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Abstract

For a property P and a sub-property P ′, we say that P is P ′-partially testable with q
queries if there exists an algorithm that distinguishes, with high probability, inputs in P ′

from inputs ε-far from P , using q queries. Some natural properties require many queries
to test, but can be partitioned into a small number of subsets for which they are partially
testable with few queries.

We prove:

• There exist low complexity properties for which such a partition cannot exist, and
moreover for these properties there does not exist a single sub-property featuring both
a large size and a query-efficient partial test, in particular improving the lower bound
set in (Gur and Rothblum, ECCC 2013). For this we use neither the traditional Yao-
type arguments nor the more recent communication complexity method, but open up
a new approach for proving lower bounds.

• A partition into few partially testable subsets yields a sublinear query tester, at least in
the restricted framework of 1-sided proximity oblivious tests. This is achieved through
the construction of a “universal tester” that works the same for all properties admitting
the restricted test. Our tester is in fact a sample-based tester as defined by (Goldreich
and Ron, ECCC 2013). In particular it partially resolves an open problem raised by
that paper.

• A property that can be decomposed into a few testable sub-properties, but does not
have a query-efficient tester. This gives a simple lower bound on the possibility of
translating good partitions into query-efficient property testers.

1 Introduction

Property Testing deals with randomized approximation algorithms that operate under low infor-
mation situations. Formally, we deal with objects from some universe U which is parametrized
by an integer n, usually Σn where Σ is some finite alphabet; with a notion of distance between
two objects in U , usually the Hamming distance; and with a notion of a query to an object in
U , usually corresponding to retrieving xi for an index i ∈ {1, . . . , n}.

Definition 1.1 (Testable property). Suppose P ⊆ {0, 1}n. We say that P is testable with q
queries if there exists an algorithm A that gets as input a parameter ε > 0 and query access to
an input string x ∈ {0, 1}n and outputs accept or reject such that:
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• If x ∈ P , then A accepts with probability at least 2/3.

• If d(x, P ) > ε, then A rejects with probability at least 2/3.

If furthermore all queries performed to the input can be decided before any of them are made,
then the algorithm is non-adaptive, and otherwise it is adaptive. If we require that whenever
x ∈ P , then the algorithm accepts with probability 1, then the algorithm is 1-sided, and otherwise
it is 2-sided.

Property Testing was first addressed by Blum, Luby and Rubinfeld [7], and most of its gen-
eral notions were first formulated by Rubinfeld and Sudan [25]. The first investigated properties
were mostly of an algebraic nature, such as the property of a Boolean function being linear.
The first investigation of combinatorial properties and the formal definition of testability was
by Goldreich, Goldwasser and Ron [13]. Since then Property Testing has attracted significant
attention. For surveys see [10, 22, 23].

When proving that testing a property requires many queries, one might ask “how strong
is this requirement?”, which can be illustrated with an example. Alon et. al. [3] studied the
testability of formal languages, and proved that the language L = {uuRvvR|u, v ∈ {0, 1}∗}
requires at least Ω(

√
n) queries to test (formally, the property L ∩ {0, 1}n requires that many

queries to test). Informally, one may say that the “reason” for this language being untestable
is the difficulty in guessing the length of uuR. This can be made formal by considering the
languages Li = {uuRvvR|u, v ∈ {0, 1}∗, |u| = i}, which form a partition of L. A simple sampling
algorithm can perform O(ε−1) queries to an input and distinguish between inputs in Li and
inputs ε-far from L. It is also important to note that |L ∩ {0, 1}n| = 2Θ(n), but its partition
L0 ∩ {0, 1}n, . . . , Ln ∩ {0, 1}n is only to a number of subsets linear in n.

This phenomenon is not unique to the language considered by Alon et. al. Another example
is that of graph isomorphism, first considered in the property testing framework by Alon et.
al. [2] (and later by Fischer and Matsliah [11]), and shown to require at least Ω(n) queries to
test. In this setting we consider a pair of unknown graphs given by their adjacency matrices,
and we are charged with distinguishing the case where they are isomorphic from the case where
more than εn2 of their edges must be changed to make them isomorphic. In this case, the size of
the property is 2Θ(n2), and we can partition the property into n! properties {Pπ|π ∈ Sn}, each
defined by Pπ = {(G1, G2)|π(G1) = G2}, such that a sampling algorithm can perform O(ε−1)
queries to an input and distinguish between inputs in Pπ and inputs ε-far from the original
property.

Thus it is tempting to ask whether this is a general phenomenon. Can any property P be
partitioned into k = |P |o(1) properties P1, . . . , Pk such that the task of distinguishing inputs in
Pi from inputs far from P can be performed with a number of queries that depends only on ε?

This question has a strong connection, in fact a near-equivalence, with the notion of a MAP
as defined by an independent work of Gur and Rothblum [15]. They define a MAP (Merlin-
Arthur proof of Proximity) as a testing algorithm that first reads a “proof string” in whole,
and uses it to test the given input. The requirement is that an input in P will have some
corresponding proof that causes high probability acceptance, while for ε-far inputs for every
proof there will be a high probability of rejection. The connection to our framework is that the
proof corresponds to the representation of the alleged i such that the input is in Pi, making the
required proof length equal to dlog ke for the optimal k.

The first main result of this paper is a proof that an efficient decomposition does not always
exist. In fact, there exist properties for which any such partition must be to a number of subsets
exponential in n (and equivalently does not admit a MAP with an o(n) proof size for testing
with a number of queries independent of n).
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To prove this result we in fact show the non-existence of a strictly weaker testing scenario,
that would correspond to being able to test just for the biggest Pi in the alleged partition.

Definition 1.2 (Partially testable property). For P ⊆ {0, 1}n and P ′ ⊆ P , we say that P is
P ′-partially testable with q queries if there exists an algorithm A that gets as input a parameter
ε > 0 and query access to an input string x ∈ {0, 1}n and outputs accept or reject such that:

• If x ∈ P ′, then A accepts with probability at least 2/3.

• If d(x, P ) > ε, then A rejects with probability at least 2/3.

If furthermore all queries performed to the input can be decided before any of them are made,
then the algorithm is non-adaptive, and else it is adaptive.

Obviously, if P is testable with q queries, then for any subset P ′ ⊆ P it is P ′-partially
testable with the same number of queries. On the other hand, for any property P and any
element x ∈ P , we have that P is {x}-partially testable with O(ε−1) queries.

The partitions described above are in fact partitions of P into subsets P1, . . . , Pk such that
P is Pi-partially testable for every 1 ≤ i ≤ k. If there exists such a partition into not too many
sets, then there must be at least one set that is relatively large. Our main result shows that
there exists a property P for which all subsets P ′ ⊆ P such that P is P ′-partially testable are
small. In fact, all linear codes with large dual distance define such properties.

Theorem 1.3. Let C ⊆ {0, 1}n be a linear code of size |C| ≤ 2
1
64
n and dual distance Γ. For

every C ′ ⊆ C, if C is C ′-partially testable with q adaptive queries, then |C ′| ≤ |C|2−Θ(Γ/q).

We will first prove, as a warm-up, a weak version of Theorem 1.3 in Section 4 which will
apply for q non-adaptive queries and imply the bound |C ′| ≤ |C|2−Θ(Γ/q3). This proof will use
some of the key ideas that will later manifest in the proof of the theorem in its full generality
in Section 5.

Remark 1.4. Theorem 1.3 holds for every property P which is Γ-wise independent. The only
use of the linearity of C is in that dual distance Γ implies Γ-wise independence (see Theo-
rem 3.9).

An important question is the existence of codes with strong parameters. A random linear
code C will have Γ = Θ(n) and |C| = 2Θ(n) with high probability (this is implied by the
Gilbert-Varshamov bound [12, 27]; MacWilliams et. al. [19] showed that this can also be
obtained by codes which are self-dual and thus also have good distance), and thus by Theorem
1.3 we will have that for any C ′ ⊆ C such that C is C ′-partially testable with q queries, |C ′| ≤
|C|2−Θ(n/q). For a constant q, this implies that partial testability will only be possible with
exponentially small subsets. The best explicit (and reasonable uniform decision complexity)
construction known to us is that of [1], which gives |C| = 2Θ(n) with Γ = Θ(n/ log n), and
thus the bound deteriorates to |C ′| ≤ nO(1)|C|2−Θ(n/q), which is polynomially worse than the
non-explicit bound, but is still a strong upper bound on the size of C ′.

Theorem 1.3 implies that there exist properties P that require a lot of queries to test, and
that every partition of P into subsets P1, . . . , Pk such that P is Pi-partially testable for every
1 ≤ i ≤ k requires that k will be very big. One might ask if we can prove a converse. That is,
if P can be tested with a few queries, can we find such a partition with a small k?

Open Problem 1.5. Let P be a property testable with r queries. Is it true that we can
partition P into subsets P1, . . . , Pk such that P is Pi-partially testable using O(1) queries for
every 1 ≤ i ≤ k and k is bounded by some moderate function of r? What can be said about the
converse direction?
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This problem can also be phrased as whether there exists a general trade-off between testing
hardness and partitionability to easily partially testable properties. For the converse direction,
of whether partitionability implies an efficient test for the whole property, we present results
that revolve around the stricter notion of proximity oblivious testing:

Definition 1.6. A non-adaptive, 1-sided proximity-oblivious q-test for a property P with de-
tection function ρ(ε) is an algorithm that makes q non-adaptive queries to the input (i.e. the
queries are all made before the answers to them are received), and based on those answers accepts
or rejects the input in a way that satisfies the following:

• If the input satisfies P then the algorithm accepts with probability 1.

• If the input is ε-far from P , then the algorithm rejects with probability at least ρ(ε).

Note that the algorithm is given the input length n in advance, but is not given ε. A partial
proximity-oblivious q-test is defined in the analogous manner.

The simplest conceivable proximity-oblivious test would be a 2-test, making only 2 queries.
Such tests exist for example in some monotonicity testing scenarios. We prove that partition-
ability into properties that are 2-testable implies a sublinear query test (that is not proximity-
oblivious) for the entire property.

Theorem 1.7. Let P1, P2, . . . , Pk ⊆ {0, 1}n be properties such that for every i ∈ {1, . . . , k}, Pi
has a 1-sided error proximity-oblivious 2-tester with detection function ρ(ε). If ε > 0 is such that
ρ(ε/2) > 0, then for n large enough, as a polynomial function of 1/ρ(ε/2), there is a one-sided
error non-adaptive ε-tester for P =

⋃k
i=1 Pi with query complexity Õ(n2/3ε−1) · log(k). This also

holds if for every Pi we only require a 1-sided error proximity-oblivious Pi-partial 2-test for P .

The converse of the above immediately implies an observation interesting enough to state
on its own.

Corollary 1.8. If a property P requires Ω(nβ) many queries for some fixed β > 2/3, then
there is no way to partition P into polynomially many properties (even not necessarily disjoint)
admitting 1-sided proximity-oblivious 2-tests (or even the corresponding partial tests).

Theorem 1.7 is proved using a special test that we call a universal test, that works by selecting
every index i for querying with probability Õ(n−1/3ε−1) · log(k), independently of other indexes.
We prove in Theorem 6.8 below that such a kind of test will work for any property admitting
a proximity oblivious 2-test, regardless of how that 2-test works. This universal test is very
close to what is defined as a sampling based test in a new work [14] of Goldreich and Ron. In
particular, our proof yields the following corollary, which partially addresses a question from
[14] about whether proximity oblivious tests are translatable to sample-based ones:

Corollary 1.9. Let P be a property that has a 1-sided error proximity-oblivious 2-tester with
detection function ρ(ε). If ε > 0 is such that ρ(ε/2) > 0, then for n large enough, as a polynomial
function of 1/ρ(ε/2), there is a 1-sided error sample based test (see [14], Definition 2.3) with
query complexity Õ(n2/3ε−1) · log(k).

For proximity oblivious q-tests with q > 2 the situation is more complex, and we can only
prove an analog of Theorem 6.8 (and by it Theorem 1.7) where the power of n in the query
complexity depends (rather badly) on both q and ρ(ε/2).

To formulate the theorem achieving this, we say that a set R of indexes is a witness against
the input for a property P , if the restriction of the input to R is such that it cannot be the
restriction of any member of P (or alternatively, this restriction cannot be extended to an
alternate input that satisfies P ).
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Definition 1.10. For γ ∈ (0, 1), the γ-universal sampler selects a set R ⊆ [n] where, for every
i ∈ [n], Pr[i ∈ R] = n−γ.

We prove that the above sampling technique, essentially that of a sample-based tester as in
[14], is indeed a core of a “universal test” for any property that has a (possibly “unknown”)
1-sided proximity-oblivious q-test.

Theorem 1.11. For every property P with a proximity oblivious q-test with detection function
ρ(ε) there exists γ depending on q and ρ(ε/2) (for every ε), so that for n large enough and
every ε-far input over {0, 1}n, the γ-universal sampler finds a witness against it with probability
1− o(1).

Its immediate corollary (through standard probability amplification and union bound) gives
us a sub-linear query complexity test for any property decomposable into not too many (sub-
exponential number of) properties where each of them has a proximity oblivious test, as long
as they have the same detection function ρ(ε).

Corollary 1.12. If P =
⋃`
i=1 Pi is a property such that every Pi has an oblivious 1-sided

error (proximity oblivious) q-test, all with the same detection function ρ(ε) (but not necessarily
the same test), then for n large enough the following is a test for P with O(log(`)n1−γ) query
complexity, where we use the γ of Theorem 1.11:

Select a set R ⊆ [n] that is the union of 2 log(`) sets, each chosen according to the γ-universal
sampler. If |R| > 4 log(`)n1−γ then accept immediately, and otherwise query the input on all
indexes of R, reject if R is a Pi-witness against the input for every i ∈ [`], and accept otherwise.

Finally, we prove a result in the other direction, hinting that maybe some role for proximity
oblivious testing is essential. Using a very simple construction we prove the following:

Theorem 1.13. For every fixed k there is a property P , so that 1/5k-testing P (even adaptively)
requires Ω(n1−1/k) queries, while P is still decomposable to at most nk−1 many properties so
that each of them is even ε-testable in itself with O(1/ε) many queries for every ε; in fact each
of them will have a proximity-oblivious 1-sided k-test with the detection function ρ(ε) = O(kε).

Until now we discussed the relation of Theorem 1.3 to the impossibility of decomposing a
property to testable ones. However, there may be use in its stronger statement of not having
even one large sub-property for which there exists an efficient test. The proof of Theorem 1.3
immediately gives the following corollary.

Corollary 1.14. Suppose that P is a property for which |P | ≤ 2
1
64
n, and C is any linear code

with dual distance Γ so that |P ∩ C| ≥ |C|2−Γ/q. Then P requires at least Θ(q) many queries
to test (or even P ∩ C-partially test).

We conclude this part of the introduction with an open question for which we cannot yet
scratch the surface. Theorem 1.3 implies that for some properties, k might be as big as 2Θ(n/q).
It is not clear whether this value of k can always be obtained. The trivial upper bound for every
property is by partitioning into 2n−q subsets of size 2q. Are there properties for which this is
required?

Open Problem 1.15. Does there exist a property P such that for every P ′ ⊆ P where P is
P ′-partially testable with q queries we also have |P ′| ≤ |P |2Θ(q)−Θ(n)?

In [15] there is a non-constructive proof (by counting the number of possible algorithms)
that there is a property that is not partitionable to less than 2Θ(n)−Θ(q) properties admitting
partial tests with q queries. A property as per the above problem would imply this as well.
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1.1 Related work

The notion of partial testability, while not defined before, is implicit in previous works on PCPs
(Probabilistically Checkable Proofs). The long code tester of H̊astad [16] accepts inputs which
are codewords in the long code, and rejects inputs which are far from being k-juntas for some
k. Since codewords in the long code are dictatorships (1-juntas), this is an instance where the
fact that being such a k-junta is dictatorship-partially testable is used to construct PCPs.

Our notion of a partition is similar to existing notions in computational complexity. For
a partition P = P1 ∪ P2 ∪ . . . ∪ Pk where for every 1 ≤ i ≤ k, P is Pi-partially testable, the
designation of Pi can be seen as a “proof” that a certain x is in P . If x ∈ P , then there
exists some Pi such that x ∈ Pi and therefore a Pi-partial tester for P will accept it with
high probability. If x is ε-far from P , then all Pi-partial testers for P will reject it with high
probability.

This is similar to the notion of a Probabilistically Checkable Proof of Proximity (PCPP),
first introduced by Ben-Sasson et. al. [5] (a precursor to them is found in [26]). PCPPs are to
property testing as NP is to P. A q query PCPP for a property P ⊂ U is an algorithm that
gets as input x ∈ U and a proof of proximity π ∈ {0, 1}l. The algorithm must perform at most
q queries to x and π and fulfill the requirement that if x ∈ P then there exists a proof π that
causes the algorithm to accept with high probability, but when x is ε-far from P then for any
proof π the algorithm rejects with high probability. In our setting, the algorithm is allowed
free access to a proof of length l = log(k), but we expect l to be sublinear in the size of x. In
particular, the property we analyze here cannot have a PCPP with a sublinear length proof.
Note that a proof can always be seen as designating a specific subset of the property, the subset
of inputs for which this proof is useful.

Rothblum et. al. [24] introduced the notion of an Interactive Proof of Proximity (IPP). In
an IPP for a property P , the tester can also communicate with a prover in addition to querying
the input x. If x ∈ P then the prover has a strategy that will cause the tester to accept with
high probability. When x is ε-far from P , the prover cannot make the tester accept with high
probability. Rothblum et. al. show that all languages in NC admit such a protocol with

√
n

query and communication complexity and polylog(n) communication rounds. Protocols of this
kind are only interesting for the case where the communication complexity is sublinear, or else
the prover may just give the input to the tester.

Independently of the present work, Gur and Rothblum [15] weakened the IPP model to
create Merlin-Arthur Proofs of Proximity (MAP). Gur and Rothblum define a MAP as a proof-
system for a property P where for an input x and a proof π the verifier reads the entire proof π
and queries q bits from the input x. If x ∈ P , then there exists a proof π such that the verifier
accepts with high probability, and if x is far from P , then for every proof π the verifier rejects
with high probability. Since we can trivially set π = x, the only interesting cases are where the
length of π is sublinear.

The notion of a MAP with q queries and proofs of length ` for a property P is equivalent
to the existence of k = 2` sets P1, . . . , Pk such that P = P1 ∪ P2 ∪ . . . ∪ Pk where for every
1 ≤ i ≤ k, P is Pi-partially testable with q queries.

Gur and Rothblum give several constructions of properties where a MAP with a sublinear
length proof greatly reduces query complexity. Gur and Rothblum also introduce the Tensor
Sum family of properties, and prove that for every constant α > 0 there exists an instantiation
of Tensor Sum such that any MAP for it that performs q queries must require a proof of

length Ω
(
n1−α

q

)
. This bound is slightly weaker than the implication for decomposability of

Theorem 1.3 proved in the present paper for our property (however, their property is not a
high dual-distance code, so our result would not apply directly). There is no known bound
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on the size of a sub-property of the Tensor Sum properties admitting a partial test, only on
decomposability.

Their lower bound is proved by an extension of the communication complexity technique
of Brody et. al. [6] to Merlin-Arthur communication complexity. First proving a lower bound
for 1-sided testing this way, they then use a general conversion technique (at some cost to both
proof length and query complexity, see below) to 2-sided testing. Gur and Rothblum also prove
that this trade-off is almost optimal for the Tensor Sum properties.

Additionally, Gur and Rothblum show separations between the power of MAPs and that
of IPPs and PCPPs. For their proofs they also show that 2-sidedness may only give a MAP a
polylog(n) factor improvement in proof length and query complexity over a 1-sided algorithm.
Their result implies a connection also between 1-sided and 2-sided partial testability, although
not one that would preserve O(1)-query partial testability.

Regarding the testing versus proof length trade-off question, they show it for the very
simple case of “proof-oblivious” testers, i.e. algorithms that make their queries before reading
the alleged proof. By contrast, the main difficulty in proving our preliminary trade-off result is
exactly that the tests for different Pi could have differing query distributions (even that each of
them in itself is proximity oblivious).

Another angle to our methods related to the above trade-off comes from the recent work
of Goldreich and Ron [14]. Their work is centered on what they call sample-based algorithms,
which are testing algorithms that select all their queries uniformly and independently at random.
For a number of queries that is a fixed power of n where n is large enough, this is virtually
identical to the way our universal tests work, where every index is independently chosen to be
queried with some fixed probability. Indeed they raised the question of whether any property
that is testable by a proximity-oblivious q-test can also be tested by a sublinear complexity
sample-based test, for which we give a partial positive answer for 1-sided error tests ([14] also
defines 2-sided error proximity oblivious q-tests, which we do not analyze here).

2 Plan of the paper

The first major part of the paper is devoted to proving the partial testability lower bound,
which is the most “mature” result. After the general preliminaries in Section 3, a warmup proof
against non-adaptive testing is found in Section 4, and then additional ideas are incorporated
to provide a proof against adaptive testing in Section 5.

The second major part deals with converting proximity-oblivious tests to universal ones
that scale well when the original property is decomposable to properties admitting such tests.
The conversion from the partition into (proximity-oblivious) 2-testable properties to a test for
the whole property is in Section 6, while Section 7 gives the (more expansive) conversion for
q-testable properties.

Finally, Section 8 contains a property that requires relatively many queries to test for itself,
while being partitionable into not too many highly testable properties. For the most part, the
sections following the preliminaries can be read individually (Section 7 contains very moderate
use of some notions from Section 6).

The rest of this section presents an informal description of the main ideas behind the proofs.

2.1 General themes for the partially untestable property

For the proofs of our main result we develop new techniques that are in some ways more flexible
than the traditional use of Yao’s method for proving property testing lower bounds. We believe
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that these techniques hold promise for other lower bound situations where using Yao’s method
seems to hit a wall.

As with Yao’s method, we contrast the behavior of a supposed test when it is run over an
input chosen according to some distribution over “yes” instances, with its behavior when it is
run over an input chosen according to some distribution over “no” instances. However, while
in the traditional method these two distributions are chosen based only on the property (and
should work against all possible algorithms of a given class), here the distributions are in fact
tailor made for the specific analyzed algorithm. Note that special care must be taken in the
definition of such an input distribution. It may not depend on the “real-time” behavior of the
algorithm (i.e. it may not adapt itself to the identity of the random queries that the algorithm
has made), and is instead constructed based only on the description of the algorithm.

The second theme is the use of Shannon entropy. Our goal here is to prove that if C is
C ′-partially testable, then C ′ cannot be too large. For achieving this we assume that a testing
algorithm exists, and then contrast a uniformly random choice of a word in C ′ with another
word chosen from a “dangerous” distribution over words far from C. The assumption that the
test in fact distinguishes the two distributions allows us to show that a uniformly random choice
of a word in C ′ has low entropy, and hence C ′ must be small. Using entropy instead of direct
counting is crucial for applying our main method to obtaining a bound against 2-sided error
tests, rather than only 1-sided error ones.

A third theme used in the proof against adaptive algorithms is that of first parsing the
input through a specially constructed injective mapping, called a “reader”, which is crucial for
“exposing” low-entropy portions in this setting. We are in fact considering not just one input
distribution, but several of them as the reader is constructed.

2.2 Proving a bound against non-adaptive algorithms

The bound against non-adaptive algorithms showcases many of the general themes. A supposed
C ′-partial test with q queries is in essence a distribution over query sets of size q, such that with
high probability the chosen query set is one that highlights a difference between members of
C ′ and inputs far from being in C. As a toy example, assume first that the test is additionally
1-sided, and “well-spread” with respect to the probabilities of querying any particular index. In
this case, for every ε-far input, the high probability of finding a forbidden substructure (as this
is the only way a 1-sided test can reject) translates to having many disjoint q-tuples of indexes
where in each of them there is a value that a member of C ′ cannot take (as a hypothetical
forbidden structure must exist). This would give a cross product bound on the size of C ′.

As our tests are not necessarily “well-spread”, we will construct a specialized distribution
that depends on the specific testing algorithm (but is independent of any particular running
instance). For handling 2-sided tests we use a feature of entropy that allows for bounds analogous
to combinatorial cross product bounds, namely the subadditivity of the entropy measure.

To construct a “dangerous” distribution over words far from being in C, we first take note of
the “heavy” indexes, which are those bits of the input that are with high probability part of the
query subset of the investigated testing algorithm. There will be only a few of those, and our
distribution over far words would be that of starting with a restriction of a uniformly random
word in C ′ to the set of heavy indexes, and augmenting it with independently and uniformly
chosen values to all other input bits. When contrasted with the uniform distribution over all
members of C ′, we obtain that there must be many query sets that show a distinction between
the two distributions over the non-heavy indexes with respect to the heavy ones. This means
that the values of the non-heavy indexes in each such query set do not behave like a uniformly
independent choice, and thus have a corresponding entropy (conditioned on the heavy index
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bits) that is significantly less than the maximal possible entropy. Having many such query sets
in essence means that we can find many such sets that are disjoint outside the heavy indexes,
which in turn leads to an entropy bound by virtue of subadditivity (when coupled with general
properties of linear codes).

2.3 Proving a bound against adaptive algorithms

An adaptive algorithm cannot be described as a distribution over query sets, but rather as a
distribution over small decision trees of height q that determine the queries. Therefore low-
entropy index sets cannot be readily found (and in fact do not always exist). To deal with this
we employ a new technique, that allows us to “rearrange” the input in a way that preserves
entropy, but does admit disjoint low-entropy sets.

This new construction is a reader, which in essence is an adaptive algorithm that reads the
entire input bit by bit (without repetitions). As this adaptive algorithm always eventually reads
the entire input, it defines a bijection between the input to be read and the “reading stream”,
i.e. the sequence of values in the order that the reader has read them.

The construction of this reader is fully based on the description of the q-query adaptive
algorithm that C ′-partially tests for C (again we assume that such an algorithm exists). In
fact we contrast the uniform distribution over members of C ′ with not one but many possible
distributions over inputs far from C. At every stage we obtain that, as long as our reader has
not yet read a large portion of the input, the adaptive test can provide a decision tree over the
yet-unread bits that shows a difference between a uniformly random member of C ′ (conditioned
on the values of the bits already read) and an independently uniform random choice of values
for the unread bits. Our reader will be the result of “concatenating” such decision trees as long
as there are enough unread bits. Thus, in the “reading stream” we have sets of q consecutive
bits, each with low entropy (as it is distinguishable from independently uniform values). When
there are not enough unread bits left, we read all remaining bits arbitrarily, and use general
properties of large dual distance codes to bound the entropy on that final chunk.

The method of constructing a reader not only allows us to do away with the exponential
penalty usually associated with moving from non-adaptive to adaptive algorithms, but we addi-
tionally obtain better bounds for non-adaptive algorithms as well. This is because a reader can
do away also with the penalty of moving from the situation of having many low-entropy query
sets to having a family of sets disjoint outside the heavy indexes, in essence by constructing
the reader for the uniform distribution over C ′ based on not one but many “dangerous” input
distributions.

2.4 Testing decomposable properties through universal testing

Suppose that a property P defined over {0, 1}n is decomposable to properties P1, . . . , Pk, so
that each of them is in itself ε-testable with q(ε)-queries for every ε > 0 (the same arguments
work also for partial testability, but we restrict the discussion here to proper testability for
the sake of explanation). How can we test for all of P at once? The simplest way would be
to juxtapose the individual tests for every Pi, which would give a test with O(kq log(k)) many
queries (accounting also for the necessary probability amplification). However, in our discussion
here k rises too fast with n, so we would like the dependence on it to be at most polylogarithmic,
even at the cost of replacing the “base complexity” q with a value that depends (sublinearly)
on n.

If the tests for all Pi “behave the same”, i.e. have the same query distribution, then instead
of querying for every test individually we can do the querying once and feed it to all the tests,
and then indeed get a test with O(q log(k)) many queries. This is essentially what is done in
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the preliminary result from [15]. Our goal here is to replace the original test with a “universal”
test that would work for any property for which an original test with the specified parameters
exist, and then use it instead of the original individual tests.

In our first preliminary result we construct such a test whose number of queries is bounded
by a fixed power of n, but only if every Pi was testable by the very restricted notion of a 1-
sided non-adaptive proximity-oblivious test with 2 queries. Such tests allow for a combinatorial
viewpoint through their underlying graphs (where an edge connects two indexes i, j ∈ {1, . . . , n}
if with positive probability the test query set is {i, j}). This allows for some analysis of the
probability of picking a “rejecting edge” when every index (“vertex”) is picked and queried with
probability n−β for an appropriate constant β. The hard part in the proof is when the test has
some “heavy indexes”, corresponding to high degree vertices.

Our second result handles proximity-oblivious q-tests for any fixed q, but unlike the first
result, also the power of n in the resulting test depends on ε. We essentially make sure that
the sampling is “forceful” enough so that any small “erroneous fragment” of the input cannot
“propagate” much if it is altered (the test will detect all possible alterations with large propa-
gations, so such alterations will be forbidden). This in turn allows us to analyze 1/ρ(ε/2) many
ε/2-far inputs derived from the original input, showing that unless the universal test works, they
cannot be all rejected by the original test. The propagation requirement allowing to analyze
this inputs is what causes a dependency on ρ(ε/2) of the power of n.

2.5 A non-testable property that is decomposable to testable ones

In the introduction, the property of being a concatenation of two palindromes was mentioned as
one that requires Ω(

√
n) many queries to test, while being decomposable to O(n) many testable

properties (in fact properties admitting a proximity oblivious 2-test). The basic idea from this
property is carried over to the properties constructed here. A parity condition ensures that
instead of having to correlate two strings (an alleged palindrome and its reverse), we would
have to correlate k strings, increasing the bound from Ω(

√
n) to Ω(n1−1/k). As these k strings

are allowed to “slide” relative to each other, the number of properties that we decompose to
would be O(nk−1), each one corresponding to a fixing of the locations of the strings.

3 Preliminaries

Below we introduce the reader to some basic definitions and results regarding entropy and the
dual distance of codes. We refer the reader who is interested in a more thorough introduction
of entropy to [8, Chapter 2].

First, we introduce a standard notion of distance between distributions.

Definition 3.1 (Total variation distance). Let p and q be two distributions over the domain D.
The total variation distance between p and q is defined to be

dTV (p, q) =
1

2

∑
i∈D
|p(i)− q(i)|.

We now introduce the notion of the entropy of a random variable, the entropy of a random
variable conditioned on another one, and two well-known lemmas.

Definition 3.2 (Entropy). Let X be a random variable over the domain D. The entropy of X
is defined to be H[X] = −

∑
i∈D Pr[X = i] log(Pr[X = i]).
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Definition 3.3 (Conditional entropy). Let X and Y be random variables over the domain D.
The entropy of X conditioned on Y is defined to be H[X|Y ] =

∑
y∈D Pr[Y = y]H[X|Y = y].

Lemma 3.4 (The chain rule). Assume that X and Y are random variables. The entropy of
the combined state determined by both random variables is denoted by H[X,Y ]. This quantity
obeys the chain rule H[X,Y ] = H[X|Y ] +H[Y ].

Lemma 3.5 (Subadditivity). If X and Y are random variables, then H[X,Y ] ≤ H[X] +H[Y ].

The total variation distance is not a natural fit in the context of entropy. A more fit-
ting notion of distance between distributions is divergence (also known as the Kullback-Liebler
divergence [17]).

Definition 3.6 (Divergence). Let p and q be two distributions over D. The divergence of q

from p is defined to be D(p‖q) =
∑

i∈D p(i) log
(
p(i)
q(i)

)
.

Fortunately, divergence and total variation distance are related via Pinsker’s inequality. This
was originally proved with worse bounds by Pinsker [20] and seen many subsequent improve-
ments, the current definitive version being that of Reid and Williamson [21].

Lemma 3.7 (Pinsker’s inequality). Assume that p, q are two distributions over the domain D.
The total variation distance between p and q is related to the divergence of q from p by the

inequality
√

1
2D(p||q) ≥ dTV (p, q).

We will actually be using a simpler corollary of it.

Lemma 3.8 (Corollary of Pinsker’s inequality). Assume that X is a random variable distributed
according to p over D, and denote the uniform distribution over D by pu. The entropy of X
is related to its total variation distance from the uniform distribution by H[X] ≤ log(|D|) −
2(dTV (p, pu))2.

Proof. Follows by

H[X] = −
∑
i∈D

Pr[X = i] log(Pr[X = i])

= −
∑
i∈D

Pr[X = i] log(Pr[X = i] · 1

|D|
· |D|)

= −
∑
i∈D

Pr[X = i] log(
1

|D|
)−

∑
i∈D

Pr[X = i] log(Pr[X = i] · |D|)

= log(|D|)−D(p‖pu) ≤ log(|D|)− 2(dTV (p, pu))2

where the last step follows from Pinsker’s inequality.

Let x ∈ {0, 1}n and J ⊆ [n]. We use x[J ] to denote the restriction of x to the indices in J .
That is, the vector 〈xj〉j∈J . When C ⊆ {0, 1}n we use C[J ] = {x[J ]|x ∈ C}.

Let C ⊆ {0, 1}n. We denote by U(C) the uniform distribution over C. In accordance with
the notation above, when X ∼ U(C), X[J ] denotes the random variable obtained by drawing
uniformly from C and then restricting to the indices in J . As a shorthand we use U(C)[J ]
for the distribution of X[J ]. We use UJ(C) to denote the result of first drawing a vector x
according to U(C), and then replacing x [[n] \ J ] with a uniformly random vector in {0, 1}n−|J |.
In particular, in many cases we will take C to be a singleton, in which case we drop the curly
braces and denote this probability distribution by UJ(x).

We will make inherent use of the following result, which can be found e.g. in [18, Chapter
1, Theorem 10].
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Lemma 3.9. Let C be a linear code with dual distance Γ. If J ⊆ [n] is such that |J | < Γ and
X ∼ U(C), then X[J ] is distributed uniformly over {0, 1}|J |.

We will also need the fact that a mostly random input is far from a code with high probability.

Lemma 3.10. Let C ⊆ {0, 1}n such that |C| ≤ 2
1
64
n, ε < 1/8, and let J ⊆ [n] be such that

|J | ≤ n/2. X ∼ UJ(C) is ε-far from C with probability 1− o(1). Furthermore, this is still true
when conditioned on any value of X[J ].

Proof. By Chernoff bounds, the probability that a random element X ∼ UJ(C) will agree with
c ∈ C in more than (1 − ε)n coordinates is at most exp

(
− n(1/4 − ε)2

)
. Taking the union

bound over all c ∈ C gives us |C| · exp
(
− n(1/4 − ε)2

)
= o(1). Since this calculation assumes

that X[J ] always agrees with c[J ], it holds when conditioned on any value of X[J ].

Finally, we will also need to use Lemma 3.9 to help us calculate the entropy of uniform
random variables in codes.

Lemma 3.11. Let C be a code with dual distance Γ, J ⊆ [n] such that |J | ≤ Γ, C ′ ⊆ C and
X ∼ U(C ′). Then H[X|X[J ]] ≤ log |C| − |J |. Furthermore, this is true when conditioned on
any particular value of X[J ].

Proof. We can partition C according to the values of the bits in J :

C =
⋃

z∈{0,1}|J|
{c ∈ C|c[J ] = z}

By Lemma 3.9, all sets on the right hand side are of size 2−|J ||C|. Obviously, for all z ∈ {0, 1}|J |,
we have {c′ ∈ C ′|c′[J ] = z} ⊆ {c ∈ C|c[J ] = z}, simply because C ′ ⊆ C. Thus for every
x ∈ C ′[J ], we have that

H[X|X[J ] = x] ≤ log |{c′ ∈ C ′|c′[J ] = z}|

≤ log |{c ∈ C|c[J ] = z}|.

This completes the “furthermore” part of the lemma. To obtain the X[J ]-conditioned ver-
sion, note that by the definition of conditional entropy,

H[X|X[J ]] = Ex∼U(C′)[J ]H[X|X[J ] = x] ≤ log
(

2−|J ||C|
)

= log |C| − |J |.

We note (and use throughout) that trivially H[X|X[J ]] = H[X[{1, . . . , n} \ J ]|X[J ]].

4 Nonadaptive lower bound

In this section we prove Theorem 1.3 for the case of a non-adaptive tester and with slightly
worse quantitative bounds. For the rest of this section, set C ⊂ {0, 1}n to be a code with dual

distance Γ and |C| ≤ 2
1
64
n. Set ε < 1/8 and assume that C is C ′-partially testable for C ′ ⊆ C

with q non-adaptive queries.
Next we define a non-adaptive tester for a property. This definition is consistent with the

standard one.
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Definition 4.1 (Non-adaptive property tester). A non-adaptive ε-tester for a code C ⊆ {0, 1}n
with query complexity q(ε, n) is defined by a collection of query sets {Qi}i∈I of size q together
with a predicate πi for each query set and a distribution µ over I which satisfies:

• If x ∈ C, then with probability at least 2/3 an i ∈ I is picked such that πi(x[Qi]) = 1.

• If d(x,C) > ε, then with probability at least 2/3 an i ∈ I is picked such that πi(x[Qi]) = 0.

For a C ′-partial tester the first item must hold only for x ∈ C ′.

Set a non-adaptive tester for C ′, and let {Qi}i∈I be its query sets.
We will be interested only in those query sets which are useful for telling a random element

in C ′ from a mostly random element in {0, 1}n.

Definition 4.2 (J-Discerning query set). Let J ⊆ [n] be such that |J | ≤ n/2. A query set Qi
is a J-discerning set if dTV (U(C ′)[Qi], UJ(C ′)[Qi]) ≥ 1/8.

Next we prove that a tester must have a lot of such good query sets.

Lemma 4.3. Set J ⊆ [n] such that |J | ≤ n/2. With probability at least 1/9 the query set Qi
picked by the tester is a J-discerning set.

Proof. Assume the contrary, that is, that with probability greater than 8/9 the query set Qi
picked by the tester is such that dTV (U(C ′)[Qi], UJ(C ′)[Qi]) < 1/8.

Thus for every such Qi,

| Pr
U(C′)[Qi]

[tester accepts]− Pr
UJ (C′)[Qi]

[tester accepts]| < 1/8.

For the case where the query set picked is discerning, which occurs with probability smaller
than 1/9, we have no bound (better than 1) on the difference in probability.

Overall, over the randomness of the tester,

| Pr
U(C′)

[tester accepts]− Pr
UJ (C′)

[tester accepts]| < 8/9 · 1/8 + 1/9 = 2/9.

But by the correctness of the tester and Lemma 3.10, we arrive at PrU(C′)[tester accepts] ≥ 2/3
while simultaneously PrUJ (C′)[tester accepts] ≤ 1/3 + o(1), a contradiction.

We will later want to construct a collection of J-discerning sets disjoint outside of a small
fixed portion of the input. Towards this end we prove that J-discerning sets show difference
between an element in C ′ and a mostly random element in {0, 1}n even when we only look
outside of J .

Lemma 4.4. Assume that Qi is a J-discerning set, draw Z ∼ U(C ′)[J ] and then draw X ∼
U(C ′)[Qi] conditioned on X[J ] = Z. With probability at least 1/16 (taken over the choice of
Z), the distribution of X[Qi \ J ] is 1/15-far from U({0, 1}|Qi\J |).

Proof. First note that the distance between U(C ′)[Qi] and UJ(C ′)[Qi] is the expectation over
Z of the distance of X[Qi \ J ] from U({0, 1}|Qi\J |), conditioned on X[J ] = Z. By definition,
this is at least 1/8. By simple probability bounds, with probability at least 1/16, Z is such that
the distance of X[Qi \ J ] from U({0, 1}|Qi\J |) conditioned on X[J ] = Z is at least 1/15.

However, total variation distance is not very handy for counting. We now use Lemma 3.8
to transform our total variation bounds into “entropy loss” bounds.
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Lemma 4.5. If Qi is a J-discerning set and X ∼ U(C ′)[Qi], then H[X[Qi \ J ]|X[J ]] ≤ |Qi \
J | − 0.0005.

Proof. Let L ⊆ {0, 1}|J | be the set of values z ∈ {0, 1}|J | such that when drawing X ∼ U(C ′)[Qi]
conditioned on having X[J ] = z, the distribution of X[Qi \ J ] is 1/15-far from U({0, 1}|Qi\J |).

Since the entropy is non-negative, we can upper bound

H[X[Qi \ J ]|X[J ]]

≤
∑
z∈L

Pr
Z∼U(C′)[J ]

[Z = z]H[[Qi \ J ]|X[J ] = z] +
∑

z∈{0,1}J\L

Pr
Z∼U(C′)[J ]

[Z = z]|Qi \ J |.

To treat the first summand on the right hand side, we invoke Lemma 3.8 to obtain

H[[Qi \ J ]|X[J ] = z] ≤ |Qi \ J | − 0.008.

Overall we get∑
z∈L

Pr
Z∼U(C′)[J ]

[Z = z]H[[Qi \ J ]|X[J ] = z] +
∑

z∈{0,1}J\L

Pr
Z∼U(C′)[J ]

[Z = z]|Qi \ J |

≤ |Qi \ J | − 0.0005.

Next, we would try to cover the indices in [n] with as many discerning sets as possible. We
will need these sets to be disjoint outside a not-too-big set, so that the “entropy loss” could be
aggregated. This set of “bad” indices will be the set of bits read by the tester with the highest
probability.

Definition 4.6. Define B = {k ∈ [n]|PrQ∼µ[k ∈ Q] ≥ 2q
Γ }.

Observation 4.7. |B| ≤ Γ/2 ≤ n/2. Therefore Lemma 3.10 holds with J = B.

Now we can prove that we can find many B-discerning sets which are disjoint outside of B.

Lemma 4.8. There exists a set ID such that:

• For all i ∈ ID, Qi is a B-discerning set

• For all i, j ∈ ID, Qi \B and Qj \B are disjoint

D = ∪i∈ID(Qi \B) satisfies Γ/2 ≥ |D| ≥ Γ
18q2 . Additionally, |ID| ≥ Γ

18q3 .

Proof. We construct the set ID greedily. Suppose that we have discerning sets covering k bits
that are disjoint outside of B. Choose a set randomly using the tester’s distribution conditioned
on it being B-discerning. By Lemma 4.3, this condition increases the probability of every query
set, and every bit to be in a query set, times at most 9. By the definition of B, if we choose a
query set randomly using the tester’s distribution, the probability that it intersects our already

covered bits outside of B is at most 92q2

Γ k. As long as this number is smaller than 1, such a set
exists. Therefore, as long as k < Γ

18q2 we have a set to add, leading to the bound. To get the

upper bound on |D| we can just stop the process before D gets too big.
The lower bound on the size of ID follows from the lower bound on the size of D.
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Finally, we are ready to calculate the entropy of a uniformly random codeword from C ′. We
use the chain rule to split this into calculating the entropy of the bits in B, the entropy of the
bits in D conditioned on the bits of B, and the entropy of everything else conditioned on the
bits in D ∪B.

Lemma 4.9. If X ∼ U(C ′), then its entropy H[X] is bounded away from the maximal log |C|
by the inequality H[X] ≤ log |C| − 0.0005 Γ

18q3 .

Proof. First, by the chain rule for entropy and the fact that D \B = D,

H[X] = H[X|X[D ∪B]] +H[X[D]|X[B]] +H[X[B]]

We proceed by bounding each element in the sum. First, trivially:

H[X[B]] ≤ |B|

Next, invoke Lemma 3.11 over D ∪B, as |D ∪B| ≤ Γ. This gives us:

H[X|X[D ∪B]] ≤ log |C| − |D ∪B|

Now, recall that
⋃
i∈ID(Qi \ B) = D. Since these sets are disjoint outside of B, we employ

subadditivity to get:

H[X[D \B]|X[B]] ≤
∑
i∈ID

H[X[Qi \B]|X[B]]

Now, since these are all B-discerning sets, by Lemma 4.5 we know that for all i ∈ ID we have
that H[X[Qi\B]|X[B]] ≤ |Qi\B|−0.0005. By Lemma 4.8 we know that |ID| ≥ Γ

18q3 . Summing
up we get: ∑

i∈ID

H[X[Qi \B]|X[B]] ≤ |D| − 0.0005|ID| ≤ |D| − 0.0005
Γ

18q3

That is, H[X[D]|X[B]] ≤ |D| − 0.0005 Γ
18q3 . Summing up the bounds on H[X|X[D ∪ B]],

H[X[D]|X[B]] and H[X[B]] we get the statement of the lemma.

From this it follows that:

Theorem 4.10 (Weak form of the main theorem). For C ′ ⊆ C, if C is C ′-partially testable
with q non-adaptive queries, then

|C ′| = 2H[X] ≤ |C|2−0.0005 Γ
18q3 .

5 Adaptive lower bound

In this section we prove Theorem 1.3 in its full generality. We start by introducing the mecha-
nism of a reader, which allows us to separate the adaptivity and randomness of the algorithm.

Definition 5.1 (Reader). A k-reader r is a sequence r0, r1, . . . , rk−1, where ri : {0, 1}i →
{1, . . . , n} satisfy for all i < j and y ∈ {0, 1}j that ri(y[{1, . . . , i}]) 6= rj(y).

Given an input x ∈ {0, 1}n, the reader defines a sequence of its bits. This is the reading of
x, defined below.
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Definition 5.2 (Reading). Given x ∈ {0, 1}n and a k-reader r, the reading Rr(x) of x according
to r is a sequence y1, . . . , yk defined inductively by yi+1 = xri(y1,...,yi). We define ri(x) to be
ri(y1, . . . , yi). The set of unread bits Ur(x) is the subset of {1, . . . , n} that did not appear as
values of r1, . . . , rk in the reading.

We can now define an adaptive tester as a distribution over readers and decision predicates.

Definition 5.3 (Adaptive tester). An adaptive ε-tester for a code C ⊆ {0, 1}n with query
complexity q = q(ε, n) is defined by a collection of q-readers {ri}i∈I together with predicates πi
for each reader, and a distribution µ over I which satisfies:

• For all x ∈ C, Pri∼µ
[
πi(Rri(x)) = 1

]
≥ 2/3.

• For all x ∈ {0, 1}n such that d(x,C) > ε, we have that Pri∼µ
[
πi(Rri(x)) = 0

]
≥ 2/3.

For a C ′-partial tester the first item must hold only for x ∈ C ′.

Part of the usefulness of readers is that if we can construct a reader that reads the entire
input, then reading the property C ′ through it preserves its size.

Observation 5.4. If r is an n-reader, then the function mapping every x ∈ {0, 1}n to its
reading Rr(x) is a bijection.

Proof. Suppose that x′ 6= x, and let i ∈ {1, . . . , n} be the least index such that xri(x) 6= x′ri(x).

Such an i must exist since r reads all bits, and x′ 6= x. Note that ri(x) = ri(x
′), since it is the

first bit read to be different (and thus y1, . . . , yi−1 = y′1, . . . , y
′
i−1). Thus xri(x) 6= x′ri(x′) and

therefore Rr(x) 6= Rr(x′).

In light of the above, we will construct an n-reader and bound the size of C ′ when per-
muted by its reading. However, while the end product of the construction is an n-reader, the
intermediate steps might not be k-readers for any k. Thus we need to introduce a more general
notion.

Definition 5.5 (Generalized reader). A generalized reader r is a sequence r0, r1, . . . , rn−1 where
ri : {0, 1}i → {1, . . . , n} ∪ {?} satisfy for all i < j and y ∈ {0, 1}j one of the following

• ri(y[{1, . . . , i}]) ∈ {1, . . . , n} \ rj(y)

• ri(y[{1, . . . , i}]) = rj(y) = ?

Given a generalized reader r, a terminal sequence in the reader is y ∈ {0, 1}i such that
ri(y1, . . . , yi) = ?, while either ri−1(y1, . . . , yi−1) 6= ? or i = 0.

If we fix a certain x ∈ {0, 1}n then a generalized reader defines a sequence of non-repeating
indices that at some point may degenerate to a constant sequence of ?. Note that every k-reader
naturally defines a generalized reader by setting all undefined functions to map everything to
?.

It is useful to think of a (possibly generalized) reader as a decision tree. With a generalized
reader, we will often want to continue the branches of the tree with another reader. This
operation is called grafting. We start with the notion of a 0-branch and a 1-branch.

Definition 5.6 (0-branch, 1-branch). Let r be a reader, possibly generalized. The 0-branch of
r is the reader r′ defined by r′i(y1, . . . , yi) = ri+1(0, y1, . . . , yi). Similarly, the 1-branch of r is
the reader r′′ defined by r′′i (y1, . . . , yi) = ri+1(1, y1, . . . , yi).
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We can now define grafting, and will do so recursively. Informally, grafting a reader t onto
r at y means that at every ? in the decision tree of r that can be reached after reading y, we
continue the reading according to t. In other words, this is the process of appending a decision
tree t to another decision tree r given a certain history of reads y.

Definition 5.7 (Grafting). Let r and t be generalized readers and y ∈ {0, 1}i be a terminal
sequence in r. The grafting of t onto r on the branch y is a new reader rt,y defined as follows.

• If t0 ∈ {r0(y1, . . . , yi), . . . , ri−1(y1, . . . , yi)}, graft the yt0-branch of t onto r at y1, . . . , yi.

• If t0 /∈ {r0(y1, . . . , yi), . . . , ri−1(y1, . . . , yi)}, then set ri(y1, . . . , yi) = t0, call the new reader
r′, and then graft the 0-branch of t onto r′ at y0, . . . , yi, 0 and the 1-branch of t onto t at
y0, . . . , yi, 1.

Repeat the above recursively, with the base case being the grafting of an identically ? reader onto
r by not changing anything.

Note that the grafting of a generalized reader onto another results in a generalized reader.
Note that it is also possible that rt,y = r when all bits that t may read were already read by r
on y.

To introduce the notion of a reader that discerns a random input from an input from C ′,
we will first need to formulate a notion of executing a reader, which is inherently adaptive, on
a partly random input.

Definition 5.8 (J-Simulation of a reader). Let r be a q-reader, J ⊆ [n] and y ∈ {0, 1}|J |.
The J-simulation of r on y is the distribution S(r, y, J) over {0, 1}q defined to be Rr(x) where
x ∼ UJ(y), that is, x[J ] = y[J ] and all bits of x outside of J are picked independently and
uniformly at random from {0, 1}.

We now introduce the notion of a reader discerning a random input from an input from C ′.

Definition 5.9 (J-Discerning reader). Let r be a (possibly generalized) reader, J ⊆ [n] and
y ∈ {0, 1}|J |. Let x be a uniform random variable in {c ∈ C ′|c[J ] = y}. We say that r is a
J-discerning reader for y if it holds that dTV (Rr(x), S(r, y, J)) ≥ 1/8.

Next, we prove that in a given test many of its readers are discerning.

Lemma 5.10. Set J ⊆ [n] such that |J | ≤ n/2 and y ∈ {0, 1}|J |. With probability at least 1/9
the q-reader r picked by the tester is J-discerning for y.

Proof. Let r be a reader that is not J-discerning for y. Let B ∼ UJ(y) and G ∼ U({c ∈
C ′|c[J ] = y}). Denote by πr the predicate associated with r. By our assumption,

|Pr[πr(Rr(B)) = 1]− Pr[πr(Rr(G)) = 1]| < 1/8.

Now assume that with probability greater than 8/9, the q-reader picked is not J-discerning
for y. Now consider the difference in acceptance probability when drawing a reader according
to µ.

| Pr
r∼µ

[πr(Rr(B)) = 1]− Pr
r∼µ

[πr(Rr(G)) = 1]|

< 8/9 · 1/8 + 1/9 = 2/9.

But by Lemma 3.10 (the “furthermore” claim) and the correctness of the tester, we have that
Prr∼µ[πr(Rr(B)) = 1] ≤ 1/3, and by the correctness of the tester Prr∼µ[πr(Rr(G)) = 1] ≥ 2/3, a
contradiction.
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A common operation will be to graft a discerning reader with additional arbitrary bits. This
does not cause a discerning reader to stop being one.

Definition 5.11. Let r and s be generalized readers. We say that r contains s if for every
x ∈ {0, 1}n, the sequence of non-? elements in Rs(x) is a prefix of Rr(x).

Note that in particular, whenever we graft t onto r along some branch, we obtain a reader
which contains r.

Lemma 5.12. Let r and s be generalized readers such that r contains s. Let J ⊆ [n] and
y ∈ {0, 1}|J |. If s is a J-discerning reader for y, then so is r.

Proof. Let B ∼ UJ(y) and G ∼ U({c ∈ C ′|c[J ] = y}). Consider Rr(B). Its outcomes can
be partitioned according to their Rs(B) prefixes. Thus the probability of every event defined
by values of Rr(B) can be written as a weighted sum of the probabilities of events defined by
values of Rs(B). The same is true for Rr(G) and Rs(G). Therefore dTV (Rr(x), S(r, y, J)) ≥
dTV (Rs(x), S(s, y, J)), implying the lemma.

To prove that a uniform choice in C ′ does not have high entropy, we graft discerning readers
one onto the other. We will want to make sure that all the branches of the decision tree are of
the same height throughout the grafting, and thus we define the notion of a padded grafting.

Definition 5.13 (q-Padded grafting). Let r be a generalized reader, t be a q-reader and y ∈
{0, 1}i be a terminal sequence in r. The q-padded grafting of t onto r on the branch y is defined
by the following process. First, let r′ be the grafting of t onto r at the branch y. Now perform the
following repeatedly: Let z1, . . . , zj with j < q be such that r′i+j−1(y1, . . . , yi, z1, . . . , zj−1) 6= ?
while r′i+j(y1, . . . , yi, z1, . . . , zj) = ?, or j = 0 and r′i(y1, . . . , yi) = ?. Let k be an arbitrary
index not in the set of indexes {r′0, . . . , r′i+j−1(y1, . . . , yi, z1, . . . , zj−1)}, and redefine the reader
r′i+j(y1, . . . , yi, z1, . . . , zj) = k. Repeat this process as long as such z1, . . . , zj with j < q exist.

The above is basically grafting additional arbitrary reads, so that the end-result will always
read exactly q bits after reading the sequence y1, . . . , yi. The next observation together with
Lemma 5.12 implies that q-padded grafting of a J-discerning reader is equivalent to a grafting
of some other J-discerning reader.

Observation 5.14. Let r be a generalized reader, t a q-reader and y ∈ {0, 1}i a terminal
sequence in r. There exists a reader s containing t such that the q-padded grafting of t onto r
at y is equivalent to the grafting of s onto r at y.

Now we can finally prove the main lemma, by performing repeated q-padded grafting of
discerning readers one onto another.

Lemma 5.15. If X ∼ U(C ′), where C is C ′-partially testable with q queries, then H[X] ≤
log |C| − b 1

32Γ/qc

Proof. Let us construct an n-reader and consider the entropy of C ′ when permuted by this
reader.

Start with the 0-reader r0 (i.e. the reader with all functions being identically ?). Let s be a
∅-discerning q-reader for the empty word, which must exist since the adaptive tester must pick
one with positive probability. Set r1 to be the q-padded grafting of s onto r0 on the branch of
the empty word (so in particular r1 contains s).

Assume that we have constructed the jq-reader rj . If jq ≥ Γ, graft a reader that reads all
remaining bits arbitrarily onto rj on every branch. Else, perform the following for all branches
y ∈ {0, 1}jq to obtain rj+1 (noting that they are all terminal sequences in rj):
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• If there is no member of C ′ with the reading Rrj(y), perform a q-padded grafting of an

arbitrary q-reader onto rj at the branch y,

• If such a member exists, let s be a reader which is an {rj1(y), rj2(y), . . . , rjjq(y)}-discerning

reader for y (which exists by Lemma 5.10). Perform a q-padded grafting of s onto rj at
the branch y.

Now let r be the resulting n-reader, let rR(C′) be the image of C ′ under the reading of r,
and let X ∼ U(rR(C′)). By Observation 5.4, the distribution of X is the same as starting with a
uniformly random member of C ′ and then taking its reading according to r. By the chain rule
H[X] = H[X[{1, . . . ,Γ}]] +H[X|X[{1, . . . ,Γ}]].

Note that in the case of a word from C ′, the maximal j in the construction is equal to Γ/q.
By the chain rule we may write

H[X[{1, . . . ,Γ}]] =

Γ/q∑
i=1

H[X[{(i− 1)q + 1, . . . , iq − 1}]|X[{1, . . . , (i− 1)q − 1}]]

and since each sequence of q bits is from the grafting of a reader which is discerning with respect
to all the previous ones, we may apply Lemma 3.8 to obtain

H[X[{1, . . . ,Γ}]] =

Γ/q∑
i=1

H[X[{(i− 1)q + 1, . . . , iq − 1}]|X[{1, . . . , (i− 1)q − 1}]]

≤
Γ/q∑
i=1

(
q − 1

32

)
≤ Γ− Γ/q · 1

32
.

By Lemma 3.11 (the furthermore part, for every y ∈ {0, 1}n using J = {r1(y), . . . , rΓ(y)}),
H[X|X[{1, . . . ,Γ}]] ≤ log |C| − Γ, so by summing it all up we get H[X] ≤ log |C| − Γ/q · 1

32 .

Proof of Theorem 1.3. Let C a code with dual distance Γ and suppose that it is C ′-partially
testable with q queries for some C ′ ⊆ C. By Lemma 5.15, if X is uniformly distributed in C ′,
then H[X] ≤ log |C| − b 1

32Γ/qc. This implies that |C ′| = 2H[X] ≤ 2−Γ/32q · |C|.

6 Properties with a proximity oblivious 2-test decomposition

For simplicity of presentation all the proofs here are for a property P which is decomposable
to properties P1, . . . , P` that in themselves admit a proximity oblivious 2-test, rather than just
a Pi-partial test for P . A sketch on how to extend this to the more general setting is found at
the end of this section.

Definition 6.1 (P -witness). Let P ⊆ {0, 1}n be a property and w ∈ {0, 1}n. A P -witness
against w is a set Q ⊆ [n] such that for every w′ ∈ {0, 1}n, if w′i = wi for every i ∈ Q, then
w′ 6∈ P .

The family of witness sets for a specific w is closed under taking supersets. Note that any
1-sided q-test essentially rejects only if their query set is a witness. A proximity oblivious
1-sided test is a non-adaptive one which is also independent of the proximity parameter ε,
essentially just a probability distributions over query sets of a fixed size q. This means that the
following definition of a proximity-oblivious test is in fact equivalent to Definition 1.6 from the
introduction.
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Definition 6.2 (Test defined by witnesses). A proximity oblivious 1-sided q-test with the de-
tection function ρ(ε) is a probability distributions over query sets of a fixed size q, so that for
every ε-far input w (for every ε) the probability of obtaining a witness against w is at least ρ(ε).

Definition 6.3 (universal sampler). For parameters ε, η ∈ (0, 1), the (ε, η)-universal sampler
selects a set R ⊆ [n] where, for every i ∈ [n], Pr[i ∈ R] = α3n−1/3, where α = 8ε−1 log ε−1 ·
log η−1 · log n.

Let P1, P2, . . . , P` ⊆ {0, 1}n be properties, each having an oblivious one-sided error 2-tester
with the same detection function ρ(ε). Given oracle access to an input w ∈ {0, 1}n, the ε-
universal algorithm for

⋃`
i=1 Pi selects a set R ⊆ [n] according to the (ε, 1/4`)-universal sampler.

If |R| > 2α3n2/3, then it accepts immediately, and otherwise it queries the input on all indices
of R, rejects if R is a Pi-witness against w for every i ∈ [`], and accepts otherwise.

This section is devoted to proving the following:

Lemma 6.4 (implying Theorem 1.7). Suppose that we have a sequence P1, P2, . . . , P` ⊆ {0, 1}n
of properties, where for every i ∈ [`] Pi has a 1-sided error oblivious 2-tester with detection
function ρ(ε). If ε > 0 is such that ρ(ε/2) > 0, then for n large enough (as a polynomial
function of 1/ρ(ε/2)) the ε-universal algorithm for

⋃`
i=1 Pi is a 1-sided error non-adaptive ε-

tester for
⋃`
i=1 Pi with query complexity bound O(n2/3(ε−1 log ε−1 · log η−1 · log n)3).

To arrive at the theorem, we first need to “thin out” the possible 2-test queries.

Definition 6.5 (ε-trap). A set Q of size-2 subsets of [n] is called an ε-trap for a property P , if
for every word w ∈ {0, 1}n that is ε-far from P , there is some set Q ∈ Q which is a P -witness
against w.

Lemma 6.6. If P has a 1-sided error oblivious 2-tester with the detection function ρ(ε), then
for every ε it has an ε-trap Q with |Q| ≤ 9n/ρ(ε).

Proof. This is immediate from running the 2-tester for 9n/ρ(ε) many times (so that with positive
probability it will happen that every possible ε-far word is rejected by some iteration of it), and
then setting Q to be the set of all query sets drawn in these iterations.

We will also use the following.

Observation 6.7. For n larger than some universal constant, the ε-universal test will execute
the “immediate accept” step (due to R being too large) with probability less than 1/12.

Lemma 6.4 and hence Theorem 1.7 follows by first obtaining Q1, . . . ,Q` as ε/2-traps for
P1, . . . , P` respectively, and then using the union bound for the respective applications of the
following statement, which is in some way the “true theorem” of this section.

Theorem 6.8. Let ε > 0, η > 0, Q be an ε/2-trap for a property P , and w be ε-far from P .
For n larger than some polynomial function of |Q|/n, the set R produced by the (ε, η)-universal
sampler is a P -witness against w with probability exceeding 1− η.

Observation 6.9.

1. (1− α3n−1/3)εn/4 < η2−2εn2/3
/3,

2. (1− α3n−1/3)α
−2n1/3

< η/3n,

3. e−εα(α−4) < η.
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From here on we fix P to be a property, Q to be its ε/2-trap, and w ∈ {0, 1}n to be ε-far from
P .

Definition 6.10 (degree). For every i ∈ [n] and Q′ ⊆ Q, we define degQ′(i) = |{Q ∈ Q′ | i ∈
Q}|.

Definition 6.11 (Ww, Lw and Mw). For every w ∈ {0, 1}n

1. Ww is the set of all members of Q that are witnesses against w, and for every i ∈ [n], W i
w

is the set of all members of Ww that contain i.

2. Lw =
{
Q ∈ Ww

∣∣∣∃j ∈ Q s.t. degWw
(j) > α−2n1/3

}
3. Mw =Ww \ Lw.

Definition 6.12 (the ⇒ notation). Let (i, a), (j, b) ∈ [n]×{0, 1} be distinct. We write (i, a)⇒
(j, b) if Q has no witness against some w′ ∈ {0, 1}n such that w′j = ¬b while Q has a witness
against every w∗ ∈ {0, 1}n such that w∗i = a and w∗j = ¬b.

Definition 6.13 (viable sub-string). Let B ⊂ [n] be a set of indexes and σB : B → {0, 1}. σB
is a viable sub-string if there exist no h ∈ [n], a ∈ {0, 1} and i, j ∈ B, that are not necessarily
distinct, such that (i, σB(i))⇒ (h, a) and (j, σB(j))⇒ (h,¬a), or (i, σB(i))⇒ (h, a) and Q has
a witness against every w∗ ∈ {0, 1}n such that w∗h = a.

Definition 6.14 (witness against sub-string). Let B ⊂ [n] and σB : B → {0, 1} be a viable
sub-string. i ∈ [n] is a witness against σB in w ∈ {0, 1}n, if i ∈ B and wi 6= σB(i), or if there
exists j ∈ B such that (j, σB(j))⇒ (i,¬wi).

Definition 6.15 (InfσB , σInf
B ). Let B ⊂ [n] and σB : B → {0, 1} be a viable sub-string.

We define InfσB to be the set containing all the possible witnesses against σB. We define
σInf
B : InfσB → {0, 1} so that for every i ∈ B and j ∈ InfσB , if (i, σB(i)) ⇒ (j, a), then
a = σInf

B (j).

Lemma 6.16. Let B ⊂ [n] and σB be a viable sub-string. For every w∗ ∈ {0, 1} such that
w∗i = σInf

B (i), for every i ∈ InfσB , all of the members of Ww∗ are disjoint from InfσB .

Proof. Assume for the sake of contradiction that the lemma does not hold. If there exists a
member of Ww∗ that is contained in InfσB , then σB is not a viable sub-string and hence the
contradiction. If Ww∗ has a member {i, j} such that i ∈ InfσB and j 6∈ InfσB , then there exists
h ∈ B such that (h, σB(h)) ⇒ (j,¬w∗j ) (we take the h for which (h, σB(h)) ⇒ (i, w∗i )). This is
a contradiction to the definition of InfσB as containing all such j.

Lemma 6.17. Let w be 3ε/4-far from P . If Ww ⊆ 2B, then InfσB contains at least εn/4
witnesses against σB for any viable sub-string σB : B → {0, 1}.

Proof. Assume for the sake of contradiction that InfσB contains less than εn/4 witnesses against
σB. Let w∗ ∈ {0, 1} be such that w∗i = σInf

B (i) if i ∈ InfσB and otherwise w∗i = wi. Obviously,
w∗ is 3ε/4-far from P .

By Lemma 6.16, Ww∗ does not have any sets that intersect InfσB . Since Ww ⊆ 2B, Ww∗ ∩
2[n]\InfσB = ∅. Thus, Ww∗ = ∅ and hence Q has no witness against w. This is a contradiction
to Q being an 3ε/4-trap for P .

Lemma 6.18. If |
⋃
Q∈Ww

Q| ≤ 2εn2/3, then we have that Pr[R is a witness against w] > 1 −
η/3, even if w is only 3ε/4-far from P .
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Proof. Let W =
⋃
Q∈Ww

Q. By assumption, |W | ≤ 2εn2/3. Let σW be a viable sub-string. Since

Ww ⊆ 2W , by Lemma 6.17, there are at least εn/4 witnesses against σW .

The probability that such a witness is not selected is at most (1−α3n−1/3)εn/4 < η2−2εn2/3
/3,

where the inequality is by Observation 6.9. The lemma follows by the union bound over all
viable sub-strings for W .

Lemma 6.19. If |
⋃
Q∈Ww

Q| > 2εn2/3 and |
⋃
Q∈Mw

Q| < εn2/3, then the probability that R is
a witness against w is at least 1−η, for n larger than some polynomial in |Q|/n = O(1/ρ(ε/2)).

Proof. Observe that |Lw| ≥ εn1/3, because by definition we have
⋃
Q∈Ww

Q =
⋃
Q∈Mw∪Lw Q.

Let Piv ⊆ [n] be the set of all i such that degWw
(i) ≥ α−2n1/3, and σPiv be such that σPiv(i) =

¬wi for every i ∈ Piv. Note that, for every i ∈ Piv,

Pr[R does not contain ji such that {i, ji} ∈ Ww]

≤ (1− α3n−1/3)α
−2n1/3

< η/3n,

where the last inequality is by Observation 6.9. Consequently, by the union bound

Pr[for every i ∈ Piv, ∃ji ∈ R s.t. {i, ji} ∈ Ww] > 1− η/3.

When the event above indeed occurs, it is only for σ = σPiv (out of any σ : Piv→ {0, 1}) that it
may be the case that {ji : i ∈ Piv} is not a witness against σ. In other words, with probability
at least 1− η/3 we obtain the event that R contains witnesses against all possible assignments
to Piv, apart from possibly σPiv. To conclude we partition to two cases that depend on the
relationship of σPiv and w.

If w has at least εn1/3 witnesses against σPiv, then the probability that such a witness is not
selected is less than (1−α3n−1/3)εn

1/3
< η/3, where the inequality is by Observation 6.9. Thus,

by the union bound, with probability exceeding 1− η, R is a witness against w (as it contains
witnesses against any possible assignment to Piv).

Assume now that there are less than εn1/3 witnesses against σPiv. Let w∗ ∈ {0, 1}n be such
that if i ∈ InfPiv, then w∗i = σInf

Piv(i), and otherwise w∗i = wi. By the triangle inequality, w∗ is
3ε/4-far from P (for n large enough so that εn1/3 < εn/4). By Lemma 6.16, none of the sets in
Ww∗ intersect InfPiv and hence Ww∗ ⊆Mw Consequently,

|
⋃

Q∈Ww∗

Q| < |
⋃

Q∈Mw

Q| ≤ 2εn2/3.

Thus, by Lemma 6.18, with probability exceeding 1−η, R is a witness against w∗ and so against
w (this case does not even require us to analyze witnesses against the possible assignments to
Piv themselves).

Lemma 6.20. If |
⋃
Q∈Mw

Q| ≥ εn2/3, then Pr[Ww ∩ 2R 6= ∅] > 1− η.

Proof. Let R′ be a random subset of R, where every member of R is in R′ independently with
probability α−2. We observe that, by the definition of R, for every i ∈ [n] independently, we
have that i ∈ R′, with probability αn−1/3. We next prove that Pr[Mw ∩ 2R

′ 6= ∅] > 1− η, and
since R′ ⊆ R and Mw ⊆ Ww, this implies the Lemma.

For every integer i, let d(i) = |{j ∈ [n] | 2i ≤ degMw
(j) < 2i+1}|. Let ∆ be the expected

number of pairs of distinct Q,Q′ ∈Mw ∩ 2R
′

such that Q ∩Q′ 6= ∅. We observe that,

∆ ≤ α3n−1

logn
3
−2 logα∑
i=1

(
2i+1

2

)
d(i).
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We observe that d(i) ≤ |Mw|2−i+1. Plugging this into the above,

∆ < α3n−1

logn
3
−2 logα∑
i=1

21+2i|Mw|2−i+1 = 4α3n−1|Mw|

logn
3
−2 logα∑
i=1

2i ≤ 8αn−
2
3 |Mw|. (1)

For every Q ∈Mw, let XQ be a random variable that is 1 if Q ⊆ R′, and otherwise 0. Let µ be
the expected value of

∑
Q∈Mw

XQ. Then,

µ =
α2|Mw|
n

2
3

. (2)

Consequently, by (1), (2) and Janson’s inequality [4, Part 8],

Pr[Mw ∩ 2R
′

= ∅] ≤ e−n
− 2

3 |Mw|α(α−4) < e−εα(α−4) < η,

where the second to last inequality follows from |Mw| ≥ εn
2
3 , and the last inequality follows

from Observation 6.9.

Proof of Theorem 6.8. An ε-far w must clearly fall under at least one of Lemma 6.18, Lemma
6.19 and Lemma 6.20.

We conclude this section with a sketch of how to generalize the result for a decomposition
admitting only partial sets. The key is in relaxing the definition of a trap. Under the new
scheme, for every i, for a word ε/2-far from P (rather than Pi), the “partial” trap Qi would
be required to contain a witness against Pi. The arguments translate almost verbatim to this
setting, only one must be careful with the definitions such as Definition 6.12 – the exact wording
about the (partial) trap containing a witness against the words under consideration becomes
even more important.

7 Properties with a proximity oblivious q-test decomposition

In the following we assume knowledge of the definitions and methods of Section 6. We also
assume everywhere that n is large enough for the arguments to follow. To prove Theorem 1.11
we will make crucial use of sunflowers.

Definition 7.1. A sunflower with center A is a family of subsets B1, . . . , Bt ⊆ {1, . . . , n} so
that every Bi contains A, and B1, . . . , Bt are disjoint outside of A (a completely disjoint family
is a sunflower with center A = ∅).

Lemma 7.2 (sunflower theorem, Erdös and Rado [9]). Any family of at least s = q!tq+1 sets
whose sizes are at most q contains a sub-family of size t which is a sunflower.

In the following q would be the (constant) number of queries of the proximity-oblivious test,
and t would be some power of n, so our required s would essentially be another power of n.

We next define fragments.

Definition 7.3 (fragments and violations). A fragment ξ = (A, v) consists of a subset A ⊆
{1, . . . , n} and a function v : A → {0, 1}. The special case where A = ∅ is called the null
fragment.

A fragment ξ1 = (A1, v1) contains ξ2 = (A2, v2) if A2 ⊆ A1 and the restriction of v1 to A2

is v2; in this case the difference fragment ξ3 = (A3, v3) = ξ1 \ ξ2 is defined where A3 = A1 \A2

and v3 is the restriction of v1 to A3.
A fragment ξ = (A, v) is said to be violated by the input w if the restriction of w to A is v.
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It will be easier for us to redefine proximity oblivious tests as distributions over fragments.

Definition 7.4 (fragment version of a q-test). A proximity oblivious q-test for P is a distri-
bution µ over a set Ξ of fragments of sizes bounded by q (some members of Ξ could be with
probability 0) satisfying the following:

• If w satisfies P then no fragment is violated (not even probability 0 ones).

• If w is ε-far from P then the probability of picking a violated fragment is at least ρ(ε).

When moving from a q-test as in the original definition of finding a witness against w, to a
q-test as per the above definition, the original ρ(ε) might be divided by up to 2q (since every
original query set is converted to all corresponding fragments that are possible witnesses against
the input).

We now introduce a definition of universal testers suitable for the analysis in this section:

Definition 7.5 (universal tester). For parameters γ ∈ (0, 1), q ∈ N and a set of fragments
Ξ, the (γ, q)-universal tester operates in q rounds. In each round it picks a set Rj by taking
every index i with probablity n−2γ. Let R =

⋃q
j=1Rj. If |R| > nγ, then it accepts immediately,

and otherwise it queries the input on all indices of R, rejects if the values of w form a witness
against P , and accepts otherwise.

For what follows, we note that the “immediate acceptance” step occurs with probability
1− o(1), and we will continue the discussion conditioned on the event where it does not occur.

We next define how fragments can be “shortened” sometimes, through either queries or
logical deductions.

Definition 7.6 (witnesses and refutations). A witness for a fragment ξ is a containing fragment
ξ′, so that the difference fragment ξ′ \ ξ is violated by the input w (ξ itself does not have to be
violated by w).

A refutation for a fragment ξ is a set Ξ of fragments, at least one of which containing ξ, so
that no possible input that satisfies the entire set Ξ may satisfy ξ.

Note that in particular a set Ξ is a refutation of the null fragment if and only if it is
unsatisfiable.

Our main tool of analyzing the universal sampler is the following:

Definition 7.7 (R-reduction of a test). Given a q-test for a property P , as a distribution µ
over a set Ξ of fragments, and a set of queries R ⊆ {1, . . . , n}, the R-reduction of the test is
the result of the following process.

1. For every i ∈ R, we add the corresponding violated fragment (i,¬w(i)), where w is the
input, to Ξ, for the time being with probability 0 (this is essentially “adding the query i”).

2. We add to Ξ (still with probability 0) every fragment for which there is a refutation in Ξ
(note that, because of the previous item, this also includes fragments for which there is a
witness whose corresponding difference was indeed verified to violate w through R).

3. For every fragment ξ ∈ Ξ which contains another fragment in ξ′ ∈ Ξ (and is hence made
“redundant” by it), we remove ξ from Ξ. If µ(ξ) was non-zero, we modify µ by adding
this probability to the contained ξ′ (for this procedure we can pick any contained ξ′ which
in itself does not contain yet another member of Ξ).
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The R-reduction in itself is not necessarily a test for P . It may reject members of P , and it
may even contain the null fragment (when that happens Ξ will contain only the null fragment
and with probability 1; this in particular means that R is a witness for the property against the
input, i.e., the input’s restriction to R is not extensible to any possible string satisfying P ).

On the other hand, the following is immediate.

Observation 7.8. For every possible R, the R-reduction of the test is still a probability distribu-
tion over fragments. Moreover, for every possible input w, the probability of rejection (obtaining
a violating fragment) by the R-reduction is at least the corresponding probability by the original
test.

Our main argument for Theorem 1.11 lies in the following: We prove that certain events
concerning R and the resulting R-reduction of the test occur with probability 1− o(1). Given
these events, we prove that if the null fragment is not in the resulting Ξ, then it may not be
the case that all ε/2-far inputs are rejected with probability ρ(ε/2) by the original test (we will
construct too many “disjoint” inputs).

In the following, γ (of the universal sampler) will be chosen small enough as a function of
all other parameters that will be defined below. First we define the following with respect to a
β to be chosen later (γ will depend on β).

Definition 7.9 (sunflowers of fragments). A family of fragments ξ1 = (A1, v1), . . . , ξt = (At, vt)
is called a sunflower with center ξ = (A, v) if A1, . . . , At is a sunflower (of sets) with center A,
and additionally the restriction of every vi to A is v.

Definition 7.10 (generations). Given a q-test with the set of fragments Ξ, all members of Ξ
are said to be generation 0. By induction, a fragment is said to be generation i if it is the center
of a sunflower of nβ fragments whose generation is at most i−1 and which are all witnesses for
it, or it has a refutation using fragments whose generation is at most i (and unless the fragment
is already of a smaller generation).

Fragments not having a designated generation by the above are said to be generation ∞.

We will only be interested in fragments of generation up to q due to this simple observation.

Observation 7.11. A generation i fragment for i <∞ has length at most q−i, so in particular
all finite generations are at most q.

A central claim is the following:

Lemma 7.12. Let R =
⋃q
j=1Rj be the result of q rounds, where in each round every index i is

independently chosen to be in Rj with probability n−2γ. With probability 1− o(1), after the j’th

round, the
⋃j
k=1Rk-reduction of the test contains all generation j fragments or sub-fragments

thereof. This is when γ is chosen to be β/(4q).

Proof. This is proved by induction. The base is j = 0 (the ∅-reduction of the test will still have
all the original fragments, or sub-fragments thereof if there were meaningful refutations).

Let us assume that the
⋃j−1
k=1Rk-reduction of the test includes all generation j−1 fragments

or sub-fragments thereof. For a generation j fragment ξ = (A, v) that is the center of a sunflower
of witnesses, first let ξ′ = (A′, v′) be any member thereof. The probability that Rj contains
A′ \ A is at least n−2qγ . Note that when this happens, ξ or a sub-fragment thereof will be in
the

⋃j
k=1Rk-reduction as required.

Now there are at least nβ members of the sunflower, and the events of each difference to
be included in Rj are all independent (as this is a sunflower). Therefor the probability of none
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of the events happening is at most (1 − n−2qγ)n
β
< exp(−nβ−2qγ), which is o(n−1−q) taking

γ = β/(4q). Noting that there are not more than n1+q fragments in all, we are done for all such
flower centers by a union bound.

The case where the generation j fragment has a refutation by other generation j fragments
is immediate, once we know that all fragments that are generation j through being a center of
a sunflower are included.

This claim in turns motivates the following definition.

Definition 7.13. Given a test (as a distribution over a set of fragments Ξ) and an input w,
the generational reduction thereof is the result of the following process:

1. We add to Ξ (with probability 0) every fragment which is of generation i for some i <∞
(and hence i ≤ q).

2. For every fragment ξ ∈ Ξ which contains another fragment in ξ′ ∈ Ξ (and is hence made
“redundant” by it), we remove ξ from Ξ. If µ(ξ) was non-zero, we modify µ by adding
this probability to the contained ξ′ (we can pick any contained ξ′ which in itself does not
contain yet another member of Ξ).

Again the following is straightforward.

Observation 7.14. The generational reduction of the test is still a probability distribution
over fragments. Moreover, for every possible input w, the probability of rejection (obtaining a
violating fragment) by the generational reduction is at least the corresponding probability by the
original test.

It is important for us to note the following, as the generational reduction has a better
structure than just any randomized R-reduction obtained through sampling.

Lemma 7.15. With probability 1 − o(1), the R-reduction of the test is also a reduction of the
generational reduction of the test.

Proof. This is equivalent to Lemma 7.12 for j = q, because it means that with probability
1−o(1) there will be witnesses in R to all finite generation fragments, recalling also Observation
7.11.

In particular, if the generational reduction has the null fragment in its set of fragments, then
with probability 1−o(1) the γ-universal testing algorithm will reject the property. To complete
the components required for the proof of Theorem 1.11, we will assume that the null fragment
is not in this reduction (i.e. it is of generation ∞, which is implied by R not being a witness
against the input with high probability) and reach a contradiction. At this point we use the
sunflower theorem.

Lemma 7.16. Let ΞG denote the set of fragments of the generational reduction of the test, and
assume that it does not contain the null fragment. For n large enough, there exists no fragment
(regardless of whether it is violated itself) that is contained in more than n(q+2)β members of
ΞG that are witnesses against it.

Proof. If ξ = (A, v) was such a fragment, and ξ1 = (A1, v1), . . . , ξt = (At, vt) were (containing)
members of ΞG for t = n(q+2)β that witness it, then (for n such that nβ > q!) by Lemma 7.2
there would have been a sunflower of sets Aj1 , . . . , Ajt for t = nβ, whose center is some set A′

that contains A. Now the restrictions of vj1 , . . . , vjt to A′ are all identical: Over A these are
identical to v, and over A′ \A these are identical to the restriction of w to this set. Let v′ denote
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the common restriction of vj1 , . . . , vjt to A′. ξj1 , . . . , ξjt are now also a sunflower of fragments, all
witnesses to their center ξ′ = (A′, v′). This would have meant that ξ′ is a fragment of some finite
generation, which is a contradiction to ΞG already corresponding to the generational reduction
of the test.

In particular (through the null fragment), the above means that there are no more than
n(q+2)β members of ΞG that are violated by w. However, ΞG in itself could still be very large,
as for example it could contain many fragments that would be violated by the bit-wise negation
of w.

In the following, we assume that w is an ε-far word for which the generational reduction
does not contain the null fragment. We then do the following construction.

Definition 7.17. Assume that ΞG does not contain the null fragment (and is hence satisfiable).
We define by induction the following sequences, where w0 = w, Ξ0 = ∅ and B0 = ∅. We let w∗

be any word that violates no member of ΞG.

• Ξi is the set of the members of ΞG that are violated by wi−1.

• Bi = Bi−1 ∪
⋃
{A : ξ = (A, v) ∈ Ξi}.

• wi is identical to w∗ over Bi and identical to w outside of it.

We are interested in taking w0, . . . , wr, Ξ1, . . . ,Ξr+1 and B1, . . . , Br for r = 1/ρ(ε/2). The
following lemma gives us their required properties.

Lemma 7.18. Assume that ΞG does not contain the null fragment. All of the following hold
for n large enough.

• The sets Ξi are all disjoint.

• |Ξ1| ≤ n(q+2)β and |B1| ≤ qn(q+2)β.

• |Ξi| ≤ n(q+2)β|Bi−1|q and additionally |Bi| ≤ |Bi−1|+ qn(q+2)β|Bi−1|q for i > 1.

• |Bk| ≤ n(5q)kβ for k > 1.

Proof. The first item is because Ξi cannot contain any fragment whose respective set is inside
Bi−1 (because wi−1 is identical to w∗ there), or any fragment whose respective set is not con-
tained in Bi (because of how Bi was defined), and we have successive containment Bi−1 ⊆ Bi.

The second item is from the discussion after Lemma 7.16, noting also that all members of
ΞG are of length bounded by q.

The third item is by Lemma 7.16 again. We note that violated fragments of ΞG here can only
come from witnesses in ΞG for fragments inside Bi−1, and there are less than |Bi−1|q relevant
fragments (all possible restrictions of w∗ to subsets of size at most q of Bi−1).

The fourth item is by basic numeric induction.

Now we finally have all the components for proving Theorem 1.11.

Proof of Theorem 1.11. We take β = 1
2(5q)−r, where r = 1/ρ(ε/2) and n is assumed to be large

enough so that n−1/2 ≤ ε/2. By Lemma 7.15, with probability 1 − o(1) the R-reduction of
the test will include also its generational reduction, i.e. it will be a reduction also of ΞG. To
conclude we prove that such an R is necessarily a witness against the input. Let us assume on
the contrary that the R-reduction, and hence also ΞG, does not contain the null fragment.
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We refer to the construction of Definition 7.17. The choice of parameters above and Lemma
7.18 ensure that |Br| ≤ εn/2, and so all the inputs w0, . . . , wr are ε/2-close to w and hence are
ε/2-far from the property. Hence the original q-test and its generational reduction have to reject
each of those inputs with probability at least ρ(ε/2). However, this means that in ΞG there
are r + 1 disjoint subsets Ξ1, . . . ,Ξr+1 where each of which is assigned a probability of at least
ρ(ε/2) by the generational reduction, which is the contradiction to the sum of all probabilities
being 1.

8 Highly decomposable properties

We prove here Theorem 1.13. The property that we will use will be the following one of being
k-paritic.

Definition 8.1 (k-paritic). A string w = (w1, . . . , wn) ∈ {0, 1}n is called k-paritic if there exist
i1, . . . , ik for which i1 = 1, ij + n/2k ≤ ij+1 for all 1 ≤ j < k and ik + n/2k ≤ n, such that for

every 0 ≤ r < n/2k we have
⊕k

j=1wij+r = 0.

For fixed i1, . . . , ik as above, we let Pi1,...,ik denote the property of satisfying
⊕k

j=1wij+r = 0
for every 0 ≤ r < n/2k (for these particular i1, . . . , ik).

Theorem 1.13 then immediately follows from Lemma 8.2 and Lemma 8.5 below.

Lemma 8.2. The property of being k-paritic is decomposable to at most nk−1 many properties,
so that each of them has a proximity-oblivious 1-sided k-test with detection function ρ(ε) =
Ω(kε).

Proof. We decompose the property of being k-paritic to the properties Pi1,...,ik (as in Definition
8.1), where i1, . . . , ik are any indexes such that i1 = 1, ij + n/2k ≤ ij+1 for all 1 ≤ j < k and
ik + n/2k ≤ n (note that these properties need not be disjoint). There are less than nk−1 such
properties (i1 has one value and every other ij can have less than n possible values), and their
union is clearly the property of being k-paritic.

The proximity-oblivious k-test for every property Pi1,...,ik is done by taking a uniformly

drawn value from {0, . . . , n/2k} for r, and checking that the requirement
⊕k

j=1wij+r = 0 is
satisfied (which uses k queries). To get at the Ω(kε) bound on the detection function, we note
that for w to be ε-far from Pi1,...,ik , at least εn values of the possible n/2k values for r must be

such that
⊕k

j=1wij+r = 1, so the probability to get such a value for r is εn
n/2k = Ω(kε).

Before continuing we show that being k-paritic is not too dense.

Lemma 8.3. For every fixed k, a uniformly random member of {0, 1}n (each bit being chosen
uniformly and independently) is 1/10k-far from being k-paritic with probability 1− o(1).

Proof. First we consider a property Pi1,...,ik for specific i1, . . . , ik as in Definition 8.1. For every

0 ≤ r < n/2k, the probability for
⊕k

j=1wij+r = 1 is exactly 1
2 , and these events are completely

independent for different values of r. Hence, by a straightforward large deviation inequality,
with probability at least 1− 2−n/10k it holds that we have a set R ⊂ {0, . . . , dn/2ke − 1} of size
at least n/10k so that for every r ∈ R we have

⊕k
j=1wij+r = 1. When this occurs the word

w = (w1, . . . , wn) is clearly 1/10k-far from Pi1,...,ik .
The lemma now follows from a union bound over all properties Pi1,...,ik (whose number is at

most nk−1, see Lemma 8.2).

We will also use a traditional Yao’s argument. The following is similar to the form that
appears in [10] (but was developed earlier).
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Lemma 8.4. Suppose that DP and DN are two distributions over {0, 1}. For an index set
Q ⊂ {1, . . . , n} of size q and a word v ∈ {0, 1}q, let α(Q, v) be the probability that a word
w ∈ {0, 1} drawn according to DP agrees with v over Q (i.e., that setting i1, . . . , iq to be the
members of Q in sorted order, we have wij = vj for all 1 ≤ j ≤ q). Define β(Q, v) similarly
with DN instead of DP .

If for every Q of size q and every v ∈ {0, 1}q we have that α(Q, v) ≥ (1− η)β(Q, v), then no
algorithm making up to q queries can distinguish with probability more than η (even an adaptive
one and in a 2-sided manner) between the case where w was drawn according to DP and the
case where it was drawn according to DN .

The following now concludes the proof of Theorem 1.13

Lemma 8.5. For any fixed k, The property of being k-paritic in itself cannot be 1/5k-tested
using o(n1−1/k) many queries (not even by 2-sided adaptive algorithms).

Proof. Here we use Lemma 8.4. We will assume that n = 2kl for some integer l, as the move
from this to general n involves simple padding. We define two distributions.

• The distribution DP starts by first choosing uniformly and independently 2l(j − 1) + 1 ≤
ij ≤ 2l(j − 1) + l for every 1 < j ≤ k, setting i1 = 1. Then we take w ∈ {0, 1}n to be a
uniformly random member of Pi1,...,ik , the corresponding property defined in the proof of
Lemma 8.2 (out of the 2n−l members thereof).

• The distribution DN is just the uniform distribution over {0, 1}n.

It is clear that an input drawn according to DP is always k-paritic. Also, by Lemma 8.3 we have
that with probability 1− o(1) an input drawn according to DN is 1/5k-far from being k-paritic.

Also note that for every v ∈ {0, 1}q and every index set Q ⊆ {1, . . . , n} of size q, the
probability of a word w drawn according to DN to agree with v over Q is exactly 2−q. To
complete the argument, by Lemma 8.4, it remains to show that for every v ∈ {0, 1}q and every
Q ⊆ {1, . . . , n} of size q where q = o(n1−1/k), the probability for such an agreement according
to DP is at least (1− o(1))2−q.

Let E be the event that there is no 0 ≤ r < l for which {i1 +r, . . . , ik+r} ⊂ Q. Conditioned
on E, the probability of w to agree with v over Q is exactly 2−q, so it remains to show that E
occurs with probability 1−o(1). Let s1, . . . , sk be members of Q. The only case where there can
be a positive probability for the equalities i1 +r = s1, . . . , ik+r = sk is if 2l(j−1)+1 ≤ sj ≤ 2lj
for every 1 ≤ j ≤ k. In this case the equalities can happen for at most one value of r (since i1 is
always 1), and then their probability is bounded by l1−k = (2k/n)1−k (as i2, . . . , ik are chosen
independently).

The number of possible eligible k-tuples s1, . . . , sk in Q is at most (q/k)k. By the union
bound the probability for E not to occur is then bounded by (2q/n)k−1(q/k). For a fixed k, if
q = o(n1−1/k) then this probability bound evaluates to o(1), concluding the proof.

It would be interesting to find out whether there exists a property decomposable into a
relatively small number of testable properties that in itself requires a linear number of queries
to test. The following standard proposition shows that for being k-paritic, our lower bounds
are about as far they can go.

Proposition 8.6. The property of being k-paritic is testable by a non-adaptive 1-sided test, with
query complexity of O(n1−1/k(log(n)/ε)1/k), which detects ε-far inputs with constant probability.

Proof. We will use the following algorithm:
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• Choose a query set Q by choosing for every 1 ≤ j ≤ n independently whether j ∈ Q,
where this occurs with probability (10kn−1 log(n)/ε)1/k.

• If |Q| > 2n(10kn−1 log(n)/ε)1/k then accept the input without making any queries (by a
large deviation inequality this occurs with probability o(1)).

• Otherwise, make all the queries in Q, and accept the input if and only if there exists a
k-paritic word u ∈ {0, 1}n whose restriction to Q agrees with all queries made to the input
word w.

Clearly, if the input word w is k-paritic then it will always be accepted, either arbitrarily in the
second step or by u = w in the third step. It now remains to prove that ε-far words are rejected
with high probability. The second step assures that the number of queries is always at most
2n(10kn−1 log(n)/ε)1/k = O(n1−1/k(log(n)/ε)1/k) (rather than being so only with probability
1− o(1)).

We may safely ignore the case where there is acceptance in the second step as it occurs
with probability o(1), and henceforth analyze the algorithm as if this step was removed from
it. We start by analyzing the property Pi1,...,ik for specific i1, . . . , ik as in Definition 8.1. If w
is ε-far from Pi1,...,ik , then there is a set R ⊂ {0, . . . , dn/2ke − 1} of size at least εn so that

for every r ∈ R we have
⊕k

j=1wij+r = 1. For every fixed r ∈ R, the probability to query its
corresponding witness of not being in Pi1,...,ik , i.e. the probability for {i1 + r, . . . , ik + r} ∈ Q, is
10kn−1 log(n)/ε.

The above means that for the specific property Pi1,...,ik , the probability of not detect-
ing a witness for the input not being in the property is at most (1 − 10kn−1 log(n)/ε)εn <
exp(−10k log(n)) = o(nk−1). All that remains to do is perform a union bound over all proper-
ties Pi1,...,ik , whose union is the property of being k-paritic (see Lemma 8.2 and its proof), to
see that with probability 1− o(1) our query set is such that there is no k-paritic word u whose
restriction to Q agrees with the queries made to w.
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