Testing Convexity Properties of Tree Colorings *

Eldar Fischer Orly Yahalom *

Abstract

A coloring of a graph is convez if it induces a partition of the vertices into connected sub-
graphs. Besides being an interesting property from a theoretical point of view, tests for convexity
have applications in various areas involving large graphs. We study the important subcase of
testing for convexity in trees. This problem is linked, among other possible applications, with
the study of phylogenetic trees, which are central in genetic research, and are used in linguistics
and other areas. We give a 1-sided, non-adaptive, distribution-free e-test for the convexity of
tree colorings. The query complexity of our test is O (k/¢), where k is the number of colors, and
the additional computational complexity is O(n). On the other hand, we prove a lower bound
of Q(W) on the query complexity of tests for convexity in the standard model, which applies
even for (unweighted) paths. We also consider whether the dependency on k can be reduced
in some cases, and provide an alternative testing algorithm for the case of paths. Then we
investigate a variant of convexity, namely quasi-convexity, in which all but one of the colors are
required to induce connected components. For this problem we provide a 1-sided, non-adaptive
e-test with query complexity O (k/e?) and time complexity O (kn/e). For both our convexity
and quasi-convexity tests, we show that, assuming that a query takes constant time, the time
complexity can be reduced to a constant independent of n if we allow a preprocessing stage of
time O(n) and O(n?), respectively. Finally, we show how to test for a variation of convexity
and quasi-convexity where the maximum number of connectivity classes of each color is allowed
to be a constant value other than 1.

Keywords: property testing, convex coloring, sublinear algorithms, massively parameterized,
phylogenetic trees, graph algorithms.

1 Introduction

1.1 Property testing

Property testing deals with the following relaxation of decision problems: Given a property P
and an input structure S, distinguish with high probability between the case where S satisfies the

*A preliminary version appeared in the proceedings of the 24th STACS (2007).

fComputer Science Department, Technion - IIT, Haifa 32000, Israel. Email: eldar@cs.technion.ac.il.

Research supported in part by an ERC-2007-StG grant number 202405-2 and by an ISF grant number 1101/06.

fDepartment of Software Engineering, ORT Braude College, P.O. Box 78, Karmiel, 21982, Israel. Phone: 972-4-
9901845, Fax: 972-4-9901852, Email: oyahalom@braude.ac.il

property P and the case where S is “far” from satisfying P. The power of property testing lies in
the ability to design algorithms, or property testers, which read only a small fraction of the input
structure. We assume that our algorithms access the input structure using retrieval procedures
that we call queries. The answer to each query is a value in the input structure.

Property testing was initiated in the work of Blum, Luby and Rubinfeld [2], and given a general
formulation by Rubinfeld and Sudan [21]. The latter were interested mainly in algebraic properties
(such as linearity) of functions over finite fields and vector spaces. The study of property testing
for combinatorial objects, and mainly for labelled graphs, was introduced by the seminal paper of
Goldreich, Goldwasser and Ron [7]. A property in this respect is a collection of functions from a
fixed combinatorial object to a finite set of labels, often {0, 1}, but in our work we consider larger
finite sets as well. Property testing has since become quite an active research area, see e.g. the
surveys [20] and [4].

Formally, denoting our set of inputs by Z, a property P is a subset of Z. We have a distance
function dist : T x T — [0, 1], which is some fixed metric on Z. Two input structures S, 5" € 7 are
said to be e-close to each other for some € € [0, 1] if dist(S,S") < e. Otherwise, if dist(S,S") > e,
then we say that S and S’ are e-far from each other. We say that an input structure S € 7 is
e-close to satisfying property P (or simply e-close to P) if there exists S’ € 7 that satisfies P and
is e-close to S. Otherwise, if every input that satisfies P is e-far from S, then we say that S is e-far
from satisfying property P (or simply e-far from P).

Given a property P C Z and parameters €,q > 0, we say that a (randomized) algorithm A is
an (€, q)-test for P if the following hold for every input structure S € 7 :

1. A accesses S using at most g queries;

2. If S satisfies P then A accepts with probability at least %, and if S is e-far from satisfying P
then A rejects with probability at least %

Depending on the context, we may also use the terms e-test and test for an algorithm which satisfies
Item 2 above.

If there exists an (e, q)-test for a property P then we say that P is (e, q)-testable. If a property
P is (e, q)-testable with ¢ = q(€) (i.e. ¢ is a function of € only, and is independent of n) then we say
that P is e-testable. If P is e-testable for every fixed € > 0 then we say that P is testable. We refer
to the (asymptotic) number of queries required by a given test as its query complexity. Property
testing normally deals with very large inputs and/or costly retrieval procedures. We thus assume
that the query complexity is the most limited resource, rather than the computation time.

Furthermore, a test is called 1-sided if every input that has the property is accepted with
probability 1. Otherwise, it is called 2-sided. A test is said to be adaptive if some of the choices of
the locations for which the input is queried may depend on the values (answers) of previous queries.
Otherwise, the test is called non-adaptive.

1.2 Convex colorings

Given a graph G = (V, E) and an integer k, a vertex coloring ¢ : V — [k], where [k] = {1,...,k},
is called a k-coloring, or simply, a coloring of G. Given a k-coloring ¢ of a graph G and i € [k],
let V; be the set of vertices v in V' such that c¢(v) = i. We say that ¢ is a convex coloring of G if
all the V;’s are connected sets (i.e., ¢ induces connected subgraphs of G). If G is a tree, then c is

not convex if and only if there exists three distinct vertices u,w,v € V such that w is on the path
between u and v and ¢(u) = ¢(v) # c¢(w). Such three vertices consist a forbidden poset (subpath)
of c.

We consider testing for convexity as defined above and several variants of this problem, on
trees. A central motivation for this subcase is the study of phylogenetic (evolutionary) trees,
which originated in genetics [16, 22], but appears also in other areas, such as historical linguistics
(see [17]). Whether our subjects of interest are biologic species, languages, or other objects, a
phylogenetic tree specifies presumed hereditary relationships, representing different features with
different colors. A convex coloring is a positive indication for the reliability of a phylogenetic tree,
as it shows a reasonable evolutionary behavior. Namely, a feature (color) is either inherited from
a direct ancestor or appears spontaneously, in case of a mutation, but the same mutation does not
normally occur in separate (i.e. disconnected) parts of the tree. We note that although phylogenetic
trees are rooted trees, the convexity property does not depend on the identity of the root.

Moran and Snir [15] studied recoloring problems, where the input is a colored tree and one
has to find a close convex coloring of the tree. They gave several positive and negative results on
exact and approximate algorithms. Our results are the first, to the best of our knowledge, which
approach the property testing aspect of convex colorings. Note that while property testing may be
viewed as a form of approximation, our work does not relate to that of Moran and Snir, as their
algorithms read the entire input while ours read only a constant fraction of it.

1.3 Variants of convexity

Given a graph G = (V, E) and an integer k, a vertex coloring ¢ : V' — {0,...,k} is called a quasi
k-coloring of G. Note that the difference between a k-coloring and a quasi k-coloring is the use
of an additional color marked as 0, whose role is explained below. Whenever the context is clear,
we may refer to such a function c simply as coloring. Given a quasi k-coloring ¢ of a graph G and
i €{0,...,k}, let V; be the set of vertices v in V' such that c¢(v) = i. We say that ¢ is quasi-convex
if the color components V; are connected for colors ¢ > 1 (while V{ is not necessarily connected).
This property arises in various cases in which we are interested only in the connectivity of some of
the color classes (where all the others may be considered as colored with 0, or simply uncolored).
In addition, we consider variants of the convexity and quasi-convexity properties, where we
relax our requirement of having at most one color component from every color. A k-coloring is
called ¢-convex if the total number of color components that it induces is at most ¢. Similarly, a
quasi k-coloring is called £-quasi-convex if it induces a total of at most ¢ color components for all
colors i > 0. Similarly we discuss list convexity (and list quasi-convexity) where we have lists of
upper bounds on the numbers of connected components of every color (or some of the colors).

1.4 The vertex coloring testing model

Throughout this paper we assume a fixed and known tree ' = (V, E') and a set D C V. The vertices
in D are called constraint vertices and the vertices in V' \ D are called free vertices. The input is
a (quasi) k-coloring of all the vertices in V', which our testers access by querying one vertex at a
time. The goal is to determine whether the input is close to a (quasi) convex k-coloring of V' which
does not change the color of the constraint vertices. Thus, the distance between two colorings of
the domain graph is a weighted sum of the free vertices in which they differ. The monotonicity

property has already been studied on a similar model (with a uniform weight function) by Fischer
et. al [6], who provided efficient tests for several classes of graphs.

Formally, we assume that x4 : V' \ D — R is a fixed weight function on the free vertices of T,
satisfying p(v) > 0 for every v € V\ D and }_ o\ p #(v) =1 (namely, a distribution function).
The weight function p may represent the importance of certain vertices, the cost of modifying
them, or the reliability of querying for their color. One could think of the constraint vertices as
having infinite weight. Hence, we only consider colorings which preserve the color of the constraint
vertices, even when we do not state so explicitly. For convenience, we define u(U) = -, i\ p 1(v)
for any set U C V. The distance between two colorings ¢; and ¢g of V' is defined as p(Ag, ,), where
Acrer = 0 €VAD | c1(v) # a(v)}.

In Section 2.2 we consider a stricter model, where the weight function over the free vertices
is unknown. Such a model is called distribution-free, a concept that was introduced in [7] and
developed by Halevy and Kushilevitz [10, 9]. A distribution-free test may attain a sample of the
points of the domain of the input according to a fixed yet unknown distribution function p (where
each value obtained this way counts as a query). Since p determines the weight of every vertex
with respect to the distance function, the distance between two inputs is equal to the probability
of obtaining a point on which they differ.

1.5 Massively parameterized models

The vertex coloring model is an example of a massively parameterized property testing model. In
such a model, the tested property is characterized by a complex parameter which is fixed and fully
known, often a graph. This is in contrast to standard models of testing graph properties, where
the graph itself is the input, typically represented as an adjacency matrix [7] and/or adjacency lists
[8, 19].

As massively parameterized property testing (MPPT) requires full knowledge of a large param-
eter, such as the structure of a graph, it may sometimes not lead to algorithms with a running time
to match their low query complexity. On the other hand, MPPT has several appealing characteris-
tics. Focusing on graph properties, the distance function in MPPT models depends heavily on the
structure of the underlying graph. As a result, the study of MPPT may reveal interesting combi-
natorial details of the underlying graph, with graph theoretic results that could be of independent
interest. Moreover, the distance function in MPPT models is usually very strict (namely, edge
insertions and deletions are forbidden) and independent of representation details, which allows for
a ‘clean’ study of graph properties.

The orientation model [11, 12, 3, 5], is another massively parameterized model for testing graph
properties, in which the input is an orientation of a fixed and known undirected graph. The general
poset domain model of [6] is a generic massively parameterized model for testing functions on some
partially ordered domain. Another example of a massively parameterized testing model has been
studied by Newman [18], where a given bounded-width branching program B is given to the tester
in advance, and the input is a word given as an input to B.

1.6 Our results

Due to the definition of our model, all the constraint vertices must be queried, which contributes
O(|D]) to the query complexity. In the following, we omit |D| for clarity.

We show that convexity of tree colorings is testable, providing a 1-sided, non-adaptive, distribution-

free e-test for every € > 0. The query complexity of our test for k-colorings is O(k/€) and the addi-
tional time complexity is O(n). We show that the time complexity can be reduced to be quasilinear
in the query complexity (assuming that a query takes constant time) by allowing a preprocess-
ing stage of time O(n). We further provide an alternative 1-sided, non-adaptive test for the non
distribution-free model where the tree is a path, with query complexity O(\/E /€3) and additional
time complexity O(vk/€?). On the negative side, we prove a lower bound of Q(v/k/\/€) on the
query complexity of testing convexity of paths even in the unweighted model.

We show that quasi-convexity of tree colorings is testable, giving a 1-sided, non-adaptive (but
not distribution-free) e-test for every e > 0. The query complexity of our tests for quasi k-colorings
is O(k/€?) and the additional time complexity O(kn/e). We show that the time complexity can be
reduced to be quasilinear in the query complexity (assuming that a query takes constant time) by
allowing a preprocessing stage of time O(n?).

Finally, we provide 1-sided e-tests for every e > 0 for the relaxed convexity properties. For
{-convexity we give a test with query complexity O({/¢) and time complexity O(¢n). For (-quasi-
convexity we provide a test with query complexity O(f/€%) and time complexity O(¢n). Given a
list of integers ¢;, let ¢ denote their sum. Our test for list convexity has query complexity 6(£ /€)
and computational complexity O(¢n). For list quasi-convexity, let £ denote the sum of ¢;’s only for
the colors for which they are defined. For that property we also give a test with query complexity
O(£/€*) and computational complexity O(¢n).

The rest of the paper is organized as follows: Section 2 is dedicated to testing the basic convexity
property. Section 3 is dedicated to quasi-convexity. In Section 4 we consider the relaxed convexity
and quasi-convexity properties. Section 5 provides a lower bound for testing both convexity and
quasi-convexity. Finally, in Section 6 we give our convexity test for paths.

Throughout the paper, we make no attempt to optimize the coefficients.

2 Testing convexity

Throughout this section, our input is a k-coloring ¢ : V' — [k] of a fixed and known tree T' = (V, E)
and D C V is the set of constraint vertices. For any two distinct vertices u,v € V, we denote the

connected component of V'\ {u} that contains v by oV

CQ(LU) and C’q()u) form a bipartition of V.

Vertices u,w,v in T' form a forbidden subpath if w is on the (simple) path between u and v
and c(u) = ¢(v) # c(w). Clearly, ¢ is a convex coloring of 7" if and only if it does not contain any
forbidden subpath.

We say that vertices u, v, w are an ezplicit witness (for being non-convex) if they form a forbidden
subpath. We say that vertices uy, ua, v1, vy are an implicit witness (for being non-convex) if ¢(u;) =
c(ug) # c(v1) = ¢(v2) and the path between u; and ve crosses the path between vq and vy. In such
a case, the intersection vertex is a middle vertex of at least one forbidden subpath. Note that we
do not need to know the color of the intersection vertex.

We say that a set U C V of vertices contains a witness (for being non-convex) if U contains an
explicit witness or an implicit witness.

. Note that if © and v are neighbors then

Observation 2.1 If a subset U of vertices contains a witness, then U cannot be extended into a
convez k-coloring of T.

The reverse claim is true as well.

Lemma 2.2 Let U C V be a subset of vertices that contains no witnesses for being non-convert,
with respect to a coloring ¢ : V- — [k]. Then there exists a convex coloring ¢ :' V — [k] of V which
agrees with ¢ on the values of the vertices in U. In particular, if D C U then ¢ preserve the colors
of the constraint vertices.

Proof. 1If U = () the claim is trivially true, as any coloring which gives all the vertices the same
color is convex. We thus assume that U # ().

Define ¢ as follows. For every vertex u € U set ¢/(u) = ¢(u). Now, for every i € [k], set ¢/(w) =i
for all the vertices w which are on the simple path between two vertices u, v with ¢/(u) = /(v) = 1.
Note that since U contains no witness for being non-convex, there are no two intersecting paths of
different colors. Thus, by the end of this phase we obtain a partial coloring of T' where for every
color ¢, the set of i-colored vertices is connected. Denote every such set as A;.

Now, for every v € V and for every i such that A; # (), let d(v, A;) denote the “walking”
distance on T between v and A, i.e. the length of the path from v to (the connected) A;. Color
every vertex v with i such that d(v, 4;) is minimal, choosing the minimal index 7 in case of a tie.

We claim that ¢’ is convex. First, consider two neighboring vertices v and w such that ¢/(u) = i
and ¢/(w) = j for i # j. We show that A; C o, By the definition of ¢/, w ¢ A;, and since A;
is connected we have either A; C C&w) or A; € C&u). Assume that A; C C'l(tw). Then d(u, 4;) =
d(w, A;) + 1 and d(u, Aj) < d(w,A;) + 1. But from the way u and w are colored by ¢ we have
d(u, A;) — d(u, Aj) < d(w, A;) — d(w, Aj), a contradiction. Hence, A; C .

Now, assume that the set of vertices colored with ¢ is not connected. Then there exist vertices u
and v (by taking them as the endpoints of the shortest forbidden subpath) such that ¢/ (u) = ¢/(v) =4
and ¢ (w1), ' (we) # i, where w; is the neighbor of u on the path between u and v and ws is the

neighbor of v on the path between u and v (w; could be equal to wy). By the above, we have
v

A; C C'q(,}? and A; C Cq(ﬂz), a contradiction. O

Our test for convexity queries a sample set of vertices and checks whether it contains a witness
for being non-convex. While the test is simple, the bulk of the proof is established by the analysis
in the next subsection.

2.1 Sufficient conditions for closeness to convexity

Recall that for every color i € [k], V; is the set of vertices uw € V such that ¢(u) = i. We refer to
vertices in V; as i-vertices and to other vertices as non-i-vertices. For any subset U C V, let the
i-weight of U be the total weight of all free i-vertices in U, and denote it by pui(U) = u(V; N U).

A color i € [k] is called abundant if 1;(V) > €/2k. For an abundant color i, we say that a
vertex u € V' is i-balanced if the set {C&U)](u, v) € E} may be partitioned into two subsets, where
the i-weight of the union of each subset is at least €¢/8k. We say that a free vertex v is heavy if
w(v) > €/8k.

Lemma 2.3 For every abundant color i, there exists a vertex uw € V' which is either i-balanced, or
is a heavy i-vertex (or both).

Proof. Assume that there exists an abundant color i such that no v € V is i-balanced and
there are no heavy i-vertices. Note that in this case every u € V has a neighboring vertex v such
that C&v) is of i-weight larger than €/4k (as otherwise u is easily seen to be i-balanced). Consider
neighboring vertices u and v such that Cf,(f) is of minimum ¢-weight among those whose i-weight is
larger than €/4k, and with a minimum number of vertices among the minimal weight C{P ’s. There
exists a neighbor w of v such that Céw) is of i-weight larger than €/4k. Due to the minimality of
CQ(LU), we must have w = u. Thus C'Q(,u) is of i-weight larger than €/4k, and, since there are no heavy

i-vertices, the i-weight of i \ {u} is at least €/8k. Therefore, both) and V \ {C’q(f) U {u}}
have i-weight of at least ¢/8k, and hence w is i-balanced. A contradiction. O

For every abundant color i, define the set B; to be the union of i-balanced vertices and heavy
i-vertices. By the lemma above, B; is non-empty for every abundant color i. We later show that
for every abundant color i, the weight of i-vertices outside B; is relatively small.

Lemma 2.4 B; is a connected set for every abundant color i.

Proof. Assume that there exist two vertices u,v € B;, and let w be on the path between v and
v. Assuming that w is not a heavy i-vertex, we show that w is i-balanced. If u is a heavy i-vertex,
then clearly ui(Cl(Uu)) > ¢/8k. Otherwise, u is i-balanced, and thus, V' \ {u} may be partitioned
into two sets of connected components, the i-weight of each of which is at least ¢/8k. One of these

sets does not contain C{. Thus, ,ul-(Ci(,Ju)) > ¢/8k. Similarly, it follows that ui(qu(Uv)) > ¢/8k, and
hence w is i-balanced. O

Suppose that the B;’s are disjoint. For every two distinct abundant colors ¢ and j, let the
ij-bridge be the edge (u,v) on the path between B; and B; where u € B; and v ¢ B;. Note that

B; C C’l(,u) and B; C Cl(tv). For any abundant color ¢, an i-colored vertex w is called exiled if w € Ci(tv)
where (u,v) is the ij-bridge for some abundant j # i.

Lemma 2.5 The total weight of exiled vertices of all abundant colors is at most €/2. In other
words, Zm(Cq(f)) < €/2, where the sum is over all the ij-bridges.

Proof. Consider an abundant color 4, and suppose that ui(Cff)) > ¢/4k. By the definition of
B;, v is not a heavy i-vertex, and thus ,ui(C'q(Lv) \ {v}) > €/8k. Since v is not i-balanced, we have
ui(C'q()u)) < €/8k, but this is impossible, as u is i-balanced or heavy. We thus conclude that for
every ij-bridge (u,v) we have
ui(CM) < e/4k. (1)
Let T be the tree created from T by contracting every set B; into a single vertex and removing
all the vertices which do not belong to a path between two B;’s. Let d; be the degree of B; in
T'. Clearly, for every abundant color 7, d; is the number of ij-bridges. Assume, without loss of
generality, that the abundant colors are numbered ¢ = 1,...,¢ for £ < k. We next show that

¢
D di<2(0-1) <2k —1). (2)

=1

We prove Equation (2) by induction on ¢. For ¢ = 1, T" consists of a single B;, and the claim
is trivially true. Assume that the claim is true for every ¢/ < ¢ where ¢ > 2. Note that by the

definition of 7", all its leaves are B;’s. Now remove one of the leaves of T”. If the resulting tree has
a new leaf which is not a B;, remove it, and repeat this operation until we get a tree, 7", whose
leaves are all B;’s. By the induction hypothesis, the sum of the degrees of B;’s in T” is at most
2(¢—2). Now, in creating T"” from T" we have removed one B; of degree 1 and possibly, reduced the
degree of another B; by 1 (as after removing an edge adjacent to a B; we stop removing leaves).
Thus, Y0 di <2(0—2)+2=2({—1) <2(k —1).

Recall that Zf:i d; is the number of ij-bridges in 7. Thus, from Equations (1) and (2) we
obtain that the total weight of exiled vertices is smaller than 2(k — 1)e/4k < 5. O

The next proposition provides sufficient conditions for a coloring being e-close to convexity.

Proposition 2.6 Let c¢: V — [k] be a k-coloring such that
(a) The sets B; are disjoint;
(b) There is no constraint vertexr w such that w € B; for some i # c(w);

Create a partial coloring of T' by coloring every set B; with color i and coloring every constraint
vertex with its color in c. If the obtained partial coloring does mot contain a witness for being
non-convex, then there exists a k-coloring ¢ : V- — [k]| which agrees with ¢ on D and is e-close to c.

Proof. Define ¢ as follows. Color every B; with ¢ and color every constraint vertex with its color
in ¢. This partial coloring does not contain a witness for being non-convex, and thus, by Lemma
2.2, it can be extended into a convex coloring ¢’. It can easily be seen that a vertex of abundant
color may change its color only if it is exiled. Hence, by Lemma 2.5, the total weight of recolored
vertices among those whose original color was abundant is at most €/2. As for vertices whose
original color was non-abundant, their total weight is at most €/2, which completes the proof. O

2.2 A distribution-free convexity test for trees

We next provide a 1-sided test for convexity. Our test is distribution-free (see Subsection 1.4), as
it uses the distribution p as a black-box only.

Algorithm 2.7

1. a. Query all the constraint vertices.

b. Query [&?12] vertices, where each vertex is independently chosen according to the
distribution p.

Let X denote the set of all vertices queried in either of the steps above.

2. Reject the input If X contains a witness for being non-convex and accept otherwise.

Theorem 2.8 For every € > 0, Algorithm 2.7 is a 1-sided non-adaptive e-test for convexity of
k-colorings of trees. The query complexity of the test is O(k/e + |D|) and the time complexity is
O(n). This can be implemented in running time O(k/e + |D|) using a preprocessing stage of time

O(n).

It is easy to see that the query complexity is as stated. We show how detecting a witness can
be performed under the time complexity requirements in Section 2.3. Clearly, a convex coloring is
always accepted by Algorithm 2.7, as the set X cannot contain a witness. Thus, it remains to show
that every coloring which is e-far from being convex is rejected with probability at least % We do
so by considering all the cases in which Proposition 2.6 does not apply.

Lemma 2.9 If there exists a verter w such that: (a) w is either a constraint vertex or a heavy
free vertez, (b) w is i-balanced for some abundant color i # c(w), then Algorithm 2.7 rejects with
probability at least 3/4.

Proof. We show that with probability at least 3/4, the set X contains an explicit witness.
Since w is i-balanced, there exist two disjoint sets W7, Wi C V;, each of weight at least ¢/8k,
such that every path between a pair of vertices vy € Wf and vy € WZZ passes through w. Hence, it
is enough for the algorithm to sample at least one vertex from each of the sets Wi and Wi as well
as the vertex w in the case that it is a heavy free vertex (for if it is a constraint vertex, it is queried
with probability 1). The probability for any of the sets W{ and W4 or of w to not intersect the

sample set of Step 1b is at most (1 — 6/8]6)8“:12 < 1/12. Thus, by the union bound, the algorithm

8kIn12

will fail with probability at most 3(1 —¢/8k) <« < 1/4. O

Lemma 2.10 If there exists a vertex w € V which is both i-balanced and j-balanced for some
abundant colors i # j then Algorithm 2.7 rejects with probability at least 5/6.

Proof. We show that with probability at least 5/6, the set X contains an implicit witness.
There exist two disjoint sets Wi, Wi C V;, each of weight at least ¢/8k, and two disjoint sets
Wi, Wy C V;, each of weight at least €/8k, where every path between a pair of vertices u; € Wf
and uy € W2 passes through w and every path between a pair of vertices v € Wf and vy € WQJ
passes through w. Hence, if the sample set of Step 1b contains at least one vertex from each of
the sets Wi, Wi, Wf , WQJ , then Algorithm 2.7 rejects the input. The probability for any given set

8kIn12

of the above to not intersect the sample set is at most (1 —¢/8k)™ ¢ < 1/12. Thus, by the union
bound, the algorithm will fail with probability at most 4(1 — e/8k)3*™12/¢ < 1/3. O

Lemma 2.11 Let ¢: V — [k] be a k-coloring such that
(a) The sets B; are disjoint;
(b) There is no constraint vertexr w such that w € B; for some i # c(w);

Create a partial coloring of T' by coloring every set B; with color i and coloring every constraint
verter with its color in c. If the obtained partial coloring contains a witness for being non-conver,
then Algorithm 2.7 rejects the input with probability at least 2/3.

Proof. First, if the set of constraint vertices contain a witness then clearly the algorithm rejects
with probability 1.

Second, suppose that a set B; is on the path between two j-colored constraint vertices v and
v for some j # i. Since B; is connected (Lemma 2.4), there exists a vertex w € B; which is on
the path between u and v. If w is a heavy i-vertex, then the probability that it is not queried is

8kIn12

at most (1 —e/8k) ¢ < 1/12. Otherwise, if w is i-balanced, then there exist two disjoint sets
Wi, Wi C V;, each of weight at least €/8k, where every path between a pair of vertices u; € W7 and
ug € W3 passes through w. The probability for any of the sets W} and W3 or of w to not intersect

8kIn12

the sample set of Step 1b is at most (1 —¢/8k) ¢ < 1/12. The constraint vertices u and v are
queried with probability 1. Thus, the probability that the sample does not contain a witness is at

8kIn12

most 2(1 —€/8k) < < 1/6.

Third, suppose that a set B; is on the path between a set B; and a j-colored constraint vertex
v for some j # i. Let u be the closest vertex to B; in B;, and let w be the closest vertex to B;
in B;. Similarly to the previous case, the probability of not sampling two i-colored vertices such
that w is on the path between them is at most 1/6. Now, if u is heavy then the probability that

it is not queried is at most (1 — e/8k:)8k1:12 < 1/12. Otherwise, since u is i-balanced and w is not

i-balanced, we have ui(Cl(Uu)) > ¢/8k, and thus, the probability of not sampling an i-colored vertex
in CQ(U“) is smaller than 1/12. As v is queried with probability 1, we obtain that the probability of
not sampling an implicit witness (where w is the intersection vertex) is at most 1/6 +1/12 = 1/3.

Forth, if a j-colored constraint vertex w is on the path between a set B; and an i-colored
constraint vertex v, then the proof is similar to the previous case, only this time we obtain an
explicit witness with high probability, as w is queried with probability 1. O

Proof of Theorem 2.8. Follows from Proposition 2.6 and Lemmas 2.9, 2.10, and 2.11. O

2.3 Finding witnesses for non-convexity

We now specify a procedure implementing Step 2 of Algorithm 2.7 in time O(n), where the constants
are independent of k, € and D. Later we show how this procedure can be executed in time O(]X|) =
O(k/e + |DJ) if we allow a preprocessing stage of time O(n). For every color i € [k], let ¢; be the
number of vertices of color i in the query set X. Clearly, the ¢;’s can be computed in time O(|X]|).
Next, we arbitrarily select a root r for 1" and obtain a topological ordering of the vertices using a
Depth First Search from r, which can be done in time O(n) (see e.g. [14]). We now consider the
nodes of T in reverse topological order. This can be viewed as “trimming” leaves from the tree one
by one. For each vertex v we hold a variable m(v), which can receive either the value “null” or
the value of a color. Initially, if v € X then m(v) holds its color, and if v ¢ X then m(v) is null.
m(v) will receive the value ¢ if and only if ¢ is the only color for which X contains i-vertices both
inside and outside the subtree rooted in v. If there is more than one such color, we deduce that a
forbidden subpath exists and reject. In addition, we assign for every vertex v a variable a(v) which
will be 0 if m(v) is null, and otherwise will hold the number of vertices of color m(v) in the subtree
rooted in v.

Procedure 2.12 For every v in reverse topological order, do:
o Ifve X then set a(v) = 1; otherwise set a(v) = 0.
o I[fve X then set m(v) = c(v); otherwise set m(v) to be null.
e For every child u of v such that m(u) is not null:
1. If m(v) is not null and m(v) # m(u) then reject the input and terminate.

2. Otherwise, set m(v) to m(u) and a(v) to a(v) + a(u).

10

o If m(v) is not null and a(v) = gy, () then set m(v) to be null and a(v) = 0.

If the algorithm did not reject after going over all vertices, then accept.

Since for every vertex v the running time is proportional to the number of its children, the
total running time is O(n). We now prove that Procedure 2.12 implements Step 2 of Algorithm 2.2
correctly.

Lemma 2.13 For every vertex v the following holds:

1. If Procedure 2.12 rejects in the iteration of v, then v is a middle vertex of a forbidden subpath,
where if v € X then the forbidden subpath includes v as its middle vertex, and, otherwise,
there exist vertices ay,az,bi,ba € X such that c(a1) = c(az) # c(b1) = ¢(b2) and v belongs to
the path between a1 and as as well as to the path between by and bs.

2. If Procedure 2.12 completes the iteration of v without rejecting it, then v is not a middle
vertex of a forbidden path as above.

3. If the processing of v is completed, then, in its end, m(v) = i if and only if X includes i-
vertices both inside and outside the subtree rooted in v. In such a case, a(v) is equal to the
number of i-vertices of X in the subtree rooted in v. If m(v) is null then a(v) = 0.

Proof. The claim is easily proved for the case where v is a leaf. Let v be a vertex and assume
the correctness of the claim for all the children of v.

1. For the proof of the first part, notice that if v € X, then the procedure rejects if and only
if there exists a child u of v such that m(u) is not null and m(u) # ¢(v). By Part 3 of
the induction hypothesis, this implies that X includes m(u)-colored vertices both inside and
outside the subtree rooted in u. Thus, v is a middle vertex of a forbidden subpath of X. If
v ¢ X, then the procedure rejects if and only if there exist children wuy, ug of v such that m(u;)
and m(usg) are both not null with m(u;) # m(us2). By Part 3 of the induction hypothesis, this
implies that there exist aj,as € X such that c(a1) = ¢(a2) = m(uy), where a; is a descendant
of u; and ag is not. Similarly, there exist b1,be € X such that ¢(b1) = ¢(b2) = m(usg), where
b1 is a descendant of us and bs is not. Clearly, v belongs both to the path between a; and as
and to the path between b; and bs.

2. Suppose that v is a middle vertex in a forbidden subpath in X. Then there exist two vertices
a,b € X such that c¢(a) = ¢(b) # c¢(v) and v is on a simple path between a and b. It must
be the case that at least one of a and b, say a, is a descendant of v. Therefore, unless the
algorithm has already rejected before reaching v, for the child v of v which is an ancestor
of a, we have m(u) = c¢(a) by Part 3 of the induction hypothesis (note that b cannot be a
descendant of u S0 () > a(u)). However, as m(v) is set to c¢(v), we are ensured that the
procedure will reject when the child u is examined (if not earlier). Similarly, suppose that
v ¢ X and that there exist vertices ay, az,b1,bs € X such that c¢(a1) = c(az) # c(b1) = c(b2)
and v belongs to the path between a; and as as well as to the path between b; and bs. Then
at least one of a1 and as and at least one of by and by are descendants of v, and therefore,
v has two children u; and wup such that m(u1) # m(uz) (noting that g,,,,) > a(u1) and
@m(uz) > @(u2)). One can now see that the procedure will reject in the iteration of v.

11

3. If m(v) is null after examining all the children of v (before checking whether a,, = gy, (,)), then
v ¢ X and m(u) is null for every child u of v. By the induction hypothesis, there exists no
color ¢ such that X contains i-vertices both inside and outside subtrees rooted in v’s children.
As v ¢ X, it follows that there is no color 7 such that X contains i-vertices both inside and
outside the subtree rooted in v. Therefore, m(v) and a(v) correctly attain their initial values.
If after examining v’s children we have m(v) = i for some color i, then m(u) = ¢ for every
child u of v such that m(u) is not null, and if v € X then ¢(v) = i. Thus one can see that
after examining v’s children, a(v) correctly holds the number of i-vertices in X in the subtree
rooted in v. In that case, a(v) = ¢; if and only if there are no i-vertices in X outside the
subtree rooted in v, and so the last step in the iteration provides the correct value for m(v).

From the lemma above, it follows that Procedure 2.12 is correct, as it rejects the query set X
if and only if it contains a witness.

Note that Procedure 2.12 performs significant processing only in nodes which are in X or are
Least Common Ancestors (LC A’s) of two or more members of X. Other nodes are just assumed to
be colored as their closest descendants. This gives rise to the possibility of running the procedure
over a set which includes X and the least common ancestors of vertices in X, instead of over
the entire set V of vertices. Let X be the union of X and the set of all vertices w such that
w = LC'A(u,v) for some u,v € X.

Observation 2.14 X is closed under the LC'A operation. That is, for everyu,v €)?, LCA(u,v) €
X. O

Consider the directed tree T’y = ()A(, E), with (u,v) € E if and only if v is the uppermost proper
descendant of u in X with respect to the directed T. From the discussion above, it is enough to
use T'x instead of T in the procedure defined earlier. We will build Tx using an algorithm which
computes the LC'A of two nodes in a tree in constant time, after a preprocessing stage of time O(n)
(see [13], [23]). After yielding the set X, we build the tree T'x using the following procedure.

Procedure 2.15

1. Sort the vertices in X according to their preorder indexes, i.e., their indexes in a particular
DFS traversal of T, computed as part of the preprocessing stage. Let us denote the vertices of
X asuy,uz, ..., ux| according to this order. Fori=1,...,|X|—1 we let z; = LCA(u;, uit1).

2. Compute Y = X U{z; | i=1,...,[X|—1} using the constant time LC A algorithm. We shall
later prove that' Y = X.

3. Sort the vertices in'Y according to their preorder indexes. Denote the vertices of Y according
to this order by vi,ve, ... NE Set v1 as the root of T'x.

4. Foreveryj=1,...,|Y|—1 do:

o Compute LCA(vj,vjt1).

o If LCA(vj,vj41) = v; (that is, vj is an ancestor of vjy1) then add vji1 to Tx as the
rightmost child of v;.

12

o Otherwise, search in T'x upwards among v;’s proper ancestors, until discovering one that
is an ancestor of vjy1 and add vjy1 as its rightmost child.

As running Procedure 2.12 on T’y would require time O(|X]), the next lemma proves that the
total running time in this case is O(| X]|).

Lemma 2.16 Procedure 2.15 computes the tree Ty in time O(|X|). Furthermore, | X| < 2|X]|.

Proof. We show that Y = X. Specifically, we consider the set Xy = {ui,...,ux} and show
that X = X U{z |i=1,...,k—1} for every k = 1,...,|X| — 1. The claim is trivial for k = 1.
Assuming that for a specific & we have)T;.C: =Xk 1U{z |i=1,...,k — 2}, we now consider
XpU{z |i=1,....k—1} =)?k: U {ug, zk—1}. The claim is proved by observing that for every
i=1,...,k—1,if LCA(u;,u) # zx_1 then LC A(u;,u) = LCA(u;,ux_1) €)?k:

Clearly, |X' | <2|X|, by the way we have built X. To complete the proof of the lemma, we show
that the total running time of all the iterations of Step 4 in Procedure 2.15 is O(|X]) = O(|X]).
Now, for a certain vertex vj41, the running time is proportional to the number of ancestors being
examined. However, notice that once a vertex w has been found not to be an ancestor of a certain
vj+1, it will not be examined anymore, as v;41 will be attached as a child of a proper ancestor of
w, and the remaining examinations will be done only on its ancestors. Therefore, the total number
of ancestor examinations is O(]X|), and hence, this is the total running time of Procedure 2.15. O

3 Testing quasi-convexity

In this section our input is a k-quasi-coloring ¢ : V. — {0,1,...,k} of a fixed and known tree
T = (V,E) and D C V is the fixed set of constraint vertices. As in Section 2, for any two distinct
vertices u,v € V, we denote the connected component of V' \ {u} that contains v by v,

Given an input quasi-coloring ¢, we define V; to be the set of vertices v in V such that c¢(v) = ¢,
for every i € {0,...,k}. We say that a vertex v € V' is colored if ¢(v) > 0. Otherwise, we say that
v is uncolored. c¢ is said to be quasi-conver if V; is connected for ¢ = 1,..., k. Alternatively, vertices
u,w,v in T form a forbidden subpath if w is on the (simple) path between v and v, c(u) = ¢(v) > 0
and c(w) # c(v). Clearly, ¢ is quasi-convex if and only if it contains no forbidden subpaths as
defined above.

We say that vertices u,v,w are an ezplicit witness (for being non-quasi-convex) if they form
a forbidden subpath. We say that colored vertices ui,ug2,v1,ve are an implicit witness (for being
non-quasi-convex) if c(uj) = ¢(ug) # c(v1) = c(vz) and the path between u; and vy crosses the
path between vq and ve. In such a case, the intersection vertex is a middle vertex of at least one
forbidden subpath. Note that we do not need to know the color of the intersection vertex.

We say that a set U C V of vertices contains a witness (for being non-quasi-convex) if U contains
an explicit witness or an implicit witness. As with witnesses for convexity, we have the following
observation and lemma.

Observation 3.1 If a subset U of vertices contains a witness, then U cannot be extended into a
convex k-coloring of T.

Lemma 3.2 Let U C V be a subset of vertices that contains no witnesses for being non-quasi-
convez, with respect to a coloring ¢ : V. — {0,1,...,k}. Then there exists a quasi-convex coloring

13

d:V —={0,1,...,k} of V which agrees with ¢ on the values of the vertices in U. In particular, if
D C U then c preserve the colors of the constraint vertices.

Proof. The proof is similar to that of Lemma 2.2, only we do not not set any additional vertices
to be uncolored. In fact, one can view the coloring process as being performed independently in
the connected components of the tree created by deleting the uncolored vertices in U. O

One could expect that testing for quasi-convexity would be as simple as testing for convexity.
However, here it is not enough to sample vertices according to their weight (which is why we lose
the distribution-free quality). The reason for this is that we may need to color a large weight
of uncolored vertices in order to make the input quasi-convex, but unlike in the case of colored
vertices, these uncolored vertices might be spread in the tree, making it difficult to discover them
using a single sample. We thus need to establish more delicate knowledge of when an input is close
to being quasi-convex.

3.1 Sufficient conditions for closeness to quasi-convexity

In this section we say that a color i € [k] is abundant if u(V;) > €/4k. For an abundant color ¢,
we say that a vertex u € V is i-balanced if the set {C’q(f)\(u, v) € E'} may be partitioned into two
subsets, where the total i-weight of the union of each subset is at least €/16k. We say that a vertex
v is heavy if p(v) > €/16k.

For every abundant color ¢, we define the set B; as the union of i-balanced vertices and heavy
i-vertices. The proof of the following lemma is identical to the proofs of Lemma 2.3 and Lemma
2.4.

Lemma 3.3 B; is non-empty and connected for every abundant color i.

Suppose that the B;’s are disjoint. For every two distinct abundant colors ¢ and j, let the
ij-bridge be the edge (u,v) on the path between B; and B; where u € B; and v ¢ B;. For any

abundant color 7, an i-colored vertex w is called eziled if w € C”) where (u,v) is the ij-bridge for
some abundant j # q.

Lemma 3.4 Suppose that the B;’s are disjoint. Then the total weight of exiled vertices of all
abundant colors i is at most €/4. In other words, Z,ui(Cq(f)) < €/4, where the sum is over all the

ij-bridges.

Proof. Consider an abundant color 4, and suppose that ui(C’l(f)) > €/8k for some ij-bridge
(u,v). By the definition of B;, v is not a heavy i-vertex, and thus ,ui(C'l(Lv) \ {v}) > €/16k. Since v
is not i-balanced, we have ui(Cq()u)) < €/16k, but this is impossible, as u is i-balanced or heavy. We

thus conclude that for every ij-bridge (u,v) we have ui(CI(LU)) < €/8k. As in the proof of Lemma
2.5, we have that the number of ij-bridges is at most 2(k — 1). Therefore, the total number of all
exiled vertices is smaller than 2(k — 1)e/8k < §. O

We now assume that there is no constraint vertex w € B; with ¢(w) # i, the B;’s are all disjoint,

and coloring every set B; with color ¢ does not form a witness for non-quasi-convexity together with
the constraint vertices.

14

Define sets S; as follows. For every abundant color i, let S; be the set created by augmenting
every set B; with all the i-colored constraint vertices and the vertices on the paths from B; to them.
For every non abundant color ¢ > 0, let S; be the set containing all the i-colored constraint vertices
and the paths between them. Note that we do not do this for uncolored constraint vertices. We
now have at most one set .S; for every color ¢ € [k], where the sets are disjoint and every S; contains
all the i-colored constraint vertices.

We say that a vertex v is an outsider if it does not belong to any S; nor to a path between two
S;’s, and, moreover, none of the vertices on the path between v and its closest S; belongs to a path
between two S;’s.

Let F' be the rooted forest consisting of all outsider vertices, such that the root of every tree is
a vertex r adjacent to some S;. We say that such a vertex r is associated with i. We also say that
1 is the color associated with every descendant v of such an r in F. An outsider vertex is said to
be a satellite if it is i-colored and associated with ¢. Note that an outsider vertex u is a satellite if
and only if u is colored with an abundant color and u is not exiled.

F' is said to be monotone if it contains only uncolored and satellite vertices, and furthermore
no uncolored vertex is an ancestor of a satellite vertex. We say that F' is good if it can be made
monotone by recoloring free vertices in F', such that the total weight of satellite and uncolored
vertices being recolored is at most €/4. Otherwise, we say that F' is bad.

An uncolored vertex w in F' is called good if j1;(Tyw) < 51(Tw), where Ty, is the subtree of F
rooted in w and i is the color associated with w. Otherwise we say that w is bad. We say that a
satellite vertex w in F' is an obstacle if w has an uncolored constraint vertex in F' as an ancestor.

Lemma 3.5 If the total weight of bad uncolored vertices in F is at most {5 and the total weight of
obstacle vertices is at most g then F' is good.

Proof. Define a monotone coloring of F' as follows. Let U be the set of all constraint (uncolored)
vertices and good uncolored vertices in F. Let U, be the set of the topmost vertices in U. Set
all the descendants of vertices in U, to be uncolored. Color the rest of the vertices in F' with the
color associated with them. Clearly, in the obtained coloring, all the constraint vertices remain
uncolored, all the vertices in F' are either uncolored or satellites, and no uncolored vertex is an
ancestor of a satellite vertex. Thus, F' is monotone.

Now, the only uncolored vertices we have colored are bad ones, whose weight is at most ¢/16.
As for satellite vertices, we have only changed the color of ones within subtrees of uncolored vertices
whose roots are in U,. Among these, the weight of obstacle vertices is at most €¢/8. The others are
in subtrees rooted in good uncolored vertices. Since these subtrees are disjoint, and the weight of
satellite vertices is a fraction of at most €/16 of the weight of any good subtree, the total weight of
satellite vertices thus changed is at most 3¢/16. Hence, we have changed a total weight of at most
€/4 of uncolored and satellite vertices, and therefore F' is good. O

The next proposition provides sufficient conditions for a coloring being e-close to convexity.

Proposition 3.6 Letc:V — {0,1,...,k} be a coloring such that
(a) The sets B; are disjoint;

(b) There is no constraint vertex w such that w € B; for some i # c(w);

15

(c) The set of B;’s and constraint vertices does not contain a witness for being non-convex (where
the B;’s are viewed as i-colored);

(d) The total weight of uncolored vertices inside S;’s is at most €/4;
(e) F is good;

then there exists a coloring ¢ : V. — {0,1,...,k} such that ¢ agrees with ¢ on the constraint vertices
and c is e-close to c.

Proof. Define ¢’ as follows. Color every set S; with 7 and color every constraint vertex with its
color in ¢. Then choose a monotone coloring of F' which changes a minimum weight of uncolored
and satellite vertices without recoloring constraint vertices. Finally, set the rest of the vertices to
be uncolored. One can see that ¢ is quasi-convex and agrees with ¢ on D.

We now show that ¢’ is e-close to c. First, consider vertices of abundant colors whose color has
been changed. By Lemma 3.4, the total weight of exiled vertices is at most €/4. Other vertices of
abundant colors may change their color only if they are in F' (i.e. satellites). From Condition (e),
the total weight of satellites and uncolored vertices in F' is at most €/4. Other uncolored vertices
may be recolored only if they are inside some S;, and from Condition (d), the total weight of such
vertices is at most €/4. Finally, for non-abundant colors, since they are of weight smaller than €/4k
each, their total weight is smaller than €/4. We conclude that ¢’ is e-close to ¢. O

3.2 A quasi-convexity test for trees

We now present our test for quasi-convexity.

Algorithm 3.7

1. a. Query all the constraint vertices.
b. Query (Linlz] vertices, where each vertex is independently chosen according to the
distribution p.

Let X denote the set of all vertices queried in either of the steps above.
2. If X contains a witness for non-quasi-conveztiy, reject.
3. Otherwise, repeat the following [161n12/€] times independently:

e Choose a vertex w according to the distribution defined by p and query it. If X U {w}
contains a witness, reject.

e Otherwise, if w is colored, do nothing.

e Otherwise, if w is uncolored, define a subtree T. for every color i such that there are
i-vertices in X, as follows. Let v; be the neighbor of w that is on a path between w and
an i-vertex in X (v; is unique, as X U {w} does not contain a witness). Now denote
Ti Cq(,:u) for every such vi. Query [logy_/16) 6] vertices in each T:, where each
vertex is independently chosen according to the distribution defined by p conditioned on

Ti

16

4. If the union of X and vertices queried in Step 3 contains a witness for non-quasi-convezity,
then reject. Otherwise, accept.

Theorem 3.8 For every e > 0, Algorithm 3.7 is a 1-sided (adaptive) e-test for quasi-convexity of
quasi k-colorings of trees, with query complezity O(k/e* + |D|). The time complexity of the test is
O(kn/e), and can be implemented in time O(k/€2 + |D|) with a preprocessing stage of time O(n?).

Note that for e small enough, we have logy/(1-¢/8) 6 < 61;1—1%. Thus, it is easy to see that the query
complexity is as stated. In Section 3.3 we show how to detect witnesses for non-quasi-convexity,
as done in Steps 2 and 4 of the algorithm, in time O(n), or O(k/e + |D|) with a preprocessing
stage of time O(n). In Step 3, a time of O(n) is used for each subtree T % Cgf) to compute
the distribution p conditioned on T}, using a BFS traversal. We can reduce the running time
by computing the conditioned distributions for all subtrees Cl(,zu) at the preprocessing stage. This
requires listing the probabilities for every vertex relative to every subtree. Since every such tree is
defined by an edge in the tree T and one of its vertices, there are O(n) such subtrees, and hence, a
preprocessing time of O(n?) would be enough to compute and store all the required distributions.

Clearly, a convex coloring is always accepted by Algorithm 3.7, as the set X cannot contain
a witness. Thus, it remains to show that every coloring which is e-far from being quasi-convex is
rejected with probability at least % We do so by considering all the cases in which Proposition 3.6
does not apply.

Lemma 3.9 If there exists a verter w such that: (a) w is either a constraint vertex or a heavy
free vertez, (b) w is i-balanced for some abundant color i # c(w), then Algorithm 2.7 rejects with
probability at least %.

Proof. Since w is i-balanced, there exist two disjoint sets Wi, Wi C V;, each of weight at least
€/16k, such that every path between a pair of vertices v; € Wf and vy € WQZ passes through w.
Hence, to reject the input, it is enough for the algorithm to sample at least one vertex from each
of the sets W} and Wi as well as the vertex w in the case that it is a heavy free vertex (for if it is
a constraint vertex, it is queried with probability 1). The probability for any of the sets W} and
W3 or of w to not intersect the sample set of Step 1b is at most (1 — ¢/16k)20kn12/¢ < L Thus,
by the union bound, the algorithm will fail with probability at most 1—32 = %. O

Lemma 3.10 If there exists a vertex w € V which is both i-balanced and j-balanced for some
abundant colors i # j then Algorithm 2.7 rejects with probability at least %

Proof. There exist two disjoint sets Wi, Wi C V;, each of weight at least ¢/16k, and two disjoint
sets Wi, Wy C Vj, each of weight at least €/16k, where every path between a pair of vertices
up € Wf and ug € WQ’ passes through w and every path between a pair of vertices vy € Wf and
vg € WQJ passes through w. Hence, if the sample set of Step 1b contains at least one vertex from
each of the sets Wi, Wi, Wf) WQJ , then Algorithm 2.7 rejects the input. The probability for any

given set of the above to not intersect the sample set is at most (1 — €/16k)20kIn12/¢ < % Thus,

by the union bound, the algorithm will fail with probability at most 1% = % O

Lemma 3.11 Letc¢:V — {0,1,...,k} be a quasi-k-coloring such that

17

(a) The sets B; are disjoint;
(b) There is no constraint vertex w such that w € B; for some i # c(w);

Create a partial coloring of T by coloring every set B; with color i and coloring every constraint
verter with its color in c. If the obtained partial coloring contains a witness for being non-quasi-
convez, then Algorithm 2.7 rejects the input with probability at least %.

Proof. First, if the set of constraint vertices contains a witness then clearly the algorithm rejects
with probability 1.

Second, suppose that a set B; is on the path between two j-colored constraint vertices u and v
for some 0 < j # 4. Since B; is connected (Lemma 3.3), there exists a vertex w € B; which is on
the path between u and v. If w is a heavy i-vertex, then it is the case of Lemma 3.9. Otherwise, if
w is i-balanced, then there exist two disjoint sets Wf, W2Z C V;, each of weight at least €/16k, where
every path between a pair of vertices u; € W{ and ug € W2 passes through w. The probability
for any of the sets Wi and Wi or of w to not intersect the sample set of Step 1b is at most
(1 — €/16k)20kIn 12/e < % The constraint vertices u and v are queried with probability 1. Thus,
the algorithm will fail with probability at most % = %.

Third, suppose that a set B; is on the path between a set B; and a j-colored constraint vertex
v for some j # 7. Let u be the closest vertex to B; in B;, and let w be the closest vertex to B;
in Bj;. Similarly to the previous case, the probability of not sampling two i-colored vertices such
that w is on the path between them is at most 2(1 — €/16k)2%212/¢_ Now, if u is heavy then the
probability that it is not queried is at most (1 — €/16k)2%%™12/¢_ Otherwise, since u is i-balanced

and w is not 4-balanced, we have ui(Cl(Uu)) > €/16k, and thus, the probability of not sampling an

i~colored vertex in C$” is smaller than (1 — €/16k)20kIn12/¢ " A5 4 is queried with probability 1, we
obtain that the probability of not sampling an implicit witness (where w is the intersection vertex)
is at most 3(1 — ¢/16k)20kn12/c < 2=1

Forth, if a j-colored constraint vertex w is on the path between a set B; and an i-colored
constraint vertex v, then the proof is similar to the previous case, only this time we obtain an
explicit witness with high probability, as w is queried with probability 1. O

We henceforth assume that there is no constraint vertex w € B; with c(w) # i, the B;’s are
all disjoint, and coloring every set B; with color ¢ does not form a witness for non-quasi-convexity
together with the constraint vertices. Define the sets S; as in Subsection 3.1.

Lemma 3.12 If the total weight of uncolored vertices inside the S;’s is larger than €/4, then Al-
gorithm 3.7 rejects the input with probability at least %.

Proof. For the analysis, we partition the set of free vertices sampled in Step 1b into two sets,
a set X7 with &212 vertices, and a set X, with Linlz vertices. Note that X; and Xy are
independently random.

The probability that X; does not contain any uncolored vertex inside some S; is at most
4k1In12
(I1—¢€/4) < < % Suppose that X; contains an uncolored vertex w inside an S;. If w is i-

balanced then there exist two disjoint sets Vi, Vy C V;, each of weight at least €/16k, such that
every path between two vertices v; € V7 and vy € Vi passes through w. To reject the input, it is
enough to sample one vertex from each of these sets. The probability that at least one of these

18

sets does not intersect Xy is at most 2(1 — e/le)M < 275. Thus, by the union bound, the
algorithm will fail with probability at most % = %.

If w is not i-balanced then it is on a path between an ¢-balanced vertex and an i-colored con-
straint vertex, or between two i-colored constraint vertices, which can only increase the probability

of discovering a witness and rejecting. O
Recall that F' is the forest of all outsider vertices (see Subsection 3.1).

Lemma 3.13 If F' is bad then the algorithm rejects the input in Step 2 with probability at least
2/3.

Proof. By Lemma 3.5, either the weight of obstacle vertices in F' is larger than /8 or the weight
of bad uncolored vertices in F' is larger than ¢/16.

If the weight of obstacle vertices in F' is larger than €/8, then clearly an obstacle vertex u is
sampled in Step 1b with probability larger than 2/3. Recall that there exists an uncolored constraint
vertex w, which is an ancestor of u in F', that is sampled in Step la with probability 1. Let ¢ be the
color of u. Note that if ¢ is a non-abundant color then w is on the path between u and an i-colored
constraint vertex v. Hence, u,w,v form a forbidden subpath and thus the algorithm will certainly
reject the input in Step 2. Therefore, the presence of obstacle vertices of non-abundant colors only
increases the probability for rejection.

Now, assume that all the obstacle vertices are of abundant colors. For the analysis, we partition
the set of free vertices queried in Step 1b into two sets, a set X7 with 1()1¢1an vertices, and a set Xo
with 10k;i7n12 vertices. Note that X; and Xy are independently random. The probability that X;

k1n
does not contain any obstacle vertex is at most (1 —€/8) PR < L. Suppose that X; contains an

obstacle vertex u, and let w be an uncolored constraint vertex which is an ancestor of v in F. Then,

clearly, since w is an outsider vertex of a B; of an abundant color, u;(V \ Ti,) > €/8k. Therefore,
the probability that X5 does not contain an i-vertex v outside T, is at most (1 — €/8) e L.

Hence, the probability that a forbidden path is not discovered is at most %.

If the weight of bad uncolored vertices in F' is larger than €/16, then the probability of not
sampling a bad vertex w in F in Step 3 is at most (1 — ¢/16)16m12/¢ < L Suppose now that we
have queried a bad vertex w in Step 3. Let ¢ be the abundant color associated with w and let T;, be
the subtree in F' whose root is w. Note that B; C V' \ T, and hence, 11;(Tw) < 165, s otherwise w

would have been i-balanced. We thus have u;(V '\ Tw) > 5% — 165 > 5> and hence the probability

that X does not contain an i-vertex outside T, is at most (1 — ¢/8k) w2 L.

Suppose that X contains an i-vertex outside T,. Then T, is one of the trees T sampled in
Step 4. As w is bad, the probability that the sample of T,, does not contain an i-vertex is at most
(1— 6/16)10&/(1—6/16) 6 _ %

To conclude, we can expect a bad vertex w associated with an abundant color ¢ to be chosen
in Step 3, with an i-vertex queried outside T}, in Step 1 and an i-vertex queried inside T, in Step
3. In such a case the algorithm will detect an explicit witness and reject the input in Step 4. By
the union bound, the probability of failure in this is at most % + % + % = % O
Proof of Theorem 3.8. Follows from Proposition 3.6 and Lemmas 3.9, 3.10, 3.11, 3.12 and
3.13. O

19

3.3 Finding witnesses for non-quasi-convexity

The procedure for detecting witnesses with respect to quasi-convexity is very similar to the one
presented in Section 2.3 for the convexity test. The only difference is that an uncolored vertex
can only be a middle vertex in a forbidden subpath. Therefore, when considering a vertex v, we
only need to check its colored children. In the following, a null value and a value of 0 for m(v) are
not the same. A null value of m(v) means that the color of v is unknown or irrelevant, whereas
m(v) = 0 indicates that v was queried and found to be uncolored.

Procedure 3.14 For every v in reverse topological order, do:
o [fve X then set a(v) = 1; otherwise set a(v) = 0.
o Ifve X then set m(v) = c(v); otherwise set m(v) to be null.
e For every child u of v such that m(u) is not null and m(u) > 0:

1. If m(v) is not null and m(v) # m(u) then reject the input and terminate.

2. Otherwise, set m(v) = m(u) and a(v) = a(v) + a(u).
o Ifm(v) is not null, m(v) >0, and a(v) = ¢y (), then set m(v) to be null and a(v) = 0.
If the algorithm did not reject after going over all vertices, then accept.

We prove the correctness of the procedure with the next lemma, whose proof is very similar to
that of Lemma 2.13.

Lemma 3.15 For every vertex v the following holds:

1. If Procedure 3.14 rejects in the iteration of v, then v is a middle vertex of a forbidden subpath,
where if v € X then the forbidden subpath includes v as its middle vertex, and, otherwise,
there exist colored vertices ay,az,bi,by € X such that c(a1) = c(az) # c(b1) = c(b2), and v
belongs to the path between a1 and as as well as to the path between by and bs.

2. If Procedure 3.14 completes the iteration of v without rejecting it, then v is not a middle
vertex of a forbidden path as above.

3. If the processing of v is completed, then, in its end, m(v) = i for i > 0 if and only if X
includes i-vertices both inside and outside the subtree rooted in v. In such a case, a(v) is
equal to the number of i-vertices of X in the subtree rooted in v. Also, if m(v) is null then
a(v) =0.

As we did for Procedure 2.12, we may run Procedure 3.14 on a tree which contains only the
queried vertices and all the vertices which are least common ancestors of two queried vertices. This
reduces the running time of the implementation to O(k/e2) (quasi-linear in the maximum sample
size), if we use a preprocessing stage of time O(n). See Section 2.3 for details.

20

4 Relaxed convexity properties

Given a tree T'= (V, E) and an integer ¢ > 0, we say that a k-coloring ¢ : V — [k] of T' is ¢-convex
if it induces at most ¢ color components. We say that a quasi k-coloring ¢: V — {0,...,k} of T
is £-quasi-conver if it induces at most ¢ components of colors i > 0. Given a list L = (l,...,[x) of
integers we say that a vertex coloring of T' is convexr with respect to L if it induces at most [; color
components of every color 7. If we allow some of the [;’s to be co, we then say that the coloring is
quasi-convex with respect to L.

In the next subsection we present a 1-sided test for ¢-convexity on a tree ' = (V, E'), and later we
explain how to transform it into a test for ¢-quasi-convexity, list convexity and list quasi-convexity.
Note that the query complexity and time complexity of all our tests is independent of k.

For convenience, we assume that the set of constraint vertices is empty. Our tests may be
adapted to the change where there are constraint vertices by querying for their values. However,
we use testing with constraints as an internal procedure. As our set of constraints is not fixed
now, we use the term (quasi) convex under D to refer to the studied property when D is the set of
constraint vertices.

4.1 [(-convexity of trees

This subsection is dedicated to the proof of the following theorem.

Theorem 4.1 There exists a 1-sided test for £-convexity of k-colorings of trees with query com-
plezity O(¢/€) and time complezity O(¢n).

First, we give a few definitions to be used in the sequel. Consider the domain input tree 7. A
vertex w is said to be between the vertices u and v if it is an intermediate vertex on the (only) path
between u and v. For any three distinct vertices u, v, w € V, we define the junction Junc(u, v, w) of
u, v, and w as follows. If any of the vertices in {u, v, w} is between the other two, then Junc(u, v, w)
is defined to be that vertex. Otherwise, Junc(u, v, w) is the unique vertex that lies in the intersection
of the three simple paths between v and v, v and w, and u and w, respectively. A set U is closed
under junctions if for any three distinct vertices w,v,w € U we also have Junc(u,v,w) € U. Note
that if a set U is closed under junctions then all paths between pairs of adjacent vertices in U
intersect each other only on members of U. We say that two vertices are adjacent in a set U if they
are both in U and there are no other vertices in U between them.

We now characterize subtrees of T' with respect to an input coloring ¢. A subtree is called
i-homogenous if all its vertices are i-vertices, and homogenous if it is i-homogenous for some color
i. We say that a subtree is {4, j}-homogenous if all its vertices are either i-vertices or j-vertices (if
i = j, then clearly such a tree is i-homogenous). Given two vertices u,v € V, we say that a subtree
is {u, v}-compatible if it is both {c(u), c(v)}-homogenous and convex. Note that when saying that
a subtree T" of T is close to (resp. far from) satisfying any of the above properties, we mean that
that the restriction of ¢ to T” is close to (resp. far from) satisfying it.

Before giving our algorithm for /-convexity, we explain its main ideas. Throughout the algorithm
we maintain a set IT of interesting trees, containing subtrees of T' to be examined. We define the
interesting trees using a set X of queried vertices. We create X in such a way that it is always
closed under junctions. We ensure that the intersection between every two distinct subtrees in IT
is either empty or consists of a single vertex in X. Let T’x be the spanning tree of X, that is, the

21

tree comprised of all the simple paths between vertices in X. We use T’x to define interesting trees
of two types: A pinned tree is defined by two vertices u, v which are adjacent in X but not in V.
It contains the path between u and v, as well as all the vertices whose nearest neighbor in Ty is
between u and v (but is not u or v themselves). Equivalently, T(,,) = (C’z(f) N 05“)) U{u,v}. A
dangling tree is defined by a vertex u € X, and it contains u as well as all the vertices not in T’x
whose nearest neighbor in T is u. Namely: T, = V' \ Uvex vu ¥,

Using the set X we can infer a lower bound on the number of color components in T', by
assuming that every two adjacent vertices in X belong to the same color component if and only
if they are colored with the same color. This could be the case because we may e.g. extend the
coloring of X into a coloring of V' by coloring every vertex with the color of its nearest neighbor in
X. On the other hand, it can be easily seen that no coloring of V' would give a smaller number of
components for any of the colors.

In order to discover more color components, we examine pinned and dangling interesting sub-
trees of T one by one. For u,v which are adjacent in X and colored with the same color, we test
Ty, for being c(u)-homogenous. If the test accepts, we remove T(, . from the set of interesting
trees, as it is unlikely to provide us with more information on the color components in 7' (we shall
later see that, in such a case, T(,) is “irrelevant”). Otherwise, we augment X with a witness
for the non-homogeneity of T{,) (while keeping it closed under junctions), and replace T{,) in
IT with its subtrees. Similarly, we test dangling subtrees T, for c¢(u)-homogeneity. For u and v
which are adjacent in X and colored with different colors, we test T, ., for being {u, v}-compatible
under the constraint set D = {u,v}. That is, we test whether there is an e-close convex coloring
of T(,,) that agrees with ¢ on the colors of u and v. Again, if the test accepts then we discard
T(uw), and otherwise we proceed and divide it into smaller interesting trees. If at some point we
have discovered more than ¢ color components, then the algorithm rejects the input. Otherwise,
the algorithm terminates and accepts when there are no interesting trees left.

Note that, since we use the convexity testing algorithm as a subroutine for determined subtrees
and accordingly sample from conditioned distributions, we lose its distribution-free quality.

We next introduce the subroutines used for testing interesting trees.

Observation 4.2 Given a subtree T' of T, a colori and 0 < p < 1, there exists an algorithm whose
query and computational complexity are both O(log(1/p)e™ 1), such that: If T' is i-homogenous then
the algorithm accepts with probability 1; and if T' is e-far from being i-homogenous then, with
probability at least 1 — p, the algorithm rejects and finds a witness for its non homogeneity (i.e., a
non-i-vertex,).

Proof. Given T, € and p as above, query 2In(1/p)e~! vertices in 7" independently at random
using the conditional distribution of u to T'. If a vertex w has been found such that c(w) # i
then reject and return w as a witness, and otherwise accept. It is trivial to see that this algorithm
satisfies the stated requirements. O

Lemma 4.3 Given a pinned subtree T(,, .y of T with c(u) # c(v) and 0 < p < 1, there exists an
algorithm with query complexity O(log(1/p)e~!) and computational complexity linear in the size of
Tuw) such that: If T(y . is {u,v}-compatible, then the algorithm accepts with probability 1; if Tuw)
is e-far from being {u,v}-compatible under {u, v}, then, with probability at least 1 —p, the algorithm
rejects and finds a witness for the incompatibility. Furthermore, the witness is either a verter w

22

with c(w) # c(u), c(v) or a pair of vertices (x,w) such that = is between u and v, w has the same
color as u or v, and c(x) # c(w).

Proof.
algorithm, and later show how to perform it in one phase.
Given T{,) and p as above, repeat the following for logs(1/p) times:

1.

We use Algorithm 2.7 with k = 2 and D = {u,v}. For clarity, we first give a multi-phase

Query 81n12¢! vertices independently uniformly at random. Let W be the union of {u,v}
and the set of queried vertices.

. If W includes a vertex w such that c¢(w) # c(u), c(v), then reject and return w.

. Otherwise, if W includes a forbidden subpath (wj,ws,ws), then for every i we have either

c(w;) = ¢(u) or c(w;) = ¢(v), as otherwise Case 2 applies.

(a)

Assume that one of the vertices in the forbidden subpath is either u or v. Since u and v
are leaves and c(u) # ¢(v), we can only have one of the end vertices in the subpath be
w or v. Assume without loss of generality that wq = u. Let x = Junc(u, v, ws). Since u
and v are not adjacent, x is between u and v. Query .

o If c(x) # c(u), c(v) then set w = = and return w as in Case 2.
e Otherwise, if c¢(x) = c¢(wz) then clearly (u,z,ws) is a forbidden subpath and thus
we set w = ws.
e Otherwise, c(z) = c(u) # c(v), and thus (v,z,ws) is a forbidden subpath. We
therefore set w = wo.
e Return x and w.
Otherwise, if both w; and ws are between u and v then so is we. Without loss of
generality, assume that w; is between u and ws and w3 is between we and v.
o If c(w2) = c(u) then (u,w;,ws) is a forbidden subpath, and thus we set z = w; and
w = w.
o If c(wg) # c(u) then (u,ws,ws) is a forbidden subpath, and thus we set z = w9 and
w = ws.
e Return x and w.
Now assume that both w; and ws are different from u and v and either w; or ws is not
between u and v. Let z = Junc(u, v, ws). Since u and v are not adjacent, x is between
u and v. Query .
o If ¢(z) = c(ws) then c(x) # c(wy) = c(ws). Let w be either wy or ws such that w is
not between v and v. Then either (u,z,w) or (v, z,w) is a forbidden subpath.

o If ¢(x) # c(we) then, in particular, x # wy and hence, x is both between u and wo
and between v and wg. Either (u,x,ws) or (v,z,ws) is a forbidden subpath. We
therefore set w = ws.

e Return z and w.

4. Otherwise, if W includes vertices wi, ws, w3, ws such that c(wy) = c(w2) # c(wz) = c(w4)
and there exists a vertex w which is both between w; and ws and between ws and wy, then
let w = Junc(wi, wa, ws) be such a vertex. Query it.

23

o If ¢(w) # c(u), c(v) then set w = w and return w as in Case 2.

e Otherwise, either (wq,w,ws) or (w3, w,wy) is a forbidden subpath. Perform the same
operations with the forbidden subpath as done in Case 3.

If the input has not been rejected in any of the iterations, accept. In this case T{,) is marked as
“not interesting”.

The above is the same as repeatedly running Algorithm 2.7 with £ = 2 and D = {u,v}, except
for the steps taken in order to find a witness of the desired form once 7{,) is known not to be {u, v}-
compatible. Clearly, these modifications do not change the fact that the algorithm always accepts
a {u, v}-compatible input. It is easy to see that if T(, ,) is e-far from {c(u), c(v) }-homogeneity, then
it is rejected with probability at least 2/3 in any given iteration. Assume that T(uw) is eclose to
{c(u), c(v) }-homogeneity but e-far from convexity under {u,v}. Then clearly by Theorem 2.8, T(,)
is rejected with probability at least 2/3 in any given iteration. As the iterations are independent,
an e-far input is rejected with probability at least 1 — p. One can see that in Steps 3 and 4 of the
algorithm, a forbidden subpath is found with either w or v as an endpoint.

Note that using a single sample of 8logs(1/p)In12¢~! vertices selected uniformly and indepen-
dently, one can only increase the probability of finding a witness for farness, while still maintaining
the 1-sidedness of the algorithm. Performing a single sample enables us to check for a forbidden
subpath only once with time complexity linear in the size of T(,) (see Section 2.3). Moreover,
it can be seen that the junction of every three vertices in T{, ,) may be computed using a naive
DFS algorithm in time linear in the size of 7,). Since we compute at most two junctions, the
computational upper bound hold. O

We now present our main test for ¢-convexity.

Algorithm 4.4
o Let X = {u}, where u is any vertex in 'V, and query it. Set IT ={T,} ={T}. Set CC = 1.
o While IT # 0 and CC < ¢, repeat:

1. Consider a tree T' € IT. Set IT = IT \ {T"}.

2. Perform a test with error probability p = 1/3¢ as follows:
— IfT" = Ty) foru,v € X such that c(u) # c(v), perform a {u,v}-compatibility test.
— Otherwise, if T' = T(yy) for u,v € X such that c(u) = c(v), perform a c(u)-
homogeneity test.
— Otherwise, if T' =T, for u € X, perform a c¢(u)-homogeneity test.
3. If the test has accepted, return to Step 1.
4. Otherwise,
(a) If T' = Ty for u,v € X such that c(u) = c(v) and a witness w has been found
such that c(w) # c(u):
— Let z = Junc(u,v,w). Query z, and add x and w to X.
— If c(x) # c(u) set CC =CC + 2.
— If c(x) # c(w) set CC = CC + 1 (independently of the previous step).
— If x is not a leaf, add T, to IT.

24

If w is not a leaf, add T, to IT.
If u and are not adjacent in T, add Ty 4 to IT.

— If v and x are not adjacent in T, add T(, 5 to IT.

If w# z and w and x are not adjacent in T', add T(,,) to IT.
(b) If T'" = T(y) for u,v € X such that c(u) # c(v) and a witness w has been found
such that c(w) # c(u), c(v):
— Let x = Junc(u,v,w). Query x, and add x and w to X.
— If c(z) # c(u) and c(z) # c(v) set CC =CC + 1.
— If ¢(x) # c(w) set CC = CC +1 (independently of the previous step).
— Add the new (non-degenerate) interesting trees into IT similarly to Case (a).
(c) Otherwise, if T' = Tuw) Jor u,v € X and witnesses x,w have been found such that
x s between u and v, c(x) # c(w) and either c(w) = c(u) or c(w) = c(v):
— Add x and w to X.
- Set CC =CC +1.
— If c(z) # c(u) and c(z) # c(v) set CC =CC + 1.
— Add the new (non-degenerate) interesting trees into IT similarly to Case (a).
(d) Otherwise, T' =T, for u € X and a witness w has been queried such that c(w) #
c(u):
— Add w to X.
- Set CC =CC +1.
— Ifw is not a leaf, add T, to IT.
— Ifu and w are not adjacent in T, add T{y) to IT.

o IfCC > {, reject. Otherwise, if CC < { and IT = (), accept.

To prove the correctness of the algorithm, we need several lemmas.

Lemma 4.5 Consider an iteration of the while loop in Algorithm 4.4. Let £ be the value of CC
when the iteration begins. Then:

1. Gwen X, ' is the minimum number of color components in V.
2. Suppose that:

o All the pinned trees Ty, (u,v € X) with c(u) # c(v) are e-close under {u,v} to being
{u,v}-compatible.

o All the pinned trees T(y,) (u,v € X) with c(u) = c(v) are e-close to being c(u)-
homogenous .

o All the dangling trees T,, (w € X) are e-close to being c(u)-homogenous.

Then c is e-close to being ¢'-conver.

25

Proof. Part 1 of the lemma is easily proved by induction on ¢'. As for Part 2, consider colorings
of the pinned and dangling trees which are e-close to the restriction of ¢ to these trees and are
convex or homogenous under their defining vertices. The intersections between the trees consist
only of vertices in X, which are not recolored by any of theses close colorings. Therefore, we may
combine them into a coloring of our entire tree 7', which is e-close to ¢ and can be easily seen to
be ¢-convex. O

Lemma 4.6 The while loop of Algorithm 4.4 runs at most 5¢ times.

Proof. Since in every time the test of Step 2 rejects, C'C is incremented, Step 4 can be applied
at most ¢ times. Note that at most 5 new interesting trees are added in any single iteration of Step
4. Therefore, we may perform the test in Step 2 on at most 5¢ trees. O

Proof of Theorem 4.1. By the first part of Lemma 4.5, CC is a tight lower bound for the
number of color components in T', and therefore, the algorithm never rejects an ¢-convex input.

Assume now that the input coloring ¢ is e-far from being ¢-convex. Then, by the second part of
Lemma 4.5, in any stage of the algorithm where CC < ¢, at least one of the interesting dangling
trees T), is e-far from being c(u)-homogenous or at least one of the pinned trees T(,) is e-far
under {u,v} from being {u,v}-compatible. After discovering the farness of ¢ interesting trees, the
algorithm rejects. As the probability of not discovering the farness of a certain interesting tree is
at most 1/3¢, the total failure probability is at most 1/3. Therefore, Algorithm 4.4 is a 1-sided test
for ¢-convexity.

By Observation 4.2 and Lemma 4.3, the test in Step 2 can be implemented with query com-
plexity O(log(¢)/e). Therefore, the total query complexity of the algorithm is O(¢log(¥¢)/€). The
computational complexity follows from Observation 4.2 and Lemmas 4.3 and 4.6. O

4.2 (-quasi-convexity of trees

In this subsection we prove the following theorem.

Theorem 4.7 There exists a 1-sided test for £-quasi-convexity of quasi k-colorings of trees whose
query complezity is O(£/€%) and whose time complexity is O({n).

Our test for ¢-quasi-convexity is similar to that for ¢-convexity. However, instead of using
the test for convexity with or the test for homogeneity as a subroutine, we use the test for quasi-
convexity with k& = 2 when we have two different colors in the vertices defining the subtree, and with
k = 1 when we have only one defining color. We only use the homogeneity test for interesting trees
defined by uncolored vertices. We refer to the quasi-convexity property for k = 1 as monotonicity.
In particular, we say that a dangling tree T, is monotone if it is {c(u), 0}-homogenous and quasi-
convex. Such a tree has only c¢(u)-colored and uncolored vertices, where no colored vertex is a
descendant of an uncolored vertex. This complies with the common notion of monotonicity over
trees for functions with two values, where an i-vertex is considered of “smaller” value than an
uncolored vertex.

Observation 4.8 Given a dangling subtree T,, of T and 0 < p < 1, there exists an algorithm whose
query and computational complezity are both O(log(1/p)e~2), such that: If T' is monotone then the
algorithm accepts with probability 1; if T is e-far from being monotone then, with probability at least

26

1 —p, the algorithm rejects and finds a witness for the lack of monotonicity. Moreover, the witness
is either a verter w such that c(w) > 0 and c(w) # c(u), or vertices u,x,w such that (u,z,w) is a
forbidden subpath.

Proof. As in the proof of Lemma 4.3, we run Algorithm 3.7 for k£ = 1 with a sample set whose
size is increased by a factor of O(log(1/p)). The algorithm rejects or accepts as required, due
to Theorem 3.8. Finding the required witnesses is done with techniques similar to those used in
Lemma 4.3. O

We say that a subtree T” of T is {4, j}-quasi-homogenous if all its vertices are either uncolored
or colored with either 7 or j. Given two distinct vertices © and v, we say that the pinned tree
Tiu,vy 18 {u, v}-quasi-compatible if it is {c(u), c(v)}-quasi-homogenous and quasi-convex (clearly, if
c(u) = c(v) then T{,) is monotone).

Lemma 4.9 Given a pinned subtree T,) of T and 0 < p < 1, there exists an algorithm with
query complexity O(log(1/p)e~?) and computational complexity linear in the size of T such that:
If Ty s {u,v}-quasi-compatible, then the algorithm accepts with probability 1; if Ty is e-far
under {u,v} from being {u,v}-quasi-compatible, then, with probability at least 1 — p, the algorithm
rejects and finds a witness for the incompatibility. Furthermore, a witness for the fact that T(,) is
not {u,v}-quasi-compatible will be either a colored vertex w with c(w) # c¢(u) and c(w) # ¢(v), or
a pair of vertices x,w such that x is between u and v, w is colored and has the same color as u or

v, and c(x) # c(w).

Proof. Follows from Theorem 3.8, in a similar manner as Lemma 4.3 follows from Theorem 2.8.
As before we select only the desired witnesses, although others may also be discovered. O

Note that here when rejecting an interesting tree, some of the witnesses may be uncolored.
In such a case we do not account for the newly discovered uncolored components in our color
components counter. However, we do add trees defined by uncolored vertices to our set of interesting
trees, as we need to test them further in order to search for additional color components.

We are now ready to give our test for ¢-quasi-convexity.

Algorithm 4.10 The algorithm is the same as Algorithm 4.4, except for the following:
e In the initialization step, if u is uncolored then we set CC to 0 rather than 1.
e In Step 2 of the while loop:
— For a pinned tree T,) with colored v and v and c(u) # c(v) we perform a test for
{u, v}-quasi-compatibility under {u,v}.

— For a tree defined by uncolored vertices, i.e., a pinned tree T(, . with uncolored u and v
or a dangling tree T,, with u uncolored, we perform a 0-homogeneity test.

— For other interesting trees (i.e., a pinned tree T,) with colored u and v and c(u) = c(v),
a pinned tree T,) with colored u and uncolored v, or a dangling tree T,, with colored u)
we perform a monotonicity test, under the respective defining vertices as constraints.

27

e We update our counter CC differently, so that it is a lower bound for the number of color
components of colored vertices only. That is, when our witness for rejecting an interesting
tree includes an uncolored vertex, we do not increment CC' to account for the newly discovered
uncolored component, but only for components of colored vertices.

Lemma 4.11 Consider an iteration of the while loop in Algorithm 4.10. Let £’ be the value of CC
when the iteration begins. Then:

1. Gwen X, ' is the minimum number of color components of colored vertices in V.
2. Suppose that:

o All the interesting trees defined by uncolored vertices are e-close to being 0-homogenous.
o All the dangling trees T,, (c(u) > 0) are e-close to being monotone.

o All the trees Ty) with c(u) # c(v) and c(u),c(v) > 0 are e-close under {u,v} to being
{u,v}-quasi-compatible.

o All the other pinned trees 1, are e-close to being monotone under their respective
constraints.

Then c is e-close to being ¢’ -quasi-conver.
Proof. Similar to the proof of Lemma 4.5. O
Lemma 4.12 The while loop of Algorithm 4.4 runs at most 5¢ times.

Proof. As in the case of Algorithm 4.4, at most 5 new interesting trees are added in any single
iteration of Step 4, so C'C is linear in the number of iterations. Moreover, CC' is incremented every
time the test in Step 2 rejects. To see this, note that in every rejection we either have a colored
witness defining a new colored component inside an interesting tree, or a forbidden subpath with
respect to quasi-convexity. In the latter case, the endpoints of the forbidden subpath originally
belonged to the same presumed color component. Finding the forbidden subpath reveals that there
are at least two color components instead of the original presumed one. Hence, CC' is incremented
after discovering the forbidden subpath.

Concluding, Step 4 may be applied only 5¢ times before either CC exceeds £ or all interesting
trees are exhausted and the loop ends. O

Proof of Theorem 4.7. We show that Algorithm 4.10 satisfies the stated requirements.

By the first part of Lemma 4.11, C'C is a tight lower bound for the number of color components
(of colored vertices) in T, and therefore, the algorithm never rejects an ¢-quasi-convex coloring c.

Assume that ¢ is e-far from being ¢-quasi-convex. Then, by the second part of Lemma 4.11,
in any stage of the algorithm where CC < ¢, at least one of the interesting subtrees is e-far from
the property it is being tested for in Step 2 of the algorithm. After discovering the farness of /¢
interesting trees, the algorithm rejects. As the probability of not discovering the farness of a certain
interesting tree is at most 1/3¢, the total failure probability is at most 1/3. Therefore, Algorithm
4.10 is a 1-sided test for ¢-quasi-convexity.

28

By Observation 4.8 and Lemma 4.9, the test in Step 2 can be implemented in query complexity
O(log(#)/€%). Therefore, the total query complexity of the algorithm is O(¢log(¥)/€?). The compu-
tational complexity follows from Observation 4.8 and Lemmas 4.9 and 4.12. Note that computing
the distribution p conditioned on a dangling tree or on a pinned tree can be done in time O(n)
using an appropriate BFS traversal. O

4.3 List convexity and list quasi-convexity of trees

Theorem 4.13 Given a list L = (l1,...,lx) of integers, there evists a 1-sided test for convewity
with respect to L on trees, with query complexity O(¢/€) and computational complexity O(¢n), where

t= Zi:17...,k 2

Theorem 4.14 Given a list L = (ly,...,l;) where every l; is either an integer or 00, there exists
a 1-sided test for quasi-convexity with respect to L on trees, with query complexity O(£/€*) and
computational complexity O(¢n), where { = Elgigk, i< oo Li-

The tests used to prove both theorems above are almost identical to our tests for ¢-convexity
and /-quasi-convexity, respectively. The only difference is that instead of the counter C'C' of the
total number of color components discovered, we keep a counter CC; for every color ¢ with [; < oo.

5 A lower bound for testing convexity on trees

In this section we provide a lower bound for testing convexity on trees, which applies also for
quasi-convexity.

Theorem 5.1 For every 0 < € < 1/8, every (adaptive) e-test for convezity of k-colorings of trees

must use more than \/3(’2161) queries in the worst case. This is specifically true for the case where
T is a path, is a uniform distribution and there are no constraint vertices.

Proof. Let T be a path of length n. According to Yao’s theorem [24], it is enough to provide

a distribution of input colorings, such that any deterministic algorithm whose inputs are chosen

according to that distribution and uses q < 3(24_61) queries will fail to give the correct answer with

probability larger than % More precisely, we will present two distributions of inputs. Dp will be a
distribution of convex k-colorings of T" and Dy will be a distribution of k-colorings of T" which are

e-far from being convex. We will prove that any deterministic algorithm using g < % queries

has an error probability larger than % when trying to distinguish between Dp and Dy.

Assume that & divides n. In both distributions we divide 7" into k intervals of size n/k each,
such that all the vertices in each interval are colored with the same color. Without loss of generality,
we can assume that the testing algorithm queries at most one vertex from every interval.

Definition 5.2 Let Dp be the distribution of k-colorings defined by uniformly choosing a permu-
tation of all k colors and coloring the intervals accordingly.

Clearly, all colorings in Dp are convex. To define the distribution Dy of e-far colorings, we use
an auxiliary distribution Dy over colorings which are e-far from being convex with high probability.

29

Definition 5.3 Let lf); be the distribution of k-colorings selected by uniformly choosing (1 — 8¢)k
colors to appear in one interval and 4ek colors to appear in two intervals. The placements of the
colors are then chosen uniformly at random.

Definition 5.4 Let Dy be the conditional distribution ofm on the event that the coloring chosen
by Dy 1is e-far from being convex.

The main idea of the proof is based on the birthday problem. A test can distinguish Dp from
Dy only if at least one of the query sets includes some color more than once. We show that a test
that uses ¢ queries is likely to fail in discovering a collision in a uniformly sampled set of colors,
and thus cannot distinguish Dp from Dy.

Consider a (possibly adaptive) deterministic algorithm A that uses ¢ queries. For any k-coloring
c of T, let Prplc] be the probability of ¢ according to Dp, and let Pry[c] be the probability of ¢
according to Dpy. Without loss of generality, every deterministic algorithm with g queries takes
the shape of a decision tree, which is a complete balanced k-ary tree of height ¢, where every
non-leaf node corresponds to a query location with its children being labelled according to the
possible outcomes of the query. Every leaf node corresponds to an answer sequence g € [k]|? with
its acceptance or rejection decision. For a k-coloring ¢, we denote the answer sequence of our
algorithm by A(c). For any answer sequence g € [k]?, let Pry plg] be the probability that the

answer sequence is g for a coloring selected from Dp. Formally, Prgplg] = 3. A(e)=g PrP[c].

Define Pr 4 n|[g] similarly as the probability that the answer sequence is g for a coloring selected

from Dy, or Pry nlg] o > A(c)=g PIN|c]. Now let ap denote the probability that the algorithm
accepts an input chosen according to Dp, and let ay be the probability that the algorithm accepts
an input chosen according to Dy. To prove the theorem, it is enough to show that |ap — an| < %
See [4] for details.

Lemma 5.5 A coloring chosen from]5} s e-far from being convex with probability larger than %.

Proof. For the analysis, we tag differently each appearance of colors that appear twice in a
coloring chosen from Dpy. The total number of possible colorings in this distribution is k!. In
colorings that are e-close to convexity, however, at least 2e¢k colors that appear twice must appear
on adjacent intervals. Otherwise, there are more than 2ek pairs of intervals of the same color which
are separated by interval(s) of different colors. Thus, at least one interval must be recolored for
every such pair to achieve a convex coloring. It is easy to see that, in the best case, changing
the color of an interval from ¢ to j can solve the problem for both colors ¢ and j, but not for any
other color £ # i, j. Hence, if there are more than 2ek colors that appear each on two non-adjacent
intervals, then the coloring is e-far from being convex. The number of colorings in Dy that are
e-close to convexity is thus at most

@:Z) 2°F((1 = 26)k)! = exp(k)((1 — 26)k)!

for choosing the 2¢k colors which appear consecutively among those who appear twice, choosing
the order of the intervals in every such pair, and then choosing the order of all intervals, where each
consecutive pair is now counted as a single interval. Hence the probability of a coloring in Dy to
be e-close to convexity is at most

exp(k)((1 — 2¢)k)! < exp(k)
k! ~ (1 — 2¢e)k)2ek’

30

which is smaller than % for a sufficiently large k. O

Let Prg[c] denote the probability of a k-coloring ¢ when chosen from the distribution Dy and
def

let Pr A,N[g] =Y A(c)=g Prg[c]. We complete the proof by showing that the distributions Dp

and Dy satisfy the required condition |ap — an| < % The main idea is to show that with high
probability, an answer sequence of size ¢ will not contain two appearances of the same color for both
distributions, and in such a case, the algorithm will be unable to distinguish between them. We
note that the proof of the farness of inputs drawn according to Dy also holds for quasi-convexity,

and so the proof here provides a lower bound for testing quasi-convexity as well.

Observation 5.6 For any answer sequence g we have

4
Pranlgl < gPr 4 5l

Proof. Let C be the set of all the colorings which are chosen with positive probability according
to Dy. Let Cc be the subset of C' containing colorings which are e-far from being convex.
By definition,
Pr an[g] = Z Pr yld].
ceCe: A(c)=g
Since Dy is a uniform distribution over C' and Dy is a uniform distribution over C, and, by
Lemma 5.5, |C¢| > 3|C], for every coloring ¢ € Cc we have Pry|c] < 3 Prz[c]. Therefore,

4 4
Pranlg] = Z Pr nlc] < 3 Z Pr 5[c] < §PrA7ﬁ[g].
ceCe: A(c)=g c€Ce:c(A)=g

Let g € [k]? be an answer sequence. We say that g is colorful if there exists no color that appears
twice in g. Otherwise, we say that g is degenerate.

Lemma 5.7 Let apn be the probability that the answer sequence is degenerate when the input is
chosen from Dy. In other words, let ay = Zg is degenerate Pranlg]. Then any < i.

Proof. = We first compute ag, namely, the probability that the answer sequence is degenerate
when the input is chosen from b\]; From symmetry arguments, as long as the algorithm has
not queried two segments of the same color, we may perceive the querying process as choosing
elements, one by one, without repetitions, from the set of colors (some of which appear twice).
Therefore, the probability that at least one color is queried twice within g queries is no larger than
the probability of choosing a color twice when the set of ¢ locations is predetermined. Thus, the
number of possibilities in which at least one color appears twice in the answer sequence is at most
dekq(qg—1) (5:3) (¢ —2)!, as there are 4ek colors with two segments, and after choosing such a color
and choosing its positions in the answer sequence, we are left to choose the other (¢ — 2) positions
among (k — 2) other segments. We have that the probability of having a color appearing twice in
the answer sequence is at most

dekq(q — 1)(’;:;) (g —2)! ~ 4eq(q—1)
(e S

31

Asq(g—1)<¢* < %, we obtain ag < 1.

From Observation 5.6, for any answer sequence g we have Pr 4 n[g] < %Pr A9l Thus, by

summing for all degenerate answer sequences, we have that ay < %a N < %. O

Lemma 5.8 For any colorful answer sequence g € [k]9,

4
Pr 4 n[g] < Pr4plg] < 3 br AN|g]-

Proof. From symmetry arguments, the probabilities of all colorful answer sequences are equal
when the input is chosen from Dy, as well as when the input is chosen from Dp (for which the
answer sequence is always colorful). Thus

Pr 4 n[g]

Pr 4.p[g] = Pr 4 n[g| the answer sequence is colorful | = 1 .

Hence the first inequality in the statement of the lemma is trivially correct, and the second is
derived from Lemma 5.7. O

We now complete the proof of Theorem 5.1 by showing that |ap — an| < % Let a% be the
probability that an input from Dy is accepted based on a colorful answer sequence. Let a]dv be the
probability that an input from Dy is accepted while a degenerate answer sequence was obtained.
Thus ay = a$ + a%. From Lemma 5.8, 0 < Pr 4 p[g] — Pr an[g] < 3 Pranl[g] for any colorful
answer sequence. Thus, 0 < ap —afy < % In addition, from Lemma 5.7, 0 < aﬁl\, <ay < %. Hence

1
lap —an| < 3. O

6 A convexity test for paths

We now present a standard (non distribution-free) convexity test for the special case where the tree
T = (V, E) is a path, whose performance is better than that of Algorithm 2.7 when the number of
colors k is large enough with respect to 1/€3. We assume that there are no constraint vertices, but
the algorithm can easily be generalized to the case where constraint vertices exist.

We note that a colored path is essentially a string. The convexity property on strings is a
special case of a regular language, and thus is known to be testable by Alon et. al [1]. However,
the query complexity obtained there, though polynomial in %, is exponential in the size of the DFA
accepting the language, and in the case of the convexity of a string over k colors, it can be seen
that the size of the DFA must be exponential in k. We provide a more efficient algorithm for this
property. Actually, by the lower bound that we have established in Subsection 5, our algorithm is
optimal up to a power of %

We view one of the two leaves of T', denoted vy, as the “leftmost” vertex and the other one,
denoted vg, as the “rightmost” vertex, thereby defining a linear left-to-right order on V. Henceforth,
for every vi,ve € V, the closed interval [v1, ve] denotes the subset of V' which contains vy, vy and
all the vertices which are right of v; and left of v. The open interval (v1,v2) denotes the set of all
the vertices which are right of v; and left of vs.

Algorithm 6.1

32

1. Queryq > 1286% vertices, where every verter is chosen independently according to the weight
unction p. Let vy, ..., v, be the vertices queried, numbered from left to rig or somer < q).
ti Let be th ti ed bered left to right <

2. For every 1 < i < r, if there are vertices in the open interval (v;,vit1), query z > %ln 12
vertices in (vi, vi11), where every vertex is chosen independently according to p conditioned
on this interval.

3. Reject if and only if the resulting sample contains a forbidden subpath.

Note that Algorithm 6.1 is non-adaptive, since the distribution of the queries in Step 2 depends
only on the positions of the queries of Step 1, rather than their answers. On the other hand, note
that Algorithm 6.1 does not generalize directly to a distribution-free test, as the samples in Step 2
are performed in specific intervals, whose total weight might be arbitrarily small.

Theorem 6.2 For every ¢ > 0, Algorithm 6.1 is a I-sided non-adaptive e-test for convexity of
k-colorings of paths, with query complexity O(Nk/€®). The additional time complezity is O(Vk/e?)
if the labels of the vertices in the path are sorted, and O(n) otherwise.

The query complexity is clearly as stated. To implement Step 3, we scan the vertices queried in
Steps 1 and 2 from left to right while searching for a forbidden path (sorting the sampled vertices
would take us O(vk/e?) time if the vertices in the path are already sorted, and O(n) time otherwise;
these bounds also apply to sorting the vertices queried in Step 1 in order to compute the intervals
sampled in Step 2). Each time we arrive at the end of a segment of a certain color, we add it to a
list. A forbidden subpath exists in the sample if and only if we read a vertex in a color already in
the list. Thus the time complexity requirement is fulfilled.

Clearly, a convex coloring of 1" is accepted by the algorithm with probability 1, as it does not
contain any forbidden subpaths. Therefore, it remains to show that every coloring which is e-far
from being convex is rejected with probability at least %

Recall that for every color i € [k], V; is the set of vertices u € V' such that c(u) = i. We refer
to vertices in V; as i-vertices and to other vertices as non-i-vertices. For any subset U C V', let the
i-weight of U be the total weight of all i-vertices in U, and denote it by w;(U) £ w(V;nU). We
refer to the total weight of non-i-vertices in a set U, namely u(U) — u;(U), as its non-i-weight.

For every color i such that u;(V) > 0, let I; be the leftmost vertex such that p;([vg,l;]) >
epi(V)/4. Let Ly < v, 1;] be called i’s left side. Equivalently, let r; be the rightmost vertex such
that w;([ri,vr]) > eui(V) /4. Let R; = [ri,vr] be called i’s right side. Note that l; and r; are both
i-vertices. We refer to the (possibly empty) open interval (I;,7;) as i’s middle. We say that i is bad
if the non-i-weight of i’s middle is at least eu;(V)/4. Otherwise, we say that i is good. Define i’s
extended middle to be the closed interval M; oof [l;,ri]. Note that due to the minimality of i’s left
side and right side, we have p;(M;) > (1 —€/2)pi(V).

We say that a color i € [k] is abundant if p;(V)) > €/8k, and otherwise we say that i is non-
abundant. Let A C [k] be the set of all abundant colors, and let N4 = [k] \ A be the set of all
non-abundant colors. Note that X;en, pi(V) < €/8. We further denote the set of all abundant
good colors with Ag,oq and the set of all abundant bad colors with Apg.

Lemma 6.3 If c is e-far from being convex then 4, pi(V) > §g.

33

Proof. Assume on the contrary that >, ,, ui(V) < g. We define a convex coloring ¢ of T in
two phases. In Phase 1 we color all the vertices that belong to some M; for all the colors ¢ which
are abundant and good. We do so by examining the [;’s from left to right. For every i € Agooq we
color with ¢ all the vertices in M; that have not yet been colored in earlier stages. These vertices
must belong to one consecutive interval. Otherwise, there exists a color j such that M; is contained
within M; and is colored before M; is. However, this is impossible, since we consider the [;’s from
left to right and [; is to the right of /;. Hence, by the end of Phase 1 we have a partial convex
coloring defined on all the M;’s of abundant good colors. In Phase 2 we extend this partial convex
coloring into a complete convex coloring, by assigning to each uncolored segment one of the colors
of its neighboring colored segments.

We now show that ¢ is e-close to ¢, which contradicts the assumption that c is e-far from being
convex. By definition, for every good color i, the non-i-weight of M; is smaller than eu;(V)/4.
Hence, the non-i-weight of every interval colored with i in Phase 1 is smaller than eu;(V)/4, and
thus the total weight of vertices colored in Phase 1 differently than c is less than €/4. On the other
hand, since for every good color i we have p;(M;) > (1 — €/2)u;(V'), the total weight of vertices
colored in Phase 1 is

Z w(M;) > Z pi(M;) > Z (1 —¢e/2)pi(V)

7"€~Agood 7le-Agoacl 7"€~Agood
3e
= (1— — (V) — , > (1— - _ 2=
-2 (1= 3 wV) = 3 wn) | 2 (-2 -ty > 1>
ZE.Abad ZGNA

Hence, the total weight of vertices colored in Phase 2 is smaller than 3¢/4. We thus conclude that
the distance between ¢ and ¢ is smaller than e. O

Lemma 6.4 Suppose that c is e-far from being convex. Then with probability greater than %, there
exists an abundant bad color i such that Step 1 of Algorithm 6.1 queries at least one i-vertex from
each of i’s sides.

Proof. We first prove the claim for the case where £ < 16. From Lemma 6.3 we have
diedy,y Mi(V) = § > 0. Let i be a color in Apq. By the definition of L;, we have p1;(L;) > epi(V) /4,
and since i is abundant, we have p;(L;) > €2/32k > ¢2/512. Thus, the probability of not choosing
an i-vertex in L; in step 1 is smaller than

2 1280vVk/? 1980
1-— - 1.
< 512) < exp <) <0

Similarly, the probability of not choosing an i-vertex in R; in Step 1 is smaller than 0.1. Therefore,
the probability of not sampling an i-vertex from at least one of L; and R; is at most 0.2.

Suppose now that k > 16. Consider the half-closed interval S = [0, 1) of real numbers. Suppose
that we partition S into half-closed vertex intervals I, , . .., I, of length p(v) for each I, according
to the left to right order, that is, Iy, = [0, u(vr)),..., Iy, = [1 — p(vr),1). Note that uniformly
selecting a point z € S and then choosing the vertex corresponding to the interval containing x
is equivalent to selecting a vertex in V' according to the distribution u. We henceforth view the

34

sample in Step 1 of the algorithm as a sample of points in S. We say that a point x € S is an
i-point if x € I, for some i-vertex v.

Let 7; be the minimum point in S such that u;([0,7;]) = eni(V)/4, and denote L; = [0, 7;]. Let
7; be the maximum point in S such that p;([n;,1)) = eu;(V)/4, and denote R; = [n;,1). Clearly,
L; and R; are disjoint intervals. Moreover, note that sampling a point in L; leads to selecting a
vertex in L; and sampling a point in R; leads to selecting a vertex in R;. We prove the lemma by
showing that, with probability at least 3/4, there exists a color i € Ap,q such that the sample in
Step 1 contains an ¢-point € L; and an i-point y € R;.

For every i € Apyq, we consider the color set I;, created from the union of the (parts of)

vertex intervals of i-points in L;. Clearly, (L) = pi(L;) = eni(V)/4. We now define LWJ

disjoint subsets of I; of measure m each, which we call subcolor sets. Note that a subcolor set may
intersect several vertex intervals, and vice versa. However, this will not be a problem for us, as we
are interested in the sampling of points.

For the sake of the analysis, we partition the points sampled in Step 1 into two disjoint sets, X1
and Xy, where |X1| > 256v/k/e? and | Xo| > 1024v/k/e?. We next prove that, with high probability,
X1 contains samples from at least vk distinct subcolor sets in L;. For all colors 1 € Apgq we have
pi(Li) = §pi(V), and since these colors are abundant, we have p;(L;) > 3% From Lemma 6.3 we

have 3, 4, wi(V) > g, and thus 3 . 4 pi(Li) > % Note that for every i € Apqq, the part of

the color set I; that is not contained within subcolor sets is of measure smaller than ﬁ%- Hence,
the total measure of subcolor sets is greater than §—2 k:664k = 61, and thus, the expected number

of points in X that are within subcolor sets (henceforth subcolor points) is greater than 4Vk. By
the Chernoff bound, the probability that X contains less than 2k subcolor points is smaller than
p1 = exp(—%F) < exp(~2) < 1/6.

Suppose that X contains at least 2¢/k subcolor points. Since all the subcolor sets are of equal
measure, the probability of containing a subcolor point in X7, given that event, is equal for all
subcolor sets. Let k be the number of subcolor sets. Note that the subcolor sets cover more than
half of the measure of the L;’s, and therefore

p(ki)/2 32k 3 epi(V)

% > _— = —
2 2
e € /64k € 4

>k,
i€Apad

where the last inequality follows from Lemma 6.3.
Now, given that X; contains at least 2v/k subcolor points, the probability that these samples
come from less than vk subcolor sets is at most

:<E>\/E2\/E<6Ex/§\/%2\/%:€\/%\/ﬁ
P=\ve) \ % ~“\Vk % %

~ vk
As k > k, we obtain that ps < (ﬁ) , which can be shown to be smaller than 1/4 for any k > 16.

Suppose now that X contains samples from at least vk subcolor sets. Let C be the set of golors
1 € Apgq for which X 1 contains a sample in L;. Since the measure of every subcolor set is 664k, we

have ¥;ccp(L;) > By definition, it follows that Y;ccp;(R;) > Hence, the probability

64f = 64f

35

that X9 does not contain any i-point for some ¢ € C is at most

o
(¢ - < e 1024k 1024\ _ o
p3 = 64\/% exXp 764\/E7€2 = exp 764 .

Summing the probabilities p1, p2, and p3, we obtain that the probability of not sampling i-points
z € L; and y € R; for any bad abundant color is smaller then %. O

Proof of Theorem 6.2. Assume that the input coloring c is e-far from being convex. According
to Lemma 6.4, with probability greater than %, there exists a bad abundant color ¢ such that two
i-vertices are queried in Step 1, belonging to two different i-sides. Suppose that there exists such
a bad abundant color i. Fix two i-vertices which were queried from two different i-sides in Step
1, and call the interval between them the special interval. Clearly, if a non-i-vertex in the special
interval is queried in Step 1, then the algorithm rejects. We hence assume that only i-vertices, if
any, are queried in the special interval in the Step 1. Note that the special interval contains 4’s
middle, and thus its non-i-weight is at least eu;(V)/4 (as i is a bad color). Obviously, the i-weight
of the special interval is at most u;(V'). Therefore, the relative weight of non-i vertices in the special
interval is at least €/(4(1 + €/4)) > €/5. It is easy to see that even if we have queried additional
i-vertices in the special interval in Step 1, then there still exists a pair of consecutive ¢-vertices in
the sample such that the relative weight of non-i-vertices between them is at least ¢/5. Since in
Step 2 we query z > %ln 12 vertices between every pair of consecutive vertices, the probability of
not discovering a non-i-vertex in such an interval is at most 1/12.

Combining all the above, we have that an e-far coloring is accepted with probability smaller
than 1/4+1/12=1/3. O

Acknowledgements

We thank Sagi Snir for introducing us to the topic of convex colorings.
We thank Ronitt Rubinfeld and the anonymous referees for their helpful comments.

References

[1] N. Alon, M. Krivelevich, Ilan Newman and M. Szegedy, Regular languages are testable with a
constant number of queries, Siam Journal on Computing 30(6):1842-1862, 2001.

[2] M. Blum, M. Luby and R. Rubinfeld, Self-testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences 47:549-595, 1993 (a preliminary version
appeared in Proceedings of the 22" STOC, 1990).

[3] S. Chakraborty, E. Fischer, O. Lachish, A. Matsliah and I. Newman: Testing st-Connectivity,
Proceedings of the 111" RANDOM and the 10" APPROX (2007): 380-394.

[4] E. Fischer, The art of uninformed decisions: A primer to property testing, Bulletin of the
FEuropean Association for Theoretical Computer Science, 75:97-126, Section 8, 2001. Also in
Current Trends in Theoretical Computer Science: The Challenge of the New Century (G. Paun,
G. Rozenberg and A. Salomaa eds.), Vol. T 229-264, World Scientific Publishing, 2004.

36

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[17]

18]

E. Fischer, O. Lachish, A. Matsliah, I. Newman and O. Yahalom, On the query complexity of
testing orientations for being Eulerian, Proceedings of the 11" APPROX and 12" RANDOM,
LNCS 5171: 402-415, Springer-Verlag, 2008.

E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld and A. Samorodnitsky,
Monotonicity testing over general poset domains, Proceedings of the 34th STOC, pages 474—
483, 2002.

O. Goldreich, S. Goldwasser and D. Ron, Propery testing and its connection to learning and
approximation, Journal of the ACM, 45(4):653-750, 1998.

O. Goldreich and D. Ron, Property testing in bounded degree graphs, Algorithmica, 32, 302—
343, 2002.

S. Halevy and E. Kushilevitz, Distribution-free connectivity testing, In Proceedings of the 8"
RANDOM and the ™" APPROX: 393-404, 2004.
S. Halevy and E. Kushilevitz, Distribution-free property testing, In Proceedings of the T

RANDOM and the 6" APPROX: 302-317, 2003.

S. Halevy, O. Lachish, I. Newman and D. Tsur, Testing orientation properties, technical report,
FElectronic Colloquium on Computational Complexity (ECCC), Report No. 153, 2005.

S. Halevy, O. Lachish, I. Newman and D. Tsur, Testing properties of constraint-graphs, Pro-
ceedings of the 22" IEEE Annual Conference on Computational Complexity (CCC): 264-277,
2007.

D. Harel and R. E. Tarjan, Fast algorithms for finding nearest common ancestor, SIAM Journal
on Computing, 13(2):338-355, 1984.

D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-
Wesley, 1968. Second edition, 1973.

S. Moran and S. Snir, Convex recolorings of phylogenetic trees: definitions, hardness results
and algorithms, Workshop on Algorithms and Data Structures (WADS):218-232, 2005.

B.M.E. Moret and T. Warnow, Reconstructing optimal phylogenetic trees: A challenge in
experimental algorithmics, In: Experimental Algorithmics, Lecture Notes in Computer Science
2547, 163—-180 Springer Verlag, 2002.

L. Nakhleh, T. Warnow, D. Ringe, and S.N. Evans, A comparison of phylogenetic reconstruc-
tion methods on an IE dataset, Transactions of the Philological Society, 3(2): 171-192, 2005.

I. Newman, Testing of Function that have small width Branching Programs, SIAM Journal on
Computing 31(5):1557-1570, 2002 (a preliminary version appeared in Proceedings of the 41%
FOCS, 2000).

M. Parnas and D. Ron, Testing the diameter of graphs, Random Structures and Algorithms,
20(2):165-183, 2002.

37

[20] D. Ron, Property testing (a tutorial), In: Handbook of Randomized Computing (S. Rajasekaran,
P. M. Pardalos, J. H. Reif and J. D. P. Rolim eds), Vol. II, 597649, Kluwer Academic Pub-
lishers, 2001.

[21] R. Rubinfeld and M. Sudan, Robust characterization of polynomials with applications to pro-
gram testing, SIAM Journal of Computing, 25(2):252-271, 1996.

[22] C. Semple and M. Steel, Phylogenetics, Oxford University Press, 2003.

[23] B. Schieber and U. Vishkin, On finding lowest common ancestors: Simplifications and paral-
lelization, SIAM Journal on Computing, 17:1253-1262, 1988.

[24] A. C. Yao, Probabilistic computation, towards a unified measure of complexity, In Proceedings
of the 18" IEEE FOCS: 222-227, 1977.

38

