
Testing Low Complexity Affine-Invariant Properties

Arnab Bhattacharyya∗

Princeton University
arnabb@princeton.edu

Eldar Fischer†

Israel Institute of Technology
eldar@cs.technion.ac.il

Shachar Lovett‡

Institute for Advanced Study
slovett@math.ias.edu

March 28, 2012

Abstract

Invariance with respect to linear or affine transformations of the domain is arguably the
most common symmetry exhibited by natural algebraic properties. In this work, we show
that any low complexity affine-invariant property of multivariate functions over finite fields
is testable with a constant number of queries. This immediately reproves, for instance, that
the Reed-Muller code over Fp of degree d < p is testable, with an argument that uses no
detailed algebraic information about polynomials, except that low degree is preserved by
composition with affine maps.

The complexity of an affine-invariant property P refers to the maximum complexity, as
defined by Green and Tao (Ann. Math. 2008), of the sets of linear forms used to characterize
P. A more precise statement of our main result is that for any fixed prime p ≥ 2 and
fixed integer R ≥ 2, any affine-invariant property P of functions f : Fn

p → [R] is testable,
assuming that the complexity of the property is less than p. Our proof involves developing
analogs of graph-theoretic techniques in an algebraic setting, using tools from higher-order
Fourier analysis.

∗Center for Computational Intractability. Supported by NSF Grants CCF-0832797, 0830673, and 0528414.
†Faculty of Computer Science. Supported in part by an ERC-2007-StG grant number 202405.
‡Supported by NSF grant DMS-0835373.

1 Introduction

The field of property testing, as initiated by [BLR93, BFL91] and defined formally by [RS96,
GGR98], is the study of algorithms that query their input a very small number of times and
with high probability decide correctly whether their input satisfies a given property or is “far”
from satisfying that property. A property is called testable, or sometimes strongly testable or
locally testable, if the number of queries can be made independent of the size of the object
without affecting the correctness probability. Perhaps surprisingly, it has been found that a
large number of natural properties satisfy this strong requirement; see e.g. the surveys [Fis04,
Rub06, Ron09, Sud10] for a general overview.

A fundamental problem in the area is then to find a combinatorial characterization of the
testable properties. The characterization problem was explicitly raised even in the early work
of [GGR98], and for dense graphs it was addressed in a long series of works culminating in
[AFNS06] and [BCL+06].

In this work, we make steps towards such a characterization for the class of affine-invariant
properties of multivariate functions over finite fields. Before stating our results, let us define
some useful notions that will be helpful to know throughout this paper.

1.1 Testability and Invariances

Fix a prime p ≥ 2 and an integer R ≥ 2 throughout. Given a property P of functions in
{Fnp → [R]}, we say that f : Fnp → [R] is ε-far from P if ming∈P Prx∈Fnp [f(x) 6= g(x)] > ε, and
we say that it is ε-close otherwise. P is said to be testable (with one-sided error) if there is a
function q : (0, 1) → Z+ and an algorithm T that, given as input a parameter ε ∈ (0, 1) and
oracle access to a function f : Fnp → [R], makes at most q(ε) queries to the oracle for f , always
accepts if f ∈ P and rejects with probability at least 2/3 if f is ε-far from P.

As an example of a testable property, let us recall the famous result by Blum, Luby and Rubinfeld
[BLR93] which started off this whole line of research. They showed that for testing whether a
function f : Fnp → Fp is linear or whether it is ε-far from linear, it is enough to query the value
of f at only O(1/ε) points of the domain.

Linearity, in addition to being testable, is also an example of a linear-invariant property. We
say that a property P ⊆ {Fnp → [R]} is linear-invariant if it is the case that for any f ∈ P
and for any linear transformation L : Fnp → Fnp , it holds that f ◦ A ∈ P. Similarly, an affine-
invariant property is closed under composition with affine transformations A : Fnp → Fnp (an
affine transformation A is of the form L+ c where L is linear and c is a constant). The property
of a function f : Fnp → Fp being affine is testable by a simple reduction to [BLR93], and is itself
affine-invariant. Other well-studied examples of affine-invariant (and hence, linear-invariant)
properties include Reed-Muller codes (in other words, bounded degree polynomials) [BFL91,
BFLS91, FGL+96, RS96, AKK+05], homogeneous polynomials of bounded degree [KS08], and
subspace juntas [VX11].

In general, invariance under a large group of symmetries seems to be a common trait of math-
ematically natural properties, and in particular, affine invariance underlies most interesting
properties that one would classify as “algebraic”. Kaufman and Sudan in [KS08] made explicit
note of this phenomenon and urged a study of the testability of properties with focus on their in-
variance. In their paper, Kaufman and Sudan showed that linear affine-invariant properties are
automatically testable but left open the general question. Note that arbitrary affine-invariant

1

properties are not testable; in fact, testing a random affine-invariant property requires querying
nearly all of the domain. So, the question becomes: what is the minimal set of restrictions an
affine-invariant property must satisfy in order to be testable? In order to state the conjectured
answer to this question, as well as our progress here, we need to introduce some more notions.

1.2 Hereditariness and Induced Affine Constraints

We now introduce the subclass of affine-invariant properties which, we believe, captures every
property testable with a 1-sided error test.

Definition 1.1 (Affine subspace hereditary properties) An affine-invariant property P
is said to be affine subspace hereditary if for any f : Fnp → [R] satisfying P, the restriction
of f to any affine subspace of Fnp also satisfies P.

Affine subspace hereditariness thus provides something like a uniformity condition, relating the
definition of the property for different values of n. Specializing the conjecture in [BGS10] for
linear-invariant properties to affine-invariant properties gives the following:

Conjecture 1.2 ([BGS10]) Any affine subspace hereditary property is testable with 1-sided
error.

Moreover, [BGS10] show that every affine-invariant property testable by a“natural”tester is very
“close” to an affine subspace hereditary property1. In fact, resolving Conjecture 1.2 would yield
a combinatorial characterization of the (natural) one-sided testable affine-invariant properties,
similar to the characterization for dense graph properties [AS08a].

Before proceeding, let us give some examples of affine subspace hereditary properties in order
to build intuition about how to test them. Consider the property of being affine, by which
we mean here that the function is a polynomial of degree at most 1. This is clearly an affine-
invariant hereditary property. As we remarked earlier, the property is known to be testable.
Note that here, we could also have defined being affine as the condition of satisfying the identity
f(x)−f(x+y)−f(x+z)+f(x+y+z) = 0 for every x, y, z ∈ Fnp . This is a“local”characterization
of linearity in the sense that the functional equation does not depend on the value of n. Moreover,
this characterization automatically suggests a linearity test: pick random x, y, z ∈ Fnp and check
whether the identity holds or not for that choice of x, y, z.

More generally, consider the property of being a polynomial of degree at most d, for some fixed
positive integer d. Again, the property is clearly affine subspace hereditary. It is also known
to be testable [AKK+05] over finite fields. And just as in the case of linearity, the test arises
out of a local characterization for degree d: the (d+ 1)th derivative in every d+ 1 directions at
every point should be 0. The test is then to choose a random point and random d+ 1 directions
and to check whether the (d+ 1)th derivative in the chosen directions at the chosen point is 0
or not.

In fact, one can describe any affine subspace hereditary property using (finitely or infinitely
many) such local characterizations. To state this formally, let us put forth a useful definition.

1We omit the technical definitions of “natural” and “close” here, since they are unimportant here. Informally,
the behavior of a “natural” tester is independent of the size of the domain and “close” means that the property
deviates from an actual affine subspace hereditary property on functions over a finite domain. See [BGS10] for
details, or [AS08a] for the analog definitions in a graph-theoretic context.

2

Definition 1.3 (Affine constraints)

• An affine constraint of size m on ` variables is a tuple A = (a1, . . . , am) of m linear
forms a1, . . . , am over Fp on ` variables, where a1(X1, . . . , X`) = X1 and for every i ≥ 2,

ai(X1, . . . , X`) = X1 +
∑`

j=2 ci,jXj where each ci,j ∈ Fp.

• An induced affine constraint of size m on ` variables is a pair (A, σ) where A is an affine
constraint of size m on ` variables and σ ∈ [R]m.

• Given such an induced affine constraint (A, σ), a function f : Fnp → [R] is said to be (A, σ)-
free if there exist no x1, . . . , x` ∈ Fnp such that (f(a1(x1, . . . , x`)), . . . , f(am(x1, . . . , x`))) =
σ. On the other hand, if such x1, . . . , x` exist, we say that f induces (A, σ) at x1, . . . , x`.

• Given a (possibly infinite) collection A = {(A1, σ1), (A2, σ2), . . . , (Ai, σi), . . . } of induced
affine constraints, a function f : Fnp → [R] is said to be A-free if it is (Ai, σi)-free for
every i ≥ 1.

The connection between affine subspace hereditariness and affine constraints is given by the
following simple observation.

Observation 1.4 An affine-invariant property P is affine subspace hereditary if and only if it is
equivalent to the property of A-freeness for some fixed collection A of induced affine constraints.

Proof: Given an affine invariant property P, a simple (though inefficient) way to obtain
the set A is to let it be the following: For every n and a function f : Fnp that is not in P,
we include in A the constraint (Af , σf), where Af is indexed by members of Fnp and contains
{az(X1, . . . , Xn+1) = X1 +

∑n
i=1 ziXi+1 : z = (z1, . . . , zn) ∈ Fnp}, and σf is just set to f . From

here it is easy to see that the property defined by A is contained in P, while containment in
the other direction follows from P being affine-invariant and hereditary.

The other direction of the observation is trivial.

Thus, resolving Conjecture 1.2 boils down to showing testability for all A-freeness properties.

1.3 Main Result

We show that A-freeness is testable as long as all affine constraints in A are of complexity
less than p. We next define the complexity of an affine constraint, and more generally, of an
arbitrary set of linear forms.

Definition 1.5 (Cauchy-Schwartz complexity, [GT10b]) Let L = {L1, . . . , Lm} be a set
of linear forms. The (Cauchy-Schwartz) complexity of L is the minimal s such that the following
holds. For every i ∈ [m], we can partition {Lj}j∈[m]\{i} into s+ 1 subsets such that Li does not
belong to the linear span of any subset.

Given this, one can formulate a conjecture that is a weakened version of Conjecture 1.2:

Conjecture 1.6 A property that is given by a collection of induced affine constraints with a
global bound on their complexity is testable with a 1-sided error.

3

The following is our main result, which shows the above when the complexity bound is strictly
smaller than the field size.

Theorem 1.7 (Main theorem) For any ε ∈ (0, 1) and for any (possibly infinite) fixed collec-
tion A = {(A1, σ1), (A2, σ2), . . . , (Ai, σi), . . . } of induced affine constraints such that each Ai

has complexity less than p, there is a function qA : (0, 1) → Z+ and a one-sided tester which
determines whether a function f : Fnp → [R] is A-free or ε-far from being A-free, that makes at
most qA(ε) queries to f .

The function qA has rather horrible, Ackermann function-like, dependence on 1/ε. Our primary
concern in this work though is to establish testability, and we make no effort in improving the
growth of qA. We note though that recent work by Kalyanasundaram and Shapira [KS11] and
by Conlon and Fox [CF11], building on previous work by Gowers [Gow97], suggests that very
rapid growth of the query complexity function is in fact inherent in the nature of the problem.

Let us lastly note that Theorem 1.7 is quite nontrivial even when the collection A is finite.
Indeed, even if A consists only of a single induced affine constraint of complexity greater than
1, it was not known previously how to show testability. We give more details about past work
in Section 1.5.

1.4 Overview of the Proof

To show Theorem 1.7, we will in fact show the following statement. Note that it uses a yet
undefined notion of “conciseness”; for now it suffices to know that every A is equivalent to a
concise one, as we will later prove.

Theorem 1.8 Suppose we are given a possibly infinite collection of labeled affine constraints
A = {(A1, σ1), (A2, σ2), . . . , (Ai, σi), . . . } where A is concise, every Ai is of complexity less
than p and consists of mi linear forms over `i variables, and σi ∈ [R]mi for every i. Then, there
are functions `A(·) and δA(·) such that the following is true for any ε ∈ (0, 1). If a function
f : Fnp → [R] with is ε-far from being A-free, then f induces at least δA(ε) · pn`i many copies of
(Ai, σi) for some i such that `i < `A(ε).

Theorem 1.7 immediately follows. Consider the following test: choose uniformly at random

x1, . . . , x`A(ε) ∈ Fnp , let H denote the affine space {x1 +
∑`A(ε)

j=2 cjxj : cj ∈ Fp}, and check
whether f restricted to H is A-free or not. By Theorem 1.8, if f is ε-far from A-freeness,
then this test rejects with probability at least δA(ε). Repeating the test O(1/δA(ε)) times then
guarantees a constant rejection probability. And of course, if f is A-free, the test always accepts.

Let us now give an overview of our proof of Theorem 1.8. For simplicity of exposition, assume
for now that A consists only of a single induced affine constraint (A, σ) where A is the tuple of
linear forms (a1, . . . , am), each over ` variables, and σ ∈ [R]m. For i ∈ [R], let f (i) : Fnp → {0, 1}
be the indicator function for the set f−1({i}). Our goal will then be to show that, when f is
ε-far from (A, σ)-free, then:

E
x1,...,x`

[
f (σ1)(a1(x1, . . . , x`)) · f (σ2)(a2(x1, . . . , x`)) · · · f (σm)(am(x1, . . . , x`))

]
≥ δ(ε), (1)

where crucially, δ is a positive function that does not depend on n. If we could
show this, then we would be done since a valid test would be to repeat the follow-
ing procedure O(1/δ) times: uniformly pick x1, . . . , x` ∈ Fnp and immediately reject if
(f(a1(x1, . . . , x`)), . . . , f(am(x1, . . . , x`))) = σ.

4

Studying averages of products, as in (1), has been crucial to a wide range of problems in
additive combinatorics and analytic number theory. Szemerédi’s theorem about the density
of arithmetic progressions in subsets of the integers is a classic example. Szemerédi’s work
[Sze75] arguably initiated such questions in additive combinatorics, but the major development
which led to a more systematic understanding of these averages was Gowers’ definition of a new
notion of uniformity in a Fourier-analytic proof for Szemerédi’s theorem [Gow01]. In particular,
Gowers introduced the Gowers norm ‖ · ‖Ud for a parameter d ≥ 1, which allows us to say the
following about (1). If, for a some d, we have ‖f1‖Ud+1 < ε, then any expectation of the form
Ex1,...,x`∈Fnp [

∏m
i=1 fi(Li(x1, . . . , x`))] is bounded by ε for any linear forms L1, . . . , Lm.

This observation leads to the study of decomposition theorems, that express an arbitrary function
as a linear combination of functions which have either small Gowers norm or are structured in
some sense. This is an extension of classical Fourier analysis over Fnp , where a function is
expressed as a linear combination of a small number of characters with high Fourier mass plus a
small error term. To deal with Gowers norm, the“characters”need to be exponentials of not only
linear functions, as in classical Fourier analysis, but of higher degree polynomials. Approximate
orthogonality among these “characters” was established by Green and Tao in [GT09] and by
Kaufman and Lovett in [KL08]. At this stage, one might expect that results by Hatami and
Lovett [HL11a, HL11b] can allow us to use orthogonality to approximate the expectation of the
form in (1).

Unfortunately, the proof does not follow that easily from [HL11a]. There are two main reasons
for this. The first is that the only information we have about the original function f is ε-farness
from (A, σ)-freeness. Information about correlation, as was assumed in [HL11a], allows more
straightforward application of the higher-order Fourier analytic tools. We use ideas inspired by
previous work on property testing in the dense model, as in [AFKS00] and [AS08b], to locate
regions of the domain in which we are guaranteed to find at least one induced occurrence of
(A, σ). This leads to a new combinatorially flavored decomposition theorem, which may be of
independent interest.

The second problem we face is one which also arose in a work by Green and Tao on decomposition
theorems (a.k.a., regularity lemmas) over the integers [GT10a]. Namely, the decomposition
theorem we use decomposes an arbitrary function f : Fnp → R to a sum of three functions
f1, f2, f3. f1 consists of the approximate “characters” as mentioned above, f2 has small Gowers
norm, and f3 has low L2-norm. Now, the closeness to orthogonality for f1 and the smallness
of the Gowers norm for f2 decreases as a function of the “complexity” of the decomposition,
and are thus, essentially negligible for the purposes of the proof. On the other hand, the bound
on the L2-norm for f3 is only moderately small and cannot be made to decrease as a function
of the complexity of the decomposition. To get around we essentially use a sequence of two
decompositions, and make the norm of the second one decrease as a function of the complexity
of the first, where we show that this is enough for our purposes.

1.5 Previous Work

This work is part of a sequence of works investigating the relationship between invariance and
testability of properties. As described, Kaufman and Sudan [KS08] initiated the program.
Subsequently, Bhattacharyya, Chen, Sudan and Xie [BCSX11] investigated monotone linear-
invariant properties of functions f : Fn2 → {0, 1}, where a property P is monotone if it satisfies
the condition that for any function g ∈ P, modifying g by changing some outputs from 1 to 0
does not make it violate P. Král, Serra and Vena [KSV12] and, independently, Shapira [Sha09]

5

showed testability for any monotone linear-invariant property characterized by a finite number
of linear constraints (of arbitrary complexity).

Progress has been significantly slower for the non-monotone properties. Bhattacharyya, Grig-
orescu, and Shapira proved in [BGS10] that linear-invariant properties of functions in {Fn2 →
{0, 1}} are testable if the complexity of the property is 1. When restricted to affine-invariant
properties, the result of [BGS10] is a special case of the main result here for p = 2. The previous
works did not explicitly use higher-order Fourier analysis; [KSV12] and [Sha09] used variants
of the hypergraph regularity lemma which are similar in spirit to higher-order Fourier analysis,
but are somewhat harder to manipulate due to the lack of analytic tools.

Higher-order Fourier analysis began with the work of Gowers [Gow98] and parallel ergodic-
theoretic work by Host and Kra [HK05]. Applications to analytic number theory inspired much
more study by Gowers, Green, Tao, Wolf, and Ziegler among others. A book in preparation by
Tao [Tao11] surveys the current theory of higher-order Fourier analysis. Our work in this paper
relies on decomposition theorems over finite fields of the type first explicitly described by Green
in [Gre07].

At a high level, the argument to prove our main theorem mirrors ideas used in a sequence of
works [AFKS00, AS08b, AS08a, FN07, AFNS06, BCL+06] to characterize the testable graph
properties. In particular, the technique of simultaneously decomposing the domain into a coarse
partition and a fine partition with very strong regularity properties is due to [AFKS00], and
the compactness argument used to handle infinitely many constraints is due to [AS08b]. How-
ever, implementing these graph-theoretic techniques using higher-order Fourier analysis required
several new ideas which, we hope, can be extended to eventually prove Conjecture 1.6.

1.6 Further research

We study affine subspace hereditary properties, and show that if they are defined by affine
constraints of low complexity then they are locally testable. There are several obvious possible
generalizations to this work:

1. Remove the condition that the field size is larger than the complexity of the affine forms,
thus proving Conjecture 1.6; this requires non-trivial generalizations of several technical
lemmas to small fields, and may require new methods.

2. Handle all linear invariant properties (and not just affine invariant properties).

A third generalization, which might be too strong to hold, is to completely remove the bounded
complexity assumption on the linear forms, thus proving Conjecture 1.2. In several analogs of
this line of research in hypergraph testing, this requirement is analogous to requiring bounded
uniformity from the hypergraphs, which is implicitly assumed in all previous works on hyper-
graph testing. It would be thus also be interesting if the full Conjecture 1.2 can be disproved.

2 Map of the proof

The rest of this paper will be devoted to constructing the building blocks required to prove
Theorem 1.7, and by extension Theorem 1.8. We believe that some of these building blocks, and
especially the“Super Decomposition”Theorem 4.9 that we describe below, will be of independent
interest.

6

In Section 3 and Section 4 we develop the main technical tools that we will need for our testability
proof. Some of the following lemmas and arguments were proved before: Decomposition lemmas
(without rank) were implicit in previous works by Green and Tao and explicit in [HL11a]; the
existence of a refinement of a given rank was first proved in [GT09] (which is combined here
with a decomposition lemma); other prior works are cited along with the proofs below.

Our new contributions there lie in the following:

• Our final“Super Decomposition”Theorem 4.9, and its related“Subcell Selection”Corollary
4.10, are new. Their relation to the original decomposition lemma could be thought of as
somewhat akin to the relation of the strong graph regularity lemma in [AFKS00] to the
original regularity lemma of Szemerédi.

• For the subcell selection corollary to work at all, we need to take careful count of when
is a refinement of a partition by polynomials syntactic (i.e. there is a containment re-
lationship between the polynomials defining the two partitions) or merely semantic (i.e.
the polynomials may be different but the partitions they define satisfy a combinatorial
refinement relationship). We add the accounting of syntactical vs semantic refinements to
all the arguments leading up to our super decomposition theorem.

• We set the entire analysis in a “robustness” framework akin to the one developed for
graphs in [FN07]. This streamlines the argument (essentially allowing us to encapsulate
and move away iterative refinement arguments), which could get very unwieldy by the
time the super decomposition theorem is reached.

In Section 5 we then develop algebraic and combinatorial constructions, that allow us to
use Corollary 4.10 to provide counting type theorems, and in our case the main “algebro-
combinatorial” Theorem 1.8. The algebraic part mostly involve procedures that calculate the
numbers of affine configuration of a given type that satisfy given polynomial constraints; we
also prove, using basic algebra, that we can assume the technical condition of A being “concise”,
that is not having more variables than conditions in any of its constraints. The combinatorial
part is the “cleanup” procedure that we describe below.

We now describe the main components of our proofs in detail.

2.1 Partition by Polynomial Factors

We generally deal with a function f : Fnp → {0, 1} (where a larger fixed size range [R] is handled
by considering a sequence of functions rather than one function – see Subsection 4.3), and would
like to partition its domain Fp into a small number of regions, so that f has certain“randomness”
properties in every region (or at least most of them). In the broadest terms, we seek algebraic
analogs to Szemerédi’s regularity lemma and its derivatives that have revolutionized graph
theory. Recall that Szemerédi’s lemma partitions the vertex set of the graph so that most
vertex set pairs exhibit random-like properties in the bipartite subgraphs that they induce.

The groundwork providing this started with the works of Green and Tao. In general, a function
f : Fnp → {0, 1} can be decomposed to a sum of three real-valued functions. One that is constant
on large regions of the input, one that generally takes small values (in terms of its l2 norm),
and one that is “very random” (in the sense of the Gowers norm). The relevance of the Gowers
norm to our arguments is highlighted in Subsection 3.1.

7

In an ideal world, the large regions of the input over which we have a constant function should
come from a partition of Fnp into affine subspaces, but in fact this cannot be the case. The next
best thing is to have a partition based on the values of a fixed length sequence of low degree
polynomials over Fnp . These are called polynomial factors as per Definition 3.4, and the regions
of Fnp of their respective partitions are called cells.

However, now we need to re-address the question of independence. Standard linear independence
would be insufficient to even guarantee that all regions are of similar sizes, let alone provide
other “randomness” features. For this we use the notion of polynomial rank, first developed in
[GT09]. Subsection 3.2 provides the details about polynomial factors and their rank.

2.2 Refinements and the Robustness Framework

For our purpose it is not enough to prove the existence of certain factors, and we will consider a
relationships between pairs of factors, namely the refinement relationship. There are two kinds of
refinements. The “combinatorial” semantic refinement notion means that the partition induced
by the second factor consists of subsets of the sets of the first factor, while the“explicit” syntactic
refinement notion means that the second factor is in fact defined by a sequence of polynomials
extending the sequence that defines the first factor. Definition 3.9 provides the details.

An important measure of a factor with respect to a function f : Fnp → {0, 1} is its density index,
as per Definition 3.11. This was used in previous decomposition proofs, and is analogous to the
index of a graph partition used in the proof of Szemerédi’s regularity lemma and its variants.
In Subsection 3.3 we introduce and analyze the framework of factor robustness, where a factor
is considered robust if it cannot be refined (with respect to a size bound given as a function of
the current size) in a way that significantly increases its index. Robust factors, including ones
that refine existing factors, exist by a simple argument, Observation 3.13.

The robustness framework greatly simplifies the arguments used to prove the decomposition
theorems in Section 4. Where previously such proofs used an iterative argument, basically
repeating a construction of a refining factor as long as the factor does not provide the required
properties, in the proofs here we start with a robust factor and then show that it provides the
required object.

However, we need a factor to be both robust and of high rank. The high rank requirement
(also as a function of the factor size) is in fact also provided through an iterative argument
resembling the proof of regularity. In Subsection 3.4 we integrate arguments similar to those
originally made in [GT09] to provide Lemma 3.19, the driving engine of our decomposition
theorems. This lemma provides factor that is both robust and of high rank. Moreover, if we
start from an existing factor that is a syntactic refinement of a base factor that also has high
rank, then our new robust factor will additionally be a syntactic refinement of the same base
factor. This is crucial to our super decomposition theorem, that requires such a refinement to
be provided.

2.3 Decompositions and Super Decompositions

Chronologically, decomposition theorems for functions f : Fnp → {0, 1} have progressed in stages.
First a weak decomposition theorem was shown, where a factor is found and f is decomposed
into a sum of two functions, f = f1 + f2, where f1 : Fpn → [0, 1] is constant over every cell of the
factor, and f2 : Fnp → [−1, 1] has a bounded Gowers norm. In an ideal world we would like f2

to have a bounded l2 norm, as it denotes an “error” of some kind, but this is not possible.

8

However, for the Gowers norm bound to be of any use, it has to be bounded as a decreasing
function of the factor size C. The next step was then to find a factor and a decomposition
f = f1 + f2 + f3, where f3 is an “error” term that is of bounded l2 norm (as we originally
intended), and f2 now has a Gowers norm that is smaller than the required function of C. The
proof “internally” uses a sequence of two factors, one refining the other, and a corresponding
“iterated argument of iterated arguments”. However here we can encapsulate it through a
robustness requirement. We provide the full details in Subsection 4.1, which culminates in
Theorem 4.4, providing also a rank requirement. It is similar to theorems proved in previous
works, but here we also maintain a syntactic refinement relationship to a base factor, a feature
that will be used later.

This brings us to our new super decomposition Theorem 4.9. Its motivation is that for our
purpose, we would also need the l2 norm of the error function f3 to decrease as a function of
the factor size. This is required because for our analysis of non-monotone properties, we cannot
make do with most of the cells of the factor exhibiting a random-like behavior of f – we would
like all of them to exhibit it. However, such a demand on f3 is clearly not possible.

The solution is then to provide a sequence of two factors, where the second factor is a syntactic
refinement of the first. We then decompose f with respect to the second factor, as a sum of
a constant-over-cells function f1, a small Gowers norm function f2, and a function f3 whose l2
norm is not small as a function of the second factor, but at least it is small as a function of
the first factor. Additionally, we want f1 to be “faithful” also with respect to the first factor:
That is, if we had decomposed f according to the first factor rather than the second, then
the corresponding “f1 function” would still be close in most places to the function we got by
decomposing according to the second factor.

In the next step of the proof of our main testability theorem, we will pick one “subcell”, a cell
of the second factor, out of every cell of the first factor. We will want most of these cells to be
faithful (with respect to f1) and all of them to exhibit the randomness properties. The syntactic
refinement relationship in our super decomposition theorem is what allows us to pick these cells
in a “uniform” manner, as per our subcell selection Corollary 4.10.

We believe that Theorem 4.9 and its proof methods are of independent interest, as they could
open up possibilities for more analogies to the big body of knowledge concerning the applications
of Szemerédi’s lemma and its variants for graphs.

2.4 Function Cleanup

To find many induced structures in f , we restrict ourselves to the “good” subcells chosen by use
of Corollary 4.10. However, to find the correct configuration of subcells exhibiting the induced
structures, we refer to a modification of f called a cleanup. The modified f will be close to the
original, and hence will still contain an induced structure. This particular structure might not
exist in the original f , but the way the cleanup is performed, as per Definition 5.14, ensures the
existence of the corresponding subcell configuration which “mimics” the location of the points of
the structure (even that it may not actually contain those points). We then use the configuration
of subcells with respect to the original f to find our affine structures.

This argument is in fact somewhat analogous to the argument considering forbidden induced
subgraphs that appeared first in [AFKS00]. The function closeness lemma is Lemma 5.15, while
the mimicking subcell argument is found in the proof of Theorem 1.8 in Subsection 5.4.

9

2.5 Randomness and consistency

After we find the subcell configuration corresponding to an affine induced structure, we still
need to lower-bound the number of actual copies of the structure that it guarantees for f . This
requires giving a lower bound for the number of actual small affine sets that reside in this
configuration, and within them the number of sets for which f has the corresponding values.
The second task is in fact accomplished by the function decomposition that we have. For
the first task, we build upon works of Hatami and Lovett [HL11b] and of Gowers and Wolf
[GW10b, GW10a] in Subsection 5.1.

We use there the notion of consistent values, Definition 5.5, as an algebraic characterization of
when is a configuration of cells feasible for a given affine structure. This allows us to regulate
“all-or-nothing” lemmas from previous works in Theorem 5.7, to provide a calculated bound for
the number of structures. We also utilize it for Lemma 5.8, showing that the subcell selection
process does not “spoil” a good configuration.

2.6 Wrapping Up

There are some final ingredients that we need before finalizing the proof of Theorem 1.8. One
of which is a compactness argument, analogous to the one made in [AS08a], to be able to
bound the size of the constraints we need to test for, even when the property is defined by an
infinite number of constraints. In our case, we also need to perform a slight “preprocessing” to
representation of the property, to make it concise as per Definition 5.19, which is done through
Lemma 5.18. Apart from this, Subsection 5.3 contains a few other algebraic tools that help
with the calculations used in the proof.

Finally, Subsection 5.4 contains the proof of Theorem 1.8, tying it all together, from finding a
factor with a subcell selection, through consistency and randomness arguments, to finally using
the function cleanup to bound from below the number of copies of the corresponding induced
structure.

3 Tools of the Proof

In this section we lay the groundwork for the decomposition theorems that follow. This include
the formal definition of partition by polynomial factors, the definition of factor robustness and
rank with proofs of their impact, and finally we prove the main lemma about the existence of
partitions that are both robust and of high rank.

3.1 Functions and Norms

In the most general setting we consider functions f : G→ C, where G is a finite Abelian group2.

Unless stated otherwise, expectations are taken over the uniform probability space with respect
to the relevant range, e.g. Ex[f(x)] is set to |G|−1

∑
x∈G f(x). Apart from the traditional norms

such as ‖f‖22 = Ex[|f(x)|2], we will make extensive use of Gowers norms.

2Later we would mostly consider G = Fnp . Our main theorem is formulated for functions whose range is {0, 1},
but its proof uses interim function with larger ranges.

10

Definition 3.1 (Gowers norm) Let G be a finite Abelian group and f : G → C. For an
integer k ≥ 1, the k’th Gowers norm of f , denoted ‖f‖Uk , is defined by:

‖f‖2kUk = E
x,y1,y2,...,yk∈G

 ∏
S⊆[k]

Ck−|S|f

(
x+

∑
i∈S

yi

)
where C denotes the complex conjugation operator, i.e. Cl(a+ bi) = a+ (−1)lbi for a, b ∈ R and
integer l.

Two facts about the Gowers norm will be absolutely crucial in what follows. First is the Gowers
Inverse theorem, established by [BTZ10, TZ10]. Throughout, we let e (x) denote the complex
number e2πix/p for x ∈ Fp.

Theorem 3.2 (Gowers Inverse Theorem) Given positive integers d < p, for every δ > 0,
there exists ε = ε3.2(δ, p) such that if f : Fnp → R satisfies ‖f‖∞ ≤ 1 and ‖f‖Ud+1 ≥ δ, then
there exists a polynomial P : Fnp → Fp of degree at most d so that |Ex[f(x) · e (P (x))]| ≥ ε.

The second is a lemma due to Green and Tao [GT10b] based on repeated applications of the
Cauchy-Schwartz inequality. Refer to Definition 1.5 for the term “complexity”.

Lemma 3.3 Let f1, . . . , fm : Fnp → [−1, 1]. Let L = {L1, . . . , Lm} be a system of m linear
forms in ` variables of complexity s. Then:∣∣∣∣∣ E

x1,...,x`∈Fnp

[
m∏
i=1

fi(Li(x1, . . . , x`))

]∣∣∣∣∣ ≤ min
i∈[m]

‖fi‖Us+1

3.2 Polynomial Factors and their Rank

While partitioning the domain to affine linear subspaces would be the most intuitive for counting
affine cubes, we in fact need higher degree algebraic partitions.

Definition 3.4 (Polynomial factor) A polynomial factor B is a sequence of polynomials
P1, . . . , PC : Fnp → Fp. We also identify it with the function B : Fnp → FCp sending x to

(P1(x), . . . , PC(x)). A cell of B is a preimage B−1(y) for some y ∈ FCp . On the other hand,

given a cell of B, the common value y = B(x) ∈ FCp is called the image of the cell. When there
is no ambiguity, we will in fact abuse notation and identify a cell of B with its image y.

The partition induced by B is the partition of Fnp given by
{
B−1(y) : y ∈ FCp

}
. The complexity

of B is the number of defining polynomials |B| = C. The degree of B is the maximum degree
among its defining polynomials P1, . . . , PC .

Next, we define the notion of conditional expectation with respect to a given factor.

Definition 3.5 (Expectation over polynomial factor) Given a factor B and a function

f : Fnp → {0, 1}, the expectation of f over a cell y ∈ F|B|p is the average Ex:B(x)=y[f(x)], which
we denote by E[f |y]. The conditional expectation of f over B, is the real-valued function over
Fnp given by E[f |B](x) = E[f |B(x)]. In particular, it is constant on every cell of the polynomial
factor.

11

In essence we would want to choose a polynomial factor so that, among other things, the
restriction of f in every cell would essentially consist of a constant element and other elements
of small norms. However, since we are not dealing with affine linear subspaces, for our arguments
to follow we also need the factor itself to be “well behaved”. This is exemplified in the notion
of polynomial rank [GT09], in essence a strengthening of linear independence.

Definition 3.6 (Rank of polynomial factors) Suppose that B is a polynomial factor defined
by polynomials P1, . . . , PC : Fnp → Fp. The rank of B is the largest integer r such that for every

(α1, . . . , αC) ∈ FCp \ {0C}, the polynomial Pα =
∑C

i=1 αiPi cannot be expressed as a function of
r polynomials of degree d− 1, where d = maxi∈[C]:αi 6=0 deg(Pi).

The rank of a single polynomial P is defined similarly (but without needing to relate to linear
combinations).

The following result, proved by Kaufman and Lovett [KL08] for all p (extending previous work
of Green and Tao [GT10b] over large characteristic fields), is crucial:

Theorem 3.7 For any ε > 0 and integer d ≥ 1, there exists r = r3.7(d, ε) such that: If
P : Fnp → Fp is a degree-d polynomial with rank at least r, then |Ex[e (P (x))]| < ε.

As an example of how useful Theorem 3.7 is, consider the following simple lemma which states
that every cell of a polynomial factor with large enough rank has approximately the same size.

Lemma 3.8 Given a polynomial factor B of degree d, complexity C, and rank at least r3.7(d, ε)
generated by the polynomials P1, . . . , PC : Fnp → Fp, and an element b ∈ FCp , we have that:

Pr
x∈Fnp

[B(x) = b] = p−C ± ε

Proof: This is implicit in previous work, e.g. [Gre07]. For completeness, we repeat the
argument:

Pr
x∈Fnp

[B(x) = b] = E
x

∏
i∈[C]

1

p

∑
λi∈Fp

e (λi · (Pi(x)− bi))

= p−C

∑
(λ1,...,λC)∈FCp

E
x

e
∑
i∈[C]

λi(Pi(x)− bi)

= p−C

(
1± pCε

)
where the last line uses Theorem 3.7 whenever (λ1, . . . , λC) 6= 0C .

3.3 Refinement and Robustness

The decomposition theorems will iteratively partition the domain Fnp into finer and finer par-
titions (though we will use a mechanism that hides the refinements that do not have to be
“visible” for the other proofs). We will need to be careful about distinguishing between two
different types of refinements.

12

Definition 3.9 (Refinement of a polynomial factor) B′ is called a syntactic refinement of
B, and denoted B′ �syn B, if the sequence of polynomials defining B′ extends that of B. It is
called a semantic refinement, and denoted B′ �sem B if the induced partition is a combinatorial
refinement of the partition induced by B. In other words, if for every x, y ∈ Fn2 , B′(x) = B′(y)
implies B(x) = B(y). The relation � (without subscripts) is a synonym for �syn.

Clearly, being a syntactic refinement is stronger than being a semantic refinement. However in
essence, these are almost the same thing.

Observation 3.10 If B′ is a semantic refinement of B, then there exists a syntactic refinement
B′′ of B that induces the same partition of Fnp , and for which |B′′| ≤ |B′|+ |B|.

Proof: Just add the defining polynomials of B to those of B′.

On the other hand, doing the above conversion can “destroy” the rank of a polynomial factor,
and there will be indeed situations in what follows where we will have to carefully distinguish
the two refinement types.

Next, we define the density index of a polynomial factor with respect to a function, and use it
to define the notion of robustness, which is central to what follows.

Definition 3.11 The density index of a factor B with respect to a function f is the squared l2
norm of the conditional expectation of f , that is indd(B) = E

[
(E[f |B])2

]
.

Given a function h : N→ N and a real parameter γ, A factor B is (h, γ)-robust (semantically)
if there exists no B′ which is a semantic refinement of B for which |B′| ≤ h(|B|) and indd(B′) ≥
indd(B) + γ.

Robustness is somewhat preserved when moving to a small refinement.

Observation 3.12 If B is (g ◦ h, γ)-robust, and B′ is a (syntactic or semantic) refinement of
B for which |B′| ≤ h(|B|), then B′ is (g, γ)-robust.

Proof: If B′′ is any refinement of B′ for which |B′′| ≤ g(|B′|), then |B′′| ≤ g(h(|B|)) and so
indd(B′′) ≤ indd(B) + γ. On the other hand by the Cauchy-Schwartz inequality indd(B′) ≥
indd(B), and so indd(B′′) ≤ indd(B′) + γ, proving the robustness condition of B′.

Existence of robust factors, also as syntactic refinements of a given factor, is easy to prove. Note
that the function in its statement takes another function as one of its parameters.

Observation 3.13 For an appropriate function T3.13(k, h, γ), for any B, h : N→ N and γ > 0
there exists a syntactic refinement B′ which is (h, γ)-robust, and for which |B′| ≤ T3.13(|B|, h, γ).

Proof: Without loss of generality we assume that h is monotone non-decreasing (otherwise
replace h(k) with maxj≤k h(j)). Set B0 = B. Inductively, if Bi is not already (h, γ)-robust then
set B′i to be a semantic refinement of Bi for which |B′i| ≤ h(|Bi|) and indd(B′) ≥ indd(B) + γ,
and by Observation 3.10 then set Bi+1 to be a syntactic refinement of B and B′i for which
|Bi+1| ≤ h(|Bi|) + |B|.

13

Noting that the index can only increase while moving to a refinement (by the Cauchy-Schwartz
inequality), this process must stop for some j ≤ 1/γ. Bj is the required factor, and its size is
bounded by k1/γ , where we define k0 = k and by induction ki+1 = h(ki) + k.

Note: From now on we assume that all our relevant functions are monotone in their corre-
sponding variables, also when this is not stated explicitly. For example, a function h fed to
Observation 3.13 will assumed to be monotone non-decreasing, and if k ≤ k′, γ ≥ γ′, and
h(m) ≤ h′(m) for every m ∈ N (while both h and h′ are monotone non-decreasing), then
T3.13(k, h, γ) ≤ T3.13(k′, h′, γ′). All our lemmas can indeed be made to provide such functions.

3.4 Robustness with Rank

The next item on the agenda is to show that polynomial factors can be refined to ones of high
rank. The following index definition is used for analyzing rank.

Definition 3.14 The degree index of a factor B is the (infinite but almost everywhere zero)
sequence of non-negative integers indm(B) = I = (i1, i2, . . .), where ik is the number of polyno-
mials of degree k in the sequence of polynomials defining B.

Denote the set of all possible degree sequences as above by I. Over I we define the anti-
lexicographic order, where I < I ′ if ik < i′k for the largest k on which those coordinates differ.

The set I defined above is well-ordered in the sense that there exist no infinite strictly decreasing
sequences of members of I, but this still does not provide for “standard” induction, as the order
is not isomorphic to N. To replace induction we define the notion of a decrement.

Definition 3.15 Let I denote the well-ordered set of all possible degree indexes. A function
κ : N×I → I is called a decrement if for all A ∈ I and n ∈ N it satisfies κ(n,A) < A, for all n
and A ≤ B it satisfies κ(n,A) ≤ κ(n,B), and for all n < m and A it satisfies κ(n,A) ≤ κ(m,A).
The inequalities are with respect to the anti-lexicographic ordering of I.

The following shows how, when we are given a decrement that “bounds” some process, we can
use it to bound an iterative process.

Lemma 3.16 There exist T3.16(k, d, h, κ) and m3.16(k, d, h, κ) that take numbers k and d,
a monotone h : N → N and a decrement κ, and satisfy the following. If B0,B1, . . .Bm
is a sequence of factors of bounded degree d for which |B0| ≤ k, |Bi| ≤ h(|Bi−1|) and
indm(Bi) ≤ κ (|Bi−1|, indm(Bi−1)), then |Bm| is bounded by T3.16(|B|, d, h, κ) and m is bounded
by m3.16(|B|, d, h, κ).

Proof: Let I0 be the maximal (with respect to order) degree index of any degree d factor of
complexity k, which is the sequence (i1, i2, . . .) for which id = k and ij = 0 for any j 6= d, and
let h0 = k. Inductively define hi ∈ N as hi = h(hi−1), and Ii = κ(hi−1, Ii−1). Because I0, I1, . . .
is a decreasing sequence over a well-ordered set, it must be of bounded length, which we denote
as m3.16(k, d, h, κ). We then set T3.16(k, d, h, κ) = hm3.16(k,d,h,κ). For a sequence of factors as
above, the monotonicity conditions of κ ensure that |Bi| ≤ hi and indm(Bi) ≤ Ii, and so we are
done.

14

The following provides a decrement that will bound the process of obtaining a high rank refine-
ment of a given factor, as well as a bound on the size increment. Note that also if the required
rank depends on the factor size, we can still get a bounding decrement.

Lemma 3.17 For every r : N→ N there exist h
(r)
3.17 : N→ N and a decrement κ

(r)
3.17 : N×I → I,

satisfying the following for every d. If B is a factor of degree at most d whose rank is less

than r(|B|), then there exists a semantic refinement B′ of B for which |B′| ≤ h
(r)
3.17(|B|) and

indm(B′) ≤ κ(r)
3.17(|B|, indm(B)).

Moreover, if B is in itself a syntactic refinement of some B̂ that is of rank at least r(|B|) + 1,
then additionally B′ will be a syntactic refinement of B̂.

Proof: We will deal with the first case, and then show how to modify the proof for the case
where being a syntactic refinement of some B̂ of the appropriate rank must be preserved.

Let p1, . . . , pC be the defining polynomials for B, where C = |B|. Suppose there is a linear
combination over F that shows that B has a rank smaller than r(C). This means that for some
(α1, . . . , αC) ∈ FC \ {0C}, some arbitrary function B : Fl → F and polynomials q1, . . . , ql we
have

∑C
j=1 αjpj(x) = B(q1(x), . . . , ql(x)) for every x ∈ Fn, where l < r(C) and every qi is of

degree smaller than max{deg(pj)|αj 6= 0} (a possible special case is where l = 0 and B is a
constant).

We select j0 so that αj0 6= 0 and deg(pj0) = max{deg(pj)|αj 6= 0}, and construct B′ by
replacing pj0 with q1, . . . , ql. This is clearly a semantic refinement of B of complexity bounded
by h(C) = C + r(C)− 1. Also, if I = (i1, . . .) was the degree index of B, then the degree index
of B′ is bounded above by the following κ(C, I) = (j1, . . .): Letting k be the smallest number
such that ik > 0, we set jk = ik − 1, and if k > 1 then we set jk−1 = ik−1 + r(C)− 1; all other
coordinates of κ(C, I) are set equal to the respective coordinates of I.

The above argument provides us with h
(r)
3.17 and κ

(r)
3.17 as required.

Now we deal with an existing B̂ as above. We follow the same argument, but argue that we
can find j0 for which αj0 6= 0 that corresponds to a maximal degree polynomial, satisfying
additionally j0 > Ĉ = |B̂|. Assuming otherwise, we would find a counter example to the rank

assumption on B̂: We would get that
∑Ĉ

j=1 αjpj(x) can be expressed as a function of q1, . . . , ql

and ql+1 =
∑C

j=Ĉ+1
αjpj , which would all be of lower degree than max{deg(pj)|1 ≤ j ≤ Ĉ, αj 6=

0} = max{deg(pj)|αj 6= 0}, and would hence violate the rank of B̂.

Now we can combine the above two lemmas and prove the existence of high rank refinements.

Lemma 3.18 There exists D
(d,r)
3.18 (k) which takes two numbers k and d and a monotone function

r : N→ N, and satisfies the following. For every factor B of bounded degree d there is a semantic

refinement B′ for which |B′| ≤ D(d,r)
3.18 (|B|), is of bounded degree d and has rank at least r(|B′|).

Moreover, if B is in itself a syntactic refinement of some B̂ that is of rank at least r(D
(d,r)
3.18 (|B|))+

1, then additionally B′ will be a syntactic refinement of B̂.

Proof: We set D
(d,r)
3.18 (k) = T3.16(k, d, h

(r)
3.17, κ

(r)
3.17). We set B0 = B, and as long as Bi is of

rank less than r(|Bi|) we move to a semantic refinement Bi+1 as guaranteed by Lemma 3.17.

By Lemma 3.16 the sequence B0,B1, . . . has length bounded by m3.16(k, d, h
(r)
3.17, κ

(r)
3.17), and the

15

final factor Bl is of rank at least r(|Bl|) (otherwise we could have continued the sequence) and

of complexity bounded by T3.16(k, d, h
(r)
3.17, α

(r)
3.17).

For the case of a prior factor B̂ we just use the corresponding case of Lemma 3.17.

Now we finally state the main technical lemma that we will use for our decompositions. It will
find a refinement that is both robust and of high rank, while not breaking a given syntactic
refinement relation to a high rank factor if one exists.

Lemma 3.19 (main robustness lemma) For an appropriate function T3.19(k, h, d, r, γ), for
any B of degree bound d, monotone h : N → N and r : N → N, and γ ∈ (0, 1) there exists
a semantic refinement B′ of B which is of rank at least r(|B′|) and (h, γ)-robust, for which
|B′| ≤ T3.19(|B|, h, d, r, γ).

Moreover, if B is in itself a syntactic refinement of some B̂ that is of rank at least
r(T3.19(|B|, h, d, r, γ)) + 1, then additionally B′ will be a syntactic refinement of B̂ (this holds
also for the case where B = B̂).

Proof: We set T3.19(k, h, d, r, γ) = D
(d,r)
3.18

(
T3.13(k, h ◦D(d,r)

3.18 , γ)
)

. Given B, we first use

Lemma 3.13 to find B1 that is a syntactic refinement of B and is (h ◦ D(d,r)
3.18 , γ)-robust. We

then let B′ be its semantic refinement according to Lemma 3.18 that is of rank r(|B′|). The

complexity of B′ is at most D
(d,r)
3.18 (|B1|), and hence (apart from being bounded by the above

T3.19(|B|, h, d, r, γ)) by Observation 3.12 it is (h, γ)-robust as required.

For the case where there is a prior factor B̂ of the stated rank, we just use the corresponding
case of Lemma 3.18.

4 Decomposition Theorems

We use here the tools of the previous section to prove two decomposition theorems. First
we state and prove the strong decomposition theorem (it is called “strong” on account of also
guaranteeing high rank); similar theorems were proved in previous works, and we only make a
seemingly small (yet crucial to what follows) addition that preserves a given syntactic refinement
relation. Then we state and prove the super decomposition theorem, which uses the strong
decomposition theorem (or more accurately the main lemma implying it) as a lemma.

Super decomposition provides us with two successive factors, one being a syntactic refinement
of the other. For the testing proofs, instead of using it directly, we will use a corollary that
“chooses”out of the finer factor only one representative for each of the cells of coarser factor. This
is done in the subcell selection corollary. The resulting representatives will satisfy properties
that are stronger than what any one factor can satisfy by itself.

4.1 Strong Decomposition

First, a corollary of Theorem 3.2.

16

Lemma 4.1 For d < p, suppose that B is a polynomial factor of degree d and complexity C,
and suppose f : Fnp → {0, 1} is such that ‖f − E[f |B]‖Ud+1 ≥ δ. Then, there exists a refined
polynomial factor B′ of degree d and complexity at most C + 1 such that:

‖E[f |B′]‖22 ≥ ‖E[f |B]‖22 + (ε3.2(δ, p))2

where ε3.2 is the function in Theorem 3.2.

Proof: g = f − E[f |B] is bounded to [−1, 1]. So, applying Theorem 3.2 yields a degree-d
polynomial P satisfying |E[g(x) · e (P (x))]| ≥ ε3.2(δ, p). The polynomial P generates a factor
B̂ of complexity 1. Define B′ to be the common refinement of B and B̂ (by adding P to the
polynomials defining B); its complexity is C + 1.

Observe that:

‖E[g|B′]‖1 = E
x

[
|E[g|B′](x)|

]
= E

x

[
|E[g|B′](x) · e (P (x)) |

]
≥
∣∣∣E
x

[
E[g|B′](x) · e (P (x))

]∣∣∣ =
∣∣∣E
x

[g(x) · e (P (x))]
∣∣∣ ≥ ε3.2(δ, p)

where the second equality is simply due to |e (P (x)) | = 1, and the third equality uses the fact
that P is constant on each atom of B′. Now finally:

‖E[f |B′]‖22 − ‖E[f |B]‖22 = ‖E[f |B′]− E[f |B]‖22 = ‖E[g|B′]‖22 ≥ ‖E[g|B′]‖21 ≥ ε23.2(δ, p)

where the first equality uses the fact that B′ is a refinement of B.

The contra-positive of the above provides us with a function decomposition given a sufficiently
robust polynomial factor.

Lemma 4.2 For any η and d < p there exist h4.2 : N → N and γ4.2(η, p), so that if B is
(h4.2, γ4.2(η, p))-robust (with respect to f) among factors of degree bound d over Fnp , then there
is a decomposition f = f1 + f2 where f1 is constant over every atom of B and ranges in [0, 1],
and f2 satisfies ‖f2‖Uk ≤ η and ranges in [−1, 1].

Proof: We set simply h4.2(k) = k + 1 and γ4.2(η, p) = ε3.2(η, p)2. Given B as above we
set f1 = E[f |B] and f2 = f − E[f |B]. These functions clearly have the required ranges. The
robustness condition of B implies the contra-positive of the conclusion of Lemma 4.1, and so we
must have ‖f2‖Uk ≤ η as required.

However, we would like to make the Gowers norm bound also a function of |B|. For this we will
decompose f into three functions, where the third “error term” function has a bound on its l2
norm. In fact an l2 norm bound is what we need for an error term, but to reach even a constant
l2 norm bound we cannot avoid having also the function that has “only” a Gowers norm bound.

Lemma 4.3 For any d < p, δ and η : N→ R+ there exist h
(η,p)
4.3 : N→ N and γ4.3(δ), so that if

B is (h
(η,p)
4.3 , γ4.3(δ))-robust (with respect to f) among factors of degree bound d, then there is a

decomposition f = f1 +f2 +f3 where f1 is constant over every atom of B and ranges in [0, 1], f2

satisfies ‖f2‖Uk ≤ η(|B|) and ranges in [−1, 1], and f3 ranges in [−1, 1] and satisfies ‖f3‖2 ≤ δ,
where f1 + f3 also ranges in [0, 1].

17

Proof: We set h
(η,p)
4.3 (m) = T3.13 (m,h4.2, γ4.2(η(m), p)) for every m ∈ N and γ4.3(δ) = δ2.

Given B satisfying the robustness condition above, we let B′ be its syntactic refinement which
is (h4.2, γ4.2(η(|B|), p))-robust and for which |B′| ≤ T3.13 (|B|, h4.2, γ4.2(η(|B|), p)). We let f1 =
E[f |B], and f2 = f−E[f |B′]. As per Lemma 4.2 f2 satisfies the required Gowers norm condition.
This leaves us with f3 = E[f |B′] − E[f |B]. The required l2 condition on this function follows
directly from B′ not violating the robustness condition of B.

We now have all the tools to quickly wrap up the proof of the existence of a strong decomposition.

Theorem 4.4 (Strong Decomposition Theorem) Suppose δ > 0 and C0, d ≥ 1 are inte-
gers so that d < p. Let η : N → R+ be an arbitrary non-increasing function and r : N → N
be an arbitrary non-decreasing function. Then there exists C = C4.4(δ, η, p, r, C0) such that the
following holds.

Given f : Fnp → {0, 1} and a polynomial factor B0 of degree at most d and complexity at most
C0, there exist three functions f1, f2, f3 : Fnp → R and a polynomial factor B �sem B0 of degree
at most d and complexity at most C such that the following hold:

• f = f1 + f2 + f3

• f1 = E[f |B]

• ‖f2‖Ud+1 ≤ 1/η(|B|)

• ‖f3‖2 ≤ δ

• f1 and f1 + f3 have range [0, 1]; f2 and f3 have range [−1, 1].

• B is of rank at least r(|B|)

Moreover, if B0 is a syntactic refinement of some B̂ of rank at least r(C) + 1, then B will also
be a syntactic refinement of B̂ (in particular this also holds if B0 = B̂).

Proof: Set C4.4(δ, η, p, r, C0) = T3.19(C0, h
(η,p)
4.3 , p, r, γ4.3(δ)) ≥ T3.19(C0, h

(η,p)
4.3 , d, r, γ4.3(δ)).

Given B0 and f , we set B to be the (h
(η,p)
4.3 , γ4.3(δ))-robust refinement of B0 guaranteed by

Lemma 3.19. Lemma 4.3 guarantees the required decomposition f = f1 + f2 + f3, and the case
of a prior B̂ is also handled seamlessly by Lemma 3.19.

4.2 Super Decomposition and Subcell Selection

What we would really like is that in some sense the δ of Theorem 4.4 would also be able to
depend on |B|, but this is clearly impossible. So instead, taking some inspiration from [AFKS00],
we will strive to have a sequence of two factors B and B′, the latter a syntactic refinement of
the former, so that the δ of B′ would be a function of |B|. However, for this to mean anything
we also need B′ to “faithfully” represent B, in the sense that we define now.

Definition 4.5 (Polynomial factor represents another factor) Given a function f :
Fnp → {0, 1}, a polynomial factor B′ that syntactically refines another factor B and a real
ζ ∈ (0, 1), we say B′ ζ-represents B with respect to f if for at most a ζ fraction of cells c
of B, more than ζ fraction of the cells c′ lying inside c satisfy |E[f |c]− E[f |c′]| > ζ.

18

To be able to infer that a refinement is representing, we will use the following well-known defect
version of the Cauchy-Schwartz inequality:

Observation 4.6 If
∑m

i∈I αi = 1 where αi are all non-negative, f : I → R ranges over [0, 1],

and for some J ⊆ I we have
(∑

j∈J αif(i)
)
/
(∑

j∈J αi

)
=
∑

i∈I αif(i) + η where η ∈ [−1, 1],

then
∑

i∈I αi(f(i)2) ≥ (
∑

i∈I αif(i))2 +
(∑

j∈J αi

)
η2.

Proof: For ease of notation denote the average a =
∑

i∈I αif(i) of f and set ξ =
∑

j∈J αi.

By the standard Cauchy-Schwartz inequality
∑

i∈I αi(f(i)2) ≥
∑

i∈I αi(f
′(i)2), where f ′(i) =(∑

j∈J αif(i)
)
/
(∑

j∈J αi

)
= a + η if i ∈ J and f ′(i) =

(∑
j∈I\J αif(i)

)
/
(∑

j∈I\J αi

)
=

a−ξη/(1−ξ) if i 6∈ J . The sum over f ′ now equals ξ(a+η)2 +(1−ξ)(a−ξη/(1−ξ))2 ≥ a2 +ξη2.

We can now show that, under some rank assumptions, a non-representing refinement is evidence
to a factor being non-robust.

Lemma 4.7 There are functions r4.7(p,m) and γ4.7(ζ) for which the following holds. For f :
Fnp → {0, 1}, if B′ is a factor of rank r4.7(p, |B′|), and is a syntactic refinement of a factor B
of rank r4.7(p, |B|), both of degree d < p, and B′ does not ζ-represent B with respect to f , then
indd(B′) ≥ indd(B) + γ4.7(ζ).

Proof: We first set r4.7(p,m) = r3.7(p, 1/2pm). If B′ does not ζ-represent B, then it must be
the case that there are at least ζp|B|/2 cells of B, so that for every cell c of them, there are at
least ζp|B

′|−|B|/2 cells c′ of B′ lying inside of it, so that |E[f |c]− E[f |c′]| > ζ.

Let us concentrate for now on one such cell c of B. Either there are at least ζp|B
′|−|B|/4 cells

c′ inside c so that E[f |c′] − E[f |c] > ζ, or there are more than ζp|B
′|−|B|/4 such cells so that

E[f |c′] − E[f |c] < −ζ. We will assume the first case, as the treatment of the second case is
virtually identical and provides the same lower bound for the cell.

Now we refer to Observation 4.6, where I is identified with F|B
′|−|B|

p , the set of cells of B′ lying
in c, and J is identified with the set of those cells c′ satisfying E[f |c′]−E[f |c] > ζ. The value of
each αi can easily be shown to be at least p|B

′|−|B|/3, by comparing the minimum possible size
of the cell c′ with the maximum possible size of the cell c. Inserting the other corresponding
values in Observation 4.6, we obtain E[E[(f(x))2]|c] > (E[(f(x))2|c])2 + ζ3/12.

Summing up the above contribution for all cells c of B, and noting that the relative size of
every cell of B is at least p−|B|/2 by Lemma 3.8, we obtain that indd(B′) = E[(f(x))2|B′] ≥
E[(f(x))2|B] + ζ3/24 = indd(B) + γ4.7(ζ), where we set γ4.7(ζ) = ζ3/24.

The following technical lemma shows that if the partition is robust enough, then it has a
specified robust and representing syntactic refinement, where we also take a rank requirement
into account.

Lemma 4.8 For every h : N → N, γ : N → (0, 1), r : N → N, p ∈ N and ζ ∈ (0, 1) there are

H
(h,γ,p,r)
4.8 : N→ N, R

(h,γ,p,r)
4.8 : N→ N and Γ4.8(ζ) ∈ (0, 1) satisfying the following among factors

of degree bound d < p over Fnp . If B is an (H
(h,γ,p,r)
4.8 ,Γ4.8(ζ))-robust partition of rank at least

R
(h,γ,p,r)
4.8 (|B|), then it has a ζ-representing syntactic refinement B′ which is (h, γ(|B|))-robust

and is of rank at least r(|B′|), which satisfies also |B′| ≤ S4.8(|B|, h, p, r, γ) for the appropriate
function S4.8(m,h, p, r, γ).

19

Proof: Set the following in order:

S4.8(m,h, p, r, γ) = T3.19(m,h, p, r, γ(m))

H
(h,γ,p,r)
4.8 (m) = S4.8(m,h, p, r, γ)

R
(h,γ,p,r)
4.8 (m) = max{r(S4.8(m,h, p, r, γ)) + 1, r4.7(p,m)}

Γ4.8(ζ) = γ4.7(ζ)

Assuming that B satisfies the requisites, we use Lemma 3.19 to find a refinement B′ that
is (h, γ(|B|))-robust, of rank at least r(|B′|), and satisfying |B′| ≤ T3.19(|B|, h, d, r, γ(|B|)) ≤
T3.19(|B|, h, p, r, γ(|B|)) – the required complexity bound (note that Lemma 3.19 is fed the num-
ber γ(|B|), not the function γ).

The condition that B is (H
(h,γ,p,r)
4.8 ,Γ4.8(ζ))-semantically-robust means that indd(B′) ≤ indd(B)+

γ4.7(ζ), and so B′ is ζ-representing for B by Lemma 4.7 (as the partitions also satisfy the
corresponding rank requirement).

The condition that B is of rank at least R
(h,γ,p,r)
4.8 (|B|) ≥ r (T3.19(|B|, h, p, r, γ(|B|))) + 1 means

that (setting B̂ = B) Lemma 3.19 provides the additional requirement that B′ is a syntactic
refinement of B.

We can now put forth our final decomposition theorem.

Theorem 4.9 (Super Decomposition Theorem) Suppose ζ > 0 and d,C0 ≥ 1 are integers
so that d < p. Let η : N → R+ and δ : N → R+ be arbitrary non-increasing functions, and
r : N → N be an arbitrary non-decreasing function. Then there exists C = C4.9(δ, η, p, r, ζ, C0)
such that the following holds.

Given f : Fnp → {0, 1} and a polynomial factor B0 of degree at most d and complexity at most
C0, there exist functions f1, f2, f3 : Fnp → R, a semantic refinement B of B0 of degree at most d
and a syntactic refinement B′ of B of degree at most d and of complexity at most C, such that
the following hold:

• f = f1 + f2 + f3

• f1 = E[f |B′]

• ‖f2‖Ud+1 ≤ η(|B′|)

• ‖f3‖2 ≤ δ(|B|)

• f1 and f1 + f3 have range [0, 1]; f2 and f3 have range [−1, 1].

• B is of rank at least r(|B|).

• B′ is of rank at least r(|B′|).

• B′ ζ-represents B with respect to f .

Proof: Let the function γ be defined by γ(m) = γ4.3(δ(m)) and let h be defined by h(m) =

h
(η,p)
4.3 (m). Then set:

C4.9(δ, η, p, r, ζ, C0) = S4.8

(
T3.19

(
C0, H

(h,γ,p,r)
4.8 , p, R

(h,γ,p,r)
4.8 ,Γ4.8(ζ)

)
, h, p, r, γ

)
.

20

Given B0, we set B to be the semantic refinement that is guaranteed by Lemma 3.19 that

is
(
H

(h,γ,p,r)
4.8 ,Γ4.8(ζ)

)
-robust and is of rank at least R

(h,γ,p,r)
4.8 (|B|). |B| will be bounded by

T3.19

(
C0, H

(h,γ,p,r)
4.8 , p, R

(h,γ,p,r)
4.8 ,Γ4.8(ζ)

)
. Note also that R

(h,γ,p,r)
4.8 (|B|) ≥ r(|B).

Now we can use Lemma 4.8 to provide us a ζ-representing syntactic refinement B′ of B, that

is of rank at least r(|B′|), and is (h, γ(|B|))-robust and thus
(
h

(η,p)
4.3 , γ4.3(δ(|B|))

)
-robust. The

factor B′ satisfies the required complexity upper bound by substituting the bound on |B| into
the guaranteed complexity bound of Lemma 4.8. Finally Lemma 4.3 provides the required
decomposition f = f1 + f2 + f3 over B′.

One could envision future applications in which we would need the whole of B′. Here we will
need a careful choice of one cell of B′ for every cell of B. This selection will satisfy the following:

• The choice of cells will be made in a “uniform” manner. This part is helped by B′ being
a syntactic refinement. We will in fact set the “subcell ID” (the values of the polynomials
appearing in B′ and not in B) to be the same for all cells of B.

• All the subcells will feature a “good” decomposition, in terms of the norm of f3.

• Most subcells will “well-represent” their corresponding cells from B, in terms of the corre-
sponding conditional expectation of f .

Now we state this formally.

Corollary 4.10 (Subcell Selection) Suppose ζ > 0 and d ≥ 1 is an integer less than p.
Let η, δ : N → R+ be arbitrary non-increasing functions, and let r : N → N be an arbitrary
non-decreasing function. Then, there exist C = C4.10(δ, η, p, r, ζ) such that the following holds.

Given f : Fnp → {0, 1}, there exist functions f1, f2, f3 : Fnp → R, a polynomial factor B with cells

denoted by elements of F|B|p , a syntactic refinement B′ of B with complexity at most C and cells

denoted by elements of F|B|p × F|B
′|−|B|

p , and an element s ∈ F|B
′|−|B|

p such that the following is
true:

• f = f1 + f2 + f3

• f1 = E[f |B′]

• ‖f2‖Ud+1 < η(|B′|)

• f1 and f1 + f3 have range [0, 1]; f2 and f3 have range [−1, 1].

• B is of rank at least r(|B|)

• B′ is of rank at least r(|B′|)

• For every c ∈ F|B|p , the subcell c′ = (c, s) ∈ F|B
′|

p has the property that EB(x)=c′ [(f3(x))2] <
(δ(|B|))2.

• Pr
c∈F|B|p

[|E[f |c] − E[f |(c, s)]| > ζ] < ζ, where we denote E[f |c] = E[f(x)|B(x) = c] and

E[f |(c, s)] = E[f(x)|B′(x) = (c, s)].

21

Proof: Let r′(m) = r3.7(p, p−m/10), so that by Theorem 3.7, a polynomial factor B of degree

d and rank at least r′(|B|) satisfies for any c ∈ F|B|p

0.9 p−|B| ≤ Pr
x∈Fnp

[B(x) = c] ≤ 1.1 p−|B|.

Set C4.10(δ, η, p, r, ζ) = C4.9(∆, η, p, r′′, ζ/4, 1), where ∆(m) = 0.1 · δ(m)/pm and r′′(m) =
max(r(m), r′(m)). Apply Theorem 4.9 with B0 being the trivial partitioning consisting of one
cell. This yields a factor B with rank at least r′′(|B|), and a syntactic refinement B′ of B with

rank at least r′′(|B′|). Let s be a uniformly chosen random element from F|B
′|−|B|

p .

Observe that for every cell c ∈ F|B|p of B, at most a 0.1p−|B| fraction of the subcells c′ ∈
{c}×F|B

′|−|B|
p of B′ have Ex[(f3(x))2|c′] > δ(|B|)2. To show this, assume on the contrary that even

for one cell c ∈ F|B|p this event does not occur, and denote by S the set of cells c′ ∈ F|B
′|

p of B′ that
lie in c for which Ex[(f3(x))2|c′] > δ(|B|)2. By our assumption |S| ≥ (0.1p−|B|)p|B

′|−|B|, and then
‖f3‖22 = Ex∈Fnp [(f3(x))2] > δ(|B|)2 Prx∈Fnp [B(x) = c ∧ B′(x) ∈ S] ≥ 0.09 δ(|B|)2/p2|B| > ∆(|B|)2,
a contradiction to the guarantee of Theorem 4.9.

Hence, for any fixed c, the probability that s is such that Ex[(f3(x))2|(c, s)] > δ(|B|)2 is at

most 0.1p−|B|. By the union bound, with probability at least 3/4, for every c ∈ F|B|2 the subcell
c′ = (c, s) has the property that Ex[(f3(x))2|c′] ≤ δ(|B|)2.

Also, because B′ ζ/4-represents B, the expected number of cells c for which |E[f |c]−E[f |(c, s)]| >
ζ is less than ζ/4 · p|B|. So, by the Markov inequality, with probability at least 3/4

Pr
c∈F|B|p

[|E[f |c]− E[f |(c, s)]| > ζ] < ζ

.

We conclude that an s exists with both the desired properties.

4.3 Extending to Multiple Functions

The theorems so far referred to only a single function f : Fnp → {0, 1}. However, we actually

require decomposition theorems which work for several functions f (1), . . . , f (R) : Fnp → {0, 1}
simultaneously with a single polynomial factor; alternatively, this could be thought of as de-
composing a single “vector” function f : Fnp → {0, 1}R.

It is quite straightforward to adapt all the previous proofs to this framework. The main adap-
tation to be done is the following version of the definition of a density index.

Definition 4.11 The density index of a factor B with respect to a vector function f =
(f (1), . . . , f (R)) : Fnp → {0, 1}R is the sum of the squared l2 norms of the conditional expec-

tation of the f (i) functions, that is indd(B) =
∑R

i=1 E
[
(E[f (i)|B])2

]
.

Given a function h : N→ N and a real parameter γ, A factor B is (h, γ)-robust (semantically)
if there exists no B′ which is a semantic refinement of B for which |B′| ≤ h(|B|) and indd(B′) ≥
indd(B) + γ.

From here we can follow nearly the exact same arguments. The main difference is that now all
resulting bounds will depend on R, starting with the multiple functions analog analog of T3.19,
as the index is now bounded by R rather than 1. Eventually we can reach the following version
of the subcell selection theorem.

22

Theorem 4.12 (Subcell Selection – Multiple Functions) Suppose ζ > 0 and d ≥ 1 is an
integer less than p. Let η, δ : N→ R+ be arbitrary non-increasing functions, and let r : N→ N
be an arbitrary non-decreasing function. Then, there exist C = C4.12(δ, η, p, r, ζ, R) such that
the following holds.

Given f (1), . . . , f (R) : Fnp → {0, 1}, there exist functions f
(i)
1 , f

(i)
2 , f

(i)
3 : Fnp → R for all i ∈ [R],

a polynomial factor B with cells denoted by elements of F|B|p , a syntactic refinement B′ of B
with complexity at most C and cells denoted by elements of F|B|p × F|B

′|−|B|
p , and an element

s ∈ F|B
′|−|B|

p such that the following is true:

• f (i) = f
(i)
1 + f

(i)
2 + f

(i)
3 for every i ∈ [R].

• f (i)
1 = E[f (i)|B′] for every i ∈ [R].

• ‖f (i)
2 ‖Ud+1 < η(|B′|) for every i ∈ [R].

• For every i ∈ [R], f
(i)
1 and f

(i)
1 +f

(i)
3 have range [0, 1], and f

(i)
2 and f

(i)
3 have range [−1, 1].

• B is of rank at least r(|B|)

• B′ is of rank at least r(|B′|)

• for every c ∈ F|B|p , the subcell c′ = (c, s) ∈ F|B
′|

2 has the property that Ex[(f
(i)
3 (x))2 | B′(x) =

(c, s)] < (δ(|B|))2 for every i ∈ [R].

• Pr
c∈F|B|p

[∃i∈[R]|E[f (i)|c]− E[f (i)|(c, s)]| > ζ] < ζ, where we denote E[f |c] = E[f(x)|B(x) =

c] and E[f |(c, s)] = E[f(x)|B′(x) = (c, s)].

5 Counting and Testability

5.1 Counting Patterns inside Cells

Let B be a polynomial factor generated by the polynomials P1, . . . , PC : Fnp → Fp, and let

b1, . . . , bm ∈ FCp denote the images of m cells of B. We will want to estimate probabilities of the
following form:

Pr
x1,...,x`

[B(a1(x1, . . . , x`)) = b1 ∧ B(a2(x1, . . . , x`)) = b2 ∧ · · · ∧ B(am(x1, . . . , x`)) = bm] (2)

where (a1, . . . , am) is an affine constraint of size m on ` variables. In Lemma 3.8, we analyzed
the expectation when ` = m = 1 and a1(x1) = x1. In order to deal with the more general form,
let us re-express (2) in the following way:

Pr
x1,...,x`

[B(a1(x1, . . . , x`)) = b1 ∧ · · · ∧ B(am(x1, . . . , x`)) = bm]

= E
x1,...,x`∈Fnp

∏
i∈[C]

∏
j∈[m]

1

p

∑
λi,j∈Fp

e (λi,j · (Pi(aj(x1, . . . , x`))− bi,j))

= p−mC

∑
λi,j∈Fp:

i∈[C],j∈[m]

e

−∑
i∈[C]

∑
j∈[m]

λi,jbi,j

 E
x1,...,x`

e
∑
i∈[C]

∑
j∈[m]

λi,jPi(aj(x1, . . . , x`))

 (3)

23

Hatami and Lovett in [HL11a, HL11b] studied expectations such as those in (3) and proved the
following dichotomy.

Lemma 5.1 (Lemma 5.1 in [HL11b]) Suppose we are given ε ∈ (0, 1), positive integer d < p
and an affine constraint (A, σ) where A = (a1, . . . , am) is of size m and over ` variables. Let
P1, . . . , PC : Fnp → Fp be a collection of polynomials of degree at most d such that the rank of the
polynomial factor generated by P1, . . . , PC is at least r3.7(d, ε). Then, for every set of coefficients
Λ = {λi,j ∈ Fp : i ∈ [C], j ∈ [m]}, if PΛ : (Fnp)` → Fp is the polynomial defined by:

PΛ(X1, . . . , X`) =
C∑
i=1

m∑
j=1

λi,jPi (aj(X1, . . . , X`))

then either PΛ is the zero polynomial, or else
∣∣∣Ex1,...,x`∈Fnp e (PΛ(x1, . . . , x`))

∣∣∣ < ε.

Thus, to bound (3), we need to count the number of sets Λ such that PΛ ≡ 0, in the language
of Lemma 5.1. To this end, let us make the following definition, following the works of Gowers
and Wolf [GW10b, GW10a].

Definition 5.2 (Dimension of linear forms) For a positive integer d and linear form
L(X1, . . . , X`) = α1X1 + α2X2 + · · ·+ α`X` where α1, . . . , α` ∈ Fp, let the dth tensor power of
L denote:

L⊗d
def
=

 d∏
j=1

αij : i1, . . . , id ∈ [`]

 ∈ F`
d

p

Given positive integers d1, . . . , dC and an affine constraint A = (a1, . . . , am) of size m on `
variables, define the (d1, . . . , dC)-dimension of A to be:

C∑
i=1

dim
({
a⊗di1 , . . . , a⊗dim

})
To show the relevance of the above definition, we first need an algebraic “all or nothing” lemma
from [HL11b] that concerns linear and polynomials without explicitly referring to the dimension
of the forms.

Lemma 5.3 (Lemma 5.2 in [HL11b]) Suppose λi,j ∈ Fp for i ∈ [C], j ∈ [m], and
d1, . . . , dC ∈ [d], where d < p. Also, let (A, σ) where A = (a1, . . . , am) be an affine constraint,
where every linear form aj is over variables X1, . . . , X`. Then, one of the following holds:

• For every collection of linearly independent polynomials P1, . . . , PC of degree d1, . . . , dC
respectively:

C∑
i=1

m∑
j=1

λi,jPi (aj(X1, . . . , X`)) ≡ 0

• For every collection of linearly independent polynomials P1, . . . , PC of degree d1, . . . , dC
respectively:

C∑
i=1

m∑
j=1

λi,jPi (aj(X1, . . . , X`)) 6≡ 0

24

Now we can make the connection between the definition of the dimension of the linear forms,
and their effect on a sequence of polynomials with given degrees.

Lemma 5.4 Let the notation here be same as in Lemma 5.1. If d1, . . . , dC are the respective
degrees of the polynomials P1, . . . , PC and if s is the (d1, . . . , dC)-dimension of (a1, . . . , am), then
the number of sets Λ for which PΛ ≡ 0 equals pmC−s.

Proof: Notice that we want to show that the number of sets Λ for which PΛ ≡ 0 is dependent
just on the degrees of the polynomials P1, . . . , PC and not on any other specifics. For this we use
Lemma 5.3, so that instead of having the polynomials P1, . . . , PC , we can analyze a collection
of much simpler linearly independent polynomials of respective degrees d1, . . . , dC .

In particular, let us define P ′i (x) = xdii for every i ∈ [C] (we assume that n > C). Then,

the polynomial P ′Λ(X1, . . . , X`) =
∑C

i=1

∑m
j=1 λi,jP

′
i (aj(X1, . . . , X`)) is identically zero exactly

when
∑m

j=1 λi,ja
⊗di
j = 0 for every i ∈ [C].

Standard linear algebra and the definition of (d1, . . . , dC)-dimension then shows that the set of
Λ’s for which P ′Λ ≡ 0 forms a linear subspace of codimension s.

At this point, we can move to the main theorem of this section. Let us first make the following
definition, that in some ways captures the essence of “polynomial feasibility” for a sequence of
values.

Definition 5.5 Given an affine constraint A = (a1, . . . , am) and positive integers d1, . . . , dC ,
we say that elements b1, . . . , bm, where bj = (b1,j , . . . , bC,j) ∈ FCp for every j ∈ [m], are consistent
with respect to A and d1, . . . , dC if the following is true:

• For every set Λ = {λi,j ∈ Fp : i ∈ [C], j ∈ [m]} for which
∑

j∈[m] λi,j(aj(X1, . . . , X`))
⊗di

equals 0 for all i ∈ [C], it is the case that
∑

j∈[m] λi,jbi,j = 0 as well for all i ∈ [C].

The following is easy to observe using basic linear algebra:

Observation 5.6 Being consistent is equivalent to satisfying the following condition: For every
set Λ = {λi,j ∈ Fp : i ∈ [C], j ∈ [m]} for which

∑
j∈[m] λi,j(aj(X1, . . . , X`))

⊗di equals 0 for all
i ∈ [C], we have

∑
i∈[C]

∑
j∈[m] λi,jbi,j = 0.

The following theorem shows that the expectation in (2) is nonzero, and is in fact close to a
calculated number, if and only if b1, . . . , bm are consistent.

Theorem 5.7 Let ε ∈ (0, 1), let (A, σ) where A = (a1, . . . , am) be an affine constraint over `
variables, and let B be a polynomial factor of degree d, complexity C and rank at least r3.7(d, ε)
generated by the polynomials P1, . . . , PC : Fnp → Fp. For every i ∈ [C], let di be the degree of Pi.
Let s denote the (d1, . . . , dC)-dimension of A over Fp. Finally, for every j ∈ [m], fix the image
of a cell in B, indexed by bj = (b1,j , . . . , bC,j) ∈ FCp .

If b1, . . . , bm are consistent with respect to A and d1, . . . , dC , then:

Pr
x1,...,x`∈Fnp

[B (a1(x1, . . . , x`)) = b1 ∧ · · · ∧ B (am(x1, . . . , x`)) = bm] = p−s ± ε

If b1, . . . , bm are not consistent with respect to A and d1, . . . , dC , then the above probability is 0.

25

Proof: Assume first that the supposition is true. Let us rewrite the probability in question
as in (3):

p−mC
∑

λi,j∈Fp:
i∈[C],j∈[m]

e

−∑
i∈[C]

∑
j∈[m]

λi,jbi,j

 E
x1,...,x`

e
∑
i∈[C]

∑
j∈[m]

λi,jPi(aj(x1, . . . , x`))

According to Lemma 5.1, the expectation in the above expression is at most ε in absolute value
if
∑

i∈[C]

∑
j∈[m] λi,jPi(aj(X1, . . . , X`)) is not the zero polynomial. On the other hand, by the

argument of Lemma 5.4, if
∑

i∈[C],j∈[m] λi,jPi(aj(X1, . . . , X`)) ≡ 0, then
∑

i∈[C],j∈[m] λi,ja
⊗di
j

equals 0. Hence, in this case, by consistency,
∑

i∈[C]

∑
j∈[m] λi,jbi,j = 0, and so, such a choice

of {λi,j} contributes 1 to the outermost summation. The number of such choices of {λi,j} is
pmC−s by Lemma 5.4. Thus:

Pr
x1,...,x`∈Fnp

[∀i ∈ [C], j ∈ [m] Pi (aj(x1, . . . , x`)) = bi,j] = p−mC(pmC−s ± pmCε) = p−s ± ε

The last part of the Theorem follows easily. Suppose the probability in question is nonzero, and
so there exist x1, . . . , x` so that B (aj(x1, . . . , x`)) = bi,j for all i ∈ [C] and j ∈ [m]. Then, for
all possible values of λi,j we have

∑
i∈[C],j∈[m] λi,jbi,j =

∑
i∈[C],j∈[m] λi,jPi (aj(x1, . . . , x`)). But,

by the argument of Lemma 5.4,
∑

j∈[m] λi,jPi (aj(X1, . . . , X`)) ≡ 0 if
∑

j∈[m] λi,j(a
⊗di
j) = 0 for

any i ∈ [C], and so the supposition is true.

By now we know the importance of the definition of consistency. One more building block that
we need shows why, when selecting cells from a refining partition as in Theorem 4.9, consistency
will pass over from B to B′.

Lemma 5.8 Suppose that B′ is a syntactic refinement of B, that A = (a1, . . . , am) is a sequence

of linear forms where (A, σ) is some affine constraint, and that c1, . . . , cm ∈ F|B|p are consistent

with A and the degrees d1, . . . , d|B| of the polynomials defining B. Given any fixed s ∈ F|B
′|−|B|

p ,

the cells c′1, . . . , c
′
m ∈ F|B

′|
p defined by the concatenations c′j = (cj , s) for all j ∈ [m] are consistent

with respect to A and the degrees d1, . . . , d|B′| of the polynomials defining |B′|.

Proof: Coordinate-wise, for j ∈ [m], c′j = (c′1,j , c
′
2,j , . . . , c

′
|B′|,j) ∈ F|B′| satisfies c′i,j = ci,j for

all 1 ≤ i ≤ |B| and c′i,j = si−|B|+1 for all |B| < i ≤ |B′|.

To show the consistency condition for i > |B|, recall that each aj is of the form X1 +
∑`

r=2 crXr

for cr ∈ Fp (as it came from an affine constraint). So, whenever
∑

j∈[m] λi,j(aj)
⊗di = 0 for any

di > 0, we have that
∑

j∈[m] λi,j = 0, simply by looking at the sum along the coordinate of a⊗dij

corresponding toX⊗di1 (i.e. the one labeled by the sequence (1, . . . , 1); the vector a⊗dij will always
be 1 at that coordinate). Since for any i > |B|, c′i,j = si−|B|+1 is independent of j, it follows that

for any i > |B|, if
∑

j∈[m] λi,j(aj)
⊗di = 0, then

∑
j∈[m] λi,jc

′
i,j = si−|B|+1

∑
j∈[m] λi,j = 0 for all

i > |B|. Since we already know (by the consistency of the ci relative to B) that
∑

j∈[m] λi,jc
′
i,j = 0

for all i ≤ |B|, we can conclude the proof.

26

5.2 Big Picture Arguments

We will prove the existence of many copies of a given linear constraint by analyzing the existence
of a particular configuration of cells of a factor B, where in every cell we look at the entire set
of values that f can take at once. The following is a formal definition of the function giving the
“big picture”.

Definition 5.9 Given a function f : Fnp → [R] and a polynomial factor B, the big picture

function of f is the function fB : F|B|p → 2[R], where 2[R] denotes the power set of R, defined by
fB(y) = {f(x) : B(x) = y}. In other words, fB(y) is the set of all values that f takes within the
corresponding cell of B.

On the other hand, given any function g : FCn → 2[R], and a set of degrees d1, . . . , dC (of which
we think as corresponding to the degrees of some future polynomial factor of size C), we will
define what it means for such a function to “induce” a copy of a given constraint.

Definition 5.10 (Partially induce) Suppose we are given positive integers d1, . . . , dC , a
function g : FCp → 2[R], and an induced affine constraint (A, σ) of size m over ` variables. We

say that g partially (d1, . . . , dC)-induces (A, σ) if there exist {bj = (b1,j , . . . , bC,j) ∈ FCp : j ∈ [m]}
making the following true.

• b1, . . . , bm are consistent with respect to A and d1, . . . , dC .

• σj ∈ g(bj) for every j ∈ [m].

The big picture function defined above extracts a finitary description of a function f : Fnp → [R]
in relation to some B, which we will later obtain through a decomposition theorem. Regardless
of how we obtained B, moving from an induced constraint of f to a partially induced constraint
of the big picture function fB is always guaranteed.

Observation 5.11 If f : Fnp → [R] induces a constraint (A, σ), then for a factor B with degree

sequence (d1, . . . , d|B|) (where all degrees are smaller than p), the function fB : FCp → 2[R]

partially (d1, . . . , d|B|)-induces (A, σ).

Proof: Let m be the size of A and ` be its number of variables. Suppose that F induces

(A, σ) at x1, . . . , x`, and let c1, . . . , cm ∈ F|B|p be the images of the m cells in B defined by c1 =
B(a1(x1, . . . , x`)), c2 = B(a2(x1, . . . , x`)), . . . , cm = B(am(x1, . . . , x`)) where A = (a1, . . . , am).
Then, because of the last condition in Theorem 5.7, it must be the case that c1, . . . , cm are
consistent with respect to A and d1, . . . , d|B|. This fulfills the first condition of Definition 5.10,
and the second condition is true by the definition of every fB(ci) including all values that f
takes in that cell.

To handle a possibly infinite collection A of affine constraints, we will employ a compactness
argument, analogous to one used in [AS08b] to bound the size of the constraint partially induced
by the big picture function. Let us make the following definition:

27

Definition 5.12 (The compactness function ΨA) Suppose we are given a positive integer
C and a possibly infinite collection of induced affine constraints A = {(A1, σ1), (A2, σ2), . . . },
where each affine constraint (Ai, σi) is of size mi and of complexity at most d < p. For fixed
d1, . . . , dC < p, denote by G(d1, . . . , dC) to be the set of functions g : FCp → 2[R] that partially
(d1, . . . , dC)-induce some (Ai, σi) ∈ A. Now, we define the following function:

ΨA(C) = max
d1,...,dC<p

max
g∈G(d1,...,dC)

min
(Ai,σi) partially

induced by g

mi

Whenever G(d1, . . . , dC) is empty we set the corresponding maximum to 0.

Note that the above is indeed finite, as both the number of possible degree sequences (bounded

by pC) and the size of G(d1, . . . , dC) (bounded by 2|R|p
C

) are finite. The compactness function
allows to bound an induced constraint in advance, at least (for now) in the realm of big picture
functions:

Observation 5.13 Let d1, . . . , dC < p be a degree sequence, for which a function g : FCp →
2[R] partially induces some constraint from A. Then g will necessarily partially induce some
(Ai, σi) ∈ A whose size is at most ΨA(|B|).

Proof: This is immediate, as a g satisfying the above in particular belongs to G(d1, . . . , dC).

For our proofs, we will refer first not to f itself, but to some small modification of f that will
make it a “perfect” representation of some cells from f according to some factor, which will be
selected as per Corollary 4.10.

Definition 5.14 (Function cleanup) Suppose we have a factor B′ that is a syntactic refine-

ment of B, and some s ∈ F|B
′|−|B|

n . The ζ-cleanup F of f : Fnp → [R] according to B, B′
and s is constructed by executing the following steps in order (where as usual (c, s) denotes the
concatenation of c and s):

1. For every z ∈ Fnp that is not covered by the cases below, let F (z) = f(z).

2. For every cell c of B for which |Pr[f(x) = i | c]−Pr[f(x) = i | (c, s)]| > ζ for any i ∈ [R],
do the following. For every z ∈ B−1(c), set F (z) = arg maxj∈[R] Pr[f(x) = j | (c, s)],
the most popular value inside the subcell (c, s) (breaking ties arbitrarily, but consistently
within each cell c).

3. For every cell c of B, for every i ∈ [R] such that Pr[f(x) = i | (c, s)] < ζ, set F (z) =
arg maxj∈[R] Pr[f(x) = j | (c, s)] for every z ∈ f−1(i) ∩ B−1(c) (breaking ties arbitrarily,
but consistently within each cell c).

Lemma 5.15 If f , B, B′ and s are such that B is of rank at least r3.7(p, β/p|B|), and
Pr

c∈F|B|p
[|E[f |c]−E[f |(c, s)]| > ζ] < ζ, then the corresponding ζ-cleanup F is (2R+1+β)ζ-close

to f .

28

Proof: Observe that the second step changes the value of F on at most a ζ fraction of the
cells, by the condition involving s in the statement of the lemma. By Lemma 3.8, each cell
occupies at most a (1 + β)p−C fraction of the entire domain. So, the fraction of points whose
values changed in the second step is at most ζpC · (1 + β)p−C = (1 + β)ζ.

The third step does not apply to any cell of B affected by the second step. Therefore, in the third
case, for every i ∈ [R], if Pr[f(x) = i | B′(x) = (c, s)] < ζ then Pr[f(x) = i | B(x) = c] < 2ζ.
Hence, the total fraction of the domain modified in the third case is at most 2Rζ. The total
distance of F from f is therefor bounded by (2R+ 1 + β)ζ.

5.3 More about Algebra of Linear Forms

A linear form a(X1, . . . , X`) =
∑`

i=1 αiXi can be identified with a linear function over F`p, and
thus a transformation in the spirit of “a change of basis” can be formulated.

Definition 5.16 (Change of view) We identify the form a(X1, . . . , X`) =
∑`

i=1 αiXi with

the linear function a : F`p → Fp given by a(v) =
∑`

i=1 αivi, where v = (v1, . . . , v`) ∈ F`i (in
essence this is obtained by letting the Xi range over scalars from Fp rather than vectors from
some space Fnp).

Given an invertible `× ` matrix M over Fp, the corresponding change of view of a is the linear

form a′(X1, . . . , X`) =
∑`

i=1 α
′
iXi obtained by the following process: Consider the linear function

corresponding to a, perform on its domain F`p the change of variables corresponding to M , and
then take the linear form corresponding its representation a′ in the new basis.

The reason that we use the term “change of view” is to not confuse it with a change of basis of
Fnp . The following observation is easy:

Observation 5.17 If (A, σ) is an affine constraint, and A′ is obtained by performing the same
change of view over all linear forms of A, then a function f : Fnp → F satisfies (A, σ) if and
only is it satisfies (A′, σ).

Additionally, a change of view does not affect the complexity of the affine constraint.

This yields the following lemma:

Lemma 5.18 Any affine constraint (A, σ) is equivalent to one whose number of variables is
not more than the number constraints.

Proof: Assume that A = (a1, . . . , am) take ` variables for ` > m, and consider the linear
functions from F`p to F corresponding to a1, . . . , am. By a linear dimension argument there are

` −m linearly independent vectors u1, . . . , u`−m ∈ F`p for which ai(vj) = 0 for all i ∈ [m] and

j ∈ [`−m]. Complete these vectors to a basis u1, . . . , u` of F`p, making sure that u` equals the
vector that is 1 on its first coordinate and zero everywhere else (this vector is not in the span
of u1, . . . , u`−m ∈ F`p, because by the definition of an affine constraint a1 sends it to 1).

Now perform on the members of A the change of view corresponding to the change to this basis
of F`p. Denoting the resulting linear forms by A′ = (a′1, . . . , a

′
m), we note now that no a′i has any

29

mention of the variables X1, . . . , X`−m, and so the constraint (A′, σ) in fact takes at most m
variables. A′ will also have the standard form of an affine constraint with X` taking the place
of X1.

We need the above because the test would eventually query a number of places that is a function
of p and the maximum number of variables in a subset of the constraints of A, where this subset
is only guaranteed a bound on the number of linear forms per constraint; we thus need A to
satisfy the following definition:

Definition 5.19 (Concise collections) The collection A = {(A1, σ1), (A2, σ2), . . .} is called
concise if for every Ai, the total number of its variables does not exceed the number of its linear
forms.

Lemma 5.18 implies that every collection of linear constraints is equivalent to a concise one.

We would also need to know the (lack of) affect that a change of view has on the d-dimension,
and hence the (d1, . . . , dC)-dimension, of A.

Lemma 5.20 If A = (a1, . . . , am) is a sequence of linear forms, and A′ = (a′1, . . . , a
′
m) is a

sequence of the resulting forms after a fixed change of view, then A and A′ have the same
d-dimension for any d.

Proof: We use the identification of linear forms with linear functions from F`p to Fp, and by

extension for a linear form a we consider the vector a⊗d as the multilinear function a⊗d : (F`p)d →
Fp that sends (v(1), . . . , v(d)) to

∏d
i=1 a(v(i)); the representation of this multilinear function in

the standard basis indeed corresponds to the vector originally defined as a⊗d.

The operation that takes a to a⊗d is not linear in itself; however, a change of basis over F`p
(corresponding to the change of view) can be extended to an invertible linear operation over the
linear space of all multilinear functions of d vectors (not all of which come from linear forms).
Namely, if M is the basis change matrix, then the change of view for a sends it to the function
defined by a′(v) = a(Mv), and (a′)⊗d in fact corresponds to

∏d
i=1 a(Mv(i)). Now by basic linear

algebra, the operation that sends any multilinear form b : (F`p)d → Fp to the form b′ defined by

b′(v(1), . . . , v(d)) = a(Mv(1), . . . ,Mv(d)) is linear and invertible; thus the d-dimension, and in fact
the exact corresponding linear dependencies, do not change when moving from A = (a1, . . . , am)
to A′ = (a′1, . . . , a

′
m).

We end this section with a lemma about a “juxtaposition” of two sets of identical forms while
sharing one variable.

Lemma 5.21 Suppose that (a′1, . . . , a
′
m) are linear forms over (X1, . . . , X`) of d-dimension q,

where for some k the form a′k sends (X1, . . . , X`) to X1. The d-dimension of the following 2m
linear forms over (Z,X2, . . . , X`, Y2, . . . , Y`):

(a′1(Z,X2, . . . , X`), . . . , a
′
m(Z,X2, . . . , X`), a

′
1(Z, Y2, . . . , Y`), . . . , a

′
m(Z, Y2, . . . , Y`))

is exactly 2q − 1.

30

Proof: We note that a′k(Z,X2, . . . , X`) = a′k(Z, Y2, . . . , Y`) = Z, and that all other linear
forms are distinct. Abusing notation somewhat, we let Z denote also the linear form that
returns the value of Z from the variables (Z,X2, . . . , X`, Y2, . . . , Y`); note that in particular Z⊗d

corresponds to the vector from F(2`−1)d

p that is 1 on its coordinate corresponding to (1, . . . , 1),
and zero everywhere else.

Let S ⊆ {1, . . . ,m}\{k} be a set of size q−1 such that

{(
a′j(Z,X2, . . . , Xm)

)⊗d
: j ∈ S ∪ {k}

}
is a basis of size q for the linear space span

{(
a′j(Z,X2, . . . , Xm)

)⊗d
: j ∈ [m]

}
. Clearly,{(

a′j(Z, Y2, . . . , Ym)
)⊗d

: j ∈ S ∪ {k}
}

is a basis for span

{(
a′j(Z, Y2, . . . , Ym)

)⊗d
: j ∈ [m]

}
.

Thus, the d-rank of the 2m linear forms is at most 2q − 1. To conclude, we will show that the
d-rank is at least 2q − 1. To this end, we analyze the intersection

span
{(
a′j(Z,X2, . . . , Xm)

)⊗d
: j ∈ S ∪ {k}

}
∩ span

{(
a′j(Z, Y2, . . . , Ym)

)⊗d
: j ∈ S ∪ {k}

}
.

It is clearly contained in span
{
Z⊗d

}
, since no other coordinate can be non-zero in both sets

(the left set can have only non-zero coordinates corresponding to sequences of length d over
{1, . . . , `}, and the right set can have only non-zero coordinates corresponding to sequences of
length d over {1, `+ 1, . . . , 2`− 1}). On the other hand, the intersection contains (and hence is
equal to) span

{
Z⊗d

}
, because this vector appears on both sides (as a′k). This shows by a linear

dimension argument that the d-dimension of the 2m linear forms is exactly 2q − 1 as claimed.

5.4 The Proof of Testability

We finally have all the building blocks in place to prove Theorem 1.8, which implies Theorem
1.7.

Proof of Theorem 1.8: We begin with some preliminaries. Let d be the maximum complexity
of an affine constraint Ai appearing in A. By hypothesis, d < p. For i ∈ [R], define f (i) : Fnp →
{0, 1} so that f (i)(x) equals 1 when f(x) = i and equals 0 otherwise. Additionally, set the
following parameters, where ΨA : Z+ → Z+ is the compactness function of A.

α(C) = p−2ΨA(C)C

ρ(C) = r3.7(d, α(C))

∆(C) =
1

16

(ε

8R

)ΨA(C)

η(C) =
1

8(3p)CΨA(C)

(ε

8R

)ΨA(C)

ζ =
ε

8R

`A and δA will be defined, based on the above functions, in (4) and (13) below.

Next, apply Theorem 4.12 to the functions f (1), f (2), . . . , f (R) in order to get polynomial factors

B′ �syn B of degree d and size at most C4.12(∆, η, p, ρ, ζ, R), an element s ∈ F|B
′|−|B|

p , and

functions f
(i)
1 , f

(i)
2 , f

(i)
3 : Fnp → R for every i ∈ [R]. The sequence of polynomials generating

31

B′ will be denoted by P1, . . . , P|B′|. Since B′ is a syntactic refinement, B is generated by the
polynomials P1, . . . , P|B|.

Let F be the ζ-cleanup of f with respect to B, B′ and s. By Lemma 5.15, and what we know
of these partitions and s, F is ε/2-close to f , and hence by our assumption on the farness of f ,
the function F will still include an induced constraint from A.

By Observation 5.11, the big picture function FB of F will (d1, . . . , d|B|)-partially induce some
constraint from A, and hence by Observation 5.13 it will partially induce some (Ai, σi) for which
mi ≤ ΨA(|B|). This will be the constraint of which we will find many copies in the original f .

Let m
def
=mi, let `

def
= `i, and let σ1, . . . , σm denote σi1, . . . , σ

i
m respectively. Since a concise A

means that `i ≤ mi, we can now define

`A(ε) = ΨA(C4.12(∆, η, p, ρ, ζ, R)). (4)

Denote the linear forms in Ai by a1, . . . , am and denote σi = (σ1, . . . , σm). Let c1 =

(c1,1, . . . , c|B|,1), . . . , cm = (c1,m, . . . , c|B|,m) ∈ F|B|p index the cells of B where (Ai, σi) is par-
tially induced by FB, the big picture function of the cleanup function F , i.e., c1, . . . , cm are

consistent, and σi ∈ FB(ci) for every j ∈ [m]. Also, let c′1, . . . , c
′
m ∈ F|B

′|
p index the associated

subcells of B′, obtained by letting c′j = (cj , s) for every j ∈ [m].

Our goal will now be to lower bound:

Pr
x1,...,x`∈Fnp

[f(a1(x1, . . . , x`)) = σ1 ∧ · · · ∧ f(am(x1, . . . , x`)) = σm]

= E
x1,...,x`∈Fnp

[
f (σ1)(a1(x1, . . . , x`)) · · · f (σm)(am(x1, . . . , x`))

]
(5)

The theorem obviously follows if the above expectation is more than the respective δA(ε). We
rewrite the expectation as:

E
x1,...,x`∈Fnp

[
(f

(σ1)
1 + f

(σ1)
2 + f

(σ1)
3)(a1(x1, . . . , x`)) · · · (f

(σm)
1 + f

(σm)
2 + f

(σm)
3)(am(x1, . . . , x`))

]
(6)

We can expand the expression inside the expectation as a sum of 3m terms. The expectation

of any term which is a multiple of f
(σj)
2 for any j ∈ [m] has an absolute value upper bound of

‖f (σj)
2 ‖Ud+1 ≤ η(|B′|), because of Lemma 3.3 and the fact that the complexity of Ai is bounded

by d. Hence, the expression (6) is at least:

E
x1,...,x`

[
(f

(σ1)
1 + f

(σ1)
3)(a1(x1, . . . , x`)) · · · (f

(σm)
1 + f

(σm)
3)(am(x1, . . . , x`))

]
− 3mη(|B′|) (7)

Before we continue, to ease notation, for the rest of the proof we will now define an indicator

function. I(c′1,...,c
′
m)

(a1,...,am)(x1, . . . , x`) will be set to 1 if B′(aj(x1, . . . , x`)) = c′j for every j ∈ [m], and
it will be set to 0 otherwise.

Now, because of the non-negativity of f
(σj)
1 + f

(σj)
3 for every j ∈ [m], the expectation in (7) is

at least:

E
x1,...,x`

[(
f

(σ1)
1 + f

(σ1)
3

)
(a1(x1, . . . , x`)) · · ·

(
f

(σm)
1 + f

(σm)
3

)
(am(x1, . . . , x`)) · I

(c′1,...,c
′
m)

(a1,...,am)(x1, . . . , x`)
]

32

In other words, what we are doing now is counting only patterns that arise from the selected
subcells c′1, . . . , c

′
m. We next expand the product inside the expectation into 2m terms. The

main contribution will come from:

E
x1,...,x`

[
f

(σ1)
1 (a1(x1, . . . , x`)) · · · f

(σm)
1 (am(x1, . . . , x`)) · I

(c′1,...,c
′
m)

(a1,...,am)(x1, . . . , x`)
]

(8)

But first, let us show that the contribution from each of the other 2m − 1 terms is small.

Consider a term that contains f
(σk)
3 for some k ∈ [m]. Letting g denote an arbitrary function

with ‖g‖∞ ≤ 1, such a term is of the form:

E
x1,...,x`

[
f

(σk)
3 (ak(x1, . . . , x`))g(x1, . . . , x`) · I

(c′1,...,c
′
m)

(a1,...,am)(x1, . . . , x`)
]

(9)

By our definition of affine constraints, ak(x1, . . . , x`) is of the form x1 +
∑

i∈[`] αixi for some
αi ∈ Fp. We now change the summation variables of the expectation by replacing x1 with
z = x1 +

∑
i∈[`] αixi, affecting a change of view for a1, . . . , am. Letting a′1, . . . , a

′
m denote the

linear forms as they appear after the change, we first note that a′k(Z,X2, . . . , X`) will equal Z.
We can now bound the square of (9) using Cauchy-Schwartz as:(

E
x1,...,x`

[
f

(σk)
3 (ak(x1, . . . , x`))g(x1, . . . , x`) · I

(c′1,...,c
′
m)

(a1,...,am)(x1, . . . , x`)
])2

≤
(

E
z,x2,...,x`

[∣∣∣f (σk)
3 (z)

∣∣∣ · I(c′1,...,c
′
m)

(a′1,...,a
′
m)

(z, x2, . . . , x`)
])2

≤ E
z

[
|f (σk)

3 (z)|2 · I(c′k)

(id) (z)
]
· E
z

[(
E

x2,...,x`

[
I(c′1,...,c

′
m)

(a′1,...,a
′
m)

(z, x2, . . . , x`)
])2

]

≤ ∆2(|B|) · Pr
z

[B′(z) = c′k] · Ez

[(
E

x2,...,x`

[
I(c′1,...,c

′
m)

(a′1,...,a
′
m)

(z, x2, . . . , x`)
])2

]

≤ ∆2(|B|) · (p−|B′| + α(|B′|)) · E
z

 E
x2,...,x`

∏
i∈[|B′|]
j∈[m]

1

p

∑
λi,j∈Fp

e
(
λi,j · (Pi(a′j(z, x2, . . . , x`))− c′i,j)

)
2

≤ 2∆2(|B|)
p2|B′|m+|B′| Ez

 ∑

λi,j∈Fp:
i∈[|B′|],j∈[m]

e

− ∑
i∈[|B′|]
j∈[m]

λi,jc
′
i,j

 E
x2,...,x`

e

 ∑
i∈[|B′|]
j∈[m]

λi,jPi(a
′
j(z, x2, . . . , x`))

2
≤ 2∆2(|B|)
p2|B′|m+|B′|

∑
λi,j ,τi,j∈Fp:
i∈[|B′|],j∈[m]

e

− ∑
i∈[|B′|]
j∈[m]

λi,jc
′
i,j

 e

 ∑
i∈[|B′|]
j∈[m]

τi,jc
′
i,j

 ·

E
z,x2,...,x`
y2,...,y`

e
 ∑

i∈[|B′|]
j∈[m]

λi,jPi(a
′
j(z, x2, . . . , x`))

 e

− ∑
i∈[|B′|]
j∈[m]

τi,jPi(a
′
j(z, y2, . . . , y`))

≤ 2∆2(|B|)
p2|B′|m+|B′|

∑
λi,j ,τi,j∈Fp:
i∈[|B′|],j∈[m]

∣∣∣∣∣∣∣ E
z,x2,...,x`
y2,...,y`

e
 ∑

i∈[|B′|]
j∈[m]

λi,jPi(a
′
j(z, x2, . . . , x`))−

∑
i∈[|B′|]
j∈[m]

τi,jPi(a
′
j(z, y2, . . . , y`))

∣∣∣∣∣∣∣

(10)

33

Now, by Lemma 5.20, the (d1, . . . , d|B′|)-dimension of {a1, . . . , am} equals the (d1, . . . , d|B′|)-
dimension of {a′1, . . . , a′m}.
Let q denote the (d1, . . . , d|B′|)-dimension of {a1, . . . , am}. By Lemma 5.21, summing over all of
(d1, . . . , d|B′|), we know that the (d1, . . . , d|B′|)-dimension of(

a′1(Z,X2, . . . , X`), . . . , a
′
m(Z,X2, . . . , X`), a

′
1(Z, Y2, . . . , Y`), . . . , a

′
m(Z, Y2, . . . , Y`)

)
is exactly q − |B′|.
Now, just as in the proof of Theorem 5.7, the above information is enough to upper-bound (10).
The above (d1, . . . , d|B′|)-dimension bound and Lemma 5.4 allow us to count the number of λi,j
and τi,j such that the quantity inside the expectation in (10) is identically 1, and Lemma 5.1
along with the high-rank condition on the polynomials Pi bounds the expectation otherwise. It
follows that (10), and therefore the square of (9), is at most:

2∆2(|B|)
p2m|B′|+|B′|

(
p2m|B′|−(2q−|B′|) + p2m|B′|α(|B′|)

)
≤ 2∆2(|B|) · (p−2q + α(|B′|)) (11)

Finally, we lower-bound the contribution from the main term (8). To begin with, we need to
convince ourselves that f induces many copies of (Ai, σi) among the subcells c′1, . . . , c

′
m. Recall

that c1, . . . , cm are consistent with d1, . . . , d|B| and Ai, and that σi ∈ FB(ci) for every i ∈ [m].
By Lemma 5.8 c′1, . . . , c

′
m are consistent with d1, . . . , d|B′| and Ai as well.

We can now lower-bound (8) as follows:

E
x1,...,x`

[
f

(σ1)
1 (a1(x1, . . . , x`)) · · · f

(σm)
1 (am(x1, . . . , x`)) · I

(c′1,...,c
′
m)

(a1,...,am)(x1, . . . , x`)
]

= Pr[B′(a1(x1, . . . , x`)) = c′1 ∧ · · · ∧ B′(am(x1, . . . , x`)) = c′m]·

E
x1,...,x`

[
f

(σ1)
1 (a1(x1, . . . , x`)) · · · f

(σm)
1 (am(x1, . . . , x`))|∀j ∈ [m] B′(aj(x1, . . . , x`)) = c′j

]
≥ (p−q − α(|B′|)) ·

(ε

8R

)m
(12)

Let us justify the last line. The first term is due to Lemma 5.8 and the lower bound on the

probability from Theorem 5.7. The second term in (12) is because each f
(σj)
1 is constant on the

cells of B′, and because by construction, the big picture function FB of the cleanup function F ,
on which (Ai, σi) was partially induced, supports a value inside a cell c of B only if the original
function f acquires the value on at least an ε/(8R) fraction of the subcell (c, s).

Combining the bounds from (7), (11) and (12), and using our parameter settings, we get that
(5) is at least:

(p−q − α(|B′|)) ·
(ε

8R

)m
−
√

2∆2(|B|) · (p−2q + α(|B′|))− 3m · η(|B′|)

>
p−q

2
·
(ε

8R

)ΨA(|B|)
− 2∆(|B|) · p−q − 3ΨA(|B|) · η(|B′|)

>
p−ΨA(|B|)|B′|

4
·
(ε

8R

)ΨA(|B|)

where both |B| and |B′| are upper-bounded by C4.12(∆, η, p, ρ, ζ, R) . We can now define

δA(ε) =
1

4
p−ΨA(C4.12(∆,η,p,ρ,ζ,R))C4.12(∆,η,p,ρ,ζ,R) ·

(ε

8R

)ΨA(C4.12(∆,η,p,ρ,ζ,R))
(13)

to conclude the proof.

34

References

[AFKS00] Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient testing
of large graphs. Combinatorica, 20(4):451–476, 2000.

[AFNS06] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial char-
acterization of the testable graph properties: it’s all about regularity. In STOC’06:
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages
251–260, 2006.

[AKK+05] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Test-
ing Reed-Muller codes. IEEE Transactions on Information Theory, 51(11):4032–
4039, 2005.

[AS08a] Noga Alon and Asaf Shapira. A characterization of the (natural) graph properties
testable with one-sided error. SIAM J. on Comput., 37(6):1703–1727, 2008.

[AS08b] Noga Alon and Asaf Shapira. Every monotone graph property is testable. SIAM J.
on Comput., 38(2):505–522, 2008.

[BCL+06] Christian Borgs, Jennifer T. Chayes, László Lovász, Vera T. Sós, Balázs Szegedy, and
Katalin Vesztergombi. Graph limits and parameter testing. In STOC’06: Proceed-
ings of the 38th Annual ACM Symposium on Theory of Computing, pages 261–270,
2006.

[BCSX11] Arnab Bhattacharyya, Victor Chen, Madhu Sudan, and Ning Xie. Testing linear-
invariant non-linear properties. Theory of Computing, 7(1):75–99, 2011.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential
time has two-prover interactive protocols. Computational Complexity, 1(1):3–40,
1991.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking com-
putations in polylogarithmic time. In Proc. 23rd Annual ACM Symposium on the
Theory of Computing, pages 21–32, New York, 1991. ACM Press.

[BGS10] Arnab Bhattacharyya, Elena Grigorescu, and Asaf Shapira. A unified framework
for testing linear-invariant properties. In Proc. 51st Annual IEEE Symposium on
Foundations of Computer Science, pages 478–487, 2010.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. J. Comp. Sys. Sci., 47:549–595, 1993. Earlier
version in STOC’90.

[BTZ10] Vitaly Bergelson, Terence Tao, and Tamar Ziegler. An inverse theorem for the unifor-
mity seminorms associated with the action of Fω. Geom. Funct. Anal., 19(6):1539–
1596, 2010.

[CF11] David Conlon and Jacob Fox. Bounds for graph regularity and removal lemmas.
Technical report, July 2011. http://arxiv.org/abs/1107.4829.

[FGL+96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy.
Interactive proofs and the hardness of approximating cliques. Journal of the ACM,
43(2):268–292, 1996.

35

http://arxiv.org/abs/1107.4829

[Fis04] Eldar Fischer. The art of uninformed decisions: A primer to property testing. In
G. Paun, G. Rozenberg, and A. Salomaa, editors, Current Trends in Theoretical
Computer Science: The Challenge of the New Century, volume 1, pages 229–264.
World Scientific Publishing, 2004.

[FN07] Eldar Fischer and Ilan Newman. Testing versus estimation of graph properties.
SIAM J. Comput., 37(2):482–501, 2007.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connec-
tion to learning and approximation. Journal of the ACM, 45:653–750, 1998.

[Gow97] William T. Gowers. Lower bounds of tower type for Szemerédi’s uniformity lemma.
Geometric and Functional Analysis, 7:322–337, 1997.

[Gow98] William T. Gowers. A new proof of Szeméredi’s theorem for arithmetic progressions
of length four. Geometric and Functional Analysis, 8(3):529–551, 1998.

[Gow01] William T. Gowers. A new proof of Szeméredi’s theorem. Geometric and Functional
Analysis, 11(3):465–588, 2001.

[Gre07] Ben Green. Montréal notes on quadratic Fourier analysis. Technical report, April
2007. http://arxiv.org/abs/math/0604089.

[GT09] Ben Green and Terence Tao. The distribution of polynomials over finite fields, with
applications to the Gowers norms. Contributions to Discrete Mathematics, 4(2):1–
36, 2009.

[GT10a] Ben Green and Terence Tao. An Irregular Mind: Szemerédi is 70, volume 21 of
Bolyai Society Mathematical Studies, chapter An arithmetic regularity lemma, asso-
ciated counting lemma, and applications, pages 261–334. Springer, 2010.

[GT10b] Ben Green and Terence Tao. Linear equations in primes. Annals of Mathematics,
171:1753–1850, 2010.

[GW10a] W. T. Gowers and J. Wolf. Linear forms and higher-degree uniformity for functions
on Fnp . Geom. Funct. Anal., to appear, 2010.

[GW10b] W. T. Gowers and J. Wolf. The true complexity of a system of linear equations.
Proc. Lond. Math. Soc. (3), 100(1):155–176, 2010.

[HK05] Bernard Host and Bryna Kra. Nonconventional ergodic averages and nilmanifolds.
Annals of Mathematics, 161(1):397–488, 2005.

[HL11a] Hamed Hatami and Shachar Lovett. Correlation testing for affine invariant proper-
ties on Fnp in the high error regime. In Proc. 43rd Annual ACM Symposium on the
Theory of Computing, pages 187–194, 2011.

[HL11b] Hamed Hatami and Shachar Lovett. Higher-order Fourier analysis of Fnp and the
complexity of systems of linear forms. Geometric And Functional Analysis, 21:1331–
1357, 2011.

[KL08] Tali Kaufman and Shachar Lovett. Worst case to average case reductions for polyno-
mials. In Proc. 49th Annual IEEE Symposium on Foundations of Computer Science,
pages 166–175, 2008.

36

http://arxiv.org/abs/math/0604089

[KS08] Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of invariance.
In Proc. 40th Annual ACM Symposium on the Theory of Computing, pages 403–412,
2008.

[KS11] Subrahmanyam Kalyanasundaram and Asaf Shapira. A Wowzer type lower bound
for the Strong Regularity Lemma. Technical report, July 2011. http://arxiv.org/
abs/1107.4896.

[KSV12] Daniel Král, Oriol Serra, and Llúıs Vena. A removal lemma for systems of linear
equations over finite fields. Israel Journal of Mathematics, pages 1–15, 2012. Preprint
available at http://arxiv.org/abs/0809.1846.

[Ron09] Dana Ron. Algorithmic and analysis techniques in property testing. Foundations
and Trends in Theoretical Computer Science, 5(2):73–205, 2009.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. on Comput., 25:252–271, 1996.

[Rub06] Ronitt Rubinfeld. Sublinear time algorithms. In Proceedings of International
Congress of Mathematicians 2006, volume 3, pages 1095–1110, 2006.

[Sha09] Asaf Shapira. Green’s conjecture and testing linear-invariant properties. In Proc.
41st Annual ACM Symposium on the Theory of Computing, pages 159–166, 2009.

[Sud10] Madhu Sudan. Invariance in property testing. Technical Report 10-051, Electronic
Colloquium in Computational Complexity, March 2010.

[Sze75] Endre Szemerédi. On sets of integers containing no k elements in arithmetic pro-
gression. Acta Arith., 27:199–245, 1975.

[Tao11] Terence Tao. Higher order Fourier Analysis. Draft available at http://terrytao.

files.wordpress.com/2011/03/higher-book.pdf, 2011. In preparation.

[TZ10] Terence Tao and Tamar Ziegler. The inverse conjecture for the Gowers norm over
finite fields via the correspondence principle. Analysis & PDE, 3(1):1–20, 2010.

[VX11] Santosh Vempala and Ying Xiao. Structure from local optima: Learning subspace
juntas via higher order PCA. Technical report, August 2011. http://arxiv.org/

abs/1108.3329.

37

http://arxiv.org/abs/1107.4896
http://arxiv.org/abs/1107.4896
http://arxiv.org/abs/0809.1846
http://terrytao.files.wordpress.com/2011/03/higher-book.pdf
http://terrytao.files.wordpress.com/2011/03/higher-book.pdf
http://arxiv.org/abs/1108.3329
http://arxiv.org/abs/1108.3329

	Introduction
	Testability and Invariances
	Hereditariness and Induced Affine Constraints
	Main Result
	Overview of the Proof
	Previous Work
	Further research

	Map of the proof
	Partition by Polynomial Factors
	Refinements and the Robustness Framework
	Decompositions and Super Decompositions
	Function Cleanup
	Randomness and consistency
	Wrapping Up

	Tools of the Proof
	Functions and Norms
	Polynomial Factors and their Rank
	Refinement and Robustness
	Robustness with Rank

	Decomposition Theorems
	Strong Decomposition
	Super Decomposition and Subcell Selection
	Extending to Multiple Functions

	Counting and Testability
	Counting Patterns inside Cells
	Big Picture Arguments
	More about Algebra of Linear Forms
	The Proof of Testability

