
Solutions to Exercise 1

Random linear equations

First we would indeed show that with probability more than 1
2 there exists no non-zero solution

for the random system over (Z2)
n. Let x = (x1, . . . , xn) ∈ (Z2)

n \ {0} be a non-zero vector.

For every j, the probability that
∑n

j=1 ai,jxj = 0 is exactly 1
2 (it is exactly the probability that∑

xj=0 ai,j is odd). Since there are n+1 such equations, all chosen independently, it means that

the probability that x is a solution to the entire system is exactly 2−n−1. Since there are 2n− 1

nonzero vectors in (Z2)
n, by the union bound this gives a probability of more than 1

2 that none

of them is a solution to this equation system.

Now to show that the above implies what we need, we will show that any non-zero solution over

Rn implies a non-zero solution over (Z2)
n. If there is a non-zero solution over Rn, then there

exists such a solution that involves only rational numbers, because the equation system itself has

only rational coefficients (in fact only 0 and 1). Let u be such a solution. Then, by multiplying

it by a common multiple of all the denominators, we get a vector v which is a solution involving

only integer numbers (the system is homogeneous so a multiple of a solution is also a solution).

Next, let k ≥ 0 be the maximal integer such that 2k divides all the coordinates of v. Then

w = 2−kv is also a solution involving only integers, and additionally it has at least one odd

coordinate. Finally, set x by letting xi be the parity of wi, i.e. 1 if wi is odd and 0 if wi is even.

It is not very hard to see now that x is a non-zero solution of the system over (Z2)
n.

Games with envelopes

Denote ak = Pr[X = k] for every k. Assuming that the opened envelope holds the amount k

for an even k, the conditional expectation of the amount in the second envelope is equal to

(2kak + 1
2kak/2)/(ak + ak/2). This is because the conditional probability of the other envelope

having 2k is (12 · ak)/(12 · ak + 1
2 · ak/2) = ak/(ak + ak/2), while the conditional probability of

the other envelope having 1
2k is ak/(ak + ak/2). This means that for an even k, it is desirable

to switch only if (2kak + 1
2kak/2)/(ak + ak/2) > k, i.e. ak >

1
2ak/2 (it is still not undesirable to

switch also if this inequality is not made strict).

• Let r be such that ar > 0 (there must be such an r if X indeed takes integer values over

a probability space). If it is not undesirable to switch for every k that can be found in

an envelope, then in particular for every l > 0 we have ar2l ≥ 1
2ar2l−1 , and by induction

ar2l ≥ 2−lar. This allows us to bound the expectation from below to contradict the finite

expectation assumption: E[X] =
∑∞

k=1 kak ≥
∑∞

l=0 r2
lar2l ≥

∑∞
l=0 rar =∞.

• Take for example the probability distribution over the integers that yields ak = 0 if k is

not a power of 2 and a2l = (23)l+1 for all l ≥ 0. This clearly is a probability distribution

(the sum of all probabilities is 1) and satisfies ak >
1
2ak/2 for every k that has a non-zero

probability to appear in any of the envelopes. Note: a variation of this construction can
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satisfy the extra condition that all amounts have a non-zero probability to appear in an

envelope. Try finding that one for yourselves.

• Take the distribution for which ak = 0 if k is even, and a2l−1 = 2−l for all l ≥ 1. This

clearly has finite expectation, but when finding an odd number in an envelope it is always

better to switch, because in this case the other envelope would contain twice the amount

with conditional probability 1.
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Solutions to Exercise 2

Satisfying part of a CNF

First, without loss of generality we can assume that the CNF satisfies all of the following (note

that we allow the same clause to appear and be counted more than once all throughout the

following).

• No clause is of the form ¬xi. The reason is that if there exist such a clause, then we can

replace xi with its negation all throughout the CNF. This will not create new clauses of

the type ¬xi because the CNF does not contain both clauses ¬xi and xi.

• Every clause that contains a positive literal consists of only this positive literal. For clauses

containing positive literals that have more than one literal, we just replace them with the

lowest index positive literal. Any assignment to the variables that satisfies the new clause

will also satisfy the old clause, so by this action we did not increase the maximum number

of clauses satisfiable at once.

• Every clause without positive literals consists of exactly two negative literals. By the

above we already know that such a clause has to contain at least two literals, and clauses

containing more than two can be replaces with clauses containing only the lowest index

two negative literals.

When the CNF satisfies all the above, an expectation argument is used. Every variable xi is

independently chosen to be 1 with probability 1
2(
√

5 − 1), and 0 with probability 1
2(1 −

√
5).

A clause of the type xj will be satisfied with probability 1
2(
√

5− 1), while a clause of the type

¬xj ∨ ¬xk will be satisfied with probability 1 − (12(1 −
√

5))2 = 1
2(
√

5 − 1). By the linearity

of expectation the expected total number of satisfied clauses is 1
2(1−

√
5)m, which means that

there exists an assignment as required.

Isolating multisets

This proof generally follows the proof for the isolating lemma of sets, only here we keep for

every a ∈ A not two but r + 1 values W0,a, . . . ,Wr,a, where Ws,a is defined as the minimum

weight among all members of F that contain a exactly s times.

Now a is called ambiguous if there exists s < t for which Ws,a = Wt,a. Proving that if there are

no ambiguous members of A then there is a unique member of F achieving a minimum is done

in much the same way as the proof done in class. Defining Vs,a = Ws,a − s×w(a) we note that

Vs,a is fully determined by the weights of the members of A \ a. Now Ws,a = Wt,a if and only if

Vt,a−Vs,a = (t− s)w(a), and (as in class) this happens for at most one value of w(a) and hence

with probability at most 1
c .

By a simple union bound over s, t and a the above would give us already a 1 −
(
r+1
2

)
n
c lower

bound on the probability that there is a unique minimal weight member of F , but we want
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more. For this we look at any fixed weight function for A \ a, and prove that there are only at

most r corresponding possible values for w(a) which would make a ambiguous.

This follows immediately from the following claim: Fixing the weight on all but a, we say that

i distinguishes s for a, if for some t > s the value w(a) = i makes Ws,a and Wt,a both equal

and minimum among W1,a, . . . ,Wr,a. The claim is that for every s < r, there is at most one i

that distinguishes it for a (and clearly r itself is never distinguished). Assume on the contrary

that both i and j distinguish s for a, where i < j. If we set xk to be the value of Wk,a where

w(a) = i, then for w(a) = j we would have Wk,a = xk + (j − i)k, and hence for every t′ > s

we have now Wt′,a −Ws,a = xt′ − xs + (t′ − s)(j − i) > xt′ − xs. Since xt′ − xs ≥ 0 (we used

here that s was distinguished by i and hence xs is minimal among the xk) this gives that there

exists no t′ that can make j distinguish s for a.

For the counter example, we will show a family of multisets over A = {a, b} for which every

weight function w : A → {1, 2, 3} will have two sets of equal weights (noting that the formula

for simple sets would have given 1− 2
3 > 0). For simplicity we denote by (i, j) the multiset with

i copies of a and j copies of b. The family:

F = {(13, 0), (10, 1), (8, 2), (5, 4), (4, 5), (2, 8), (1, 10), (0, 13)}

This construction is not magical: All possible ratios w(a)/w(b) were ordered in a descending

order, and then the multisets were constructed so that the difference between each two consec-

utive multisets (in the presented order) has the corresponding ratio in the ordered list. Then

for every possible w indeed the two consecutive multisets corresponding to w(a)/w(b) are the

two multisets with minimal weight.
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Solutions to Exercise 3

Fixed points in a permutation

This question is not too hard to solve by an exact calculation of the probability for no fixed

points using the inclusion-exclusion principle. Also, there was some confusion in the question

because of grammar (too many negations in a sentence). Still, it is instructive to see how the

probability for no fixed points can be bounded by using the second moment in a non-standard

way.

Let X = f(σ) denote the random variable of the number of fixed points. X =
∑n

i=1Xi, where

Xi is the indicator variable for the event that σ(i) = i. Hence E[X] =
∑n

i=1 E[Xi] = n · 1n = 1.

Also, V[Xi] = 1
n −

1
n2 and Cov[Xi, Xj ] = 1

n(n−1) −
1
n2 = 1

n2(n−1) , and so V[X] = n( 1
n −

1
n2 ) +

n(n− 1)( 1
n2(n−1)) = 1.

Now we prove that these imply that Pr[X = 0] < 19
20 . For convenience denote pi = Pr[X = i],

and assume on the contrary that p0 ≥ 19
20 . This means that p1+2p2 ≤ 1

10 (because
∑∞

i=0 pi = 1),

and so using 1 = E[X] =
∑∞

i=0 ipi we get
∑∞

i=3 ipi ≥
9
10 . Finally we write

V[X] = E[X2]− (E[X])2 = (

∞∑
i=0

i2pi)− 1 ≥ (

∞∑
i=3

i2pi)− 1 ≥ 3(

∞∑
i=3

ipi)− 1 ≥ 17

10
> 1,

a contradiction.

A martingale inequality

For the equality, we write by the linearity of expectation:

n∑
i=1

E[(Xi −Xi−1)
2] = E[X2

n]− E[X2
0 ] + 2

n∑
i=1

E[(Xi−1 −Xi)Xi−1]

Now to finish this part we need to prove for every i that E[(Xi−1 −Xi)Xi−1] = 0. This follows

from the martingale’s lack of memory. Let us do it using a basic method:

E[(Xi−1 −Xi)Xi−1] =
∑

Pr[Xi−1=a]>0

E[(Xi−1 −Xi)Xi−1|Xi − 1 = a]Pr[Xi−1 = a]

=
∑

Pr[Xi−1=a]>0

a(a− E[Xi|Xi − 1 = a])Pr[Xi−1 = a]

= 0

Now for the inequality. To prove it we shall prove that E[X2
n] ≥ E[X2

0 ]. For this we prove

for every a for which Pr[X0 = a] > 0 that E[X2
n|X0 = a] ≥ a2. We know from arguments we

have seen in class that E[Xn|X0 = a] = a. Now what we need is a direct consequence of e.g.

E[(Xn − a)2|X0 = a] ≥ 0.
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Exposing a permutation

The lemma in class will not work here because a permutation chosen uniformly at random is not

expressible as choosing each value σ(i) independently of the others. We will directly assume

that a permutation σ̃ was already chosen, and used for setting the values of the martingale

Xi = E[c(σ)|σ(1) = σ̃(1), . . . , σ(i) = σ̃(i)].

We note that the probability space for a uniformly random choice of σ conditioned on the

values σ(1) = σ̃(1), . . . , σ(i − 1) = σ̃(i − 1) is identical to the following: Take a uniformly

random choice of σ conditioned on σ(1) = σ̃(1), . . . , σ(i) = σ̃(i), and after that swap σ(i) with

σ(k) where i ≤ k ≤ n is chosen uniformly among the n− k + 1 possible choices.

To complete the proof we will show that a swap of σ(i) with any i ≤ k ≤ n results in a change

of c(σ) by no more than 1. There are three cases.

• If k = i then there is no change in σ, and so the change in c(σ) is 0.

• If in the decomposition to disjoint cycles of σ, the nodes i and k are different but lie in

the same cycle, then after the swap this cycle will be split into two cycles, and all other

cycles of the decomposition will remain the same. Thus c(σ) increases by 1.

• If in the decomposition to disjoint cycles of σ, the nodes i and k lie in different cycles,

then after the swap these cycles will be replaced by one cycle spanning the union of their

vertices. All other cycles again remain the same, and thus c(σ) decreases by 1.
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Solutions to Exercise 4

Kleitman for multisets

This will be proved by an application of the FKG theorem over the set S′ = S × {1, . . . , r}.
Given a multiset C over S with up to r copies of each element, we say that the set C ′ ⊆ S′

represents C if the following occurs: For each a ∈ S, setting 0 ≤ i ≤ r to be the number of

its appearances in C, C ′ contains the elements (a, 1), (a, 2), . . . , (a, i), and C ′ contains no other

elements.

Note that any set D ⊆ S′ represents a multiset C if and only if every (a, i) ∈ D implies

(a, j) ∈ D for every j < i and a ∈ S, and that moving to the representing set is a one to one

correspondence. Moreover, if A′ represents A and B′ represents B then A′ ⊆ B′ if and only if

A ⊆ B.

Set δ : P(S′) → R+ so that δ(D) = 1 if D represents some multiset C over S, and δ(D) = 0

otherwise. Note that this is a log-super-modular function because ifA andB represents multisets

over S, then so do A ∩B and A ∪B.

Now set f(C) = 1 if C contains any D ⊆ S′ that represents a member of A and f(C) = 0

otherwise, and set g(C) = 1 if C contains any D ⊆ S′ that represents a member of B and

g(C) = 0 otherwise. These functions are easily shown to be monotone nondecreasing over

P(S′). In addition, if f(C) = 1 and C represents some multiset then it represents a member of

A, because A is monotone nondecreasing and moving to representations (as commented above)

preserves containments. The same holds for g with respect to B.

Now it remains to write and analyse the FKG inequation∑
C⊆S′

f(C)δ(C)

∑
C⊆S′

g(C)δ(C)

 ≤
∑

C⊆S′
f(C)g(C)δ(C)

∑
C⊆S′

δ(C)

 .

The following facts finish the proof:

•
(∑

C⊆S′ f(C)δ(C)
)

= |A|, because δ(C) = 1 and f(C) = 1 if and only if C represents a

multiset (by the definition of δ) which is a member of A (by the discussion following the

definition of f).

• Similarly,
(∑

C⊆S′ g(C)δ(C)
)

= |B|.

•
(∑

C⊆S′ f(C)g(C)δ(C)
)

= |A ∩ B| by what we know of f , g and δ.

• Finally, by the definition of δ and the number of possible multisets over S we have(∑
C⊆S′ δ(C)

)
= (r + 1)|S|.
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Walking on hypercubes

We define a joint distribution over X = X0, X1, . . . and Y = Y0, Y1, . . .. We start by set-

ting X0 = (0, . . . , 0) with probability 1 while Y0 is drawn uniformly from {0, 1}n. Now

given Xk = (a1, . . . , an) and Yk = (b1, . . . , bn), we choose values for Xk+1 = (c1, . . . , cn) and

Yk+1 = (d1, . . . , dn) as per the following:

First we uniformly choose 1 ≤ i ≤ n. For all j 6= i we set cj = aj and dj = bj . Now if ai = bi,

then with probability 1
2 we set ci = di = ai and with probability 1

2 we set ci = di = 1 − ai. If

ai 6= bi, then with probability 1
2 we set ci = di = ai and with probability 1

2 we set ci = di = bi.

Now conditioned on X0, . . . , Xk and Y0, . . . , Yk (but not on Yk+1), the distribution of Xk+1 de-

pends only on the value of Xk and is identical to a single step taken according to the distribution

defined in the question. This means that X is indeed distributed like the random sequence of

the question. Also, conditioned on X0, . . . , Xk and Y0, . . . , Yk (but not on Yk+1), the distribu-

tion of Yk+1 depends only on the value of Yk and has the same transition probabilities as those

of X. Therefor the unconditional distribution of each Yk is the uniform one, because it is the

stationary distribution for this transition matrix.

Now given k we define c such that k = n(lnn + c), and show that if c is large enough then

the variation distance between Xk and Yk is smaller than ε (which is what we need). For

1 ≤ i ≤ n let Ei denote the event that i was chosen at least once in the transitions described

above leading from (X0, Y0) to (Xk, Yk). Now the probability of Ei not to occur is at most

(1 − 1
n)k < e−k/n = e−c/n. For c large enough this is smaller than ε/n. Now setting E as the

conjunction of all events Ei, the probability of E not to occur is bounded (by the union bound)

by ε. Finally, whenever E occurs we have Xk = Yk, because once an i is chosen in step s, the

i’th coordinate of Xt and Yt will remain identical to each other for all t > s. This allows us to

use what was shown in Assignment 0 to bound the distance between the two distributions by ε.
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