G of G is 1

2 -close to being Eulerian.

Proof. Let
−→
G1 be an arbitrary Eulerian orientation of G. Let

−→
G2 =

←−
G1, namely, the orientation

derived from G1 by inverting all the edges. Clearly,
−→
G2 is Eulerian as well, since inverting all the

edges maintains the absolute value of the imbalance of all vertices. Now, for every edge e ∈ E, the
direction of e in

−→
G is the same as in

−→
G1 if and only if it is opposite to the direction of e in

−→
G2.

Hence, dist(
−→
G,
−→
G1) = 1− dist(

−→
G,
−→
G2), and therefore,

−→
G is 1

2 -close to either
−→
G1 or

−→
G2.

We conclude with some notation that is useful in the following. Given a set U ⊆ V , we let

E(U) def= {{u, v} ∈ E | u, v ∈ U},
−→
E (U) def= {(u, v) ∈

−→
E | u, v ∈ U},

∂U
def= {{u, v} ∈ E | u ∈ U, v /∈ U},

and −→
∂ U

def= {(u, v) ∈
−→
E | u ∈ U, v /∈ U}.

Given two disjoint sets U,W ⊆ V , let

E(U,W) def= {{u, w} ∈ E | u ∈ U,w ∈W}

and −→
E (U,W) def= {(u, w) ∈

−→
E | u ∈ U,w ∈W}.

2.1 Correction subgraphs and p-tests

Let
−→
G be an orientation of G. Given a subgraph

−→
H = (VH ,

−→
EH) of

−→
G (that is, a directed graph

where VH ⊆ V and
−→
EH ⊆

−→
E) we define

−→
G←−

H

def= (V,
−→
E←−

H
) to be the orientation of G derived from

−→
G by inverting all the edges of

−→
H . Namely,

−→
E←−

H
=
−→
E \
−→
EH ∪ {(v, u) ∈ (VH)2 | (u, v) ∈

−→
EH}.

We say that
−→
H is a correction subgraph of

−→
G if

−→
G←−

H
is Eulerian. Note that in such a case,

−→
G is

|
−→
EH |
m -close to being Eulerian.

5

Lemma 2.2 A subgraph
−→
H of

−→
G is a correction subgraph if and only if the following conditions

hold for every v ∈ V :

1. If v /∈ VH , then v is balanced in
−→
G .

2. If v ∈ VH , then ib−→
H

(v) = 1
2 · ib−→G (v).

In particular, a vertex v is a spring in
−→
G if and only if it is a spring in

−→
H , and v is drain in

−→
G if

and only if it is a drain in
−→
H .

Proof. Remember that
−→
H is a correction subgraph of

−→
G if and only if ib−→

G←−
H

(v) = 0 for every

v ∈ V . The proof follows from the following facts, which can be easily verified:

1. If v /∈ VH , then ib−→
G←−

H

(v) = ib−→
G

(v).

2. If v ∈ VH , then ib−→
G←−

H

(v) = ib−→
G

(v)− 2 · ib−→
H

(v).

Since we assume that G is Eulerian, there always exists some correction subgraph of
−→
G . Fur-

thermore, without loss of generality, we may focus on acyclic correction graphs.

Observation 2.3 For any orientation
−→
G of G and for any correction subgraph

−→
H1 of

−→
G , there

exists an acyclic correction subgraph
−→
H of

−→
G that is a subgraph of

−→
H1.

Proof. We obtain
−→
H from

−→
H1 as follows. While

−→
H1 is not acyclic, we arbitrarily choose a

directed cycle and remove its edges from the subgraph. Note that this operation maintains the
balance factors of all the vertices of G with respect to

−→
H1. The proof thus follows from Lemma 2.2.

Let S be the set of springs in
−→
G and let T be the set of drains in

−→
G . We say that a directed

path
−→
P = 〈u0, . . . , uk〉 in

−→
G is a spring-drain path if u0 ∈ S and uk ∈ T . Note that in this case,

for any correction subgraph
−→
H of

−→
G , we have by Lemma 2.2 that u0 is a spring in

−→
H and uk is a

drain in
−→
H . The following observations and lemmas follow easily.

Observation 2.4 If
−→
G is not Eulerian then any correction subgraph

−→
H of

−→
G contains a spring-

drain path.

Observation 2.5 Let
−→
H be a correction subgraph of

−→
G and let

−→
P be a spring-drain path in

−→
H .

Define
−→
H \
−→
P to be the graph obtained from

−→
H by removing all the edges of

−→
P , that is,

−→
E \
−→
P

def=
(VH ,

−→
E \
−→
P). Then

−→
H \
−→
P is a correction subgraph of

−→
G←−

P
, the graph obtained from

−→
H by inverting

all the edges of
−→
P . Moreover, if

−→
H is acyclic then

−→
H \
−→
P is edgeless if and only if

−→
G←−

P
is Eulerian.

Lemma 2.6 If
−→
G is not Eulerian then any acyclic correction subgraph

−→
H of

−→
G is a union of

p = 1
4

∑
u∈V |ib(u)| edge-disjoint spring-drain paths. Moreover, every decomposition of

−→
H into

edge-disjoint spring-drain paths has exactly p paths. In particular, removing any spring-drain path
from

−→
H results in a graph that is a collection of p− 1 edge-disjoint spring-drain paths.

6

Proof. From Observations 2.4 and 2.5, it is clear that
−→
H may be decomposed into edge-disjoint

spring-drain paths. Note that when removing a spring-drain path, we reduce the sum
∑

u∈V |ib(u)|
by exactly four (as we reduce the absolute value of the imbalance of both the spring and the
drain by two). Therefore, every decomposition of

−→
H into disjoint spring-drain paths contains

p = 1
4

∑
u∈V |ib(u)| paths.

Lemma 2.7 Let
−→
G be an orientation of G and let

−→
H be an acyclic correction subgraph of

−→
G

which is a union of p edge-disjoint spring-drain paths. Let S be the set of springs in
−→
H . Then∑

u∈S ib(u) = 2p.

Proof. By Lemma 2.2, for any spring u ∈ S, the number of spring-drain paths starting at u is
ib(u)/2. Thus

∑
u∈S ib(u)/2 = p.

If every correction subgraph of an orientation
−→
G is a union of at least p disjoint spring-drain

paths, we will say that
−→
G is p-far from being Eulerian. An algorithm will be called a p-test for

being Eulerian for some positive number p if it can distinguish between Eulerian orientations and
p-far orientations. Namely, the algorithm should accept an Eulerian orientation with probability
at least 2/3 and reject a p-far orientation with probability at least 2/3. Similarly to ε-tests, if a
p-test accepts every Eulerian orientation with probability 1 then it is called 1-sided, and otherwise
it is called 2-sided.

2.2 β-correction subgraphs and (p, β)-tests

Given β > 0, we say that a vertex v is β-small if deg(v) ≤ β and β-big if deg(v) > β. An orientation
−→
G is called β-Eulerian if all the β-small vertices in V are balanced in

−→
G . Note that for β ≥ ∆,

−→
G is

β-Eulerian if and only if
−→
G is Eulerian. A directed subgraph

−→
H = (VH ,

−→
EH) of

−→
G is a β-correction

subgraph of
−→
G if:

1.
−→
G←−

H
is β-Eulerian.

2. For every v ∈ V we have: |ib−→
G←−

H

(v)| ≤ |ib−→
G

(v)|, and if v is a spring (resp. drain) in
−→
H then

it is either balanced or a spring (resp. drain) in
−→
G←−

H
.

That is,
−→
H fixes the balance of all the β-small vertices without increasing or changing the sign of

the imbalance of β-big vertices.
A directed path

−→
P = 〈u0, . . . , uk〉 in an orientation

−→
G is called a β-spring-drain path if

−→
P is a

spring-drain path and at least one of u0 and uk is β-small.

Observation 2.8 Every orientation
−→
G which is not β-Eulerian has a β-correction subgraph which

is a union of edge-disjoint β-spring-drain paths.

For 0 ≤ ε ≤ 1 and β > 0, we say that an orientation
−→
G is (ε, β)-amendable if there exists

a β-correction subgraph
−→
H = (VH ,

−→
EH) of

−→
G with |

−→
EH | ≤ εm. Otherwise we say that

−→
G is

(ε, β)-unamendable.
For p, β > 0, we say that an orientation

−→
G is p-close to being β-Eulerian if there exists a

β-correction subgraph
−→
H of

−→
G that is a union of at most p edge-disjoint β-spring-drain paths.

7

Otherwise, we say that
−→
G is p-far from being β-Eulerian. Note that in fact the requirement

from the correction subgraph to be composed of β-spring-drain paths only is not restricting in the
definition of being p-far.

One can show that all the lemmas and observations that we have proved in Subsection 2.1
for correction subgraphs and spring-drain paths can be adapted to β-correction subgraphs and
β-spring-drain paths. In particular:

Lemma 2.9 If
−→
G is not β-Eulerian then any acyclic β-correction subgraph

−→
H of

−→
G is a union

of at least 1
4

∑
u∈V,deg(u)≤β |ib(u)| and at most 1

2

∑
u∈V,deg(u)≤β |ib(u)| edge-disjoint β-spring-drain

paths. Hence, if
−→
G is p-far from being β-Eulerian then∑

u∈V,deg(u)≤β

|ib(u)| > 2p.

Proof. One can show that any acyclic β-correction subgraph is a union of edge-disjoint β-spring-
drain paths, using similar techniques to those that we used in Subsection 2.1, as well as the fact
that a β-correction subgraph may not increase or change the sign of the imbalance of β-big vertices.
To bound the number of β-spring-drain paths in any β-correction subgraph

−→
H of an orientation

−→
G ,

note that when we remove a β-spring-drain path from
−→
H , we reduce the sum

∑
u∈V,deg(u)≤β |ib(u)|

by either two or four (as we reduce the absolute value of the imbalance of both the spring and
the drain by two, and at least one of them is β-small). Therefore, every decomposition of

−→
H

into disjoint β-spring-drain paths contains p paths for some p between 1
4

∑
u∈V,deg(u)≤β |ib(u)| and

1
2

∑
u∈V,deg(u)≤β |ib(u)|.

Given p, β > 0, an algorithm is called a (p, β)-test for being Eulerian for some positive number
p if it can distinguish between β-Eulerian orientations and orientations that are p-far from being
β-Eulerian. Namely, the algorithm should accept a β-Eulerian orientation with probability at least
2/3 and reject an orientation that is p-far from being β-Eulerian with probability at least 2/3. As
usual, a (p, β)-test is said to be 1-sided if it accepts every β-Eulerian orientation with probability
1. Otherwise, the test is said to be 2-sided.

3 A linear lower bound for 1-sided tests

In this section we prove that there exists no sub-linear 1-sided test for Eulerian orientations of
general graphs.

Consider an algorithm that tests an orientation
−→
G of G. At a given moment, we represent the

edges that the algorithm has queried so far by a directed knowledge graph
−→
H = (V,

−→
EH), where

−→
EH ⊆

−→
E . We say that a cut M = (U, V \ U) of G is valid with respect to a knowledge graph

−→
H if

|
−→
EH(U, V \ U)| ≤ 1

2
|E(U, V \ U)| and |

−→
EH(V \ U,U)| ≤ 1

2
|E(U, V \ U)|.

Otherwise, M is called invalid. Clearly, if
−→
G is Eulerian, then every knowledge graph

−→
H of

−→
G

contains only valid cuts. We show that any 1-sided test for being Eulerian must obtain a knowledge
graph that contains some invalid cut in order to reject

−→
G .

We say that a (valid) cut M = (U, V \ U) of G is restricting with respect to
−→
H if

8

−−→
|EH(U, V \ U)| =

1
2
|E(U, V \ U)| or |

−→
EH(V \ U,U)| =

1
2
|E(U, V \ U)|.

Note that, given that
−→
G is Eulerian, a restricting cut with respect to

−→
H forces the orientations of

all the unqueried edges in the cut. We say that two restricting cuts M1 and M2 are conflicting (with
respect to a knowledge graph

−→
H) if they force contrasting orientations of at least one unqueried

edge.

Lemma 3.1 Let
−→
H be a knowledge graph of

−→
G and suppose that all the cuts in G are valid with

respect to
−→
H . Then there are no conflicting cuts with respect to

−→
H .

Figure 1: A schematic illustration of the conflicting cuts M1 = (V1, V \ V1) and M2 = (V2, V \ V2)
and the edge {u, w}.

Proof. Assume, on the contrary, that M1 = (V1, V \ V1) and M2 = (V2, V \ V2) are conflicting
with respect to

−→
H . That is, there exists an edge {u, w} ∈ E, that was not queried and hence is

not oriented in
−→
H , which is forced to have contrasting orientations by M1 and M2 (see figure 1).

Without loss of generality, assume that u ∈ V1 \ V2, w ∈ V2 \ V1, and

|
−→
EH(V1, V \ V1)| =

1
2
· |E(V1, V \ V1)|, (1)

|
−→
EH(V2, V \ V2)| =

1
2
· |E(V2, V \ V2)|. (2)

Thus, M1 forces e to be oriented from w to u, whereas M2 forces e to be oriented from u to w.
Summing Equation (1) with Equation (2) yields

|
−→
EH(V1, V \ V1)|+ |

−→
EH(V2, V \ V2)| =

1
2

(|E(V1, V \ V1)| + |E(V2, V \ V2)|) . (3)

Recall now that all the cuts in G are valid with respect to
−→
H . Consider the cuts (V1∩V2, V \(V1∩V2))

and (V1 ∪ V2, V \ (V1 ∪ V2)). We have

|
−→
EH(V1 ∩ V2, V \ (V1 ∩ V2))| ≤

1
2
· |E(V1 ∩ V2, V \ (V1 ∩ V2))| (4)

9

and
|
−→
EH(V1 ∪ V2, V \ (V1 ∪ V2))| ≤

1
2
· |E(V1 ∪ V2, V \ (V1 ∪ V2))| (5)

since these cuts are valid. Summing Inequality (4) with Inequality (5) yields

−→
EH(V1 ∩ V2, V \ (V1 ∩ V2))| + |

−→
EH(V1 ∪ V2, V \ (V1 ∪ V2))| ≤ (6)

1
2

(|E(V1 ∩ V2, V \ (V1 ∩ V2))| + |E(V1 ∪ V2, V \ (V1 ∪ V2))|) .

Now, note that

Figure 2: The cuts of Equation (7) and the types of edges forming them. (a) (V1, V \ V1), (b)
(V2, V \ V2), (c) (V1 ∩ V2, V \ (V1 ∩ V2)), (d) (V1 ∪ V2, V \ (V1 ∪ V2)).

|E(V1 ∩ V2, V \ (V1 ∩ V2))| + |E(V1 ∪ V2, V \ (V1 ∪ V2))| (7)

= |E(V1, V \ V1)|+ |E(V2, V \ V2)| − 2 · |E(V1 \ V2, V2 \ V1)|

(see Figure 2) and, similarly,

|
−→
EH(V1 ∩ V2, V \ (V1 ∩ V2))| + |

−→
EH(V1 ∪ V2, V \ (V1 ∪ V2))| (8)

= |
−→
EH(V1, V \ V1)|+ |

−→
EH(V2, V \ V2)| − |

−→
EH(V1 \ V2, V2 \ V1)| − |

−→
EH(V2 \ V1, V1 \ V2)|.

10

Substituting Equations (7) and (8) in Inequality (6) we obtain:

|
−→
EH(V1, V \ V1)|+ |

−→
EH(V2, V \ V2)| − |

−→
EH(V1 \ V2, V2 \ V1)| − |

−→
EH(V2 \ V1, V1 \ V2)| (9)

≤ 1
2

(|E(V1, V \ V1)| + |E(V2, V \ V2)|)− |E(V1 \ V2, V2 \ V1)|.

Now, from Equation (3) we have:

|
−→
EH(V1 \ V2, V2 \ V1)| + |

−→
EH(V2 \ V1, V1 \ V2)| ≥ |E(V1 \ V2, V2 \ V1)|.

That is, all the edges in E(V1 \ V2, V2 \ V1) are oriented in
−→
H . This is a contradiction to our

assumption that {u, w} ∈ E(V1 \ V2, V2 \ V1) was not yet oriented.

Lemma 3.2 Suppose that
−→
H is a knowledge graph that does not contain invalid cuts. Then

−→
H is

extensible to an Eulerian orientation
−→
G = (V,

−→
EG) of G. That is,

−→
EH ⊆

−→
EG.

Proof. We orient unoriented edges in the following manner. If there exists a restricting cut
with unoriented edges, we orient one of them as obliged by the cut. According to Lemma 3.1, this
will not invalidate any of the other cuts in the graph, and so we may continue. If there are no
restricting cuts in the graph, we arbitrarily orient one unoriented edge and repeat (and this cannot
violate any cut in the graph since there were no restricting cuts). Eventually, after orienting all the
edges, we receive a complete orientation of G whose cuts are all valid, and thus it is Eulerian.

Figure 3: The graph Gn. Every cut which separates v1 and v2 is of size n− 2.

Theorem 3.3 There exists an infinite family of graphs for which every 1-sided test for being Eu-
lerian must use Ω(m) queries.

11

Proof. For every even n, let Gn
def= K2,n−2, namely, the graph with a set of vertices V =

{v1, . . . , vn} and a set of edges E = {{vi, vj} | i ∈ {1, 2}, j ∈ {3, . . . , n}} (see Figure 3). Clearly,
Gn is Eulerian and n = Ω(m).

Consider the orientation
−→
Gn of Gn in which all the edges incident with v1 are outgoing and

all the edges incident with v2 are incoming. Clearly,
−→
Gn is 1

2 -far from being Eulerian. According
to Lemma 3.2, every 1-sided test must query at least half of the edges in some unbalanced cut
(because otherwise it would clearly not obtain an invalid cut in the knowledge graph). However,
one can easily see that every cut which does not separate v1 and v2 is balanced, while every cut
which separates v1 and v2 is of size n− 2 = Ω(m).

4 Generic tests

In this section we present one 1-sided p-test and two 2-sided p-tests for being Eulerian. Namely, our
tests distinguish with high probability between the case where

−→
G is Eulerian and the case where−→

G is p-far from being Eulerian (see Section 2.1). In later sections we devise several lower bounds
on p for every orientation

−→
G that is ε-far from being Eulerian, thus obtaining corresponding upper

bounds on the tests below. In fact, the 1-sided and 2-sided tests that we give in Subsection 4.2 are
(p, β)-tests (see Section 2.2), which are, in particular, p-tests when β = ∆. We will use these tests
also for β < ∆ in Section 7.

4.1 A 2-sided p-test

We give a simple 2-sided p-test that is independent of the maximum degree ∆. This p-test will
yield efficient ε-tests for dense graphs (Section 5) and expanders (Section 6). To simplify notation,
we denote δ

def= p
4m .

Algorithm 4.1 SIMPLE-2(
−→
G, p):

1. Repeat 4
δ times independently:

• Select an edge e ∈ E uniformly and query it. Denote the start vertex of e in
−→
E by u and

the end vertex of e in
−→
E by v.

• Query 16 ln(12/δ)
δ2 edges incident with u uniformly and independently and reject if the

sample contains at least (1 + δ)8 ln(12/δ)
δ2 outgoing edges.

2. Accept if the input was not rejected earlier.

Lemma 4.2 SIMPLE-2 is a 2-sided p-test for being Eulerian with query complexity Õ
(

1
δ3

)
=

Õ
(

m3

p3

)
.

Proof. The query complexity is clearly as stated. To prove the correctness of our algorithm,
suppose first that

−→
G is Eulerian. For every vertex u ∈ V , the expected number of outgoing edges in

the sample of u’s incident edges is 8 ln(12/δ)
δ2 . Applying Chernoff’s upper tail bound, the probability

of having at least (1 + δ)8 ln(12/δ)
δ2 outgoing edges in a sample is at most exp

(
− δ2

2
8 ln(12/δ)

δ2

)
< δ

12 .

Since we sample 4
δ vertices, the probability of rejecting an Eulerian orientation is at most 1

3 .

12

Assume now that
−→
G is p-far from being Eulerian. A vertex u ∈ V will be called a δ-spring in−→

G if ib(u) > 3δ · deg(u). Let Sδ be the set of all δ-springs in
−→
G . Note that Sδ ⊆ S, where S is the

set of all springs in
−→
G . We have∑

u∈S

ib(u) ≤
∑
u∈Sδ

deg(u) + 3δ ·
∑

u∈S\Sδ

deg(u).

Let y =
∑

u∈Sδ
deg(u). Since

∑
u∈S deg(u) < 2m, we obtain∑

u∈S

ib(u) < y + 3δ · (2m− y) = (1− 3δ)y + 6δm.

However, from Lemma 2.7, we have
∑

u∈S ib(u) = 2p = 8δm, and therefore,

y >
2δm

1− 3δ
> 2δm.

Thus,
∑

u∈Sδ
deg(u) > 2δm, and since for every u ∈ Sδ we have degout(u) > 1

2 deg(u), there exist

at least δm edges (u, v) ∈
−→
E such that u is a δ-spring. As SIMPLE-2 samples 4

δ edges (u, v) ∈
−→
E

uniformly and independently, the probability of not sampling any edge (u, v) such that u is a
δ-spring is at most (1− δ)

4
δ < e−4 < 0.02.

Suppose now that the algorithm has sampled an edge (u, v) such that u is a δ-spring. Then
−→
G

will be rejected unless fewer than (1 + δ)8 ln(12/δ)
δ2 of the queried edges (u, w) are outgoing. Since

ib(u) > 3δ ·deg(u), the expected number of outgoing edges is at least (1+3δ/2)8 ln(12/δ)
δ2 . Note that

(1 + δ)8 ln(12/δ)
δ2 < (1 − 1

4δ)(1 + 3
2δ)8 ln(12/δ)

δ2 . Therefore, by the Chernoff bound, the probability of
sampling fewer than (1 + δ)8 ln(12/δ)

δ2 outgoing edges is at most

exp
(
− δ2

32

(
1 +

3δ

2

)
8 ln(12/δ)

δ2

)
< exp

(
− ln(12/δ)

4

)
.

Note that ln(12/δ)
4 > ln(10/3), and therefore, the probability of not detecting that u is a δ-spring is

at most 0.3. We thus conclude that if
−→
G is p-far from being Eulerian, then SIMPLE-2 accepts

−→
G

with probability smaller than 1
3 , which completes the proof of the theorem.

4.2 (p, β)-tests

We now give a simple 1-sided (p, β)-test, which has a better query complexity than SIMPLE-2 for
∆� m2

p2 ln(m
p).

Algorithm 4.3 GENERIC-1(
−→
G, p, β):

1. Repeat ln 3 m
p times independently:

• Select an edge e ∈ E uniformly and query it. Denote the start vertex of e in
−→
E by u and

the end vertex of e in
−→
E by v.

13

• If deg(u) ≤ β then: Query all the edges {u, w} ∈ E and reject if u is unbalanced, namely,
if ib(u) 6= 0.

2. Repeat ln 3 m
p times independently:

• Select an edge e ∈ E uniformly and query it. Denote the start vertex of e in
−→
E by u and

the end vertex of e in
−→
E by v.

• If deg(v) ≤ β then: Query all the edges {w, v} ∈ E and reject if v is unbalanced, namely,
if ib(v) 6= 0.

3. Accept if the input was not rejected by the above.

Lemma 4.4 GENERIC-1 is a 1-sided (p, β)-test for being Eulerian with query complexity O
(

βm
p

)
.

In particular, for β = ∆, GENERIC-1 is a 1-sided p-test with query complexity O
(

∆m
p

)
.

Proof. The query complexity is clearly as stated. Since Algorithm 4.3 rejects only when an
unbalanced β-small vertex is discovered, it always accepts a β-Eulerian

−→
G . Suppose now that

−→
G

is p-far from being β-Eulerian. Clearly, to reject
−→
G , it suffices to sample one edge e = (u, v) ∈

−→
E

such that u is a spring in Step 1 or an edge e = (u, v) ∈
−→
E such that v is a drain in Step 2. By

Lemma 2.9, E contains at least p edges of at least one of these two kinds of edges, and so their
fraction is at least p/m. We thus conclude that the probability of accepting

−→
G is at most(

1− p

m

) ln 3 m
p

<
1
3
.

We conclude this section with a 2-sided (p, β)-test, which gives better query complexity than
GENERIC-1 for β � log2 m and better query complexity than SIMPLE-2 for p� m√

β
. The main

idea of the algorithm is to perform roughly O((log β)2) testing stages, each designed to detect
unbalanced vertices whose degree and imbalance lie in a certain interval. We show that with high
probability, a β-Eulerian orientation

−→
G is accepted by all the testing stages, while an orientation

that is p-far from being β-Eulerian is rejected by at least one of them.

Algorithm 4.5 MULTISTAGE-2(
−→
G, p, β):

For i = 1, . . . , dlog βe − 1, do:

1. Let Vi
def= {u ∈ V | deg(u) ∈ [2i, 2i+1) } and ni

def= |Vi|.
2. Let j = di/2e. If 2j · ni > 2p

(log β)2
then:

• Sample xij = ln 12 (log β)2 2j+1 ni

2p vertices in Vi uniformly and independently.
• For every sampled vertex u, query all the edges incident with u, and reject if u is

unbalanced.

3. For every j ∈ {di/2e+ 1, . . . , i− 1} such that 2j · ni > 2p
(log β)2

do:

• Sample xij = ln 12 (log β)2 2j+1 ni

2p vertices in Vi uniformly and independently.

14

• For every sampled vertex u, query qij = 256 · ln(6(log β)2 xij) · 22(i−j) edges adja-
cent to u, uniformly and independently, and reject if the absolute difference between
the number of incoming and outgoing edges in the sample is at least qij

4·2i−j .

Accept if the input was not rejected earlier.

Lemma 4.6 MULTISTAGE-2 is a 2-sided (p, β)-test for being Eulerian with query complexity
Õ
(√

β m
p

)
. In particular, for β = ∆, MULTISTAGE-2 is a 2-sided p-test for being Eulerian with

query complexity Õ
(√

∆ m
p

)
.

Proof. First, we compute the asymptotic query complexity of Algorithm 4.5. Since

xij = O

(
(log β)2 · 2j · ni

p

)
and

qij = O

(
log
(

log β · 2j · ni

p

)
· 22(i−j)

)
= O

(
log
(

log β ·m
p

)
· 22(i−j)

)
,

the total query complexity is at most

log β∑
i=1

xidi/2e2
di/2e+1 +

i−1∑
j=di/2e+1

xij · qij

= O

log
(

log β ·m
p

)
(log β)2

p

log β∑
i=1

22i · ni

i−1∑
j=di/2e

1
2j

= O

(
log
(

log β ·m
p

)
(log β)2

p

log β∑
i=1

23i/2 · ni

)

= O

(
log
(

log β ·m
p

)
(log β)2

p
2log β/2

log β∑
i=1

2i · ni

)

= O

(
log
(

log β ·m
p

)
(log β)2

p

√
βm

)
.

Now suppose that
−→
G is β-Eulerian. Then

−→
G can only be rejected in Step 3, where we randomly

sample qij edges incident with a (β-small) vertex u ∈ Vi. Since u is balanced, the expected number of
incoming edges in the sample is qij

2 . By the Chernoff bound, the probability of sampling fewer than

(1− 1
4·2i−j) qij

2 incoming edges is at most exp
(
− 1

22(i−j) ·
qij

64

)
< 1

6(log β)2xij
. Similarly, the probability

of sampling fewer than (1− 1
4·2i−j) qij

2 outgoing edges is at most 1
6(log β)2xij

. Since for every pair (i, j)
we sample xij vertices, and since there are less than (log β)2 pairs, the total probability of rejecting
−→
G is at most 1

3 .

15

Suppose now that
−→
G is p-far from being β-Eulerian. From Lemma 2.9, we have∑

u∈V,deg(u)≤β

|ib(u)| > 2p.

We define a partition of the unbalanced β-small vertices in
−→
G as follows. For every 1 ≤ i ≤

dlog βe − 1 and for every 1 ≤ j ≤ i, let

Vij
def= {u ∈ Vi | |ib(u)| ∈ [2j , 2j+1) }.

Then there exist i0 and j0 such that ∑
u∈Vi0j0

|ib(u)| > 2p

(log β)2
. (10)

As |ib(u)| < 2j0+1 for every u ∈ Vi0j0 , we have

|Vi0j0 | >
2p

(log β)2 · 2j0+1
.

Recall that |Vi0 | = ni0 . Hence, when we sample xi0j0 vertices in Step 2 or in Step 3, the probability
of not sampling any vertex u ∈ Vi0j0 is smaller than(

1− 2p

(log β)2 · 2j0+1 · ni0

)xi0j0

< exp
(
− 2p

(log β)2 · 2j0+1 · ni0

· xi0j0

)
=

1
12

.

Assume from now on that the algorithm has sampled a vertex u ∈ Vi0j0 . If j0 ≤ di0/2e then
all the edges incident with u are queried (Step 2), and since u is unbalanced,

−→
G is now rejected

with probability 1. Otherwise, qi0j0 edges incident with u are queried independently in Step 3.
Since deg(u) < 2i0+1 and |ib(u)| ≥ 2j0 , either the expected number of incoming edges in the
sample is at least

(
1 + 1

2·2i0−j0

) qi0j0
2 or the expected number of outgoing edges in the sample is

at least
(
1 + 1

2·2i0−j0

) qi0j0
2 . To accept the input, we must sample fewer than

(
1 + 1

4·2i0−j0

) qi0j0
2 <(

1− 1
8·2i0−j0

)
·
(
1 + 1

2·2i0−j0

) qi0j0
2 edges in the majority direction. By the Chernoff bound, the

probability of doing so is at most

exp
(
− qi0j0

256 · 22(i0−j0)

)
= exp

(
− ln(6(log β)2 xi0j0)

)
=

1
6(log β)2 xi0j0

.

Note that from Inequality (10) we must have 2j0+1 · ni0 > 4p
(log β)2

and hence xi0j0 > ln 12. In

addition, we may assume that β ≥ 2, since otherwise
−→
G is trivially β-Eulerian. It thus follows

that the probability of not rejecting the input when sampling u’s edges is smaller than 1/4. We
conclude that the probability of accepting an orientation that is p-far from being β-Eulerian is at
most 1/3.

We note that the query complexity bound of MULTISTAGE-2 can be made tighter for some
graphs, as the algorithm skips pairs (i, j) where 2j · ni ≤ 2p

(log β)2
(and thus i and j cannot be the i0

and j0 which satisfy Equation (10)). In particular, for regular graphs, only one value of i is relevant
for testing, which eliminates the square over log β in the query complexity. However, this does not
change the power of β or the dependency on p and m.

16

5 Testing graphs with high average degree

In this section we obtain a general lower bound for the required number p of correction paths as a
function of d = m/n. This, together with the analysis of the previous section, will provide us with
an efficient test for dense graphs.

Lemma 5.1 Suppose that
−→
G is not Eulerian and that

−→
H is an acyclic correction subgraph of

−→
G

which is a union of p edge-disjoint spring-drain paths. Then
−→
H contains a spring-drain path of

length smaller than n√
p .

Proof. Consider a Breadth-First Search (BFS) traversal of
−→
H starting at the set of springs, S.

We define a partition of VH into levels L0, . . . , Lt for some t > 0 as follows. Let L0 = S. Now, for
any i > 0, while

⋃i−1
j=0 Lj 6= VH , define

Li
def= {v ∈ VH \

i−1⋃
j=0

Lj | there exists u ∈ Li−1 such that (u, v) ∈
−→
EH}.

Note that if v ∈ Li then
−→
H contains a path of length i from some spring to v. Let ` be the minimum

index of a level Li which contains a drain. We prove the claim by showing that ` < n√
p .

For every i = 0, . . . , t we let ni = |Li|. Recall that there are p edge-disjoint spring-drain paths
in
−→
H . We first show that for every 0 ≤ i < ` we have ni+1 ≥ p/ni. Consider the level Li for some

0 ≤ i < `. Since there are no drains in the levels L0, . . . , Li, there exist at least p edges from Li

to Li+1. Therefore, there exists a vertex v ∈ Li which has at least p/ni neighbors in Li+1. Hence,
ni+1 ≥ p/ni.

Summing over all i = 0, . . . , `− 1 we obtain

`−1∑
i=0

ni+1 ≥ p ·
`−1∑
i=0

1
ni

,

and so

p ≤
∑`−1

i=0 ni+1∑`−1
i=0

1
ni

.

Now, for a given
∑`−1

i=0 ni, the minimum value of
∑`−1

i=0
1
ni

is reached when ni =
∑`−1

i=0 ni/` for every
i = 0, . . . , `− 1. Thus,

p ≤
∑`−1

i=0 ni+1

`2/
∑`−1

i=0 ni

< n2/`2,

which proves the lemma.

Lemma 5.2 If
−→
G is ε-far from being Eulerian then it is p-far from being Eulerian for p > ε2d2/4.

Proof. Let
−→
H0 be an acyclic correction subgraph of

−→
G . In each step j ≥ 1, while

−−−→
Hj−1 is not

empty, we choose a shortest spring-drain path
−−→
Pj−1 in

−−−→
Hj−1 and set

−→
Hj =

−−−→
Hj−1 \

−−→
Pj−1. By Lemma

17

2.6,
−→
H0 is a union of p = 1

4

∑
u∈V |ib(u)| edge-disjoint spring-drain paths, and moreover, every

−→
Hj is a union of p− j disjoint spring-drain paths. Hence, the graphs

−→
H0, . . . ,

−−−→
Hp−1 are non-empty.

Furthermore, every subgraph
−→
Hj is clearly acyclic, and hence by Observation 2.5, for j = 0, . . . , p−1

−→
Hj is a correction subgraph for some non-Eulerian orientation of G. Let `j be the length of

−→
Pj for

j = 0, . . . , p− 1. Then by Lemma 5.1, we have `j < n√
p−j

. Summing over j, we obtain

p−1∑
j=0

`j < n ·
p−1∑
j=0

1√
p− j

= n

p∑
j=1

1√
j

= n

1 +
p∑

j=2

1√
j

 . (11)

Since f(x) = 1√
x

is monotone decreasing for every x > 0, we have

1√
j

<

∫ j

x=j−1

dx√
x

for every j ≥ 1, and therefore
p∑

j=2

1√
j

<

∫ p

x=1

dx√
x

= 2
√

p− 2.

Substituting this in (11) we obtain
p−1∑
j=0

`j < 2
√

pn.

Note that
∑p−1

j=0 `j is the total number of edges in
−→
H . As

−→
G is ε-far from being Eulerian, we have

εm <
∑p−1

j=0 `j , and thus, p > ε2m2/4n2 = ε2d2/4.

Substituting the lower bound for p of Lemma 5.2 in Lemmas 4.4, 4.2 and 4.6, we obtain the
following theorem.

Theorem 5.3

1. SIMPLE-2(
−→
G, ε2d2/4) is a 2-sided ε-test for being Eulerian with query complexity Õ

(
m3

ε6d6

)
=

Õ
(

n3

ε6d3

)
.

2. GENERIC-1(
−→
G, ε2d2/4,∆) is a 1-sided ε-test for being Eulerian with query complexity O

(
∆m
ε2d2

)
=

O
(

∆n
ε2d

)
.

3. MULTISTAGE-2(
−→
G, ε2d2/4,∆) is a 2-sided ε-test for being Eulerian with query complexity

Õ
(√

∆m
ε2d2

)
= Õ

(√
∆n

ε2d

)
.

SIMPLE-2 gives a sub-linear complexity for d = ω
(√

n·(log n)1/4

ε3/2

)
, GENERIC-1 gives a sub-linear

query complexity for d = ω
(√

∆
ε

)
, and MULTISTAGE-2 gives a sub-linear complexity for d =

ω
(

∆1/4

ε

)
. All of the tests yield their lowest query complexity relative to m when m = Θ(n2) (i.e.,

d = Θ(n)): Õ(1/ε6) for SIMPLE-2, O(n/ε2) for GENERIC-1, and Õ(
√

n/ε2) for MULTISTAGE-2.

18

6 Testing orientations of an expander graph

In this section we obtain a lower bound for the required number p of correction paths in an expander
graph. This bound, together with the analysis of Section 4 will provide us with ε-tests for expanders.

A graph G = (V,E) is called an α-expander for some α > 0 if it is connected and for every
U ⊆ V such that 0 < |E(U)| ≤ m/2 we have

|∂U |
|E(U)|

≥ α.

Note that while the diameter of G is O(log(1+α) m), the “oriented-diameter” of
−→
G is not necessarily

low, even if we assume that the orientation is Eulerian, as was shown by [2].

In the following, log(k)
b (x) denotes the k-nested logarithm with base b of x, that is, log(1)

b (x) def=
logb(x) and log(k+1)

b (x) def= logb(log(k)
b (x)) for any natural k ≥ 1.

Lemma 6.1 Let G be an Eulerian α-expander and let k ≥ 1 be a natural number such that
log(k−1)

(1+α/2) m ≥ log(1+α/2)

(
4
ε

)
. Then:

1. Every non-Eulerian orientation
−→
G of G contains a spring-drain path of length at most

`k
def= 2 · log(k)

(1+α/2) m + 2 · log(1+α/2)

(
4
ε

)
. (12)

2. Every orientation
−→
G of G that is ε-far from being Eulerian is pk-far from being Eulerian for

pk
def=

εm

`k
=

εm

2 · log(k)
(1+α/2) m + 2 · log(1+α/2)

(
4
ε

)
Proof. We prove the lemma by induction on k. In every inductive step, we use the known
bounds of `k and pk to devise `k+1 and pk+1 in an iterative manner. We start by proving the
lemma for the base case, k = 1.

To prove Item 1 of the lemma for k = 1, let
−→
G be a non-Eulerian orientation of

−→
G . Consider a

BFS traversal of
−→
G starting from the set S of springs. For every i ≥ 0, let Li be the ith level of the

traversal, where L0 = S, and let U<i
def=
⋃

0≤j<i Lj and U≥i
def=
⋃

j≥i Lj . For every i > 0, let fi be the
number of directed edges going from Li−1 to Li. Let L` be the first level that contains a drain. By
the expander property of G, for every i > 0 while |E(U<i)| ≤ m/2 we have |∂(U<i)| ≥ α|E(U<i)|.
Note that for every i ≤ `, the set U<i contains no drains, and all the directed edges that exit it are
from Li−1 to Li. Hence fi > 1

2 |∂(U<i)|. We thus obtain that

fi >
α

2
|E(U<i)|

for every 0 < i ≤ ` while |E(U<i)| ≤ m/2, and therefore

|E(U<i+1)| >
(
1 +

α

2

)
|E(U<i)|.

19

By induction, we obtain that

|E(U<i)| >
(
1 +

α

2

)i−1
f1 ≥

(
1 +

α

2

)i−1
(13)

for every 0 < i ≤ ` for which |E(U<i)| ≤ m/2. Now, if for every 0 < i ≤ ` we have |E(U<i)| ≤ m/2,
then clearly |E(U<`)| >

(
1 + α

2

)`−1, and hence ` − 1 < log(1+α/2) |E(U<`)| ≤ log(1+α/2) m and
` < log(1+α/2) m.

Otherwise, let r > 0 be the minimal index for which |E(U<r)| > m/2. Then, for every r ≤ i ≤ `
we have |E(U≥i)| < m/2, and therefore |∂(U≥i)| ≥ α|E(U≥i)|. Note that for every i ≥ r, the set
U≥i contains no springs, and all the directed edges that enter it go from Li−1 to Li. Therefore,
fi > 1

2 |∂(U≥i)|. We obtain that for every r ≤ i ≤ `

fi >
α

2
|E(U≥i)|,

and thus
|E(U≥i−1)| >

(
1 +

α

2

)
|E(U≥i)|.

By induction, we have

|E(U≥i−1)| >
(
1 +

α

2

)`−i+1
|E(U≥`)| ≥

(
1 +

α

2

)`−i+1
(14)

for every r ≤ i ≤ `.
From (13) and (14) we obtain that both r− 1 < log(1+α/2) m and `− r + 1 < log(1+α/2) m, and

therefore ` < 2 · log(1+α/2) m. Hence, every non-Eulerian orientation of G contains a spring-drain
path of length at most `1 = 2 · log(1+α/2) m + 2 · log(1+α/2)

(
4
ε

)
.

To prove Item 2 of the lemma for k = 1, let
−→
G be an orientation of G that is ε-far from being

Eulerian. While
−→
G is not Eulerian, choose a shortest spring-drain path in

−→
G and invert all its

edges. By Item 1, every chosen spring-drain path is of length at most `1. Let
−→
H be the union of the

spring-drain paths inverted. Clearly,
−→
H is a correction subgraph of

−→
G . As

−→
G is ε-far from being

Eulerian,
−→
H contains at least εm edges, and thus it is necessarily a union of at least p1 = εm

`1
disjoint

spring-drain paths. By Lemma 2.6, every correction subgraph of
−→
G contains the same number of

disjoint spring-drain paths, which completes the proof of the base case.

Suppose now that the lemma holds for some natural k ≥ 1 and assume that log(k)
(1+α/2) m ≥

log(1+α/2)

(
4
ε

)
. The proof of both items of the lemma for k + 1 is very similar to that of the base

case. However, in Inequality (13) we know that f1 ≥ pk, and in Inequality (14) we know that
|E(U≥`)| ≥ pk. Hence, every non-Eulerian orientation

−→
G of G contains a spring-drain path of

length at most

`k+1 ≤ 2 · log(1+α/2)

(
m

pk

)
= 2 · log(1+α/2)

(
`k

ε

)
≤ 2 · log(1+α/2)

(
2 · log(k)

(1+α/2) m + 2 · log(1+α/2)

(
4
ε

))
+ 2 · log(1+α/2)

(
1
ε

)
. (15)

Since log(k)
(1+α/2) m ≥ log(1+α/2)

(
4
ε

)
we have

`k+1 ≤ 2 · log(1+α/2)

(
4 · log(k)

(1+α/2) m
)

+ 2 · log(1+α/2)

(
1
ε

)
= 2 · log(k+1)

(1+α/2) m + 2 · log(1+α/2)

(
4
ε

)
,

20

which proves Item 1. The proof of Item 2 is the same as for the base case.

Lemma 6.2 Let G be an Eulerian α-expander. Let
−→
G be an orientation of G that is ε-far from

being Eulerian. Then
−→
G is p-far from being Eulerian for

p = Ω

(
αεm

log(1
ε)

)
.

Proof. Let k be the minimum natural number such that log(k)
(1+α/2) m < log(1+α/2)

(
4
ε

)
. Then,

using the same arguments as we did in the proof of Lemma 6.1 for smaller k’s, we obtain that
every non-Eulerian orientation of G contains a spring-drain path of length at most `k+1, where
`k+1 satisfies Inequality (15). However, since log(k)

(1+α/2) m < log(1+α/2)

(
4
ε

)
, we now have

`k+1 < 2 · log(1+α/2)

(
4 · log(1+α/2)

(
4
ε

))
+ 2 · log(1+α/2)

(
1
ε

)
= O

(
log(1+α/2)

(
1
ε

))
.

Similarly to our proof of Item 2 in Lemma 6.1, we obtain that every orientation of G that is ε-far
from being Eulerian is p-far from being Eulerian for

p =
εm

`k+1
= Ω

(
εm

log(1+α/2)

(
1
ε

)) = Ω

(
αεm

log(1
ε)

)
.

Substituting the lower bound for p of Lemma 6.2 in Lemmas 4.2, 4.4 and 4.6, we obtain the
following theorem.

Theorem 6.3 Let G be an α-expander (for some α > 0) with m edges and maximum degree ∆.

1. SIMPLE-2
(−→

G, Ω
(

αεm
log(1/ε)

))
is a 2-sided ε-test for being Eulerian with query complexity

Õ

((
log(1/ε)

αε

)3
)

.

2. GENERIC-1
(−→

G, Ω
(

αεm
log(1/ε)

)
,∆
)

is a 1-sided ε-test for being Eulerian with query complexity

O
(

∆ log(1/ε)
αε

)
.

3. MULTISTAGE-2
(−→

G, Ω
(

αεm
log(1/ε)

)
,∆
)

is a 2-sided ε-test for being Eulerian with query com-

plexity Õ
(√

∆log(1/ε)
αε

)
.

Note that for a constant α, the query complexity of SIMPLE-2 depends only on ε (while the
other tests depend also on ∆).

21

7 Testing orientations of “lame” directed expanders

In this section we discuss a variation of the expander test, which will serve us in Section 8 for
devising tests for general graphs. Given an orientation

−→
G of G, we now test a subgraph

−→
G [U] of

−→
G , induced by a subset U ⊆ V . We refer to the edges in E(U) as the internal edges of

−→
G [U], and

denote mU
def= |E(U)|. We say that

−→
G [U] is Eulerian if and only if all the vertices in U are balanced

in
−→
G . We say that

−→
G [U] is β-Eulerian if and only if all the β-small vertices in U are balanced in

−→
G . Note that these definitions rely also on the edges in ∂U , which we will henceforth call external
edges. We assume that the orientations of all the external edges are known, and furthermore, we
use a distance function that does not allow inverting external edges. Namely, we will say that

−→
G [U]

is ε-close to being Eulerian if and only if it has a correction subgraph of size at most εmU which
includes only internal edges. Otherwise, we say that

−→
G [U] is ε-far from being Eulerian. Similarly,

we will say that
−→
G [U] is (ε, β)-amendable if and only if it has a β-correction subgraph of size at

most εmU which includes only internal edges. Otherwise, we say that
−→
G [U] is (ε, β)-unamendable.

Note that we can view the external edges as comprising a knowledge graph (see Section 3). To
ensure that

−→
G [U] can be made Eulerian (or β-Eulerian) by inverting internal edges only, we always

assume that all the cuts in
−→
G are valid with respect to the orientation

−→
∂ U of the external edges.

This implies in particular that

−→
E (U, V \ U) =

−→
E (V \ U,U). (16)

The next lemma shows that this assumption allows us to apply the same techniques as we did for
the general testing problem.

Lemma 7.1 If all the cuts in
−→
G are valid with respect to

−→
∂ U , then:

1.
−→
G [U] can be made Eulerian by inverting internal edges along spring-drain paths.

2.
−→
G [U] can be made β-Eulerian by inverting internal edges along β-spring-drain paths.

3. If
−→
G [U] is β-Eulerian then it can be made Eulerian by inverting internal edges along spring-

drain paths, where in each such path, both the spring and the drain are β-big.

Proof. We first give a proof of Item 1, and later explain how to modify it so as to prove Item 2
and Item 3. Assume that there is a spring s ∈

−→
G [U] with no path to any drain that is contained

entirely in
−→
G [U]. Let

X = {u ∈ U | there is a directed path of internal edges from s to u}.

As X contains no drains but at least one spring, more edges exit X than enter it. Furthermore, by
the definition of X, all the edges that exit X are in

−→
∂ U . Hence, the cut (X, V \X) is invalid with

respect to
−→
∂ U , a contradiction. Since inverting an internal spring-drain path does not change the

orientation of the edges in ∂U , we may continue to invert such paths until
−→
G [U] becomes balanced.

To prove Item 2, note that any correction subgraph of internal edges, which exists by Item 1,
contains a β-correction subgraph as a subgraph, and thus it is also internal in

−→
G [U]. To obtain this

22

β-correction subgraph, we modify the correction subgraph by removing paths from β-big springs
to β-big drains one by one as long as they exist.

To prove Item 3 we use the same proof as for Item 1. However, here we know that all our
springs and drains are β-big, since

−→
G [U] is β-Eulerian.

We will be interested in induced subgraphs
−→
G [U] that are “lame directed expanders”.

Definition 7.2 ((α, β)-expander) Given a subset U ⊆ V and a parameter β > 0, we say that a
cut (A,B) of U is a β-cut of U if

|E(B)| ≥ |E(A)| ≥ β.

Given parameters α, β > 0, we say that the subgraph
−→
G [U] of G is an (α, β)-expander if for every

β-cut (A,B) of U we have

|E(A,B)| −
∣∣∣|−→E (V \ U,A)| − |

−→
E (A, V \ U)|

∣∣∣ ≥ 2α|E(A)|. (17)

Note that to decide whether
−→
G [U] is an (α, β)-expander we do not need to know the orientation of

its internal edges, but only that of its external edges. In particular, if the entire domain graph G

is an α-expander, then
−→
G itself is always an (α, β)-expander for every β > 0 (because G[V] has no

external edges).

In the next two lemmas we give lower bounds for the numbers of internal spring-drain paths
and β′-spring-drain paths (for some β′) in an (α, β)-expander. Using our (p, β)-tests from Section 4
with these bounds, we will later obtain ε-tests for (α, β)-expanders. In the following, mU = |E(U)|
and ∆U is the maximum degree of a vertex in U (where the degree of a vertex u ∈ U is the total
number of edges incident with u, including external edges).

Lemma 7.3 Let
−→
G [U] be an (α, β)-expander for some 0 < α < 1 and 0 ≤ β and let mU

def=
|E(U)|. Suppose that all the cuts in G are valid with respect to

−→
∂ U , and that

−→
G [U] is (ε′, β′)-

unamendable for some 0 < ε′ < 1 and 0 < β′ ≤ ∆U . Then
−→
G [U] is p-far from being β′-Eulerian

for p(U,α, β, ε′, β′) = Ω
(

ε′mU
log(1+α) mU+β

)
= Ω

(
ε′mU

log mU/α+β

)
.

Proof. We show that in any orientation
−→
G such that

−→
G [U] is not β′-Eulerian, there exists a

spring-drain path inside
−→
G [U] of length O(log(1+α) mU + β). Note that an (α, β)-expander

−→
G [U]

remains an (α, β)-expander after we invert some of its internal edges. Thus, if
−→
G [U] is (ε′, β′)-

unamendable, then we have to invert internal edges along Ω
(

ε′mU
log(1+α) m+β

)
β′-spring-drain paths

(as inverting spring-drains paths in which both the spring and the drain are β′-big is irrelevant for
being β′-Eulerian). Thereof the lemma will follow.

Assume that
−→
G [U] is not β′-Eulerian, and let ` be the minimum length of a spring-drain path

of internal edges in
−→
G [U]. Such a path exists by Lemma 7.1. If ` ≤ β then the claim is obviously

true. We thus assume that ` > β. Let SU be the set of springs in U . Consider a BFS traversal of−→
G [U] starting from L0

def= SU . For every i > 0, set by induction

Li
def= {v ∈ U | there exists u ∈ Li−1 s.t. (u, v) ∈

−→
E }.

23

In addition, let Ai
def=
⋃

0≤j<i Lj and Bi
def=
⋃

j≥i Lj . Consider a level i such that β < i ≤ ` and
|E(Ai)| ≤ |E(Bi)|. Clearly, (Ai, Bi) is a β-cut, and thus, since U is an (α, β)-expander, we have

|E(Ai, Bi)|+ |
−→
E (V \ U,Ai)| − |

−→
E (Ai, V \ U)| ≥ 2α|E(Ai)|. (18)

Note that for every i ≤ `, the set Ai contains springs but no drains. Hence, more edges exit Ai

then enter it:

|
−→
E (Ai, Bi)| − |

−→
E (Bi, Ai)| − |

−→
E (V \ U,Ai)|+ |

−→
E (Ai, V \ U)| > 0,

and thus

|
−→
E (Ai, Bi)| >

1
2

(
|
−→
E (Ai, Bi)|+ |

−→
E (Bi, Ai)|+ |

−→
E (V \ U,Ai)| − |

−→
E (Ai, V \ U)|

)
.

Substituting the above in Inequality (18) we have

|
−→
E (Ai, Bi)| > α|E(Ai)|

for every i such that β < i ≤ ` and |E(Ai)| ≤ |E(Bi)|. Recall that all the directed edges in G[U]
that exit Ai enter Ai+1. We thus have

|E(Ai+1)| > (1 + α)|E(Ai)|,

and by induction,
|E(Ai)| > (1 + α)i−β |E(Aβ)| ≥ (1 + α)i−ββ.

Therefore,

i− β ≤ log(1+α)

(
|E(Ai)|

β

)
< log(1+α) mU (19)

for every i such that β < i ≤ ` and |E(Ai)| ≤ |E(Bi)|. Now, if for every β < i ≤ ` we have |E(Ai)| ≤
|E(Bi)|, then, from Inequality (19) we have `− β < log(1+α) mU and thus ` = O(log(1+α) mU + β).

Otherwise, let k > β be the minimal index i for which |E(Ai)| > |E(Bi)|. From Equation (19)
we have

k − 1− β < log(1+α) mU . (20)

For every k ≤ i ≤ ` while |E(Bi)| ≥ β, (Bi, Ai) is a β-cut, and thus from Inequality (17) we have

|E(Ai, Bi)| − |
−→
E (V \ U,Bi)|+ |

−→
E (Bi, V \ U)| ≥ 2α|E(Bi)|. (21)

Note that the set Bi contains drains but no springs. Hence, more edges enter Bi then exit it:

|
−→
E (Ai, Bi)| − |

−→
E (Bi, Ai)|+ |

−→
E (V \ U,Bi)| − |

−→
E (Bi, V \ U)| > 0,

and thus

|
−→
E (Ai, Bi)| >

1
2

(
|
−→
E (Ai, Bi)|+ |

−→
E (Bi, Ai)| − |

−→
E (V \ U,Bi)|+ |

−→
E (Bi, V \ U)|

)
.

Substituting the above in Inequality (21) we have

|
−→
E (Ai, Bi)| > α|E(Bi)|

24

for every i such that k ≤ i ≤ ` and |E(Ai)| > |E(Bi)| ≥ β. Since all the edges in
−→
E (Ai, Bi) enter

Li, we have
|E(Bi)| > (1 + α)|E(Bi+1)|,

and by induction
|E(Bi)| > (1 + α)j−i|E(Bj)|

for every i, j such that k ≤ i ≤ j ≤ ` and |E(Aj)| > |E(Bj)| ≥ β. Hence,

j − i ≤ log(1+α)

(
|E(Bi)|
|E(Bj)|

)
< log(1+α) mU (22)

for every i, j such that k ≤ i ≤ j ≤ ` and |E(Aj)| > |E(Bj)| ≥ β. Now, if |E(A`)| > |E(B`)| ≥ β
then, taking i = k and j = ` we have

`− k < log(1+α) mU .

Combined with Inequality (20) we obtain

` < 2 log(1+α) mU + β + 1 = O(log(1+α) mU + β).

Otherwise, let r be the minimum index i such that |E(Bi)| < β. Then, for i = k and j = r− 1,
Inequality (22) yields

r − 1− k < log(1+α) mU . (23)

Since |E(Br)| < β, there are less then β levels between r and ` and thus ` < r + β. Hence, with
Inequalities (20) and (23) we achieve

` < 2 log(1+α) mU + 2β + 2 = O(log(1+α) mU + β).

Lemma 7.4 Let
−→
G [U] be an (α, β)-expander for some 0 < α < 1 and 0 ≤ β ≤ ∆U

2 and let
mU

def= |E(U)|. Suppose that all the cuts in G are valid with respect to
−→
∂ U . Suppose further that

for some ε > 0,
−→
G [U] is ε-far from being Eulerian, but still (ε

2 , 2β)-amendable. Then
−→
G [U] is p′-far

from being Eulerian for p′(U,α, β, ε) = Ω
(

εmU
log(1+α) mU

)
= Ω

(
αεmU
log mU

)
.

Proof. As
−→
G [U] is (ε

2 , 2β)-amendable, there exists a 2β-correction subgraph
−→
H of

−→
G [U] of size

at most εmU/2. Consider
−→
G1[U] def=

−→
G [U]←−

H
, that is, the digraph obtained from

−→
G [U] by inverting

all the edges in the 2β-correction subgraph
−→
H . Then

−→
G1[U] is 2β-balanced. However, since

−→
G [U] is

ε-far from being balanced, at least εmU/2 more edges must be inverted in order to make it Eulerian.
By Item 3 of Lemma 7.1, there exists a correction subgraph for

−→
G [U] which is a union of internal

paths from 2β-big springs to 2β-big drains.
To complete the proof, we show that while

−→
G1[U] is not Eulerian, it contains an internal spring-

drain path of length ` = O(log(1+α) mU) = O(log mU/α). This is done similarly to the proof in
Lemma 7.3 which shows the existence of a short β′-spring-drain path. However, note that now the

25

set E(A2) includes all the edges outgoing from at least one 2β-big spring, and thus E(Ai, Bi) is a
β-cut for every i ≥ 2 such that |E(Ai)| ≤ |A(Bi)|. Hence, instead of Inequality (19) we have

i− 2 ≤ log(1+α)

(
|E(Ai)|
|E(A2)|

)
< log(1+α) mU (24)

for every i such that 1 < i ≤ ` and |E(Ai)| ≤ |E(Bi)|. Furthermore, since all the drains are 2β-big,
the set E(B`−1) includes all the edges incoming to at least one 2β-big drain, and thus E(Bi, Ai)
is a β-cut for every i ≤ ` − 1 such that |E(Ai)| > |A(Bi)|. Hence, putting j = ` − 1 in Inequality
(22), we obtain

`− i− 1 ≤ log(1+α)

(
|E(Bi)|
|E(B`−1)|

)
< log(1+α) mU (25)

for every i ≤ ` − 1 such that |E(Ai)| > |A(Bi)|. Let k be the minimum value of i for which
|E(Ai)| > |A(Bi)|. Then, from Inequality (24) we have k < log(1+α) mU + 3 and from Inequality
(25) we have `− k < log(1+α) mU + 1, and hence ` = O(log(1+α) mU).

Suppose that
−→
G is ε-far from being Eulerian and that the external edges of U do not induce

an invalid cut. Note that if β ≤ ∆U
2 , then either the conditions of Lemma 7.3 apply for ε′ = ε/2

and β′ = 2β, or the conditions of Lemma 7.4 apply. Also, note that if β > ∆U
2 then the conditions

of Lemma 7.3 apply for ε′ = ε and β′ = ∆U . We thus obtain the two ε-tests below. Note that
whenever our tests use samples of edges incident with a vertex u ∈ U , the sampling is among all
the edges incident with u, and not only internal edges.

Algorithm 7.5 GEN-1(
−→
G [U], α, β, ε)

1. If β ≤ ∆U
2 then run GENERIC-1(

−→
G [U], p(U,α, β, ε/2, 2β), ∆U), and otherwise run GENERIC-

1(
−→
G [U], p(U,α, β, ε,∆U), ∆U). In both cases, p(U,α, β, ε′, β′) is the lower bound given in

Lemma 7.3.

2. If β ≤ ∆U
2 then run GENERIC-1(

−→
G [U], p′(U,α, β), ∆U), where p′(U,α, β) is the lower bound

given in Lemma 7.4.

3. Reject if at least one of the tests has rejected, and accept otherwise.

Algorithm 7.6 MULTI-2(
−→
G [U], α, β, ε)

1. If β ≤ ∆U
2 then run MULTISTAGE-2(

−→
G [U], p(U,α, β, ε/2, 2β), ∆U), and otherwise run

MULTISTAGE-2(
−→
G [U], p(U,α, β, ε,∆U), ∆U). In both cases, p(U,α, β, ε′, β′) is the lower

bound given in Lemma 7.3.

2. If β ≤ ∆U
2 then run MULTISTAGE-2(

−→
G [U], p′(U,α, β), ∆U), where p′(U,α, β) is the lower

bound given in Lemma 7.4.

3. Reject if at least one of the tests has rejected, and accept otherwise.

Combining Lemma 7.3 and Lemma 7.4 with Lemma 4.4 and Lemma 4.6, we obtain the following
lemmas, which will be used in Section 8.

26

Lemma 7.7 GEN-1(
−→
G [U], α, β, ε) is a 1-sided ε-test for an (α, β)-expander subgraph

−→
G [U], assum-

ing that the external edges of U are known and do not induce an invalid cut. The query complexity
of the test is O

(
∆U log mU

εα + β·min{β,∆U}
ε

)
, where mU = |E(U)| and ∆U = max{deg(u) | u ∈ U}.

Lemma 7.8 MULTI-2(
−→
G [U], α, β, ε) is a 2-sided ε-test for an (α, β)-expander subgraph

−→
G [U], as-

suming that the external edges of U are known and do not induce an invalid cut. The query complex-

ity of the test is Õ

(√
∆U log mU

εα + β·
√

min{β,∆U}
ε

)
, where mU = |E(U)| and ∆U = max{deg(u) |

u ∈ U}.

8 General tests based on chopping

In this section we use our results from Section 7 to provide a 1-sided test and a 2-sided test as
follows. Given an orientation

−→
G of an Eulerian graph G, we show how to decompose

−→
G into a

collection of (α, β)-expanders with a relatively small number of edges that are outside the (α, β)-
expanders, called henceforth external edges. We will find this “chopping” adaptively while querying
external edges only. If we do not find a witness showing that

−→
G is not Eulerian already during the

chopping procedure, then we sample a few (α, β)-expanders and test them using GEN-1 (Algorithm
7.5) or using MULTI-2 (Algorithm 7.6), obtaining a 1-sided test or a 2-sided test respectively.

Lemma 8.1 (The chopping lemma) Given an orientation
−→
G as input and parameters α, β > 0,

we can either find a witness showing that
−→
G is not Eulerian, or find non-empty induced subgraphs−→

G i = (Vi,
−→
E i =

−→
E (Vi)) of

−→
G (where i = 1, . . . , k for some k), which we call (α, β)-components (or

simply components), that satisfy the following:

1. The vertex sets V1, . . . , Vk of the components are mutually disjoint.

2. |
−→
E i| ≥ β for i = 1, . . . k.

3. All the components
−→
G i are (α, β)-expanders.

4. The total number of external edges satisfies

|
−→
E \

⋃
i=1,...,k

−→
E (Vi)| = O(αm2 log m/β).

During the chopping procedure, we query only external edges, i.e., edges that are not in any com-
ponent Gi. The query complexity is of the same order also if we find a witness that

−→
G is not

Eulerian.

Proof. The chopping procedure proceeds as follows. At first, we define
−→
G =

−→
G [V] as our single

component. Then, in each step, we decompose a component
−→
G [U] into two separate components

−→
G [A] and

−→
G [B], such that (A,B) is a β-cut of U and

|E(A,B)| −
∣∣∣|−→E (V \ U,A)| − |

−→
E (A, V \ U)|

∣∣∣ < 2α|E(A)|. (26)

27

When decomposing, we query the edges of the cut (A,B) and mark them as external edges. Note
that we need not query any additional edges to decide on cutting a component, as all the required
information is given by the domain graph G and the orientation of the external edges that were
queried in previous steps. After each stage, we check whether the orientations of the edges queried
so far invalidate any of the cuts in the graph (see Section 3), in which case we conclude that

−→
G is

not Eulerian and return the invalid cut.
The procedure terminates once there is no cut of any component that satisfies the chopping

conditions. The components are clearly disjoint throughout the procedure. Since we only chopped
components across β-cuts, every final component contains at least β edges. Moreover, note that a
component is always chopped by the procedure unless all its β-cuts satisfy Inequality (17). Hence,
if the algorithm terminates without finding a witness that

−→
G is not Eulerian, then every

−→
G i is an

(α, β)-expander.
It remains to prove the upper bound for the number of external edges and the query complexity

of the chopping procedure. Consider a component U and a β-cut (A,B) of U that was queried in
some step of the lemma. Suppose that the cut (A, V \A) is valid. Then

|
−→
E (A,B)| − |

−→
E (B,A)|+ |

−→
E (A, V \ U)| − |

−→
E (V \ U,A)| = 0. (27)

From the chopping condition (26) we have

|
−→
E (A,B)|+ |

−→
E (B,A)| −

∣∣∣|−→E (V \ U,A)| − |
−→
E (A, V \ U)|

∣∣∣ < 2α|E(A)|. (28)

Combining Equations (27) and (28) and considering two cases depending on whether |
−→
E (A, V \

U)| − |
−→
E (V \ U,A)| is positive or negative, we obtain that

min
{
|
−→
E (A,B)|, |

−→
E (B,A)|

}
< α|E(A)|. (29)

Hence, if Inequality (29) does not hold, then, in any case, after querying the edges in (A,B) we
discover an invalid cut in the graph (which could be (A,B) or another cut). We next compute the
query complexity in the case where our knowledge graph contains no invalid cuts throughout the
procedure, and later show how to modify our analysis for the case where an invalid cut is detected
after querying the last cut.

For every β-cut (A,B) that we use for partitioning, we refer to the edges in the minimal cut
among

−→
E (A,B) and

−→
E (B,A) as rare edges, and to the edges in the other direction as common

edges. Let us first compute the cost of querying the rare edges only. For every partition of a β-cut
(A,B), we “charge” a cost of α on every edge in E(A). From Inequality (29), the sum of charges
is larger than the number of rare edges queried. Since by our definition |E(A)| ≤ |E(B)|, every
edge can belong to “Side” A of a partitioned β-cut (A,B) at most log m times throughout the
entire procedure. Hence, the sum of charges is at most α log m for every edge in the graph and at
most αm log m in total. We complete the proof by showing that the ratio between the number of
external edges and the number of rare external edges is O(m/β).

Consider the component multigraph
−→
G comp, whose vertices are the components Gi and whose

edges are the external edges of
−→
G . By our assumption that the knowledge graph contains no invalid

cuts,
−→
G comp is Eulerian (as a directed multigraph), and hence it is an edge-disjoint union of simple

directed cycles. However,
−→
G comp does not contain a directed cycle of common edges. This can be

28

proved by induction as follows. When starting the chopping procedure there is only one component
and no external edges. Then at every step we partition one component into two sets, and add
the common edges, if any, from one of the sets to the other. One can see that this cannot create
directed cycles of common edges. Therefore,

−→
G comp is an edge-disjoint union of simple directed

cycles, where each cycle contains at least one rare edge. As the number of vertices in
−→
G comp is at

most m/β, we conclude that the number of external edges in
−→
G is at most m/β times the number

of rare edges. From the discussion above, it follows that the number of external edges in
−→
G is

O(αm2 log m/β).
Regarding the case where querying the edges of a β-cut (A,B) reveals a violation of a cut in

the graph, recall that as long as the knowledge graph does not induce an invalid cut, there exists
an Eulerian orientation extending the knowledge graph (see Lemma 3.2). Thus, the edges of (A,B)
have a “good” orientation that does not violate any cut in the graph. Clearly, the total query
complexity after we query the edges of (A,B) and terminate is no higher than in the case where
we would have queried the edges of (A,B) and discovered the good orientation.

We are now ready to present our 1-sided test. In the following, let α, β > 0 be parameters.

Algorithm 8.2 CHOP-1(
−→
G, ε, α, β):

1. Use Lemma 8.1 (the chopping lemma) for finding (α, β)-components
−→
G1, . . . ,

−→
Gk and querying

their external edges, or reject and terminate if an invalid cut is found in the process.

2. Sample 3 ln 3/ε (α, β)-components
−→
G i randomly and independently, where the probability of

selecting a component
−→
G i in each sample is proportional to mi

def= |E(Vi)|.

3. Test every selected component
−→
G i using GEN-1(

−→
G i, α, β, ε/2) (Algorithm 7.5). Reject if the

test rejects for at least one of the components selected.

4. Accept if the input was not rejected by any of the above steps.

Lemma 8.3 If
−→
G is Eulerian then CHOP-1 accepts

−→
G with probability 1.

Proof. If
−→
G is Eulerian then

−→
G has no invalid cuts and therefore CHOP-1 does not reject in

Step 1. In addition, every (α, β)-component of
−→
G is Eulerian, and since GEN-1 is 1-sided (see

Lemma 7.7), CHOP-1 does not reject any of the tested (α, β)-components.

Lemma 8.4 If the external edges induce an invalid cut, or if more than an ε/2-fraction of the
internal edges are in (α, β)-components that are ε/2-far from being Eulerian, then CHOP-1 rejects
with probability at least 2/3.

Proof. If the external edges induce an invalid cut then the algorithm rejects in Step 1 while
trying to perform the chopping. Otherwise, every (α, β)-component sampled in Step 2 is ε/2-far
from being Eulerian with probability at least ε/2. By Lemma 7.7, for every (α, β)-component that
is ε/2-far from being Eulerian, the rejection probability is at least 2/3. Thus, the probability of
rejecting one sampled component is at least ε/3. Since the components are selected independently,
the probability of accepting all the components is at most (1− ε/3)3 ln 3/ε < e− ln 3 = 1/3.

29

Lemma 8.5 If the external edges do not induce an invalid cut and at most an ε/2-fraction of the
internal edges are in (α, β)-components that are ε/2-far from being Eulerian, then

−→
G is ε-close to

being Eulerian.

Proof. By Item 1 of Lemma 7.1, every (α, β)-component
−→
G i in

−→
G can be made Eulerian by

inverting internal edges of
−→
G i. We thus orient the (α, β)-components that are ε/2-far from being

Eulerian so as to make them Eulerian. These components consist of at most εm/2 edges. In
addition, we invert a minimum number of edges in each of the (α, β)-components that are ε/2-close
to being Eulerian, so as to make them Eulerian too. This requires at most εm/2 more alterations.
We thus obtain an Eulerian orientation that is ε-close to

−→
G .

Theorem 8.6 CHOP-1 is a 1-sided test for being Eulerian with query complexity

O

(
αm2 log m

β
+

∆ log m

ε2α
+

β ·min{β, ∆}
ε2

)
.

In particular, for α = (∆ log m)1/3

(εm)2/3 and β = (εm log m)2/3

∆1/3 , the query complexity is

O

(
(∆m log m)2/3

ε4/3

)
= O

((
∆
ε

)4/3

(n log n)2/3

)
.

Proof. The correctness of the test follows from Lemmas 8.3, 8.4, and 8.5. The query complexity
follows from Lemmas 7.7 and 8.1 (the chopping lemma).

We note that Theorem 8.6 provides a sub-linear algorithm for every graph of maximum degree
∆ = o

(
ε2
√

m
log m

)
. For nearly regular graphs, i.e. graphs with m = Ω(∆n), the algorithm is sub-linear

for every ∆ = o
(

ε4n
log2 n

)
.

We conclude with a similar 2-sided test which gives a sub-linear query complexity for all graphs.
In the following, let α, β > 0 be parameters.

Algorithm 8.7 CHOP-2(
−→
G, ε, α, β):

1. Use Lemma 8.1 (the chopping lemma) for finding (α, β)-components
−→
G1, . . . ,

−→
Gk and querying

their external edges, or reject and terminate if an invalid cut is found in the process.

2. Sample 3
ε (α, β)-components

−→
G i independently, where the probability of selecting a component

−→
G i is proportional to mi

def= |E(Vi)|.

3. Test every selected component
−→
G i for being Eulerian 12 ln(9/ε) times independently using

MULTI-2(
−→
G i, α, β, ε/2) (Algorithm 7.6). Reject if there is a component

−→
G i which was rejected

by at least half of its tests.

4. Accept if the input was not rejected in a previous step.

Lemma 8.8 If
−→
G is Eulerian then CHOP-2 accepts with probability at least 2/3.

30

Proof. If
−→
G is Eulerian then

−→
G has no invalid cuts and therefore CHOP-2 does not reject in

Step 1. In addition, all the (α, β)-components
−→
G i are Eulerian. Thus, by Lemma 7.8, every run of

MULTI-2 on a component
−→
G i rejects with probability at most 1/3. By standard large deviation

arguments, the probability of rejecting a component
−→
G i by at most half of its tests is at most ε/9.

Applying the union bound for the 3/ε (α, β)-components sampled, the probability of rejecting
−→
G

is at most 1/3.

Lemma 8.9 If the external edges induce an invalid cut, or if more than ε/2-fraction of the internal
edges are in (α, β)-components that are ε/2-far from being Eulerian, then Algorithm 8.7 rejects with
probability at least 2/3.

Proof. If the external edges induce an invalid cut then the algorithm rejects in Step 1 while
trying to perform the chopping. Otherwise, the probability of not sampling any (α, β)-component
that is ε/2-far from being Eulerian is at most (1− ε

2)3/ε < 1
4 . Suppose that we have sampled at least

one (α, β)-component that is ε-far from being Eulerian. By Lemma 7.8, the acceptance probability
of a single test of this component is at most 1/3. Using standard large deviation arguments, the
probability of accepting in at most half of the tests of this component is smaller than 1/12. We
conclude that the probability of accepting

−→
G in this case is at most 1/3.

Observation 8.10 Lemma 8.5 is true for CHOP-2 as well as for CHOP-1.

Theorem 8.11 Algorithm 8.7 is a 2-sided test for being Eulerian with query complexity

O

(
αm2 log m

β

)
+ Õ

(√
∆ log m

ε2α
+

β ·
√

min{β, ∆}
ε2

)
.

In particular, if ∆ ≤ (εm)4/7, then for α = ∆1/6

(εm)2/3 and β = (εm)2/3

∆1/6 the query complexity is

Õ
(

∆1/3m2/3

ε4/3

)
= Õ

(
m6/7

ε8/7

)
. If (εm)4/7 < ∆ ≤ m, then for α = ∆5/16

(εm)3/4 and β = ∆1/8√εm the query

complexity is Õ
(

∆3/16m3/4

ε5/4

)
= Õ

(
m15/16

ε5/4

)
.

Proof. The correctness of the test follows from Lemmas 8.8, 8.9, and 8.5. The query complexity
follows from Lemmas 7.8 and 8.1 (The chopping lemma).

9 Lower bounds for bounded-degree graphs

9.1 A 2-sided lower bound

In this subsection we prove the following theorem.

Theorem 9.1 For every 0 < ε ≤ 1/64, every non-adaptive (2-sided) ε-test for Eulerian orienta-

tions of bounded degree graphs must use Ω
(√

log m
log log m

)
queries. Consequently, every adaptive test

requires Ω(log log m) queries.

31

The main idea of the proof uses Yao’s principle [27]. Namely, for infinitely many natural
numbers `, we define a graph G` with m = 2`2 edges and two distributions over the orientations
of G`. The first distribution, P`, contains only Eulerian orientations of G`, while the second
distribution, F`, contains orientations that are with high probability 1/64-far from being Eulerian.

We then show that any non-adaptive deterministic algorithm which makes o
(√

log m
log log m

)
queries

cannot distinguish between the distributions P` and F` with probability higher than 1/5.
All our underlying graphs G` are two dimensional tori, which are 4-regular graphs having a

highly symmetric structure (the exact definition is given below). We exploit this symmetry to

construct distributions P` and F` such that, for any fixed set Q of o
(√

log m
log log m

)
edges, with high

probability, the orientation of every pair of edges in Q has either no correlation in any of the
distributions, or a correlation that is identical in both distributions.

We build the orientations in P` and F` from repeated “patterns” of varying sizes and show that,
in order to distinguish between the distributions, a deterministic algorithm must be approximately
“synchronized” with the (unknown) size of these patterns.

9.1.1 Preliminaries

For i, j ∈ [`] we let i⊕j denote addition modulo `, that is:

i⊕j =
{

i + j , i + j ≤ `

i + j − ` , i + j > `
.

Given a graph G = (V,E) and two vertices u, v ∈ V , we define the distance between u and v (or
shortly dist(u, v)) as the the walking distance in G between u and v. Given two edges e1, e2 ∈ E,
we define the distance between e1 and e2 (or shortly dist(e1, e2)) as the minimal distance between
an endpoint of e1 and an endpoint of e2. For an edge e = {u, v} ∈ E and a vertex w ∈ V , we define
the distance of e from w (or shortly dist(e, w)) as the minimum of dist(u, w) and dist(v, w). We
stress that even when we consider an orientation

−→
G , the distances between edges and vertices are

still measured on the underlying undirected graph G for the purpose of the following proofs.

Definition 9.2 (Torus) A torus is a two dimensional cyclic grid. Formally, an `× ` torus is the
graph T = (V,E) on n = `2 vertices V = {vi,j : i, j ∈ [`]} and m = 2`2 edges E = EH ∪ EV , where

EH =
{
{vi,j1 , vi,j2} : j2 = j1⊕1

}
and EV =

{
{vi1,j , vi2,j} : i2 = i1⊕1

}
. We refer to EH as the

set of horizontal edges and to EV as the set of vertical edges. Two edges e1, e2 ∈ E are said to be
perpendicular if one of them is horizontal and the other is vertical, and otherwise they are called
parallel.

Given an orientation
−→
T of T , we say that a horizontal edge e = {vi,j , vi,j⊕1} is directed to the

right if vi,j is the start-point of e, and otherwise we say that e is directed to the left. Similarly,
we say that a vertical edge e = {vi,j , vi⊕1,j} is directed upwards if vi,j is the start-point of e, and
otherwise we say it is directed downwards.

To simplify the presentation, we assume throughout this section that ` is even. We now define a
graph operation that will be used later in the construction of the distributions P` and F`.

32

Definition 9.3 ((a, b)-shifting) Let
−→
T be an orientation of an ` × ` torus T , and let a, b ∈ [`].

We define the (a, b)-shifting of
−→
T to be the orientation

−−→
Ta,b of T , which is a transformation of

the orientation
−→
T a units upwards and b units rightward. Namely, for every edge e of T , if

e = {vi,j , vi′,j′} is directed from vi,j to vi′,j′ in
−→
T then ea,b

def= {vi⊕a,j⊕b, vi′⊕a,j′⊕b} is directed from
vi⊕a,j⊕b to vi′⊕a,j′⊕b in

−−→
Ta,b.

9.1.2 Defining auxiliary distributions

Let H = (V,E) be an ` × ` torus, where V = {vi,j | i, j ∈ [`]}, using the same indexing as in
Definition 9.2. We define two simple distributions, R` and C(k)

` , over the orientations of H. We
later use these distributions to build the final distributions, F` and P`.

The distribution R` is simply a random orientation of H’s edges. Namely, in
−→
H ∼ R` the

orientation of every edge e ∈ E is chosen uniformly at random, independently of the other edges.

Lemma 9.4 Let
−→
H be an orientation of H, chosen according to the distribution R`. Then with

probability 1− o(1), there are at least `2/4 unbalanced vertices in
−→
H .

Proof. Define a subset I = {vi,j | i + j is even} ⊆ V of `2/2 vertices. Observe that I is an
independent set in H (i.e. it has no internal edges), and so every vertex vi ∈ I is balanced with
probability xi =

(
4
2

) (
1
2

)4 = 3/8 independently from all other vertices in I. By Chernoff’s inequality,
the probability that at least half of the vertices in I are balanced is bounded by exp(−`2/64).
Namely, with probability 1− o(1) there are at least `2/4 unbalanced vertices in I.

Figure 4: Partitioning H into edge-disjoint 4k-cycles. Here ` = 12 and k = 3.

For a parameter k, C(k)
` is a distribution over Eulerian orientations of H. We assume that 2k

divides ` =
√

m/2. To construct an orientation according to C(k)
` , we first partition the edges of

H into edge-disjoint “square-shaped” 4k-cycles as follows (see Figure 4). For every 0 ≤ i < `,
0 ≤ j < `/2k, we let vi,2kj⊕i be a “lower-left corner” of a cycle C. The other “corner” vertices of C
are vi⊕k,2kj⊕i, vi⊕k,2kj⊕i⊕k, and vi,2kj⊕i⊕k. The four corner vertices are connected by two paths of k
horizontal edges and two paths of k vertical edges. One can see that this indeed forms a partition of
all of H’s edges into edge-disjoint cycles. Then, for every cycle C, we randomly and independently
choose one of C’s two possible Eulerian orientations. Let

−→
H ′ denote the orientation of H at this

33

stage. Finally, a, b ∈ [`] are chosen uniformly at random, and
−→
H is set to be the (a, b)-shifting of

−→
H ′.

In what follows, for a pair of edges ei, ej ∈ E and an orientation
−→
H of H, we say that ei and ej

are independent if either
−→
H ∼ R`, or

−→
H ∼ C(k)

` and the edges ei and ej reside in different 4k-cycles
Ci and Cj . A set Q ⊆ E is called independent if all the pairs e1, e2 ∈ Q are independent. Observe
that if Q is independent, then the orientation of every e ∈ Q is distributed uniformly at random,
independently of the orientation of all other members of Q. Clearly, if

−→
H is distributed according

to R` then every set Q ⊆ E is independent. In the following lemmas we prove that, under some
conditions, the set Q is independent with high probability also if

−→
H is distributed according to C(k)

` .

Lemma 9.5 Let e1, e2 ∈ E be two perpendicular edges of H. Let
−→
H be an orientation of H

distributed according to C(k)
` , for an integer k that divides `/2. Then the probability that e1 and e2

are independent is at least 1− 1
2k .

Proof. Suppose that e1 and e2 are not independent. Hence, they both reside in the same cycle
C in the partition of H’s edges into 4k-cycles. Note that, in such a case, e1 and e2 define a unique
square-shaped 4k-cycle in which they both reside, and hence, they define a unique vertex in H that
must be the lower-left corner of this cycle. By the definition of the partition into 4k-cycles, it is
easy to see that the fraction of vertices in H that are corner vertices is 1

2k . The lemma follows since
in the last stage of constructing an orientation from C(k)

` , the partition into 4k-cycles is randomly
shifted.

Lemma 9.6 Let k be an integer that divides `/2. Let Q ⊆ E be a set of o(
√

k) edges such that
for every pair e1, e2 ∈ Q, either dist(e1, e2) > 2k, or e1 and e2 are perpendicular. Then for an
orientation

−→
H of H distributed according to C(k)

` , the probability that Q is independent is 1− o(1).

Proof. Fix a pair e1, e2 ∈ Q. If dist(e1, e2) > 2k then e1 and e2 must reside in different 4k-cycles,
and hence they are independent. Otherwise, e1, e2 are perpendicular, and by Lemma 9.5 they are
independent with probability at least 1 − 1

2k . The proof is now completed by applying the union
bound for all o(k) pairs e1, e2 ∈ Q.

9.1.3 Defining the main distributions

We now give our two main distributions of torus orientations. First, we need to define the following
operation.

Definition 9.7 (t-tiling) Let `, t > 0. Let
−→
H = (V (H),

−→
E (H)) be an ` × ` directed torus where

V (H) = {vi,j | i, j ∈ [`]}. Let T = (V,E) be a 2t`× 2t` torus where V = {ui,j | i, j ∈ [2t`]}.
We define the t-tiling of

−→
H as the orientation

−→
H t of T which is constructed as follows. First,

partition T into `2 disjoint 2t × 2t grids {Gi,j}i,j∈[`], where every grid Gi,j is associated with the
vertex vi,j ∈ V (H). Formally, For every i, j ∈ [`] the grid Gi,j is the induced subgraph of T whose
set of vertices is Vi,j

def= {ui′,j′ : 2t(i− 1) < i′ ≤ 2ti, 2t(j − 1) < j′ ≤ 2tj}. The upper left t× t grid
of every Gi,j is denoted by Ri,j and is called the representative grid of the vertex vi,j ∈ V (H).

The orientation
−→
H t of T is defined as follows. For every vi,j ∈ V (H), let r1

i,j , r
2
i,j , . . . , r

t
i,j ∈ V be

the t vertices on the main diagonal of the representative grid Ri,j. For every edge e = {vi,j , vi′,j′} ∈

34

Figure 5: A directed 2 × 2 torus
−→
H (left) and its corresponding 3-tiling,

−→
T . The vertex v2,1 is

encircled in
−→
H , and its corresponding vertices r1

2,1, r
2
2,1 and r3

2,1 are encircled in
−→
T . In addition,

the edge {v1,2, v1,1} is emphasized in
−→
H , and its corresponding edges are emphasized in

−→
T . Note

the circular orientation of the padding edges in
−→
T , marked with dashed arrows.

−→
E (H) directed from vi,j to vi′,j′ and every h ∈ [t], we orient the edges on the shortest path from rh

i,j

to rh
i′,j′ in a way that forms a directed path from rh

i,j to rh
i′,j′. For every edge e′ ∈ E that participates

in this path, we call e the originating edge of e′, and use the notation org(e′) def= e. The edges e′ of
T originated in this manner are called representative edges, whereas the remaining edges are called
padding edges. Next, all the horizontal padding edges are directed to the right, and all the vertical
padding edges are directed upwards (see Definition 9.2). See an example in Figure 5. For every
padding edge e we define org(e) def= ∅, since they have no origin in H.

The next lemma states that a tiling of an Eulerian torus is also Eulerian, while on the other
hand, a tiling of a torus with many unbalanced vertices results with a torus that is far from being
Eulerian.

Lemma 9.8 Let
−→
H = (V (H),

−→
E (H)) be a directed `× ` torus and let

−→
H t = (V,

−→
E) be the t-tiling

of
−→
H for some natural number t. Then,

• If
−→
H is Eulerian, then

−→
H t is also Eulerian.

• For every 0 < δ < 1, if
−→
H contains δ`2 unbalanced vertices, then

−→
H t is δ

16 -far from being
Eulerian.

Proof. The first statement of the lemma follows easily from Definition 9.7. Assume now that−→
H has δ`2 unbalanced (spring or drain) vertices. According to the definition of a t-tiling, for every
unbalanced vertex vi,j ∈ V (H) we have exactly t unbalanced vertices r1

i,j , r
2
i,j , . . . , r

t
i,j on the main

diagonal of vi,j ’s representative grid Ri,j in
−→
H t, so the number of unbalanced vertices in

−→
H t is δ`2t.

In addition, whenever vi,j is a spring (respectively drain) vertex in
−→
H , the vertices r1

i,j , r
2
i,j , . . . , r

t
i,j

35

are also springs (respectively drains) in
−→
H t, so every pair of spring-drain vertices must reside in

different grids Ri,j and Ri′,j′ . This implies that (due to the orientation of the padding edges)
the distance from any spring vertex to any drain vertex in

−→
H t is at least t. Consequently, every

correction path in
−→
H t must be of length at least t. Since every correction path in

−→
H t can balance

at most two unbalanced vertices, and since the length of every such path is at least t, we conclude
that

−→
H t is tδ`2t/2

|E(
−→
H t)|

= δ`2t2/2
8`2t2

= δ
16 -far from being Eulerian.

Lemma 9.9 Let
−→
H t be a t-tiling of a randomly oriented `× ` torus

−→
H ∼ R`. Then with probability

1− o(1),
−→
H t is 1/64-far from being Eulerian.

Proof. Follows by combining Lemma 9.8 (with δ = 1/4) and Lemma 9.4.

We are now ready to define the distributions P` and F` over the orientations of an `× ` torus
T = (V,E). To avoid divisibility concerns, we assume that ` = 2k and k = 2b for some natural
number b > 1. It is easy to verify that the same proof works also for general values of ` and k by
using rounding as appropriate.

Distribution P`: Choosing
−→
T ∼ P` is done according to the following steps.

• Choose s uniformly at random from the range [k/4, k/2]. Let t = 2s, that is, t can take log `
4

values in the range [`1/4, `1/2].

• For an `
2t ×

`
2t torus H, choose a random orientation

−→
H of H according to the distribution

C(k)
`/2t.

• Set
−→
T ′ to be the t-tiling of

−→
H .

• Choose a, b ∈ [`] uniformly at random, and set
−→
T to be the (a, b)-shifting of

−→
T ′ (see Definition

9.3).

Distribution F`: Choosing
−→
T ∼ F` is done according to the following steps.

• Choose s uniformly at random from the range [k/4, k/2] and set t = 2s.

• For an `
2t ×

`
2t torus H, choose a random orientation

−→
H of H according to the distribution

R`/2t.

• Set
−→
T ′ to be the t-tiling of

−→
H .

• Choose a, b ∈ [`] uniformly at random, and set
−→
T to be the (a, b)-shifting of

−→
T ′.

9.1.4 Bounding the variation distance

Let T = (V,E) be an ` × ` torus. According to Lemma 9.8, every orientation
−→
T ∼ P` of T is

Eulerian. According to Lemma 9.9, an orientation
−→
T ∼ F` of T is 1

64 -far from being Eulerian with
high probability. Our aim is to show that any non-adaptive deterministic algorithm that makes

36

o
(√

log `
log log `

)
queries will fail to distinguish between the orientations that are distributed according

to P` and those that are distributed according to F`.
Let Q ⊆ E be a fixed set of at most 1

10

√
log `

log log ` edges queried by a non-adaptive deterministic

algorithm. Let
−→
H = (V (H),

−→
E (H)) be the `

2t×
`
2t torus (oriented according to either C(k)

`/2t or R`/2t)

that has been used to create an orientation
−→
T of T . By Definition 9.7, the orientations of the

padding edges of
−→
T are identical in P` and F`, and the orientations of the other edges are determined

by those of their originating edges. We thus focus on the set org(Q) def= {org(e) : e ∈ Q} ⊆ E(H) of
Q’s originating edges.

If
−→
T is distributed according to F`, then the set org(Q) ⊆ E(H) is independent in H, and

hence the distribution of the orientations of the edges in org(Q) ⊆ E(H) is uniform. We henceforth
assume that

−→
T is distributed according to P`. In the next lemmas we show that, with probability

at least 4/5, the set org(Q) is independent in H also in this case, and thus our algorithm cannot
distinguish between the two distributions.

Lemma 9.10 Let e1, e2 ∈ E be two edges within distance x. Let
−→
T be a random orientation of T

chosen according to the distribution P`. Then

Prs

[
t

4k
≤ x ≤ 4tk

]
<

8(log log ` + 2)
log `

where t = 2s.

Proof. Observe that there are at most 2 log k + 4 = 2 log log ` + 4 values of s for which a fixed
number x can satisfy 2s−log k−2 = t

4k ≤ x ≤ 4tk = 2s+log k+2. Moreover, s is distributed uniformly
among its k

4 = log `
4 possible values, so the lemma follows.

For a set Q ⊆ E and an orientation
−→
T of T , let IQ be the following event: For all pairs e1, e2 ∈ Q,

either dist(e1, e2) < t
4k or dist(e1, e2) > 4tk in T .

Lemma 9.11 Let Q ⊆ E be a fixed set of 1
10

√
log `

log log ` edges, and let
−→
T be a random orientation of

T , according to distribution P`. Then the event IQ occurs with probability at least 9/10.

Proof. Follows by applying the union bound on the inequality from Lemma 9.10 for all pairs
e1, e2 ∈ Q.

Lemma 9.12 With probability 1 − o(1) conditioned on the event IQ, every two edges e1, e2 ∈ Q
such that dist(e1, e2) < t

4k satisfy one of the following: (1) e1, e2 are perpendicular; (2) at least one
of e1, e2 has no origin in H; (3) org(e1) = org(e2).

Proof. Fix two edges e1, e2 ∈ Q such that dist(e1, e2) < t
4k . If one of them has no originating

edge in H then we are done. Otherwise, since dist(e1, e2) < t
4k , by the definition of the t-tiling,

org(e1) and org(e2) must have a common endpoint in H, say vi,j . If e1 and e2 are perpendicular,
then again we are done. On the other hand, if e1 and e2 are parallel, then in order to have different
origins they must be separated by the the main diagonal of Ri,j (the representative grid of the
common vertex vi,j). Note that this may happen only if the distance of both e1 and e2 from the

37

main diagonal is at most t
4k . But the probability that an edge is within that distance from the

main diagonal of some representative grid is at most 2 t
4k

t
t2

= 1
2k = o

(
log log `

log `

)
. Now the proof is

completed by applying the union bound for all pairs e1, e2 ∈ Q.

Lemma 9.13 Let Q ⊆ E be a fixed set of 1
10

√
log `

log log ` edges, and let
−→
T be a random orientation of

T , chosen according to the distribution P`. Then org(Q) is independent with probability at least 4/5.

Proof. By Lemma 9.11, with probability at least 9/10, the event IQ happens, that is, for all
pairs e1, e2 ∈ Q we have either dist(e1, e2) < t

4k or dist(e1, e2) > 4tk in T . Assume that IQ occurs.
Then, by Lemma 9.12, with probability 1 − o(1), all the pairs e1, e2 ∈ Q with dist(e1, e2) < t

4k
in T are perpendicular or have no more than one originating edge. Conditioned on this event,
every two edges in org(Q) are perpendicular or are at distance larger than 2k in H. Recall that
|Q| = o(

√
log `) = o(

√
k) and hence |org(Q)| = o(

√
k). Therefore, from Lemma 9.6, org(Q) is

independent in this case with probability 1− o(1).
Summing up, we have that org(Q) is independent with probability at least 9

10 − o(1) > 4/5 for
` large enough, where the probabilities are taken over P`.

Proof of Theorem 9.1. Let Q ⊆ E be the fixed set of 1
10

√
log `

log log ` edges queried by a deter-

ministic non-adaptive algorithm. For every fixed t, a, and b, let Pt,a,b
` be P` conditioned on t, a,

and b and let F t,a,b
` be F` conditioned on t, a, and b. Note that t, a, and b fully define the set

org(Q) of originating edges and, in particular, it is the same set for orientations drawn according
to Pt,a,b

` and according to F t,a,b
` . It follows that, for every t, a, and b, if org(Q) is independent

then the restriction of Pt,a,b
` to Q is identical to that of F t,a,b

` . Now, recall that for every t, a,
and b, if

−→
T is distributed according to F t,a,b

` then org(Q) is independent. On the other hand, by
Lemma 9.13, org(Q) is independent with probability at least 4/5 also for Pt,a,b

` , taken over the
choice of t, a, and b. Summing over all the possible choices of t, a, and b, we obtain that the
variation distance between the restriction of Pt,a,b

` to Q and to that of F t,a,b
` is at most 1/5. Hence,

distinguishing between the two distributions with probability larger than 1/5 requires more than
1
10

√
log `

log log ` = Ω
(√

log m
log log m

)
queries.

9.2 A 1-sided lower bound

In this subsection we prove the following theorem.

Theorem 9.14 For every 0 < ε ≤ 1/16, every non-adaptive 1-sided ε-test for Eulerian orientations
of bounded degree graphs must use at least 1

100m1/4 queries. Consequently, every adaptive 1-sided
test requires Ω(log m) queries.

As opposed to 2-sided testers, a 1-sided tester is not allowed to reject the input unless a negative
witness was found. In our case, as claimed in Lemma 3.1, the only possible witness that an
orientation is not Eulerian is an invalid cut, i.e. a (possibly partial) cut that cannot be made
balanced under any orientation of the non-queried edges.

Following this observation, we prove Theorem 9.14 using the distribution F` defined in Subsec-
tion 9.1.3. First, we define a distribution F ′` that is similar to the distribution F`, except that t is

38

fixed to be `/16, and the orientation
−→
H of an 8 × 8 torus H is fixed to be one that makes all 64

vertices fully unbalanced. Then we show that for orientations that are distributed according to F ′`,
any non-adaptive deterministic algorithm that makes o(

√
`) = o(

√
m) orientation queries cannot

find an invalid cut (a negative witness) with probability larger than 1/5. This will imply that there
exists an orientation that is 1

16 -far from being Eulerian on which any randomized tester fails with
probability at least 4/5.

The main idea is as follows. A cut can be invalid (and hence unbalanced) only if both its
components contain unbalanced vertices. Let us now fix a cut (A,B) of an `× ` torus T = (V,E),
and let

−→
T be an orientation of T chosen according to F ′`. Suppose that indeed both A and B contain

unbalanced vertices, and let Q be a subset of the edges in the cut (A,B) that witness its invalidity.
Using basic properties of tori, we show that either Q contains Ω(m1/4) edges, or otherwise, one
of the edges e ∈ Q must be within distance O(m1/4) from one of the unbalanced vertices of

−→
T .

Since the number of unbalanced vertices in
−→
T ∼ F ′` is O(`) = o(m1/4), and since they are grouped

into 64 diagonals of length `/32, the number of edges that are within distance O(m1/4) from these
unbalanced vertices is bounded by O(m3/4). Finally, since the last step in building

−→
T is a random

shift, the probability that a set Q of size o(m1/4) contains any such edge tends to zero.

We first give a formal definition of the distribution F ′` of orientations over a torus.

Distribution F ′`: Choosing
−→
T ∼ F ′` is done according to the following steps.

• Set t = `/16.

• Fix the orientation
−→
H of the `

2t ×
`
2t = 8× 8 torus H, such that all 64 vertices of H are fully

unbalanced in
−→
H (i.e. no vertex has both incoming and outgoing edges).

• Set
−→
T ′ to be the t-tiling of

−→
H .

• Pick a, b ∈ [`] uniformly at random and set
−→
T to be the (a, b)-shifting of

−→
T ′.

Lemma 9.15 Let T = (V,E) be an ` × ` torus and let
−→
T be an orientation of T distributed

according to F ′`. Let Q be a fixed set of 1
100m1/4 edges from E. Then the probability (over

−→
T ∼ F ′`)

that any of the edges in Q is within distance at most
√

` from a vertex v ∈ V that is unbalanced in−→
T is at most 1/5.

Proof. Let U denote the set of unbalanced vertices in
−→
T ∼ F ′`. Observe that |U | = 64t =

4` = 4
√

m/2, and recall that the vertices in U ⊆ V are grouped into 64 diagonals of length t (see
Definition 9.7). Thus, the number of vertices v ∈ V that are within distance at most

√
` from some

vertex u ∈ U is bounded by 64 · (t + 2
√

`) · 2
√

` ≤ 10`3/2. Hence, the probability of a single edge
e ∈ Q satisfying dist(e, u) ≤

√
` for some u ∈ U is bounded by 20m−1/4 and the lemma follows.

We establish the proof of Theorem 9.14 using a few lemmas, in which we point out some
significant properties of the torus. But first, we give a general lemma about witnesses for not being
Eulerian.

39

Lemma 9.16 Let G = (V,E) be a graph and let
−→
G = (V,

−→
E) be an orientation of G. If a set

Q ⊆ E is a witness that
−→
G is not Eulerian then Q contains more than half of the edges of some

invalid cut (A,B) in
−→
G , where both A and B are connected sets of vertices.

Proof. Recall that, by Lemma 3.1, Q contains more than half of the edges of an invalid cut, say
(A′, B′). Without loss of generality we assume that |

−→
E (A′, B′)| > 1

2 |E(A′, B′)|. Hence, Q contains
more than 1

2 |E(A′, B′)| edges going from A′ to B′. Let A1, . . . , Ar be the connected components of
A′. Note that (A′, B′) is a disjoint union of (A1, B

′), . . . , (Ak, B
′). Using averaging calculations, we

obtain that there exists a connected component Ai such that Q contains more than 1
2 |E(Ai, B

′)|
edges going from Ai to B′. Note in addition that there are no edges between Ai and other connected
components Ak’s of A′, and thus |E(Ai, B

′)| = |E(Ai, V \ Ai)|. We conclude that Q contains
more than 1

2 |E(Ai, V \ Ai)| edges going from Ai to V \ Ai. Now, let B1, . . . , Bs be the connected
components of V \ Ai. Note that (Ai, V \ Ai) is a disjoint union of (Ai, B1), . . . , (Ai, Bs). Using
averaging calculations, we obtain that there exists a connected component Bj such that Q contains
more than 1

2 |E(Ai, Bj)| edges going from Ai to Bj . Note in addition that there are no edges between
Bj and other connected components Bk’s of V \ Ai, and therefore |E(Ai, Bj)| = |E(V \ Bj , Bj)|.
We conclude that Q contains more than 1

2 |E(V \Bj , Bj)| edges going from V \Bj to Bj , and hence,
Q is a witness to the invalidity of (V \ Bj , Bj). Bj is clearly connected. To complete the proof,
we need to show that V \ Bj is connected as well. Recall that V \ Bj is a union of Ai and all
the connected components Bk’s of V \ Ai for k 6= j. The Bk’s are not connected to each other.
However, the torus T is a connected graph, and therefore, every Bk must be connected to Ai. Since
Ai is connected, V \Bj is connected. To conclude, we set A = V \Bj and B = Bj .

In the following, we let T = (V,E) be an `× ` torus and use the notation of Definition 9.2. For
every i ∈ [`], define the ith row of T as Ri

def= {vi,j ∈ V | j ∈ [`]}. For every j ∈ [`], define the jth

column of T as Cj
def= {vi,j ∈ V | i ∈ [`]}. Given a set A ⊆ V , let R(A) be the set of rows Ri of T

such that A ∩Ri 6= ∅, and let C(A) be the set of columns Cj of T such that A ∩ Cj 6= ∅.
Given a cut (A,B) of V we say that a row Ri is mixed if Ri ⊆ R(A) ∩ R(B), that is, if Ri

includes vertices in A as well as vertices in B. Similarly, we say that a column Cj is mixed if
Cj ⊆ C(A) ∩ C(B). Let rmix be the number of mixed rows with respect to (A,B) and let cmix be
the number of mixed columns with respect to (A,B).

Observation 9.17 |E(A,B)| ≥ 2(rmix + cmix).

Proof. Looking at the cycle of vertical edges connecting all the vertices in every mixed column,
it is easy to see that every mixed column has at least two vertical edges in (A,B). Similarly, it can
be shown that every mixed row has at least two horizontal edges in (A,B).

Observation 9.18

1. If |R(A)| < ` then cmix = |C(A)|.

2. If |C(A)| < ` then rmix = |R(A)|.

The analogous claims also hold for B.

40

Proof. We give the proof of the first item as the proof of the second item is identical. Let Ri be
a row of T that is not in R(A). Then vi,j ∈ B for every j ∈ [`]. Hence, every column Cj ∈ C(A)
has a vertex in A as well as a vertex in B (namely, vi,j), which proves the claim.

Observation 9.19

1. If |R(A)| = ` then rmix = |R(B)|.

2. If |C(A)| = ` then cmix = |C(B)|.

Proof. We give the proof of the first item as the proof of the second item is identical. Suppose
that |R(A)| = `. Then every row includes a vertex in A. Let Ri ∈ R(B). Then Ri includes a vertex
in A as well as a vertex in B, which completes the proof.

We say that a set A ⊆ V of vertices in T is grid-bounded if |R(A)| < ` and |C(A)| < `.

Lemma 9.20 Let (A,B) be a cut of V where |E(A,B)| < 2`. Then at least one of A and B is
grid-bounded.

Proof. From Observation 9.17 we have that rmix+cmix < `. Note that |R(A)|+|R(B)|−rmix = `
and |C(A)|+ |C(B)| − cmix = `. Hence |R(A)|+ |C(A)|+ |R(B)|+ |C(B)| ≤ 2` + rmix + cmix < 3`,
and thus, at most two of the sets R(A), C(A), R(B), C(B) are of size `. Assuming that both A and
B are not grid-bounded, we have max(|R(A)|, |C(A)|) = ` and max(|R(B)|, |C(B)|) = `. Therefore,
we must have |R(A)| = ` and |C(A)| < ` or |R(A)| < ` and |C(A)| = `. We complete the proof
for the case where |R(A)| = ` and |C(A)| < ` as the proof for the other case is identical. From
Observation 9.19 we have |R(B)| = rmix < `, and thus, from Observation 9.18, cmix = |C(B)|.
Now, |C(B)| = `, as otherwise B is grid-bounded. We hence obtain cmix = `, a contradiction.

Observation 9.21 If A is connected then there exists a row index i∗ ∈ [`] such that R(A) =
{Ri∗ , Ri∗⊕1, . . . , Ri⊕(s−1)} where s = |R(A)|, and there exists a column index j∗ ∈ [`] such that
C(A) = {Cj∗ , Cj∗⊕1, . . . , Cj⊕(t−1)} where t = |R(B)|. Hence, A is contained in a subgraph G of T
which is an |R(A)| × |R(B)| grid. Renaming i∗ as 1 and j∗ to 1, we have that G is a grid with the
vertex set VG = {vi,j | i ∈ [s], j ∈ [t]}.

Proof. Let Ri1 , Ri2 be rows in R(A). Hence, both Ri1 and Ri2 include at least one vertex in A.
Since A is connected, there exists a path of vertices in A between Ri1 and Ri2 . Clearly, for every
edge in the path, the endpoints are in the same row (in case of a horizontal edge) or in subsequent
rows (in case of a vertical edge). We thus conclude that R(A) is a set of successive rows in the
torus. Similarly, C(A) is a set of successive columns in the torus.

Lemma 9.22 Let T = (V,E) be an ` × ` torus, and let
−→
T be a non-Eulerian orientation of T .

Let U ⊆ V denote the set of unbalanced vertices with respect to
−→
T . Let Q ⊆ E be a set of edges

forming a witness that
−→
T is not Eulerian, where |Q| < 1

2`. Let q denote the minimal distance of
an edge in Q to an unbalanced vertex, that is, q

def= mine∈Q, u∈U{dist(e, u)}. Then |Q| ≥ q.

41

Proof. By Lemma 9.16, we may assume without loss of generality that Q contains more than
half of the edges of an invalid cut (A,B), where both A and B are connected. Since |Q| < 1

2`,
we have |E(A,B)| < `, and hence, from Lemma 9.20, one of the sets A and B is grid-bounded.
Assume without loss of generality that A is grid-bounded. Let s = |R(A)| and t = |C(A)|. Then
s, t < `. Since A is connected, from Observation 9.21, A is contained in an s× t grid G.

Suppose that |Q| < q. Then |E(A,B)| < 2q, and from Observation 9.17 we have rmix+cmix < q.
Let e = (wA, wB) be an edge in Q ∩ E(A,B), where wA ∈ A and wB ∈ B. Since A is invalid,
there exists an unbalanced vertex u ∈ A. By the definition of q we have dist(e, u) ≥ q and hence
dist(u, wA) ≥ q. Using the notation of Observation 9.21, we denote u = vi1,j1 and wA = vi2,j2 ,
where i1, i2 ∈ [s] and j1, j2 ∈ [t]. Then clearly |i1 − i2|+ |j1 − j2| ≥ q. We thus have s = |R(A)| ≥
|i1 − i2| + 1 and t = |C(A)| ≥ |j1 − j2| + 1. Since A is grid-bounded, from Observation 9.18 we
obtain |C(A)|+ |R(A)| = rmix + cmix ≥ |i1 − i2|+ 1 + |j1 − j2|+ 1 > q. Finally, Observation 9.17
gives that |E(A,B)| > 2q, a contradiction.

Proof of Theorem 9.14. Let T = (V,E) be an `× ` torus and let
−→
T ∼ F ′` be an orientation of

T . Let Q ⊆ E be the fixed set of 1
100m1/4 edge queries that a deterministic non-adaptive algorithm

makes on
−→
T . By Lemma 9.22, in order to form a witness that

−→
T is not Eulerian, one of the edges

in Q must be within distance at most |Q| = 1
100m1/4 <

√
` from an unbalanced vertex in

−→
T . But

according to Lemma 9.15, the probability of the above is at most 1/5. We thus conclude that
discovering a witness that

−→
T ∼ F ′` is not Eulerian with probability larger than 1/5 requires more

than 1
100m1/4 nonadaptive queries.

10 Concluding comments and open problems

We have shown a test that has a sub-linear number of queries for all graphs. The test procedure is
surprisingly involved considering the problem statement. However, (possibly excepting the special
cases of dense graphs and expander graphs), this should be only considered as a first step for this
problem, as many questions still remain open.

First, the question arises as to whether we can reduce the computational complexity of the
test. While having a sub-linear number of queries, the exponential in m time complexity makes
this test unrealistic for implementation. Also, to make the test truly attractive, not only its
computation time needs to be polynomial in m, but most of the calculations should be performed
in a preprocessing stage, where the amount of calculations done while making the queries should
ideally be also sub-linear in m.

Related to the preprocessing question is the unresolved question of adaptivity. The current
test is adaptive, but we would like to think that a sub-linear query complexity non-adaptive test
also exists for the same class of graphs. Other adaptive versus non-adaptive gaps, such as the one
concerning the 2-sided lower bounds, need also be addressed.

Acknowledgements

We thank the anonymous referees for their helpful comments.

42

References

[1] N. Alon and A. Shapira, Testing subgraphs in directed graphs, J. Comput. Syst. Sci. 69(3):
354–382, 2004 (a preliminary version appeared in Proc. of STOC 2003, 700-709).

[2] L. Babai, On the diameter of Eulerian orientations of graphs, Proceedings of the 17th SODA,
(2006), 822–831.

[3] M. Bender and D. Ron, Testing properties of directed graphs: Acyclicity and connectivity,
Random Structures and Algorithms (2002), 184–205.

[4] E. Ben-Sasson, P. Harsha and S. Raskhodnikova, Some 3CNF properties are hard to test,
SIAM Journal on Computing:35(1), 1–21, 2005 (a preliminary version appeared in Proc. 35th

STOC, 2003).

[5] M. Blum, M. Luby and R. Rubinfeld, Self-testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences 47 (1993), 549–595 (a preliminary version
appeared in Proc. 22nd STOC, 1990).

[6] G. R. Brightwell and P. Winkler, Counting Eulerian circuits is #P-complete, Proc. 7th
ALENEX and 2nd ANALCO 2005 (Vancouver BC), C. Demetrescu, R. Sedgewick and R.
Tamassia, eds, SIAM Press, 259–262.

[7] S. Chakraborty, E. Fischer, O. Lachish, A. Matsliah and I. Newman: Testing st-Connectivity,
Proceedings of the 11th RANDOM and the 10th APPROX (2007): 380–394.

[8] E. Fischer, The art of uninformed decisions: A primer to property testing, Current Trends in
Theoretical Computer Science: The Challenge of the New Century, G. Paun, G. Rozenberg
and A. Salomaa (editors), World Scientific Publishing (2004), Vol. I 229-264.

[9] E. Fischer and O. Yahalom, Testing convexity properties of tree colorings, Proc. of the 24th
International Symposium on Theoretical Aspects of Computer Science (STACS 2007), LNCS
4393, Springer-Verlag 2007, 109–120.

[10] H. Fleishcner, Eulerian graphs and related topics, Part 1. Vol. 1. Annals of Discrete Mathe-
matics 45, 1990.

[11] H. Fleishcner, Eulerian graphs and related topics, Part 1. Vol. 2. Annals of Discrete Mathe-
matics 50, 1991.

[12] O. Goldreich, S. Goldwasser and D. Ron, Property testing and its connection to learning and
approximation, JACM 45(4): 653-750 (1998).

[13] O. Goldreich and D. Ron, Property testing in bounded degree graphs, Algorithmica, (2002),
32(2):302–343

[14] S. Halevy, O. Lachish, I. Newman and D. Tsur, Testing properties of constraint-graphs, Pro-
ceedings of the 22nd IEEE Annual Conference on Computational Complexity (CCC 2007),
264–277.

43

[15] S. Halevy, O. Lachish, I. Newman and D. Tsur, Testing orientation properties, technical report,
Electronic Colloquium on Computational Complexity (ECCC), (2005), 153.

[16] T. Ibaraki, A. V. Karzanov and H. Nagamochi, A fast algorithm for finding a maximum free
multiflow in an inner Eulerian network and some generalizations, Combinatorica 18(1) (1988),
61–83.

[17] T. Kaufman, M. Krivelevich and D. Ron, Tight bounds for testing bipartiteness in general
graphs, SICOMP, (2004), 33(6):1441–1483.

[18] L. Lovász, On some connectivity properties of Eulerian graphs, Acta Math. Hung. 28 (1976)
129–138.

[19] M. Mihail, P. Winkler, On the number of Eulerian orientations of a graph, Algorithmica
16(4/5) (1996), 402–414.

[20] I. Newman, Testing of Function that have small width Branching Programs, SIAM Journal
on Computing, 31(5):1557–1570, 2002 (a preliminary version appeared in Proc. 41st FOCS,
2000).

[21] M. Parnas and D. Ron, Testing the diameter of graphs, Random Struct. and Algorithms,
(2002), 20(2):165–183.

[22] P. A. Pevzner, H. Tang and M. S. Waterman, An Eulerian path approach to DNA fragment
assembly, Proc. Natl. Acad. Sci. USA 98, (2001), 9748–9753.

[23] R. W, Robinson, Enumeration of Euler graphs, In Proof Techniques in Graph Theory (Ed. F.
Harary), New York: Academic Press, 1969, 147–153.

[24] D. Ron, Property testing (a tutorial), In: Handbook of Randomized Computing (S. Rajasekaran,
P. M. Pardalos, J. H. Reif and J. D. P. Rolim eds), Kluwer Press (2001), Vol. II Chapter 15.

[25] R. Rubinfeld and M. Sudan, Robust characterization of polynomials with applications to pro-
gram testing, SIAM Journal on Computing 25 (1996), 252–271 (first appeared as a technical
report, Cornell University, 1993).

[26] W. T. Tutte, Graph theory, Addison-Wesley, New York, 1984.

[27] A. C. Yao, Probabilistic computation, towards a unified measure of complexity, In Proceedings
of the 18th IEEE FOCS: 222–227, 1977.

44

	Introduction
	Preliminaries
	Correction subgraphs and p-tests
	-correction subgraphs and (p,)-tests

	A linear lower bound for 1-sided tests
	Generic tests
	A 2-sided p-test
	(p,)-tests

	Testing graphs with high average degree
	Testing orientations of an expander graph
	Testing orientations of ``lame'' directed expanders
	General tests based on chopping
	Lower bounds for bounded-degree graphs
	A 2-sided lower bound
	Preliminaries
	Defining auxiliary distributions
	Defining the main distributions
	Bounding the variation distance

	A 1-sided lower bound

	Concluding comments and open problems

