
THEORY OF COMPUTING, Volume 0 (2006), pp. 1–10
http://theoryofcomputing.org

Tolerant Versus Intolerant Testing for
Boolean Properties∗

Eldar Fischer† Lance Fortnow

Received: 2006; published: 2006.

Abstract: A property tester with high probability accepts inputs satisfying a given prop-
erty and rejects inputs that are far from satisfying it. A tolerant property tester, as defined
by Parnas, Ron and Rubinfeld, must also accept inputs that are close enough to satisfying
the property. We construct two properties of binary functions for which there exists a test
making a constant number of queries, but yet there exists no such tolerant test. The first
construction uses Hadamard codes and long codes. Then, using Probabilistically Check-
able Proofs of Proximity as constructed by Ben-Sasson et. al., we exhibit a property which
has constant query intolerant testers but for which any tolerant tester requires nΩ(1) queries.

ACM Classification: G.3, F.2.2

AMS Classification: 68Q99, 68W20

Key words and phrases: Property Testing, Tolerant Testing, PCP of Proximity

1 Introduction

Combinatorial property testing deals with the following task: For a fixed ε > 0 and a fixed property R,
distinguish using as few queries as possible (with high confidence) between the case that an input of
length m satisfies R, and the case that the input is ε-far from satisfying R, i.e., the input differs in at least
an ε-fraction of the bits from every string satisfying R. In our context the inputs are Boolean, and the

∗Extended abstract appeared in Proceedings of the 20th IEEE Conference on Computational Complexity.
†Research supported in part by an Israel Science Foundation grant number 55/03.

Authors retain copyright to their papers and grant “Theory of Computing” unlimited
rights to publish the paper electronically and in hard copy. Use of the article is permit-
ted as long as the author(s) and the journal are properly acknowledged. For the detailed
copyright statement, see http://theoryofcomputing.org/copyright.html.

c© 2006 Eldar Fischer and Lance Fortnow

http://theoryofcomputing.org/copyright.html

E. FISCHER, L. FORTNOW

distance from R is measured by the minimum number of bits that have to be modified in the input to
make it satisfy R, divided by the input length m. For the purpose here we are mainly interested in tests
that have a number of queries that depends only on the approximation parameter ε and is independent
of the input length. Properties that admit such algorithms are called testable.

Blum, Luby and Rubinfeld [7] were the first to investigate a question formulated in terms of property
testing, and Rubinfeld and Sudan [21] formally defined the general notion of property testing. Goldreich,
Goldwasser and Ron [15] investigated property testing in the combinatorial context, where they first
formalized the testing of combinatorial objects such as graphs. In recent years the field of property
testing has enjoyed rapid growth, as witnessed in the surveys of Ron [20] and Fischer [11].

Since even a correct input may have a small amount of noise, Parnas, Ron and Rubinfeld [18]
have recently started investigating property testing algorithms which are guaranteed to accept (with
high confidence) not only inputs that satisfy the property, but also inputs that are sufficiently close to
satisfying it. The following formal definition highlights this distinction.

Definition 1. Given a property R, an ε-test for R is a randomized algorithm that is guaranteed to accept
with probability at least 2

3 any input that satisfies R, and is guaranteed to reject with probability at least
2
3 any input that is ε-far from satisfying R. We say that the property is testable if for every ε > 0 there
exists an ε-test whose number of queries is independent of the input size m.

A 1-sided ε-test for R is an ε-test as above that in addition is guaranteed to accept any input that
satisfies R with probability 1.

A tolerant (ε,δ)-test for R is an ε-test for R that in addition is guaranteed to accept with probability
at least 2

3 any input that is δ -close to satisfying R, where an input is said to be δ -close to satisfying R
if it is not δ -far from satisfying R. We say that a property is tolerantly testable if for every ε > 0 there
exists a constant δ > 0 for which there exists a (ε,δ)-test whose number of queries is independent of m.

Many properties that are testable as per the definition above are also tolerantly testable. Alon et.
al. [1] implicitly give tolerant tests for the testable graph properties, and such tests also follow from
the canonical testing result of Goldreich and Trevisan [16]. Fischer and Newman [13] prove an even
stronger result that every testable graph property is also (ε,δ)-testable for any δ < ε , showing that for
the dense graph model testability in fact implies that the distance of an input graph from a property can
be estimated using a number of queries that depends only on the additive approximation term.

For non-Boolean properties there are easy examples of properties where the number of queries re-
quired for an ε-test may be much smaller than the number required for an (ε,δ)-test. Consider the
following example that uses bounds on testing invertability and inverseness of functions, implicit in the
works of Ergün et. al. [9] and Ergün, Kumar and Rubinfeld [10] about testing for element distinctness
and multiset equality. Consider the property of a sequence of n2 numbers consisting of (the representa-
tion of) n−1 copies of a function f : {1, . . . ,n}→ {1, . . . ,n} and one copy of its inverse function g. An
easy test follows from uniformly sampling values i and checking that indeed f (g(i)) = g(f (i)) = i (as
well as sampling from the supposed n− 1 copies of f and checking that they agree with each other on
i). On the other hand, a tolerant test would have to ignore the representation of g altogether because the
encoding of g makes up only a tiny part of the total input, and testing whether a function f has some
inverse is hard.

If we try to directly convert such examples to properties of Boolean functions, for example by taking
the Boolean representation of the values of f and g, then with some tweaking we can see a difference

THEORY OF COMPUTING, Volume 0 (2006), pp. 1–10 2

TOLERANT VERSUS INTOLERANT TESTING

in the number of required queries between a tolerant and an intolerant test, but it will typically be
between two different constants. This still leaves open the question of whether every property, for which
there exists a (constant query complexity) ε-test for every ε > 0, admits also constant query complexity
tolerant tests. In this paper we prove that this is not the case, and construct properties that admit intolerant
tests with a constant number of queries but admit no such tolerant tests.

Theorem 1.1. There exists a property R, such that for every ε there exists an ε-test for R making a
number of queries that depends only on ε (and not on the input size), while for every constant 0 < δ < 1

4
and q there exists no tolerant (1

4 ,δ)-test making only q queries (for large enough inputs).

The proof of the above combines results from several topics of property testing, including one of
the very first results in this field, linearity testing [7]. Alternatively, using the recently constructed
Probabilistically Checkable Proofs of Proximity by Ben-Sasson et. al. [5] we can prove a strengthening
of Theorem 1.1.

Theorem 1.2. There exists a property R, such that for every ε there exists an ε-test for R making a
number of queries that depends only on ε (and not on the input size), while there exists a constant c > 0
such that for every constant 0 < δ < 1

4 there exists no tolerant (1
4 ,δ)-test making only nc queries (for

large enough inputs).

The proof of Theorem 1.2 relies on the heavy machinery of Probabilistically Checkable Proofs. We
present its proof following a separate direct proof of Theorem 1.1 (which, if analyzed carefully, would
have given an Ω(log logn) lower bound on the query complexity).

The rest of the paper is organized as follows. In Section 2 we present the basic building blocks for
the proof of Theorem 1.1, for which we need results that were proven all throughout the history of the
field, and in Section 3 we string them together proving Theorem 1.1. Section 4 contains the proof of
Theorem 1.2, which gives better lower bounds but requires less direct methods.

2 Preliminaries

We base our first property on Hadamard codes and long codes. In the following we somewhat abuse
notation, and when clear from context refer by the word “code” both to a legal codeword, and to the
set of all allowed codewords. In particular, the term “a property of a code” refers to a subset of the
set of codewords. In the following we will use the fact that some properties of codes are testable (i.e.
there exists an ε-test for the property in the usual sense if we know in advance that the input is a legal
codeword), while other properties of codes are not testable.

A Hadamard code is a string x of length 2n, for which there exists a string y of length n such that for
every i the ith bit of x is equal to y · i (where we use the binary representation of i, and the “dot product” is
defined over Z2 as a ·b =

⊕n
j=1 a jb j). Equivalently, a string x is a Hadamard code if and only if f (i) = xi

is a linear function over Z2. We shall use the two definitions interchangeably.
Let f1, . . . , f22n be an enumeration of all of the functions on inputs of length n, according to the lexi-

cographic order on the sequence of their values on the domain {0,1}n. A long code is a string x of length
22n

such that xi = fi(y) for every j for some fixed y of length n. Here too there is a useful equivalence.
The string x is a long code if and only if g(i) = xi is a dictator function, i.e., when there exists a j for the

THEORY OF COMPUTING, Volume 0 (2006), pp. 1–10 3

E. FISCHER, L. FORTNOW

above g : {0,1}2n → {0,1} such that for all z ∈ {0,1}2n
, g(z) = z j (note that in particular a long code is

also linear). We get the correspondence by setting g(i) = fi(j). The extreme redundancy of long codes
has proven itself to be very useful in complexity theory, for example in the optimal inapproximability
results of Håstad [17].

The possibility for testing that a function is a Hadamard code in fact stems from one of the very first
results in the field of property testing.

Lemma 2.1 ([7]). For every ε , the property that a Boolean function f : {0,1}n→ {0,1} is linear (over
the field Z2) is testable with a 1-sided test using a number of queries that depends only on ε .

Since the property that a function h : {0,1}n→ {0,1} is a Hadamard code of some y = b1, . . . ,bn is
identical to the property of h being linear over Z2, we can use the above for testing this. Testing for long
codes follows from somewhat more recent results.

Lemma 2.2 ([4, 19]). For every ε , the property that a Boolean function f : {0,1}m→{0,1} is a dictator
function is testable with a 1-sided test using a number of queries that depends only on ε .

Properties of long codes of binary strings can be easily tested for, since a proper long code of a
string contains its corresponding value for every possible function. Thus, given a code L, we can test
it by looking at its value for the function that describes the tested property itself. Further details are
provided in the proof of Lemma 3.1 below.

On the other hand, there exist properties of Hadamard codes that are hard to test. Such properties
have been used to prove the existence of properties that can be easily tested only using a quantum
algorithm, by Buhrman, Fortnow, Newman and Röhrig [8], and another property of Hadamard codes
with additional features was implicitly used also by Fischer et. al. [12].

Lemma 2.3 ([8]). There exist properties of Hadamard codes that cannot be 1
3 -tested (even by a 2-sided

test) with a constant number of queries.

The work of Fischer et. al. [12] implies that one cannot distinguish with a constant number of queries
between a linear Boolean function depending on exactly b1

2 nc variables and one that depends on exactly
b1

2 nc+2 variables, and so the property of being a Hadamard code of a string with exactly b1
2 nc nonzero

bits is not testable.
We use such a property of a Hadamard code because it will always yield an easy “long-code assisted

test”, despite the Hadamard code being hard to test in an “unassisted” manner. In essence, our input is
supposed to contain a Hadamard code and a long code that extends the Hadamard code (i.e. both codes
encode the same “original value”). Using the discussion above together with the self-correction features
of Hadamard codes and long codes, we will show how to create a test by checking the Hadamard code
against the long code, and then testing the long code for our property. However, we cannot test the
Hadamard code alone if we are not allowed to look at the long code.

The notion of “assisted tests” reminds one of the essence of the work of Ergün, Kumar and Rubin-
feld [10] and Batu, Rubinfeld and White [3], only here the “witness” can have exponential size because
we can do weighting by replication. For the construction with the better lower bounds, we will use a
strong result of Ben-Sasson et. al. [5] about assisted tests.

With all the above components in hand, we are now ready to construct a property that has an easy
test but not a tolerant one.

THEORY OF COMPUTING, Volume 0 (2006), pp. 1–10 4

TOLERANT VERSUS INTOLERANT TESTING

3 Proof of Theorem 1.1

In the following, for a parameter n, we consider inputs whose size is (2n +1)22n
. We consider the input

as composed of one function L from the set of functions { f | f : {0,1}n→{0,1}} to {0,1} (the function
L takes 22n

bits to write down), and l = 22n
functions h1, . . . ,hl from {0,1}n to {0,1} (each such function

takes 2n bits to write down), where all functions are represented by their truth tables.
We pick a property U of Hadamard codes that satisfies Lemma 2.3, and define Property R as the

property of the input satisfying the following: All the functions h1, . . . ,hl are identical and are equal to
a Hadamard code of some x ∈ {0,1}n that satisfies property U, and the function L is the long code of
this same x.

Lemma 3.1. Property R admits a 1-sided ε-test with a constant number of queries for every ε .

Proof. We assume that ε < 1
8 , and do the following.

• Repeating independently 100ε−1 times, we select a uniformly random x ∈ {0,1}n, a uniformly
random 1≤ i≤ l, and check that the bit corresponding to h1(x) is indeed equal to that of hi(x). If
any of these checks fails, we reject the input.

• Using Lemma 2.1 we perform a 1
2 ε-test of h1(x) for the property of being a linear function (i.e.

being a Hadamard code of some b1, . . . ,bn). We amplify the success probability of the test to 19
20 ,

so that the probability of a false positive answer will be no greater than 1
20 .

• Using Lemma 2.2 we perform an ε-test of L(f) for the property of being a long code of some
x ∈ {0,1}n. Again we amplify the success probability of the test to 19

20 .

• Denote for any y ∈ {0,1}n by χy : {0,1}n → {0,1} the corresponding Hadamard code (i.e. for
y = (a1, . . . ,an), we set χy(b1, . . . ,bn) =

⊕n
i=1 aibi). We perform 100 iterations of the following:

We select a uniformly random y ∈ {0,1}n, a uniformly random f : {0,1}n → {0,1}, and check
that h1(y) = L(f)⊕L(f ⊕χy), rejecting the input if any of the checks fail.

• Now let u(x) : {0,1}n → {0,1} denote the indicator function of Property U , i.e. u(x) = 1 if and
only if the Hadamard code of x satisfies Property U . We now perform 100 iterations of choosing
a uniformly random f : {0,1}n→ {0,1}, and checking that L(f)⊕L(f ⊕u) = 1, rejecting if any
of these checks fail.

On one hand, it is clear that an input that satisfies Property R will be accepted with probability 1. On
the other hand, if an input is accepted with probability at least 2

3 , then all of the following hold.

• The portion of the input that corresponds to h2(x), . . . ,hl(x) is 1
2 ε-close to being l− 1 copies of

the function h1(x).

• h1(x) is 1
2 ε-close to being the Hadamard code of some (b1, . . . ,bn) ∈ {0,1}n. With the previous

item this means that the restriction of the input to h1(x), . . . ,hl(x) is ε-close to being l copies of
the Hadamard code of b1, . . . ,bn.

THEORY OF COMPUTING, Volume 0 (2006), pp. 1–10 5

E. FISCHER, L. FORTNOW

• L(f) is ε-close to being a long code of some (c1, . . . ,cn) ∈ {0,1}n.

• (b1, . . . ,bn) = (c1, . . . ,cn). Otherwise every iteration of the check in the fourth item above would
fail with probability at least 1

8 . This is since doing such a check between an actual Hadamard code
and an actual long code of differing strings would fail with probability 1

2 ; the additional loss of 3
8

in the probability is because h1(x) is only guaranteed to be 1
16 close to being the Hadamard code

of b1, . . . ,bn, and L(f) is only guaranteed to be 1
8 -close to the long code of c1, . . . ,cn.

• b1, . . . ,bn satisfy Property U (and with the above items this means that the input as a whole is in
fact ε-close to satisfying Property R). The reason is that otherwise every iteration of the check in
the fifth item of the test would fail with probability at least 1−2ε > 3

4 .

The above complete the proof of the test.

Lemma 3.2. There exist no constants δ and q, for which property R can be (1
4 ,δ)-tested for every n

using only q queries.

Proof. We may assume that δ < 1
12 . We show that if there exists a (1

4 ,δ)-test for R, then for every large
enough n there exists a 1

3 -test for U (not necessarily a tolerant one) making only q queries, which is
known not to exist by Lemma 2.3.

Given an input h : {0,1}n→{0,1}which we would like to test for Property U , we construct an input
for Property R as follows: h1, . . . ,hl will all be identical to h, and L will be arbitrarily set to the all-zero
function. Note that any single query to the new input can be answered by making a single query (or no
query) to the original input.

The next thing to note is that for n large enough, if h satisfies U then the new input is δ -close to
satisfying R, because for n large enough the number of bits in the function L is less than a δ -fraction
of the total number of bits in the input, while h1, . . . ,hl clearly satisfy all requirements not concerning
L in the definition of R. On the other hand, if the new input is 1

4 -close to satisfying Property R, then h
is necessarily 1

3 -close to satisfying Property U , because of what the definition of Property R states for
h1, . . . ,hl . We thus obtain our 1

3 -test for U .

The above two lemmas complete the proof of Theorem 1.1.

4 PCPs of Proximity and Theorem 1.2

This section gives a proof of Theorem 1.2 that strengthens Theorem 1.1. We first define the construction
and cite the main lemma that we will use.

Property testing has some common origins with Probabilistically Checkable Proofs, and Ergün et.
al. [10] and Batu et. al. [3] investigated this connection further, with regards to using a PCP witness for
an input.

Definition 2. Given a promise problem and a Boolean input v1, . . . ,vn, a (1-sided) PCP witness for the
problem is a set of functions f1, . . . , fl , where l is polynomial in n, satisfying the following.

THEORY OF COMPUTING, Volume 0 (2006), pp. 1–10 6

TOLERANT VERSUS INTOLERANT TESTING

• Each of the functions has a number of variables bounded by a constant independent of n, that may
include variables from v1, . . . ,vn as well as from an additional set of (polynomially many) Boolean
variables w1, . . . ,wm.

• If v1, . . . ,vn should be accepted according to the promise problem, then there exists an assignment
to w1, . . . ,wm that together with v1, . . . ,vn satisfies all the functions f1, . . . , fl .

• If v1, . . . ,vn should be rejected according to the promise problem, then there exists no assignment
to w1, . . . ,wm for which more than 1

2 l of the functions are satisfied.

A PCP of Proximity is a PCP witness for the promise problem of accepting all inputs that satisfy a
given property P, and rejecting all inputs that are ε-far from P for a given distance parameter ε .

A recent strong result, concerning the existence of PCPs of Proximity for all properties decidable in
polynomial time, is given by Ben-Sasson et. al. [5].

Lemma 4.1 (Special case of [5]). If P is a property of v1, . . . ,vn that is decidable by a circuit of size k,
and t < log logk/ log loglogk, then there exists a PCP of Proximity for P with distance parameter 1/t.
Moreover, the number of additional variables and the number of functions are both bounded by k2, and
each function depends on O(t) variables.

On the other hand, there is a plethora of lower bound results for properties which belong to low
complexity classes (e.g. [2, 6, 14]) and most of them would work fine for us. We will choose the
property U = {uuRvvR|u,v ∈ {0,1}∗}, where wR denotes the reversal of the word w.

Lemma 4.2 (Alon et. al. [2]). Property U can be computed in polynomial time, while any 1
3 -test for U

requires at least Ω(
√

n) queries (where n is the input size).

We let p(n) be a polynomial bound on the circuit size for deciding Property U on inputs of size n.
To construct the property to fulfill Theorem 1.2, we first assume without loss of generality that

n divides p(n) and set tn = blog loglog p(n)c, so in particular tn < log log p(n)/ log loglog p(n) for a
sufficiently large n. We consider inputs of size n(p(n))2. We label the first (n− tn)(p(n))2 bits by
(vi, j)1≤i≤n,1≤ j≤(n−tn)(p(n))2/n, and the rest of the bits by (wi, j)1≤i≤(p(n))2,1≤ j≤tn . We define Property R as
the set of inputs satisfying all of the following.

• For every i, 1≤ i≤ n, and j, 1 < j ≤ (n− tn)(p(n))2/n, vi,1 = vi, j (so we have (n− tn)(p(n))2/n
copies of the same string).

• v1,1, . . . ,vn,1 satisfy Property U .

• For every j, 1 ≤ j ≤ tn, w1, j, . . . ,w(p(n))2, j is an assignment satisfying the PCP of Proximity for
Property U (from Lemma 4.1) with distance parameter 1/ j, with regards to v1,1, . . . ,vn,1.

We now prove that this is the required property.

Lemma 4.3. Property R is (non-tolerantly) testable.

THEORY OF COMPUTING, Volume 0 (2006), pp. 1–10 7

E. FISCHER, L. FORTNOW

Proof. For every ε we show how for n large enough we can ε-test for R using a constant number of
queries (and for smaller n we can just read the entire input). We Assume that ε < 1

8 and that n is large
enough to satisfy tn > 3/ε , and do the following.

• Repeating independently 100ε−1 times, we select a uniformly random i, 1 ≤ i ≤ n, a uniformly
random j, 1 < j ≤ (n− tn)(p(n))2/n, and check that vi,1 = vi, j. If any of these checks fails, we
reject the input.

• For j = d3/εe, for 100 iterations we select a uniformly random i, 1≤ i≤ l (where l is the number
of functions in the corresponding PCP of Proximity from Lemma 4.1), and each time test that the
function fi is satisfied by v1,1, . . . ,vn,1 and w1, j, . . . ,w(p(n))2, j.

This test makes a constant number of queries, as the PCP of Proximity was invoked with a distance
parameter that depends only on ε . It is also clear that if the input satisfies Property R, then it is accepted
by this tester with probability 1.

On the other hand, if the input is satisfied with probability at least 1
3 , then v1,1, . . . ,vn,1 is 1

3 ε-close to
some v′1,1, . . . ,v

′
n,1 satisfying Property U , and the rest of the vi, j are 1

3 ε-close to satisfying the equalities
with v1, j and thus are 2

3 ε-close to being copies of the v′1,1, . . . ,v
′
n,1. But as the wi, j form less than a 1

3 ε

fraction of the total input size, this means that the input is ε-close to satisfying Property R.

Lemma 4.4. There exists some c > 0, so that there exists no δ for which Property R can be (1
4 ,δ)-tested

with nc queries.

Proof. We assume that δ < 1
12 . Let c1 > 0 be such that Property U cannot be 1

3 -tested with nc1 queries,
and let c2 > 0 be such that n(p(n))2 < n1/c2 for n > 1. We set c = c1c2, and prove that a (1

4 ,δ)-test
with nc queries for Property R implies (for all n large enough) a 1

3 -test with nc1 queries for Property U ,
leading to a contradiction.

Given an input v1, . . . ,vn which we would like to 1
3 -test, we construct an input of size n(p(n))2 to test

for Property R as follows. We set vi, j = vi for all 1≤ i≤ n and 1≤ j≤ (n− tn)(p(n))2/n, and arbitrarily
set wi, j = 0. As in Section 3, it is clear that a query to the new input can be simulated by performing at
most one query to the original input. Also, for n large enough, if v1, . . . ,vn satisfy Property U then the
new input is δ -close to satisfying Property R (because the wi, j form less than a δ fraction of the input
bits). On the other hand if the new input is 1

4 -close to satisfying Property R then the original input was
1
3 -close to satisfying Property U .

The above implies that a (1
4 ,δ)-test for Property R that makes at most (n(p(n))2)c < nc1 queries

would yield a 1
3 -test for Property U that makes at most nc1 queries, a contradiction.

The above two lemmas complete the proof of Theorem 1.2.

A concluding comment

Theorem 1.2 gives an example of a testable property for which there is an nc lower bound for tolerant
(ε,δ)-testing, for some fixed ε and any constant δ . It would be interesting to know whether there exists
any (non-tolerantly) testable Boolean property for which any tolerant test requires a linear number of

THEORY OF COMPUTING, Volume 0 (2006), pp. 1–10 8

TOLERANT VERSUS INTOLERANT TESTING

queries. Either a positive or a negative answer would likely have interesting effects, because of the
connection explored here between tolerant testing and PCPs of Proximity.

Acknowledgments

We thank Prahladh Harsha for his help with Probabilistically Checkable Proofs of Proximity, particularly
with the statement of Lemma 4.1.

References

[1] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Efficient testing of large graphs, Combina-
torica 20 (2000), 451–476. 1

[2] N. Alon, M. Krivelevich, I. Newman and M. Szegedy, Regular languages are testable with a con-
stant number of queries, SIAM Journal on Computing 30 (2001), 1842–1862. 4, 4.2

[3] T. Batu, R. Rubinfeld and P. White, Fast approximation PCPs for multidimensional bin-packing
problems, Information and Computation 196 (2005), 42–56. 2, 4

[4] M. Bellare, O. Goldreich and M. Sudan, Free bits, PCPs, and nonapproximability – towards tight
results, SIAM Journal on Computing 27 (1998), 804–915. 2.2

[5] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan, Robust PCPs of Proximity,
shorter PCPs and applications to coding, Proceedings of the 36th ACM STOC (2004), 1–10. 1, 2,
4, 4.1

[6] E. Ben-Sasson, P. Harsha and S. Raskhodnikova, Some 3CNF properties are hard to test, SIAM
Journal on Computing 35 (2005), 1–21. 4

[7] M. Blum, M. Luby and R. Rubinfeld, Self-testing/correcting with applications to numerical prob-
lems. Journal of Computer and System Sciences 47 (1993), 549–595 (a preliminary version ap-
peared in Proc. 22nd STOC, 1990). 1, 1, 2.1

[8] H. Buhrman, L. Fortnow, I. Newman and H. Röhrig, Quantum property testing, Proceedings of the
14th ACM-SIAM SODA (2003), 480–488. 2, 2.3

[9] F. Ergün, S. Kannan, R. Kumar, R. Rubinfeld and M. Viswanathan, Spot checkers, Journal of
Computer and System Science 60 (2000), 717–751. 1

[10] F. Ergün, R. Kumar and R. Rubinfeld, Fast approximate PCPs, Information and Computation 189
(2004), 135–159. 1, 2, 4

[11] E. Fischer, The art of uninformed decisions: A primer to property testing, The Bulletin of the
European Association for Theoretical Computer Science 75 (2001), 97-126. Also in : Current
Trends in Theoretical Computer Science: The Challenge of the New Century (edited by G. Paun,
G. Rozenberg and A. Salomaa), World Scientific (2004), Vol. I 229–264. 1

THEORY OF COMPUTING, Volume 0 (2006), pp. 1–10 9

E. FISCHER, L. FORTNOW

[12] E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky, Testing juntas, Journal of Com-
puter and System Sciences (43rd FOCS special issue) 68 (2004), 753–787. 2, 2

[13] E. Fischer and I. Newman, Testing versus estimation of graph properties, Proceedings of the 37th

ACM STOC (2005), 138–146. 1

[14] E. Fischer, I. Newman and J. Sgall, Functions that have read-twice constant width branching pro-
grams are not necessarily testable, Random Structures and Algorithms 24 (2004), 175–193. 4

[15] O. Goldreich, S. Goldwasser and D. Ron, Property testing and its connection to learning and ap-
proximation, Journal of the ACM 45 (1998), 653–750 (a preliminary version appeared in Proc. 37th

FOCS, 1996). 1

[16] O. Goldreich and L. Trevisan, Three theorems regarding testing graph properties, Random Struc-
tures and Algorithms 23 (2003), 23–57. 1

[17] J. Håstad, Some optimal inapproximability results, Journal of the ACM 48 (2001), 798–859. 2

[18] M. Parnas, D. Ron, and R. Rubinfeld, Tolerant property testing and distance approximation,
manuscript (available as ECCC TR04-010). 1

[19] M. Parnas, D. Ron, and A. Samorodnitsky, Testing basic Boolean formulae, SIAM Journal on
Discrete Mathematics, 16 (2002), 20–46. 2.2

[20] D. Ron, Property testing (a tutorial), In: Handbook of Randomized Computing (edited by S. Ra-
jasekaran, P. M. Pardalos, J. H. Reif and J. D. P. Rolim), Kluwer Press (2001), Vol. II 597–649.
1

[21] R. Rubinfeld and M. Sudan, Robust characterization of polynomials with applications to program
testing, SIAM Journal of Computing 25 (1996), 252–271 (first appeared as a technical report,
Cornell University, 1993). 1

AUTHORS1

Eldar Fischer
Faculty of Computer Science
Technion – Israel Institute of Technology
Technion City, Haifa 32000, Israel.

Lance Fortnow
Department of Computer Science
University of Chicago
1100 E. 58th St., Chicago, IL 60637, USA.

1To reduce exposure to spammers, THEORY OF COMPUTING uses various self-explanatory codes to represent “AT” and
“DOT” in email addresses.

THEORY OF COMPUTING, Volume 0 (2006), pp. 1–10 10

	Introduction
	Preliminaries
	Proof of Theorem 1.1
	PCPs of Proximity and Theorem 1.2

